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HIGHLIGHTS 

• Bibliometric analysis on chatter detection techniques in machining processes. 
• Effectiveness of AI methods combined with transformation and decomposition techniques. 
• Research areas mainly cover manufacturing, mechanics, and automation control systems. 
• Application of signal processing techniques in chatter detection with their advantages. 
• Challenges of deep learning models to solve problems of performance and explainability. 

  



ABSTRACT 

To improve the finish and efficiency of machining processes, researchers set out to develop 
techniques to detect, suppress or avoid vibration chatter. This work involves tracing chatter 
detection techniques, from time-frequency signal processing methods (FFT, HHT, STFT, etc.), 
decomposition (WPD, EMD, VMD, etc.) to the combination with machine learning or deep 
learning models. A cartographic analysis was carried out to discover the limits of these different 
techniques and to propose possible solutions in perspective to detect chattering in the machining 
processes. The fact that human expert detects chatter using simple spectrograms is confronted 
with the variety of signal processing methods used in the literature and lead to possible optimal 
detecting techniques.  For this purpose, the bibliometric tool R - Tool was used to facilitate a 
bibliometric analysis using specific means for quantitative bibliometric research and 
visualization. Data were collected from the web of science (WoS 2022) using particular queries 
on chatter detection. Most documents collected detect chatter with either transformation or 
decomposition techniques. 
 
KEYWORDS: Bibliometrics, chatter detection, time-frequency analysis, signal processing, 
machine learning, deep learning.  



1. INTRODUCTION 

Historically, chatter is described by the father of machining [1], as the most obscure and delicate 
problem of all that confronts the machinist. In the case of castings and forgings of various 
shapes, there is probably no rule or formula that can accurately guide the machinist in making 
the cuts and maximum speeds possible without producing chatter. A few decades later, firstly 
in a Slovak book [2] and then in international publications by the documents [3] [4] [5], the 
stability lobes theory showed that it was possible to solve the chatter problem. Self-excited 
vibration frequency called chatter is still the most famous vibration phenomena in machining 
and is detrimental to surface finish quality and tool life [6]. Chatter is primarily manifested by 
the regeneration of waviness caused by the interaction between the material surface and the tool 
at given rotational frequencies of the spindle and by the interaction of one mode or several 
modes. Several researchers have studied the technique of detecting chatter in vibration signals. 
For example, the authors' [7] and [8]. These are the cutting force, acceleration, sound, and 
electric current signals, fluently used to monitor the state of the systems [9].  
Several signal processing algorithms have been successfully applied to chatter detection, such 
as Short-Term Fourier Transform (STFT) [10] [11], Wavelet Transform (WT) [12] [13], 
Wavelet Packet Decomposition (WPD) [14], Hilbert-Huang Transform (HHT) [15] [16][17], 
empirical mode decomposition (EMD) [18] [19], Variational Mode Decomposition (VMD) 
[20] [21] and Local Mean Decomposition (LMD) [22]. 
Generally, this signal processing-based detection is performed in three progressive steps: signal 
collection, feature extraction, and defect detection or identification [23]. Previously, chatter 
detection was established based on the engineers' abundant experience and mainly based on 
acoustic human analysis of the process. It is equally essential to monitor the condition of the 
tool and detect any anomalies that may occur during machining to prevent any dangerous 
situations [24]. In any machining operation, the cutting tool's life directly affects the process's 
quality and cost. By monitoring the condition of tools, it is possible to eliminate problems such 
as accelerated wear and breakage of tools and chatter during machining. This paper reviews the 
literature on techniques for detecting or identifying vibration-induced chatter in this paper. 
Several vibration mitigation techniques, including stiffening in machine tools or part-holder, 
and active or passive damping techniques, also exist [25][26]. By monitoring and analyzing the 
vibration signals near the tool and the workpiece, not only the chatter but also the state of the 
machine tool can be detected effectively, and even allow us to develop a digital twin of the 
machine [27]. The predominant analytical methods use so-called "stability lobe" diagrams to 
predict the stability of machining processes. Time-frequency processing models, using a wide 
range of mathematical transforms and decomposition, have been used in chatter detection, 
whether in milling, turning, drilling, or grinding. All these sophisticated methods have some 
difficulties in detecting unobvious chatter (i.e., when there is not a substantial increase in Root 
Mean Square (RMS) vibration level or even sound noise) and accurate industrial noisy vibration 
signals (rarely considered). These difficulties must be confronted by the fact that on-field 
human chatter experts use only spectrum and spectrogram representations to detect chatter, and 
thus. Thus probably, research should investigate more what information can be extracted 
directly from spectrums and spectrograms. 
 
Quite recently, deep learning (Figure 2) has appeared as a general concept that refers to the 
newest and most successful group of methods based on neural networks and has proven to be 
very effective in many fields. 
To reduce the human contribution to the diagnosis and detection of faults, integrating machine 
learning theories (Figure 1) with vibration analysis is a promising way to automate the 
procedures currently used by the document [28].  



This article aims to provide a comprehensive review of chattering detection techniques, from 
time-frequency processing techniques to Artificial Intelligence (AI) techniques, and identify 
the already most promising and emergent ones. 

 
Figure 1. The machine learning model for binary classification [29]. 

 
Figure 2. The deep learning model for binary classification [29]. 

To perform this extensive analysis, the bibliometric tool R-Tool was used by the document [30], 
an R package intended to facilitate bibliometric analysis, based on the open source software R, 
one of the most influential and flexible software environments for statistics and data science. 
This analysis provides a new perspective on the evolution of techniques for detecting, 
identifying, or suppressing chatter in machining by developing a taxonomy of knowledge for 
research topics in the field. 
An in-depth analysis of past and current studies on the evolution of chatter detection techniques 
is performed on 655 research publications between 1985 and 2022. This study provides insights 
into the application of AI in chatter detection in machining and particular industrial needs 
regarding the detection of chatter without having to provide information on the amplitude of 
the vibration signal because the signal may be more or less intense depending on the type of 
sensors and their positions, or the operating frequencies of the machine, which can be difficult 
to collect or erroneous due to the presence of reducers or gearboxes, for example. Another 
perspective is the opportunity to use unsupervised learning to detect phenomena not identified 
a priori by the human expert. Finally, the explainability of the AI technique would facilitate the 
use and exploitation of AI results. 
The rest of the article is organized as follows: section 2 describes the bibliometric analysis, 
section 3 presents previous work on time-frequency and AI processing techniques for detecting 
chatter in machining, and section 4 presents challenges with opportunities and solutions in 
machining. The article concludes with section 5. 

2. BIBLIOMETRIC ANALYSIS 

2.1.  INFORMATION ABOUT DATA 

The bibliometric analysis will identify key metrics related to this section's sources, documents, 
authors, keywords, and countries. The bibliometric analysis will identify key metrics related to 
sources, documents, authors, keywords, and governments. In this section. Is analysis will also 
allow us to classify and visualize the publications according to their impact, interest, frequency 
of citations, and collaboration in the research field. The appeal of the bibliometric analysis is to 



acquire new information that will give an overview of the target field and serve as a perspective 
subject for scientific research. 
Data for this search were collected from the Web of Science (WoS) database. All articles and 
journals included in the analysis were written in English. Since systematic literature reviews 
rely on careful selection of keywords, it was decided that the keywords (chatter detection, time-
frequency processing, machine learning, and deep learning) should appear in the title, the 
keywords, or the text. Keywords. For the data search strategy, the following queries were used 
in the WoS database ("Web of Science April 2022"):  
§ ("chatter detection" OR "chatter identification" OR "chatter recognition" OR "chatter 

suppression") 
§ ("chatter detection" OR "chatter identification" OR "chatter recognition" OR "chatter 

suppression") AND ("machine learning" OR "Deep learning" OR "Artificial Intelligence") 
The first query was run to retrieve 679 research publications, including 350 publications in 
engineering manufacturing, 290 publications in engineering mechanical, 173 publications in 
automation control systems, etc. (Figure 3). 
 

 
Figure 3. ranking of publications in different research areas. 

Table  1 presents the preliminary information about the data collected on WoS between 1985 
and 2022. This table reports information such as the number of documents obtained, the search 
period, author keywords, and keywords. The authors provide the author keywords in this case 
(1546) words. The keywords plus (652) are generated from an algorithm to extract the words 
frequently appearing in the title references, not only the document titles or author keywords. 
The bibliometric tool allowed us to know the appearance of the author (1425), authors of single-
author documents (11), authors of multi-author documents (1414), the average number of 
authors per document (2.25), and the collaboration index (2.27), etc. Figure 4 shows the 
classification of publications by type of document, with 482 articles, 155 proceedings papers, 
14 reviews, etc. 

Table  1. primary information about data 

Description Results 
Timespan 1985 :2022 
Sources (Journals, Books, etc.) 250 
Documents 679 
Average years from publication 7,13 
Average citations per documents 18 



Average citations per year per doc 2,179 
References 10565 
DOCUMENT TYPES  
article 482 
article ; book chapter 5 
article ; early access 6 
article ; proceedings paper 14 
correction 1 
letter 2 
proceedings paper 155 
review 14 
DOCUMENT CONTENTS  
Keywords Plus (ID) 652 
Author's Keywords (DE) 1546 
AUTHORS  
Authors 1425 
Author Appearances 2484 
Authors of single-authored documents 11 
Authors of multi-authored documents 1414 
AUTHOR’S COLLABORATION  
Single-authored documents 12 
Documents per Author 0,476 
Authors per Document 2,1 
Co-Authors per Documents 3,66 
Collaboration Index 2,12 

 
 

 
Figure 4. ranking of publications by type of documents. 

Figure 5 shows the publication frequency during the period 1985 - April 2022. The scientific 
publications on chatter detection techniques started to reach 40 publications per year in 2017, 



and the evolution peaked in 2019 with 83 publications. Between January and April 2022, there 
were 26 articles on chat detection. 
 

 
Figure 5. Annual scientific production 

The growth of the annual scientific production is due to the enlargement of the observation base 
with the addition of new publication media (journals, conference proceedings, chapters of 
collective works, etc.) in the database as (WoS and Scopus). This addition occurs in two ways, 
and firstly, the observation bases integrate the existing journals after a selection process to better 
cover the world's scientific production. The journals are also created by developing new 
scientific themes [31]. Figure 6 illustrates this growth using the more generic term "machining" 
as a query. 
 

 
Figure 6. Annual scientific production using the term "machining" in research. 

In this study, it is noted that chatter detection is seen almost as much from the manufacturing 
side as from the mechanical side. In contrast, a priori, it would only be seen from the 



manufacturing side and possibly as an automatic system. Most of the publications are less than 
six years old, and many studies have focused on the development of analytical and numerical 
algorithms for chatter prediction [32] [33] [34].  
Integrating concepts like the Internet of Things (IoT) has significantly shaped the 
manufacturing industry. The development of science and technology has enabled the integration 
of concepts such as the Internet of Things (IoT). Because volumetric and reliable multi-sensor 
technologies are integrated to collect data. The growth in the size of data in the industry and the 
storage and processing of big data highlights the need for data-driven manufacturing as a critical 
component of intelligent manufacturing. To this end, research has focused on combining 
physics-based models (FFT, WT, etc.) with data-driven computational models (machine 
learning and deep learning) [35] [36]. 

2.2. SOURCES 

To show the dynamics of the growth of the productivity of the journals, their impacts and 
number of citations, and their network collaborations, Table  2 presents the most productive 
journals according to the number of publications (NP), the number of citations (TC), and the 
impacts (h-index, g-index, m-index). H-index [37] is defined as the number of publications for 
which the author has received at least h-citations. G-index is an author-level measure proposed 
by L. Egghe [38], which is calculated based on the distribution of citations received by 
publications of a given author, given a set of articles ranked in descending order of the number 
of citations they received. M-index [39] is the number of publications for which the author 
received at least h-citations.  
“International Journal of Advanced Manufacturing Technology” is the most productive journal 
(94) as the number of publications or more than 25% of the articles. “International Journal of 
Machine Tools & Manufacture” comes in second position (44) and Mechanical Systems and 
Signal Processing with 31 publications in the third position. However, it should be noted that 
the most productive journal is not necessarily the most cited. For example, “CIRP Annals-
Manufacturing Technology” is more mentioned than “Mechanical Systems and Signal 
Processing” since it is less productive than “International Journal of Advanced Manufacturing 
Technology” (Figure 7). 
 

Table  2. Sources impact. 

Sources h_index g_index m_index TC NP PY_
start 

International Journal of Advanced 
Manufacturing Technology 21 30 0.78 1414 94 1996 

International Journal of Machine Tools & 
Manufacture 30 44 0.97 2661 44 1992 

Mechanical Systems and Signal Processing 17 29 0.49 860 31 1988 

Journal of Manufacturing Science and 
Engineering-Transactions of the Asme 12 22 0.44 493 26 1996 

CIRP Annals-Manufacturing Technology 13 18 0.62 2146 18 2002 

Proceedings of the Institution of 
Mechanical Engineers Part B-Journal of 
Engineering Manufacture 

8 14 0.38 214 16 2002 

Journal of Sound and Vibration 12 15 0.48 709 15 1998 

Journal of Vibration and Control 8 12 0.62 209 12 2010 



Precision Engineering-Journal of the 
International Societies for Precision 
Engineering and Nanotechnology 

7 10 0.58 117 10 2011 

Measurement 6 9 1 122 9 2017 

Journal of Materials Processing Technology 6 8 0.26 473 8 2000 

Journal of Intelligent Manufacturing 5 7 0.17 121 7 1994 

Materials 4 6 1 59 6 2019 

Advances in Manufacturing 3 5 0.5 32 5 2017 

Applied Sciences-Basel 4 5 0.67 29 5 2017 

Chinese Journal of Aeronautics 5 5 0.33 223 5 2008 

International Journal of Mechanical 
Sciences 5 5 0.38 177 5 2010 

Machining Science and Technology 3 5 0.14 70 5 2002 

Mechatronics 3 5 0.14 82 5 2001 

Chinese Journal of Mechanical Engineering 3 4 0.23 30 4 2010 

 
In Figure 7, the vertical axis shows the names of the scientific publication journals, and the 
horizontal axis indicates the number of journal citations in the research on chatter detection 
techniques. The journals are listed in descending order. The International Journal of Machine 
Tools & Manufacture is on top with 2661 (TC), followed by CIRP Anales-Manufacturing 
Technology 2146 (TC) and International Journal of Manufacturing Technology, etc. 
 

 
Figure 7. Ranking of journals by several citations. 

2.3. AUTHORS 

The Bibliometric tool counts the local citations of an article and an author in the most cited 
references. The number of local citations presents the number of appearances of an author in 
the documents collected for this study. According to Figure 8 Y. Altintas is the most cited author 
(1585 citations in total), the number in the circle is the number of local citations, and the width 
of the line depends on this number. 



Y. Altintas is probably the most famous researcher on machining vibrations. He explained most 
of the chatter process by making the equation and enriching the AI models with the mechanical 
ones. He demonstrates with a numerical simulation model on dynamic milling that the use of 
continuously variable spindle speed can be a way to suppress chatter [40]. He was followed by 
D. Dornfeld (731 total citations), who does not specialize in machining vibration, talk, or AI 
but has been prolific in precision machining and using sensors. K. Jemielniak shares the same 
score with G. O’Donnell and R. Teti (726 citations in total), who are classical researchers 
working for decades on machining. These authors have an excellent knowledge of the field and 
propose new techniques to detect, identify, or locate chatter for machining stability over time. 
They are working with D. Dornfeld on a paper in Advanced Monitoring of Machining 
Operations reviewing past contributions and proposing a comprehensive update on sensor 
technologies, signal processing, and, most importantly, decision-making strategies for process 
monitoring [41].  
The TC index indicates that the authors are not necessarily the most productive. For more 
details, Figure 9 presents a network showing the collaboration links between the authors. Their 
distance in the co-citation links indicates the relationship between the authors. The relationships 
are strong when the collaboration connection is shorter. In this case, there are ten collaboration 
groups (X. Liu and Y. Li) are the first group, followed by (H. Gao, M. Wang, and Y. Zhang) 
and (H. Liu and Y. Wang). 
 

Table 3. Author Local Impact. 

Authors h_index g_index m_index TC NP PY_start 
Y. Altintas  12 16 0.4 1585 16 1992 
D. Dornfeld  2 2 0.2 731 2 2010 
K. Jemielniak  1 1 0.1 726 1 2010 
G. O'Donnell  1 1 0.1 726 1 2010 
R. Teti  1 1 0.1 726 1 2010 
C. Brecher  3 5 0.2 635 5 2010 
H. Cao  9 15 0.9 540 15 2013 
J. Munoa  9 14 0.6 504 14 2009 
M. Weck  1 1 0.05 502 1 2004 
G. Stepan  6 13 0.4 446 13 2008 
X. Zhang  10 19 1.7 427 19 2017 
E. Budak  3 4 0.1 399 4 2000 
X. Chen  8 12 1 394 12 2015 
Z. Chen  7 8 0.4 348 8 2007 
Z. Dombovari  4 6 0.6 336 6 2016 
X. Beudaert  4 5 0.5 323 5 2015 
D. Mei  6 6 0.4 319 6 2007 
S. Smith  3 3 0.1 301 3 1992 
C. Liu  7 12 1 292 12 2016 
M. Sortino  3 4 0.2 292 4 2008 

 



 
Figure 8. Author Local Impact by TC index. 

 
Figure 9. Collaboration Network. 

Figure 10 is proposed according to Lotka's law, defining the abscissa axis as the number of 
papers and the ordinate axis as the number of authors from different fields. The authors can be 
cited in the documents as the primary author. It can be seen from the figure that more than 1000 
authors representing 71% of the authors have written at least one article on the phenomena of 
chatter. 
 



 
Figure 10. The frequency distribution of scientific productivity 

Figure 11  presents a tree structure that traces the hierarchical composition of signal analysis 
and chatter detection techniques used in the past. This figure shows the combination of 
frequency of keywords used in the field of chatter detection, such as "chatter detection," which 
appeared as a keyword near the following keywords: "wavelet, chatter suppression, stability, 
model and dynamics," and the keyword "vibration" also appeared with "identification, 
suppression, regenerative chatter, chatter stability, classification, recognition, etc." in most 
publications. This representation shows that only the terms "wavelet" and “frequency" have 
been used for chatter detection. However, several variants of Fourier Transform and other 
decomposition techniques, like the EEMD decomposition method, have also been widely 
applied to vibration signals to chatter detection, even if not visible on these global bibliometric 
indicators. 

 
 



 
Figure 11. Treemap for the description of the hierarchical composition. 

Table  4 presents the most cited papers shared in WoS between 1985- April 2022. Notably, the 
article [41] was published in CIRP Annals-Manufacturing Technology with (726 citations). In 
this article, the authors provide a survey of the development and implementation of sensor 
monitoring of machining operations. In particular, the paper reviews the past contributions of 
CIRP in these areas and provides a survey of sensor technologies, signal processing, and 
decision-making strategies for monitoring machining processes. The scientific paper [42], also 
published in CIRP Annals-Manufacturing Technology, is in second place with 502 citations. 
The authors discuss the fundamentals of the chatter stabilization law in machining by 
addressing non-linear processes. 
Moreover, Figure 12 gives an overview of the top 10 most cited papers in our network of 679 
documents (local citations) for intelligent chatter detection. This is to be distinguished from the 
most mentioned documents globally (global citations), which refer to the total number of 
citations worldwide. It has been found that chatter detection has attracted the attention of 
researchers in many other fields. 

Table  4. Most Global Cited Documents. 

Paper Total Citations TC per Year Normalized TC 
R. Teti  2010, [41]  726 55.85 11.44 
Y. Altintas10/16/22 9:05:00 PM 2004,  [42] 502 26.42 5.78 
J. Munoa 2016, [25] 290 41.43 10.25 
E. Abele 2010, [6] 286 22 4.51 
M. Siddhpura 2012, [43] 261 23.73 13.19 
T. Delio 1992, [44] 173 5.58 3.04 
Z. Yao 2010, [45] 161 12.38 2.54 
U. Bravo 2005, [46] 159 8.83 3 
N.D.  Sims 2007, [47] 147 9.19 4.02 
Y. Altintas 1992, [40] 138 4.45 2.42 



 
 

 
Figure 12. Most Local Cited Documents. 

2.4. SCIENTIFIC PRODUCTION ON THE CHATTER PHENOMENA BY COUNTRY AND 
CONTINENT 

Table  5 shows that China, Canada (mainly because of the author Y. Altintas), and the United 
States occupy the first places based on the number of total citations, the frequency of 
publication, and the average number of citations per article. China is in first place with 3707 
total citations on 781 publications, followed by Canada with 1560 total citations on 75 
publications, and the USA, which appears 1256 times in total on 140 publications. It is noted 
that no African country seems on the table, and only Brazil represents South America, which is 
generally due to the low development of manufacturing industries and research. Algeria and 
Egypt are part of this study on the chatter phenomenon, but only with 24 citations on 07 
published articles (Figure 13). In addition, Figure 14 shows the collaboration network between 
countries, showing a wide range of interactions. 
 

Table  5. Country Scientific Production on the phenomena of chatter by country and continent in WoS 

Country Frequency Total Citations Average Article 
Citations 

CHINA 781 3707 13.24 
CANADA 75 1560 45.88 
USA 140 1256 23.26 
ITALY 47 1180 62.11 
SPAIN 84 823 32.92 
GERMANY 66 460 21.90 
UNITED 
KINGDOM 

66 395 21.94 

AUSTRALIA 25 391 43.44 
INDIA 93 364 9.84 
IRAN 71 307 10.23 
JAPAN 79 298 12.42 
SLOVENIA 24 281 28.10 
POLAND 54 150 7.50 
HUNGARY 52 142 8.35 



BRAZIL 32 117 9.75 
FRANCE 30 109 13.62 
TURKEY 35 102 9.27 
THAILAND 16 86 14.33 
SINGAPORE 7 70 35.00 
SWEDEN 5 70 70.00 

 

 
Figure 13. Map of Country Scientific Production. 

 
Figure 14. Network of collaboration between countries at the global level. 

 



2.5. MOST COMMON TECHNOLOGIES OR MODELS USED FOR CHATTER PREDICTION, 
DETECTION, OR STABILIZATION 

This section analyzes the most frequent keywords and their co-occurrence levels. These 
keywords are regarded as the essential elements of the knowledge concept representation that 
reveal the structure of the research topic. The size of the words in the cloud, Figure 15, 
determines the number of occurrences and the density of the words in the publications. It should 
be noted that the most frequent word is clearly stability (with 178 occurrences), followed by 
vibration, prediction, and chatter detection with 122, 115, and 101 occurrences, respectively.  
This shows that the physical model (“surface”, “tool”, “cutting force”, “regenerative”, etc.) is 
considered secondary compared to the supposed properties of the signal (“stability,” 
“vibrations”, “chatter”) and the goals of detection (“identification”, “prediction” 
“suppression”), and depending on the authors the techniques used may vary, like “wavelet” 
“Hilbert-Huang transform”, “empirical mode decomposition”). The “stability” predominance 
word shows that chatter is strongly related to the mathematical concept of instability and 
exponential divergence to an infinite, associated with a very simplified model when the 
machinist knows that there is no such thing, just a change in vibrational amplitude and 
frequencies. Authors have sought to control the phenomena of vibration chatter by proposing 
techniques for tool stabilization [48], chatter suppression [49][50], identification or detection 
of chatter phases [51][52][53], or prediction of chatter with artificial intelligence techniques in 
different machining operations [54][26][55].  
 
 

 
Figure 15. World cloud. 

Figure 16 presents a conceptual structure map of the authors' keywords. This map applies the 
MCA analysis technique, a multivariate exploratory technique proposed in the biblioshiny tool. 
Figure 16 shows the co-occurrence network of the authors' keywords divided into three clusters. 
Fifty words most used by the authors are distributed between the clusters.  The red cluster has 
thirty-three elements, the blue cluster has eleven elements, and the green cluster has six 
elements.  The red cluster predominates with words related to machining processes (milling, 
end milling, boring, turning, grinding, etc.). The blue cluster represents the words about the 
methods of transformations and extraction of characteristics of the vibration signal. The green 
cluster focuses on the machining cutting tool and their damping with words like (machine tool, 
machining, vibrations, active damping, and machine learning).  



This analysis groups extensive data with multiple variables in a low-dimensional space to 
produce an intuitive cluster graph. It uses the plane distance to illustrate the similarity between 
the keywords. Keywords close to the center point indicate that they have recently received 
particular attention. For example, in the red cluster, the keyword "detection" is in the center, 
surrounded by words like turning, vibration control, boring, etc. 

 

 
Figure 16. Conceptual Structure Map - method: MCA 

Several elements are analyzed about the dynamics of the keywords and the trend topics. First 
is the evolution of the authors' keywords (Figure 17). After 2016, some keywords significantly 
increased faster than others: identification techniques (including wavelets) and chatter 
suppression. Also, sit hows the trend of keywords with a minimum frequency of 10 
appearances. It appears that between 2019 and 2020, research on chatter identification, 
monitoring, and, more recently, machine learning has increased. In detail, different techniques 
such as artificial intelligence (neural network, SVM, CNN, etc.), signal processing (HHT, 
EMD, FFT, STFT, etc.) have been involved. These techniques have made it possible to extract 
the features of the signal to assist the human expert in making decisions and very often serve 
as a basis for training artificial intelligence methods.   
 



 
Figure 17. Keywords plus dynamics. 

 
Figure 18. Keywords Trend Topics. 

2.6. ARTIFICIAL INTELLIGENCE APPLICATIONS 

In this part, a second recording was made by adding some keywords ("Machine Learning" OR 
"Deep Learning" OR " Artificial Intelligence") to see the extent of the application of artificial 
intelligence techniques for chatter detection in machining. 
Most studies on vibration chatter detection have used signal processing techniques or physics-
based numerical models exploiting vibration data. 
With the emergence of artificial intelligence techniques in various fields, researchers have 
combined signal processing techniques and AI models (machine learning and deep learning) 
for feature extraction and decision-making in chatter detection. This particular analysis query 
was used to filter out articles that use AI to identify or detect chatter. The query result gives 75 
out of 679 documents using AI techniques; Figure 20 shows the trend of AI usage over the 



years for chatter detection. Most of these documents were published between 2016 and 2021, 
and machine learning models (SVM and ANN) are the most used. Figure 20 shows that the first 
published papers on chatter detection using AI techniques date back to 1994. It is in 2020 that 
more than 19% of these publications have been done, i.e., 15 papers. It can be seen in the list 
of the most cited documents globally (Table  7) with the document [45], which proposed an 
approach to detect and identify the vibration chatter using WT to extract the signal features. 
SVM decision-making (classification) was cited 165 times. In the second position, the 
document [56] is a review article on the concept of intelligent machining, and this article is 
mentioned 131 times. The document [57] is in the third position with 67 citations total. These 
authors also proposed a methodology for intelligent detection of the chatter phenomena in a 
milling process using an artificial neural network. All this bibliographic information 
demonstrates that quite apart from the initial groups of authors historically publishing on 
machining chatter, new authors are developing new techniques for chatter detection (Figure 
19). 
 

 
Figure 19. Groups of historical authors and authors use new techniques for chatter detection. 

 Table  6 shows in detail the list of the ten authors of the two groups in order of the number of 
documents published. 
 

Table  6. Presents the ten most revealing authors for both groups. 

Historical authors Authors using new techniques 
Authors Articles Authors Articles 
X. Zhang 21 FA. Khasawneh  4 
Z. Xiong 18 B. Sener  4 
Y. Altintas 17 B. Singh  4 
J. Munoa 16 HO. Unver  4 
H. Cao 15 H. Cao 3 
Z. Liu 14 MC. Chen  3 
G. Stepan 14 X. Chen 3 
Y. sun 14 J. Liu 3 
X. Wang 14 A. Otto 3 
X. Chen 13 YS. Tarng 3 

 
 



 
  Figure 20. The evolution of AI techniques in chatter detection. 

A look at the words of the authors using the new techniques shows a word cloud containing the 
most used AI (machine learning or deep learning) techniques, the physics-based signal 
processing models, and the machining operations involved (Figure 21). Among the machine 
learning models used by the authors are the SVM classifier, one of the most popular supervised 
classifiers in the literature, artificial neural networks, and the discrete Markov model. The most 
interesting is the appearance of the keyword deep learning in detecting chattering by using 
generally transfer learning in machining processes (milling, turning, drilling, etc.). Transfer 
learning aims at completing the learning of a machine learning model, previously trained to 
solve a given task, to enable it to perform a similar task. 
 

 
Figure 21. The word cloud of authors who have published on automatic chatter detection. 



Table  7 shows the most cited papers in the automatic chatter detection research community. 
Most of the documents in Table  7 were published between 2016 and 2022 for automatic chatter 
detection on machining processes like (milling, drilling, turning, End milling, etc.). The most 
frequent physics-based models are (FFT, STFT, EMD, WT, HHT, etc.). The use of data-based 
models frequently Support Machine Vector (SVM), Multi-Layer Perceptron (MLP), and 
Convolutional Neural Networks (CNN). Another Index Based Reasoner (IBR) technique 
proposed by the document [58] is used to detect chatter and estimate tool life. IBR is reasoning 
that ranks the incoming signals utilizing a lookup table after the most descriptive features have 
been identified with preprocessing (human supervision).  

Table  7. Most global cited documents with their used models. 

Paper TC data-based models physics-based models Machining process 

[45] 165 SVM WT-WPT Drilling 

[57] 67 MLP  
FFT 

Milling 

[59] 44 MLP FFT Drilling 
[60] 39 MLP - Turning 
[61] 33 SVM EMD Turning 

[58] 32 -  
IBR 

end milling 

[62] 27 SVM WPT end milling 
[54]  20 CNN CWT Milling 
[63] 20 - HHT Milling 
[18]  19 ANN EEMD Turning 
[26] 18 SVM WPT-EEMD Turning 
[64] 18 ANN DWT Saw milling 

[65] 17 ANN - Drilling 
 

[66] 17 
BPNN 

 
VMD 

 
Milling 

[67] 15 SVM - Milling 
[68] 14 CNN - Milling 
[69] 12 Hybrid Clustering FFT Milling 
[70] 11 ANN WPT Turning 
[71] 10 KNN - Milling 
[72] 10 PNN WD-HHT Turning 

 
3. STATE-OF-THE-ART 

3.1. APPLICATION OF SIGNAL PROCESSING TECHNIQUES IN CHATTER DETECTION 

In general, in machining, the sensors detect non-stationary signals and knowing that the FFT 
requires a defined time window (classically 0.1 to 1 seconds in machining), this inevitably 
introduces a detection delay of the order of a period sampling, and anyway, a distortion related 
to the fact that the FFT is inaccurate enough to represent a signal with time-varying amplitudes 
and frequencies. The STFT attempts to compensate for this defect by using a sliding window 
and multiplying the FFTs, making it possible to identify the changes more finely in the signal. 



The HHT is not constrained by the assumptions of stationarity and linearity required for the 
FFT and can generate vibration signal information faster than the FFT. On the other hand, the 
HHT remains a very empirical method and is known to have difficulties distinguishing close 
frequencies, which requires eliminating the high-frequency part of the signal, which often 
appears in machining. As for the STFT, despite the windowing technique, it is limited by the 
width of the window, which displays the time and frequency resolution. Based on the 
Heisenberg uncertainty principle [73], this resolution cannot be arbitrarily high, and it is always 
a question of making a compromise between temporal and frequency resolution. The Wavelet 
Theory (WT) presented in the document [74] reduced the problem related to the windowing 
posed on the STFT by using several windows of different lengths. In the WT, the analysis of 
the high frequencies is carried out with narrower windows to obtain a better temporal resolution 
and expansive windows for the low frequencies to have an optimal frequency resolution (Figure 
22). 
Another WT model, the Wavelet Packet Transform (WPT), breaks down the approximations 
and details to generate more frequency bands and provide more opportunities to get more signal 
characteristics. Unlike the STFT, the WT, or the WPT, the HHT corresponds more to a process 
practiced on a data set than a theoretical tool as clearly defined as the previous methods. The 
HHT is composed of an EMD step to obtain the decomposition of the signal into a quasi-
orthogonal basis called Intrinsic-Mode-Functions (IMF). The analysis over time of the 
frequencies associated with each IMF makes it possible to generate "Hilbert Spectra Analysis” 
(HSA) to analyze the signal further. The document [75] shows that applying HHT in spectrum 
analysis provides higher temporal and high-frequency resolution than those offered by STFT. 
 

 
Figure 22. signal processing, respectively, with the FFT, STFT, and WT [76]. 

Table  8 compares the different transformation techniques (Fourier, Wavelet, and Hilbert) based 
on frequency type, presentation, frequency linearity, stationarity, and feature extraction 
capability. 
 

Table  8. Comparison between different signal processing techniques. 

Transform FFT WT HHT 
Basis a priori a priori Adaptive (in frequency) 

Frequency convolution : global 
scale, uncertainty 

convolution : regional scale, 
uncertainty 

differentiation : local scale, 
certainty 

Input  𝜉 : frequency a: Scaling; b: time shift factor  t : time ; x(t) : signal 

Presentation 
Decomposition: 
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Decomposition : 
 



Function basis: 
harmonic (sin, cos) 
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Function basis: orthogonal 
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Coefficients : 
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 dyadic dilatation, and dyadic 
position)  

 
cj: instrinsic mode function 
(cubic splines) 
rn: residue function 
 
Function basis: cubic splines 
 
Coefficients: 
Obtained by an iterative 
process with a stoppage 
criteria. 
 
 
(The instaneous frequency is 
computed using the Hilbert 
Transform) 
 
 
 

Non-
stationary 

No (or using Short 
Time Fourier 
Transform, STFT) 

yes yes 

Feature 
Extraction no discrete : no, continuous : yes yes 

Theoretical 
Base complete theory complete theory empirical 

Merits Gets the information 
on the frequency 

Gives both time and frequency 
domain information 

Provides both high 
temporal resolution and 
high frequency resolution 

Limitations 
Does not evolve in 
the time domain (or 
using STFT- 

Selection of the basic function 
Near frequency distinction, 
mixing problem (avoided 
using EEMD) 

Application: 
- Milling 
- Turning 
- Drilling 
- Grinding 

 
- 25 articles 
- 05 articles 
- 02 articles 
- 02 articles 

 
- 70 articles 
- 30 articles  
- 19 articles 
- 07 articles 

 
- 34 articles 
- 08 articles 
- 01 articles 
- 05 articles 

 
The authors use these techniques to analyze the signal in several areas of machining, such as 
milling [77], [78] [79], turning [75], and rotor system [80].  
[43] is a review of research on vibrational chatter in turning operations. They review vibration 
prediction, detection, and control techniques. They compare different analytical methods for 
the prediction of chatter stability, such as the Stability Lobe Diagram (SLD), Nyquist diagrams, 
and the finite element analysis method. The documents [16] [63] propose a Hilbert Huang 
transformation method for early detection of online chatter before part damage. They measure 
the vibration signal and decompose it into a series of empirical mode functions by applying the 
ensemble empirical mode decomposition. Hilbert Huang's spectral analysis is then used on the 
characteristics of the empirical function to calculate the time-frequency spectrum. Because of 
vibration chatter's nonlinear and nonstationary properties in the milling process, the document 
[15] proposes a self-adaptive approach: Ensemble Empirical Mode Decomposition (EEMD). 
They analyze vibration signals with EEMD to extract nonlinear indices as vibration indicators. 
Then they integrate the sensitive IMF containing the relevant chatter information to obtain a 
new signal. The two dimensionless nonlinear hands reflected the state of chatter in the time and 



frequency domain, providing an alternative solution for identifying chatter in the milling 
process. Since online chatter detection involves signal preprocessing, extracting sensitive 
features and developing real time monitoring models are crucial. The document's authors [81] 
propose a new approach to identify chatter in line milling. This method uses Optimized 
Variational Mode Decomposition (OVMD) to decompose the cutting force measurements and 
extract subcomponents containing chatter information using a simulated annealing (SA) 
algorithm. Approximate and sample entropy detect the onset of chatter, and the results show 
better performance than the previously mentioned EMD. 
The authors [11] experimented with a multisensory configuration composed of sound, 
acceleration, and cutting force to detect chatter in band sawing. The experimental analysis 
shows that the sound signal is more appropriate for chatter detection. They adopt a methodology 
that pre-processes the signal with the STFT to extract features in frequency space, i.e., the height 
of specific frequency peaks, with an optimal threshold. Quadratic discriminant analysis is 
applied to the extracted features to detect chatter. The author's [78] combines Empirical Mode 
Decomposition, Wavelet Packet Decomposition (WPD), and Hilbert Huang Transform (HHT) 
to identify chatter. Since the IMF change depending on the power spectrum or the frequency 
amplitude, the empirical mode decomposition is used to select the main features of the signal 
reconstruction. The WPD made it possible to reconstruct the signal in two stages using the 
maximum energy. The HHT model is the distribution of frequency and energy in the time 
domain. Considering that HHT supports non-stationary and non-linear signals, the document 
[81] proposes a chatter detection technique for the boring bar by comparing two types of signals 
from a strain gauge and an FBG sensor by HHT. These signals are then decomposed into several 
IMF using the EMD technique. The transform is applied to each IMF to obtain the instantaneous 
frequencies with time and amplitudes. These results show that HHT can be considered a simple 
and reliable technique to detect chatter vibration. However, like most studies, very far from 
realistic industrial conditions and chatter is associated with increased vibrational amplitude. 
 
The document [82] presents a chatter detection method based on image analysis of dominant 
frequency bands from STFT spectrograms. Environmental noise related to chatter and high-
energy frequency bands are localized by a squared energy operator of the synthesized FFT 
spectrum. The proposed feature extraction method is verified under various milling cutting 
parameters in three classes (stable cutting, slight chatter, and significant chatter). The results 
show the effectiveness of time-frequency image features of dominant frequency bands for 
chatter detection, and its performance is better than time-domain feature extraction and wavelet-
based methods in terms of the capabilities of separability. This approach is quite like human 
expert analysis on STFT. However, it is applied to non-realistic industrial applications, and 
chatter is still clearly associated with vibration amplitude, making it difficult to decide the 
performance of such an elaborate algorithm. 
 
Similarly, the document [83]  proposes a system that combines STFT and spectral flattening 
analysis in the time-frequency domain to identify relevant information on the chatter and 
transient vibrations from an accelerometer's signal. The proposed system cannot only prevent 
the tool's failure by detecting the occurrence of chatter but also provides comprehensive 
information on the condition of the tool. The authors of document [84] detect online chatter by 
monitoring vibrational energy. Using a Kalman filter, they remove forced vibration forces in 
the discrete-time domain and all other periodic components. Then, they find the amplitude and 
the frequency of the chatter between the two passing frequency harmonics of the consecutive 
teeth using the nonlinear energy operator. The chatter is determined when the energy of the 
chattering component increases relative to the energy of the forced vibrations. This method 
detects chatter earlier in discrete time intervals than frequency domain-based methods like FFT. 



 
The wide variety of signal analyses to detect chatter shows that this remains a very delicate 
task, especially for early detection, i.e., before the amplitude of the vibrations is already 
significant, and it is too late for the quality of the part. In addition, all these studies are based 
on laboratory machining tests, therefore without the constraints of noise and the variety of 
situations to be managed in the industry. Consequently, defining a practical, robust method 
largely remains, making it possible to quickly identify chatter without needing an expert to fine-
tune the detection parameters. 

3.2. APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN CHATTER DETECTION 

The emergence of Industry 4.0 for increasing productivity and reducing production costs has 
prompted the use of automatic, unmanned machining centers or intelligent machining systems. 
In these new systems, the machine tool must be able to automatically perform certain activities 
such as collision detection and avoidance, tool status monitoring, optimization, or at least 
adaptation of cutting parameters in a degraded situation, the detection, and, if possible, the 
suppression of vibrations due to chattering. Specifically, the integration of chatter detection 
systems into the machine tool control unit would be a significant improvement in machining. 
Thus, the identification and detection of vibrations in machining processes have been an active 
area of research over the past two decades. 

3.2.1. MACHINE LEARNING 

One of the difficulties in studying chatter is that the machining equations learn chatter because 
the machining equations describing the scribe's appearance are generally nonlinear delay 
differential equations. Most of the existing tools for chatter identification rely on defining a 
metric that captures chatter characteristics and a threshold that signals its occurrence. The 
difficulty of choosing these metrics, usually entrusted to experts, can be eased using machine 
learning techniques [85]. Machine learning is now commonly used to relate measured vibration 
signals to machining. It generally consists of three phases: the collection of signals, the 
extraction of characteristics, and the learning or training of models, commonly called the 
"signal-characteristics-model" method, (Figure 1). The signal collection aims to collect as many 
signal patterns and their corresponding machining states as possible [86]. The wide variety of 
the dataset is the basis for the model to achieve good generalization performance. Feature 
extraction aims to identify several key feature parameters from the initially recorded signals to 
determine the relationship between the signal and the machining states. Characteristics are 
usually defined manually, which requires a great deal of human expertise. Among the machine 
learning methods used in automatic chatter, detection is the majority of identification 
techniques that rely on Support Vector Machines (SVM) [87], Artificial Neural Networks 
(ANN) [59] [88], unsupervised Learning [89], models of deep learning like the convolutional 
neural network. 
Further study will show the growth of words over the years. One of the first papers using a 
machine learning method in the 90s to detect chatter is [65] which uses the neural network to 
learn the characteristics of the pushing force spectrum in the process of drilling adaptively. In 
the document [60], the authors designed an observer for a real time control system to mitigate 
chatter in a filming process using artificial neural networks. To improve the surface quality and 
reduce vibration and wear of the cutting tool, the document [57] proposes an approach based 
on the multilayer perceptron (MLP) and Radial Basis Function (RBF) to detect the chatter in a 
milling process. In the document [72], the authors achieve 100% accuracy for chatter detection 
by combining WT and HHT for signal feature extraction and a probabilistic neural network for 
classification, but once again, in a very simplistic machining situation, far from industrial 



applications, cutting conditions being far outside the tool manufacturer preconization, and with 
a clear correlation between chatter and vibration amplitude. 
To detect chatter, the document [90] used several sensors (sound, spindle vibrations, workpiece 
vibrations) and created several multilayered neural networks by fitting them to the inputs of 
different signals and cutting conditions to assess which sensor or combination of sensors could 
provide a reliable source of information for monitoring the chatter, but without clear answers. 
In the document [91], the authors used the statistical parameters from the WT as input of a 
neural network to develop an intelligent chatter detection system. Still, surprisingly the best 
chatter indicator was correlated with the axial force sensor. This direction is not supposed to 
vibrate in such a situation strongly. Combines Topological Data Analysis (TDA) and Logistic 
Regression Classifier (LRC) to have an excellent performance for chatter detection in turning, 
but this was made only on simulated data. To verify chatter stability, the authors of the 
document [92] use an artificial neural network model based on a backpropagation network to 
predict stable cut areas and metal removal rate (but using sensor direction perpendicular to the 
main chatter vibration direction). 
In 2010, the authors of the document [45] combined wavelet transform and SVM for early 
chatter detection. The SVM classifier was designed for recognition based on the feature vector 
derived from the standard deviation of the wavelet transform and the wavelet packet energy 
ratio of the signal frequency band. In the document [61], the authors propose a cutting state 
monitoring system based on the feed motor current signal. They apply an SVM classifier to the 
features extracted by the EMD model to develop an intelligent chatter detection system with 
95% accuracy. An innovative cutting chatter detection method based on WT and multiclass 
SVM is proposed by the document [93]. To simplify the computational complexity when binary 
SVM classification transforms to multi-class classification, the algorithm makes each sample 
type have a spherical SVM. A combination of Principal Component Analysis (PCA) and SVM 
is proposed by the document [94] to recognize chatter generation. They extract the 
characteristics of the vibrational signal with the FFT and label the FFT vectors to serve as input 
data to the learning model. To increase the accuracy of chatter detection, [95] combines an 
Adaptive Boosting algorithm (Adaboost) and SVM with training a robust classifier for chatter 
detection. In addition to the Adaboost -SVM combination, they extract features with a stacked 
denoising autoencoder considering mislabeled samples. SVM shows its identification 
capabilities in mirror milling, which is an effective technique for improving the quality of 
monolithic machined parts. It ensures the mirror relations of the cutter and the support head. 
The authors of the document [67] use the Q-factor to construct a feature vector by determining 
the power spectrum of the frequency band. Then, the SVM is then used to diagnose and detect 
milling status. It proposes a methodology for online chatter detection based on WPT and 
recursive feature removal by SVM at the end milling process. In the document [96], the authors 
construct a VMD-SVM model to identify chatter in the robotic milling process. Other authors 
in the document [71] use a K-nearest neighbor machine learning classifier to detect chatter in 
the high-speed milling process. They create a cluster containing two categories of cut conditions 
(chatter condition and normal condition). To facilitate the feature extraction process, the 
document [97] presents an approach based on the characterization of the time series of the 
cutting process using its TDA topological features. They integrate the time series as clusters 
using Takens' theorem, contact details for Carlsson, etc.  
Several classifiers like SVM, Logistic Regression Classifier (LRC), Random Forest, and 
Gradient Boosting are combined to detect chatter. The document [98] proposes a multi-class 
SVM model to detect chatter phenomena. For this, they study two indicators, on the one hand, 
the real time variance of the milling force signals in the time domain, and on the other hand, 
the wavelet energy ratio of the acceleration signals based on the WPT. Then chatter detection 
is performed by a trained multi-class SVM. The authors of the document [36] proposed an 



approach for identifying chatter in the boring process. It consists of merging the characteristics 
of multiple sensors to obtain the processing signals. The EMD transformation decomposes these 
signals. The indicators of the decomposed signals are calculated by performing a combination 
of multi-sensor features. They are using an SVM as a classification model, an identification 
model with one of the best results (95.56% accuracy) to identify the chatter.  Table  9 shows 
the advantages and disadvantages of these methods. 
 

Table  9. The advantages and disadvantages of machine learning and deep learning methods. 

Method  Advantages  Disadvantages 

SVM 

• Good in large spaces 
• Still efficient in situations 

where the number of 
dimensions is higher than 
the number of samples 
• Multi-usages 

• Difficulty in managing the 
number of features much 
higher than the number of 
samples. 

• The cost of calculating 
probability estimates is 
very high. 

• Requires human 
supervision for the task of 
identifying features 

MLP  

• Ability to learn non-linear 
models. 
• online learning 

• Hidden layer MLPs have a 
non-convex loss function 
in which there is more than 
one local minimum. As a 
result, different random 
weight initializations may 
lead to different validation 
accuracy. 

• MLP model needs to 
define a number of 
hyperparameters such as 
the number of hidden 
neurons, layers, and 
iterations. 

• MLP is sensitive to the 
scale of the characteristics 

• Requires human 
supervision for the feature 
extraction task 

CNN 

• Do not require human 
supervision for the feature 
extraction task 
• Precise image recognition 

and classification 
• Weight sharing 
• Minimize the computation 

compared to a normal 
neural network. 
• The same knowledge is 

used in all image locations 

• Requires a lot of training 
data samples. 

• Difficulty to classify 
images with various 
positions. 

• Tend to be much slower 
due to operations like 
maxpool 

• Very often requires a 
machine with a very good 



Graphics Processing Units 
(GPU). 

 
Table 10 presents the list of the ten articles with the best accuracy values.   
It is important to note that in all these publications, the chatter phenomena are associated with 
an increase in amplitude vibrational signal and that most verification experiments are far from 
industrial applications. 
                                                               

Table 10: List the ten articles with the best performance in chatter detection. 
Literature Pretreatment Learning 

models 
Process Precision  

[91] WT MLP Milling 94% 
[45] WT SVM Turning 95% 
[61] EMD SVM Turning 95% 
[93] WT SVM  95% 
[57] - MLP-RBF Milling 97% 
[62] WPT SVM Milling 95% 
[99] TDA LRC Turning  97% 
[100] WPT-FFT-SSA SVM Milling 96% 
[96] VMD SVM Milling 92.59% 
[98] WPT SVM Milling 96.66% 
[101] DTW  KNN Turning 98% 
[26] WPT SVM Turning 95% 

3.2.2. DEEP LEARNING 

As the input dimension grows, machine learning models quickly get stuck by many local 
minima or fail to converge in good time. These limitations necessitate human expertise in 
feature extraction to reduce the dimension of the original signal inputs with statistical methods. 
Despite the success of manual feature extraction techniques for machine learning models in 
several problems, they have some drawbacks like (i) the extracted features are specific and not 
generalized to solve different problems (ii) the whole set of extracted features is a partial 
representation, instead of a complete representation of the original signal. (iii) The classification 
model, trained on partial features, represents a non-partial relationship between features and 
machining states rather than the beneficial relationship between signal and machining states 
[102]. 
This stage of human expertise for feature extraction aims to reduce the dimension of the input. 
Artificial intelligence advancements have allowed techniques such as deep learning to extract 
features directly as input data (Figure 2). 
One of the most common methods is the Convolutional Neural Network (CNN), which has 
become a popular technique for transforming data into information due to its ability to process 
raw data and automatically recognize representations of data features across multiple 
abstractions [103]. The document [104] built a deep learning model to detect chatter using the 
vibration signal converted to the time-frequency spectrum as input. The deep neural network 
extracts the time-frequency features, and the vibration signal is then decomposed into the 
chatter band by the VMD. An SVM is introduced to classify the features extracted from the 
chatter detection. The authors of the document [105] used images of the inner surface of the 
bearing to detect bearing defects caused by vibration or chatter, but such a technique is not 
adapted to in situ monitoring. They transform the vibration signals into a time-frequency image 
using the continuous wavelet transform (CTW). Based on the CWT scalogram, the document 
[54] proposes a CNN-based methodology to detect chatter in a milling process. The recorded 



cutting force signals are imaged using CWT and then classified into three categories (stable, 
transit, and unstable). These images are introduced as input to the CNN for classification 
without the feature extraction process. A deep neural network is trained to detect the different 
phases of chatter. The authors of the document [68] managed to see chatter on the image of the 
machined part by mixing CNN and genetic algorithm and overcome the oscillation problem 
related to the use of genetic algorithms by optimizing their algorithm. The document [106] 
presents a chatter detection approach combining a convolutional neural network and a physics-
based model. They use the convolutional neural network to simulate the functioning of the 
human brain by connecting virtual neurons with tuned weights resulting in a prediction of a 
state. An intelligent chatter detection model is proposed by the authors of the document [107] 
using CWT preprocessing and a deep convolutional neural network (DCNN). In the document 
[55], the authors combine AlexNet, a pre-trained deep neural network, and an analytical 
solution using transfer learning to detect chatter. Another type of Long Short-Term Memory 
(LTSM) neural network proposed by the authors of the document [108] for detecting chatter 
based on the sequence of control currents. Table  11 lists the articles that achieved the best 
performance in chatter detection using either machine learning or deep learning. 
In these relatively recent researches, many deep learning techniques have been tested, often 
mixed with other methods, and generally lead to good results. Most studies still use machining 
conditions far from industrial applications, but some publications use realistic cutting 
conditions. Unfortunately, it is always apparent that vibration amplitude is strongly related to 
chatter. It is difficult to determine if all these sophisticated techniques are better than simple 
RMS level monitoring. 
 

Table  11. List of the top deep learning models with the best performance for chatter detection. 

Literature Features 
Extraction 

Learning 
models 

Process Precision  

[86] WT CNN Milling 99% 
[104] VMD CNN - 92.57% 
[68] - CNN Milling 98.8% 
[105] CWT-CNN CNN Turning 99% 
[54] CWT CNN Milling 99.67% 
[106] STFT CNN Milling 98.90 
[107] CWT DCNN Milling 99.98 
[55] EMD AlexNet Milling 82-100% 

[108] - LSTM Milling 
 

98% 

4. DISCUSSION AND PERSPECTIVES 

Machining processes are accurately described from complex dynamic models containing non-
linearities, delays, and stochastic effects. Regarding the nature of these models and the practical 
challenges that include temporal variables, the transition from the design (numerical and 
analytical forms) of machining to the vibration analysis of accurate cutting signals remains 
challenging. This study categorizes the different techniques for chattering detection using 
vibration signals in three stages. Firstly are time-frequency processing or decomposition 
techniques, which decompose the signal into several fragments using a transformation method 
to obtain the relevant chatter information. Then the FFT, for example, is applied to the elements 
which overlap the chatter frequencies identified on the signal. These techniques require much 



analysis time from an expert, who visualizes these fragments to detect chatter. Several authors 
have used features extracted by transformation techniques as input data for machine learning 
classifiers to solve this problem. The features are labeled in the input-output format to train the 
classifier in order to recognize the different phases of the signal (chatter). Several major studies 
have demonstrated promising results in applying machine learning techniques to vibration 
signal analysis to detect, identify, stabilize, or suppress chatter (Table 10). These machine 
learning methods cannot handle high-dimensional data due to the limitation of modeling 
capability [109]. Unlike conventional machine learning methods, deep learning will 
automatically extract features at a higher level and merge feature extraction and classification 
into a single structure so that it does not require a lot of trial and error. Like machine learning 
models, deep learning has also improved chatter detection performance. Some authors achieve 
almost 100% accuracy using the transfer learning technique (Table  11). Despite the excellent 
ability of AI models to provide highly accurate predictions in vibration chatter detection, they 
still face some significant challenges: (a) the constraints on time and human expertise for 
labeling data, especially when the number of classes is high before training the model. (b) needs 
of significant computational resources during the learning and classification phases to dash. (c) 
The lack transparency due to their inherent black box natures. 

• To alleviate the data labeling problem, one can either use the following options: 
• Semi-supervised learning that combines supervised and unsupervised learning. 

Unsupervised learning algorithms are used to automatically generate labels, which 
will then be fed into supervised learning algorithms. Semi-supervised learning has 
a significant advantage in reducing the cost of labeling large datasets. Unsupervised 
learning models can traverse high-dimensional data and distinguish groups or 
atypical data points in a data set. The features extracted by the different 
transformation techniques (WT, FFT, STFT, HHT) or decomposition techniques 
(EMD and EEMD) can be categorized by unsupervised techniques like KNN or K-
means. The clusters obtained by these methods are considered classes and will serve 
as input data for a supervised learning model.    

• Topological data analysis (TDA) that allows information to be extracted from high-
dimensional, incomplete, or noisy datasets. TDA makes it possible to combine 
algebraic topology with other mathematical tools to develop a study of purely 
mathematical form. One of the main tools of TDA is persistent homology which has 
attracted the attention of many researchers for topological signal analysis [99] [97]. 
The combination of TDA for data labeling and transfer learning for feature 
extraction can be a powerful tool for chatter detection. 

• The computational resource problem during model training can be solved by high-
performance computing platforms such as Graphics Processing Units (GPUs) and 
Tensor Processing Units (TPUs) like Google’s GPU collab, Azure Machine Learning, 
Amazon Web Services, etc. 

• The artificial intelligence models currently used, mainly convolutional or deep neural 
networks, are so complex that it is almost impossible for their designer to understand 
their operation fully, hence the term black box. However, explaining their decisions can 
bring multiple benefits to a machinist. To clarify and explain this notion of the black 
box, the document [110] proposes the concept of explainable AI. While improving the 
performance of these models, explainable AI helps identify problems and flaws in 
datasets and model operation, allowing experts, data scientists, and users to understand 
and trust the models with their predictions, taking into account regulatory compliance. 

• In these studies, the authors seek either to detect or suppress chattering. Since chatter 
affects part quality, performance, and cutting tool life, vibration can be mitigated by 
considering all these dynamic elements. Multimodal learning can be a solution to 



integrate during the design of chatter detection models that considers all the elements 
and their intrinsic characteristics, capacities, and limits and will significantly contribute 
to chatter detection. Multimodal fusion is one of the original themes of multimodal 
machine learning, with works in the literature favoring early, late, and hybrid fusion 
approaches. Technically, multimodal fusion integrates information from multiple 
modalities to predict an outcome of measurement: a category by classification or a 
continuous value by regression [111]. 

• To avoid chatter in cutting processes, one can think of developing an intelligent machine 
tool to detect, decide, and control the cutting conditions in order to guarantee the optimal 
machining operation. For this, reinforcement learning can use an algorithm allowing 
them to perform a task by giving them positive or negative cues as he works on how to 
complete the job. The reward rules are defined, letting the algorithm decide which steps 
to take to maximize its reward and accomplish the task. 

• The placement of sensors in the cutting tool represents a progression in tool process 
monitoring, allowing users to collect the data necessary to create more accurate digital 
twins for machining processes.  The authors have already explored this concept of 
intelligent machining by presenting four tools, including a cutting force-based smart 
tool, a cutting temperature-based cutting tool, a fast tool servo (FTS), and intelligent 
collets for ultra-precision. The document [112] introduces the concept of intelligent 
machining to minimize toolpaths and machining time, improve the surface quality of 
components, increase tool life, accurately machine-specific complex structures, enable 
autonomous sensing with self-learning to improve process performance, and 
dynamically sense the cutting process. These technologies can be used to monitor the 
machining process and tool wear as one of the ways to solve the annoying chatter 
phenomenon.    
In practice, the authors of document [113] experimented with an intelligent tool for a 
high-speed drilling operation on a multilayer Printed Circuit Board (PCB) part. First, it 
was demonstrated by measuring the axial displacement that the smart tool performs self-
protection of the spindle during the experiment. The intelligent tool detects the wear of 
the drilling tool, especially the most severe ones, which start at the periphery of the tool 
and decrease progressively towards the center since the outer primary cutting edge is 
subjected to the highest torque than its adjacent ones. This means that the quality of the 
hole depends on the number of holes drilled. 

5. CONCLUSION 

In this paper, we provide a mapping analysis of the different chatter detection techniques, from 
the time-frequency signal processing method and decomposition to the application of artificial 
intelligence for automatic detection. This cartographic analysis allowed us to visualize the most 
significant articles, the most cited authors, the collaboration between authors, the most 
productive countries, continents, and journals, the partnership between countries, the authors' 
keywords, and the research trends on chatter detection. This analysis showed the limitations of 
classical time-frequency signal processing techniques in explaining the value of applying AI 
for feature extraction and decision-making. A comparison between the different processing 
techniques has been established in Table  8 showing the use of the main principles of each 
method. Despite the growth of AI (machine learning and deep learning) in various fields, 
traditional signal processing techniques continue to complement AI models in chatter detection. 
Researchers do not often use AI techniques to detect chatter phenomena compared to other 
areas. In this analysis, 679 papers were collected, but only 75 articles involved the application 
of the different machine learning or deep learning methods, whose global citations are presented 



in Table  7. We have also discussed the limitations of the other AI techniques and proposed 
solutions to mitigate the problems of extensive data, the cost of computation time, and the lack 
of transparency of these models, which significantly hinders its use in such traditional fields as 
machining. These solutions can allow implementation of a multimodal system to consider and 
link the elements that cause chatter and the development of an intelligent cutting tool using 
reinforcement learning. Finally, we propose using explainable AI algorithms to gain additional 
scientific knowledge on AI models and improve understanding of complex situations.  
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