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ARTICLE

Kronos scRT: a uniform framework for single-cell
replication timing analysis
Stefano Gnan 1, Joseph M. Josephides 1, Xia Wu1,4, Manuela Spagnuolo1, Dalila Saulebekova1,

Mylène Bohec2, Marie Dumont3, Laura G. Baudrin2, Daniele Fachinetti 3, Sylvain Baulande 2 &

Chun-Long Chen 1✉

Mammalian genomes are replicated in a cell type-specific order and in coordination with

transcription and chromatin organization. Currently, single-cell replication studies require

individual processing of sorted cells, yielding a limited number (<100) of cells. Here, we

develop Kronos scRT, a software for single-cell Replication Timing (scRT) analysis. Kronos

scRT does not require a specific platform or cell sorting, which allows investigating large

datasets obtained from asynchronous cells. By applying our tool to published data as well as

droplet-based single-cell whole-genome sequencing data generated in this study, we exploit

scRT from thousands of cells for different mouse and human cell lines. Our results

demonstrate that although genomic regions are frequently replicated around their population

average RT, replication can occur stochastically throughout S phase. Altogether, Kronos scRT

allows fast and comprehensive investigations of the RT programme at the single-cell reso-

lution for both homogeneous and heterogeneous cell populations.
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DNA replication is a fundamental process in all living
organisms that guarantees genome duplication before cell
division. Based on inter-origin distance (one origin every

~100 kb in mammalian cells) and replication fork speed (1–3 kb/
min), if all replication origins were simultaneously activated in a
mammalian cell, it would only take about 30 min to complete the
genome replication1,2. However, due to limiting factors of repli-
cation initiation and replication fork progression, DNA replica-
tion is not simultaneously initiated at all potential origins3,4.
Rather, each cell type displays a defined selection and temporal
order of origin firing, and DNA replication of a mammalian
genome is completed in several hours (usually between 6 and
12 h)5,6. Furthermore, this temporal and spatial organization is
coordinated with other processes, such as chromatin organization
and gene transcription7–9. The cell type-specific programme that
regulates DNA replication during the synthesis phase (S phase) is
referred to as replication timing (RT) programme10,11. This
programme may be altered in human diseases, such as cancer and
neurological disorders12–14. In addition, we and others have
shown that RT plays an important role in shaping the mutational
landscape and in impacting genome stability in both normal and
cancer cells15–19. Therefore, RT is an important feature to better
understand the underlying causes or the outcomes of genomic
instability.

In the last decade, high-throughput single-cell omics have
allowed the study of intercellular variability and shed light on the
cell functional and structural dynamics. Advances in high-
throughput single-cell sequencing techniques offered the possi-
bility to analyze RT at the single-cell level. Compared with bulk
cell studies, recent single-cell RT (scRT) studies20–23 investigated
the RT programme in individual cells and RT variability among
cells. However, all published scRT studies required the identifi-
cation of the cell phase (i.e. G1, S) by fluorescence-activated cell
sorting (FACS) and manual processing of individual cells to
perform single-cell Whole-Genome Sequencing (scWGS). These
steps limit the sample size to only tens to a hundred cells21–23,
which leads to scalability concerns. Nevertheless, the investiga-
tions of the obtained scRT data in these studies support the
hypothesis that most replication domains follow the pre-
determined RT programme in the same population21–23. How-
ever, there is still room to explore non-conforming events in
single cells that deviate from the population average RT and may
undergo stochastic replication. A recent important advancement
in Optical Replication Mapping (ORM) allows mapping newly
replicated DNA and thus, tracking early initiation events at the
single-molecule level24. ORM analysis of individual initiation
events in HeLa cells synchronized at the very beginning of S
phase showed that although most early initiation events occur in
the early-replicating regions of the genome, a significant number
(~9%) happen in the late-replicating regions. This finding sup-
ports a stochastic model of replication initiation. Unfortunately,
these rare stochastic RT events cannot be correctly identified in
the currently available scRT data due to their limited sample sizes.

Here, to overcome these limitations, we present a uniform
computational framework named Kronos scRT to investigate
scRT based on single-cell copy number variation (scCNV)
detection in scWGS data. Our pipeline can be used to analyze
datasets obtained from FACS-sorted cells or directly from asyn-
chronously growing cells by single-cell whole-genome amplifi-
cation (scWGA), the droplet-based 10x Genomics Chromium
scCNV Solution, single-cell High-throughput Chromosome
conformation capture (scHi-C), among other related data. This
pipeline allows a ten-fold increase in the number of cells used to
analyze scRT (>1000 cells in one experiment) compared with
previous scRT studies. By analyzing published data and the
droplet-based scWGS data generated in the current study, we

obtained large amounts of scRT data for different mammalian cell
lines (up to 1353 S-phase cells for a given cell type from a single
experiment; 4724 cells analyzed in total). These data allowed us to
construct the S-phase progression trajectories of different cell
types and to identify coexisting sub-populations. In addition, the
analysis of significantly more cells enabled us to study DNA
replication heterogeneity with unprecedented detail. We found
that the observed scRT distribution is consistent with stochastic
models of replication control. Replication kinetic modelling
showed that measuring the firing efficiency in early S phase can
predict the average firing time in a cell population. Here, we
extended a previous single-molecule analysis to the single-cell
level and showed that stochastic regulation of replication kinetics
is a key feature of eukaryotic replication.

Results
Kronos scRT: a computational tool for scRT studies. We
developed Kronos scRT (https://github.com/CL-CHEN-Lab/
Kronos_scRT), a tool that computes scRT under a unified fra-
mework and in a comprehensive manner (Fig. 1a and Supple-
mentary Fig. 1a). First, single-cell DNA sequencing reads are
aligned to the reference genome and counted in regular bins
(20 kb in our analysis). This bin size can be adjusted in function
of the mean coverage of the experiment. Read counts are then
corrected for GC content and mappability bias. An option to
blacklist genomic regions is also available (see “Methods”). Data
are then segmented and copy number variation (CNV) is esti-
mated for each individual cell. At this stage, two additional
parameters are calculated: (i) the cell ploidy as the cell-weighted
mean copy number (CN), and (ii) the intracellular bin-to-bin
variability as the Depth Independent Median Absolute deviation
of Pairwise Differences (DIMAPD) (“Methods”). In the final step,
depending on the data type and the available information, Kronos
scRT proposes different approaches to distinguish between cells
in G1/G2 and in S phase. If cells are FACS-sorted in discrete
populations, as in previous scRT studies21–23, the cell phase
information can be directly used to label cells into these two
groups. For unsorted cycling populations, S-phase cells can be
automatically detected based on two assumptions: (i) most cells
belong to the G1/G2 population; (ii) the intracellular bin-to-bin
variability is minimal in G1 and G2 cells (where all bins have
similar CNs) and maximal in mid S-phase cells due to the
asynchronous replication of adjacent bins (Fig. 1b, c). The pro-
gram fits the variability data into a Gaussian distribution and
identifies S-phase cells as outliers (“Methods”). Moreover, if the
cell cycle distribution has been altered (i.e. S-phase enrichment
without complete removal of G1- and G2-phase cells), users can
manually set a variability threshold based on the data visual
inspection (Fig. 1b).

Due to the method used for CN calculation (“Methods”), it is
impossible to discriminate between G1 and G2 cells. This also has
an effect on the S-phase population that is split into two groups.
Cells in the first S-phase group have higher ploidy than cells in
the G1/G2 phase and their bin-to-bin variability positively
correlates with ploidy. Cells in the second S-phase group display
lower ploidy than the G1/G2 pool and their bin-to-bin variability
decreases as they approach the G1/G2 population (Fig. 1b).
Therefore, before proceeding with the downstream analysis,
S-phase cell ploidy must be adjusted either automatically (Fig. 1c)
or manually with parameters imposed by the user (“Methods”).

The data shown in Fig. 1b–d were obtained by analysis of a
dataset of MCF7 breast cancer cells generated using the 10x
Genomics microfluidic system. According to the American Type
Culture Collection, this cell line has 80 autosomes in G1 (ploidy:
3.64), in agreement with the Kronos scRT estimation (Fig. 1b, c).
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Following the ploidy estimation step, cells with low coverage are
filtered out. The minimum number of reads required for CNV
calling depends on the experimental settings and the procedure
used to create the scWGS libraries. Therefore, for each dataset, it
is important to select G1/G2- and S-phase cells with relatively
high coverage to determine by down-sampling the robustness of
CNV detection and the minimum number of reads required for
correct CNV calling. Based on this down-sampling analysis, we

discovered that the ploidy estimation of G1/G2-phase cells was
less sensitive to coverage changes than that of S-phase cells
(Fig. 1d and Supplementary Fig. 1b, c). Then, from the down-
sampling values, we selected a coverage threshold that did not
allow the ploidy of 75% of S-phase cells to deviate more than 5%
from the original ploidy estimation (Fig. 1d and Supplementary
Fig. 1b, c). We estimated that in our MCF7 cell dataset, a coverage
threshold of 117 reads per megabase (RPMb) per haploid genome
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Fig. 1 An efficient uniform framework for scRT extraction. a The pipeline of Kronos scRT with its different modules. The input files, the main modules of
Kronos RT, and the optional modules are shown in green, dark blue-grey, and light blue-grey, respectively. b Scatter plot reporting the mean cell ploidy on
the x-axis and the bin-to-bin intracellular variability on the y-axis. Each point is a single cell and the colour is assigned based on a cut-off automatically
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ploidy of the population. The data are from asynchronous S-phase enriched MCF7 cells. The green and purple arrows show the S-phase progression of the
first and second S-phase cell group, respectively (“Methods”). c Data presented in (b) after S-phase progression correction. The colour of the second
S-phase group has been changed to purple. As in (b), the green and purple arrows indicate the S-phase progression. The black curve reports the S-phase
density distribution that is used to calculate the parameters to adjust the S-phase progression (“Methods”). d Read down-sampling for the MCF7 cell
dataset obtained using the 10x Genomics System. G1/G2- and S-phase cells are plotted in orange and green, respectively. Boxplots show the mean ploidy
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(425 RPMb/3.64 ploidy) was needed for a robust mean ploidy
estimation.

Then, the adjusted CNs of cells that passed the filter can be
used to calculate the scRT profiles. Based on the coverage of our
data, the genome was binned into 200 kb non-overlapping
windows and the weighted median CN for each cell was
calculated. Using the G1/G2-phase cell population, a median
CN profile was calculated and used to normalize the CN of each
S-phase cell as a log2 ratio (“Methods”). Data were then binarized
to obtain the scRT profiles, where 1 corresponds to replicated
regions and 0 to non-replicated regions. This is based on the
assumption that the CN is doubled in replicated regions of
S-phase cells compared with the G1/G2 fraction, and therefore
the log2 ratio is close to 1. Conversely, non-replicated regions will
have the same CN as the G1/G2 population and a log2 ratio close
to 0. Binarization is independent for each cell and is based on the
identification of a normalized CN threshold. This is the threshold
that minimizes the Euclidian distance between the generated
scRT profiles and the original data (“Methods”). As an additional
quality control, a pairwise Simple Matching Coefficient of the
scRT profiles is calculated and cells with an RT profile that
deviates from the main population are filtered out (“Methods”).
Finally, the pseudo-bulk RT can be computed as the weighted
mean of all scRT profiles and can be compared with the bulk RT
(“Methods”).

In conclusion, by combining CNV calling, inter- and intra-
cellular variability, and quality control filtering, we successfully
developed, Kronos scRT, a unified and efficient genome-wide
scRT computational profiling tool for scRT studies.

scRT analysis from scWGS data of sorted S-phase cells. scRT
studies usually require cell sorting by FACS due to the absence of
in silico cell phase separation tools. In our pipeline, this cell phase
information can be integrated in the analysis to label cells using
the WhoIsWho module (Fig. 1a). To test the applicability of the
Kronos scRT framework, we used previously published scWGS
data derived from the sorted G1 and sorted mid S-phase cells of
mouse embryonic stem cells (mESC, n= 67 cells) and of neu-
roectoderm cells obtained by differentiating mESCs to epiblast-
like cells for 2 days followed by five days of embryoid body cul-
ture (hereafter called NE-7d cells, n= 45 cells)22. We determined
the scRT profiles of these two cell types using Kronos scRT, and
their cell phases were assigned using the FACS metadata (Sup-
plementary Tables 1 and 2).

To demonstrate that Kronos scRT can efficiently detect scRT
profiles, even with a small number of sorted mid S-phase cells, for
both cell lines, we calculated the correlation between the pseudo-
bulk RT, determined with our tool, and the bulk RT data
generated by Takahashi and colleagues by immunoprecipitation
of BrdU labelled newly replicated DNA (BrdU-IP) from early and
late S-phase cells22 (Fig. 2a). The high Spearman correlation
values (0.890 for mESCs and 0.902 for NE-7d cells) (Fig. 2b and
Supplementary Fig. 2a) demonstrated the robustness of our
method and computational pipeline. In addition, in agreement
with previous studies21–23, the obtained mid-S binary replication
signals showed that cell-to-cell variability exists, but is limited,
and that RT organization is largely conserved in single cells.

We then wanted to quantify the replication variability within
each cell population. As scRT data do not provide precise
information on the actual time needed for genome replication, we
decided to quantify scRT variability using the concept of Twidth

introduced in a recent scRT study21. Twidth is defined as the time
needed for a given genomic region to be replicated from 25% to
75% of cells in an S phase lasting 10 h. Although S-phase length is
not the same in all cells, assuming a uniform 10h S-phase length

makes it easy to compare results of different datasets and results
obtained in previous studies. We found that the Twidth ranged
between 2.78 h and 2.81 h in mESCs and between 2.76 h and
2.37 h in mNE-7d cells, for early and late-replicating regions,
respectively. Using the Compare TW module, we performed a
bootstrap-based null hypothesis test with H0: Twidth_early=
Twidth_late and with H1: Twidth_early ≠ Twidth_late (“Methods”,
Fig. 2c). We did not observe any significant statistical difference
between early and late Twidth values (p= 0.43) in mESCs.
Conversely, in mNE-7d cells, late-replicating regions were less
variable than early ones (p < 10−4). These results suggest that in
mESCs, as observed by Dileep & Gilbert21, RT does not present
significant differences between early and late S-phase, while in
mNE-7d cells, RT shows lower variability at the end of the
S phase.

Determination of scRT data from asynchronous cells using a
microfluidic-based system. To demonstrate that Kronos scRT
can detect scRT without cell sorting and cell phase identification
(e.g. by FACS), we first generated scWGS data for 368 oestrogen-
treated cycling MCF7 cells (containing about 20% of S-phase
cells) using the droplet-based 10x Genomics Chromium scCNV
Solution (Fig. 3a, Supplementary Table 1). As previously dis-
cussed, this allowed us to automatically identify S-phase cells
(Fig. 3a, left panel). Moreover, the even cell distribution across the
S phase allowed using the automatic S-phase correction (Fig. 3a,
right panel). We calculated the scRT and pseudo-bulk RT for 82
identified S-phase cells (Fig. 3b and Supplementary Fig. 2b). The
pseudo-bulk RT was highly correlated (Spearman correlation
R= 0.913) with the bulk RT (Fig. 3c). By visual inspection of the
scRT profiles, we could clearly identify some variability (Fig. 3b).
The even distribution of cells throughout the S phase allowed us
to perform the Twidth analysis with higher resolution than that of
sorted mid S-phase cells (Fig. 3d). As observed in previous
studies22,25, Twidth values were smaller at the beginning and at the
end of the S phase, and progressively increased towards the mid S
phase (Fig. 3d). Although only 82 cells were used in the analysis,
such results support the hypothesis that the initiation and ter-
mination of the replication programme are more tightly regulated
than mid S-phase replication.

scCNV/scRT analyses allow identifying cell sub-populations
within a heterogeneous population. To obtain a more repre-
sentative estimation of cell-to-cell RT variability, we performed
scWGS analysis of a cell population that contained more S-phase
cells. As unsorted cell populations generally contain more G1/G2-
than S-phase cells, to reduce the sequencing cost, we increased the
number of S-phase cells in the MCF7 samples to be sequenced by
FACS sorting using a gate that contains the majority of the
S-phase cells (“Methods”). Using this approach, we obtained 1777
MCF7 cells, most of which (n= 1353) were in S-phase (Fig. 1b, c,
Supplementary Table 1).

While performing the dimensionality reduction analysis with
Uniform Manifold Approximation and Projection (UMAP)26,27

on the scRT profiles of the S-phase enriched MCF7 cells, we
noticed that cells were distributed into two distinct trajectories in
which cells were sorted according to their S-phase progression
(Supplementary Fig. 3a). We hypothesized that the presence of
two RT groups was probably due to the existence of two cell sub-
populations with different chromosomal rearrangements. There-
fore, we further performed the dimensionality reduction analysis
using the scCNV data, instead of the scRT data, for G1/G2- and
S-phase cells. We observed a clear separation into four groups
(two G1/G2-phase groups and two S-phase groups) and in two
sub-populations (Fig. 4a). The mean G1/G2 ploidy was ~3.73 for
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the whole cell population, 3.68 for sub-population 1, and 3.84 for
sub-population 2 (Supplementary Fig. 3b). Due to the analysis
resolution (~200 kb), we could only identify large-scale CNV
differences between these sub-populations. Many of these
alterations were on chromosomes 3, 7, 8, 11, 18 and 19 (Fig. 4b
and Supplementary Fig. 3c). Particularly, in chromosome 3, the
CN profiles suggested a clear chromosome-wide CN gain (Fig. 4b
and Supplementary Fig. 3c) in sub-population 2 compared with
sub-population 1. To further confirm this CN gain, we performed
Fluorescence in situ Hybridization (FISH) on metaphase spreads
with two DNA probes; one specific for the whole chromosome 3
and one for the centromere (Fig. 4c, d). Among the 344 spreads

analyzed, 162 (47.09%) had four copies and 170 (49.42%) had five
copies of chromosome 3 (Fig. 4c–e), in agreement with our
scCNV data (Fig. 4b and Supplementary Fig. 3c). Therefore, we
could associate and normalize each S-phase group to its
corresponding G1/G2-phase group and to individually compute
scRT data for each MCF7 sub-population. This analysis
demonstrates that, unlike population-based approaches, Kronos
scRT can analyze the RT programme in heterogeneous cell
populations and identify the existing sub-populations.

scRT analysis in different human cell types. Subsequently, we
analyzed MCF7 cells as two individual sub-populations. Although
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bulk RT calculated from the scRT profiles (see Methods) are compared with the bulk RT of the corresponding cell type. b Comparison between single-cell
and bulk RT data. 2D density plot reporting pairwise comparisons between samples (colour code on the right) and Spearman correlations (circles) between
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the pseudo-bulk RT of the two MCF7 sub-populations were very
similar (R= 0.946) (Fig. 5a, b), we could distinguish the two sub-
populations by UMAP analysis (Fig. 5c, d). We then generated
and analyzed data for 514 HeLa cells (including 259 S-phase cells)
and 1106 Jeff cells (normal lymphoblastoid cells, including 960
S-phase cells) (Supplementary Table 1). For each of these two cell
lines, we identified only one population with median ploidy
values of 2.87 (HeLa cells) and 1.94 (Jeff cells), respectively
(Supplementary Fig. 3b). We calculated the scRT and pseudo-
bulk RT profiles for HeLa and Jeff cells, as done for MCF7 cells
(Supplementary Fig. 4a, d). The pseudo-bulk RT was highly
correlated with the corresponding bulk RT in both cell types
(Supplementary Figs. 2b and 4b, e). The scRT profiles were
unique for each cell type and could be separated by dimension-
ality reduction analysis (Fig. 5c, d). Finally, we calculated the
Twidth using the same five RT categories as done in Fig. 3d. For all
analyzed cell types, the regions replicated at the very beginning or
at very end of the S-phase were more synchronized (i.e. lower
Twidth values ranging between 1.2 and 1.4 h in early and between
1.0 and 1.2 h in late-replicating regions) compared with regions
replicated around mid S phase (Twidth values of 1.7-1.8 h) (Fig. 5e
and Supplementary Fig. 4c, f).

scRT of human cells shows stochastic variation within a cell
population. One of the main questions in the RT field is whether
this programme is stochastic or deterministic. The authors of
previous scRT studies commented on the improbability of the
system to be stochastic because cell-to-cell variability was
low22,28. However, their observations were based on limited cell
numbers that reduce the possibility of identifying rare events.

We took advantage of the high number of scRT data obtained
in the present study to tackle this issue. To better visualize
stochasticity, we selected S-phase cells at three representative
stages: early-S-phase cells (≤30% of replicated genome), mid-S-
phase cells (40-60% of replicated genome) and late-S-phase cells
(≥70% of replicated genome). We then assigned each 200 kb
genomic bin to an RT category based on its pseudo-bulk RT, and
for each bin, we calculated its replication probability at each
representative stage (Fig. 6a, b and Supplementary Fig. 5a, b). If
the RT programme were deterministic, we would not expect to
see late-replicating regions (RT < 0.5) being replicated in early
S-phase cells, and vice versa. As expected, in mid-S-phase cells,
the majority of early-replicating regions were already replicated,
while most late-replicating regions were not replicated yet (Fig. 6a,
b and Supplementary Fig. 5a, b, middle panels). However, in all
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the examined cell lines, we observed 1–5% of cells in which late
genomic domains (pseudo-bulk RT < 0.5) were replicated at the
beginning of the S phase (i.e. cells with ≤30% of replicated
genome) (Fig. 6a, b and Supplementary Fig. 5a, b, left panels).

This was significantly higher than the value obtained for G1/G2
cells (p < 10−6, one-sided paired Wilcoxon test), demonstrating
that this is real biological variation rather than experimental noise
(Supplementary Fig. 5c). According to the determinist model, in
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late S-phase cells (cells with ≥70% of replicated genome), all
early-replicating regions (pseudo-bulk RT > 0.5) should be
completely replicated. However, this was not the case because
only 95–99% of early bins were replicated at this stage (Fig. 6a, b
and Supplementary Fig. 5a, b, right panels). We observed
genomic regions replicated largely ahead or behind of schedule
compared with the population average (i.e. late-replicating
regions that are replicated in early-replicating cells, and vice
versa) in most cells (Supplementary Fig. 5d). Moreover, these
regions were not clustered into large domains (Supplementary
Fig. 5e). This suggests that the observed out-of-schedule
replications are not due to large CN gains or losses within
individual cells. The probability that an out-of-schedule event was
observed in two or more cells depended on the RT of the region,
and extremely early- and late-replicating regions were more likely
to exhibit unique events (Supplementary Fig. 5f).

It is important to note that in all examined cell types, the
probability of a bin to be replicated in early S-phase cells was
highly correlated with its population RT (Fig. 6a, b and
Supplementary Fig. 5a, b, left panels). This suggests that the RT
of a given genomic region depends on the origin firing probability
in early S phase, as suggested by the stochastic models. To further
test this hypothesis, we selected single cells at the beginning of the
S phase (percentage of replicated genome ≤30%) and used the
obtained scRT data to calculate the replication probability along
the genome. We then used these results as an input for Replicon,
a stochastic replication simulator29,30, to simulate the RT
programme throughout the genome (Fig. 6c and Supplementary
Fig. 5g). The obtained simulated RT profiles were very similar
(Spearman correlation ≥0.857) to the pseudo-bulk RT profiles of
the corresponding cell lines or cell sub-populations (Fig. 6c and
Supplementary Fig. 5g, h), demonstrating that the replication
signals detected in early S-phase cells for late-replicating regions
are real biological signals rather than technical noise. Our results
strongly support the notion of a stochastic RT programme.

To evaluate the robustness of these results, we analyzed again
the MCF7 sub-population 1 using three higher thresholds of the
minimum number of reads required to keep a cell in the analysis.
Increasing this limit allowed excluding cells with poorer CNV
calling that could explain the observed variability. Regardless of
the threshold used, the obtained results did not change, further
supporting the robustness of the analysis (Supplementary
Fig. 6a–c).

Kronos scRT can extract scRT profiles from various single-cell
DNA sequencing data. Although we performed experiments
using scWGS data that were generated for this scRT analysis, this
sequencing technique is not a requirement for using Kronos
scRT. As long as the single-cell sequencing data include CN
information and concern cycling cells, Kronos scRT can process
them and extract scRT profiles. Among the published datasets,
the scHi-C data generated by Nagano et al.31 are a perfect
example to demonstrate this. The dataset concerns cycling mESCs
grown on a feeder layer in medium with foetal bovine serum
(mESC Serum) or without feeder but with PD and CHIR, two
inhibitors that favour the maintenance of the mESC naive state
(mESC 2i)31. Although these were paired-end sequencing data,
due to their nature (i.e. read pairs can map to different genomic
bins), we loaded them into Kronos scRT as single-end data. By
doing so, we identified 312 G1/G2-phase and 329 S-phase cells in
the mESC 2i sample, and 76 G1/G2-phase and 130 S-phase cells
in the mESC Serum sample. We then calculated the scRT of
S-phase cells and the pseudo-bulk RT profiles (Fig. 7a). These
were highly correlated with the bulk RT and the pseudo-bulk RT
of our scWGS data for sorted mid S-phase mESCs (Spearman

correlation >0.847) (Fig. 7a, b and Supplementary Fig. 2a). Fur-
thermore, having more cells that are well distributed across the S
phase allowed us to calculate the Twidth values with the same
number of replication categories used for human samples
(Fig. 7c). Our result confirmed that in both mESC samples, RT
was tighter at the beginning and end of the S phase compared
with the mid S phase, as observed in human cells. This suggests
that it is an important common feature of mammalian cells.

Discussion
RT studies have entered the single-cell era, but their conclusions
have been limited by the small number of cells that can be ana-
lyzed. Here, we have overcome this scalability issue by using a
microfluidic-based scWGS system to generate new data that we
analyzed using our unified computational workflow Kronos scRT
(Supplementary Fig. 1a).

We demonstrated that Kronos scRT allows the rapid extraction
and analysis of scRT from various single-cell DNA sequencing
datasets (e.g. scWGS, scHi-C) at the 200 kb resolution. It should
be noted that the scRT analysis resolution depends on the scWGS
data quality. For instance, scWGS data obtained with the multiple
displacement amplification (MDA) approach, which has a strong
GC bias32, might require a much higher sequencing depth to
provide reliable CNV calling, compared with other library pre-
paration approaches with linear amplification, such as Linear
Amplification via Transposon Insertion20 and direct DNA
transposition single-cell library preparation (DLP+)33. Impor-
tantly, Kronos scRT can directly extract scRT from sequencing
data of asynchronously growing cells, without the time-
consuming experimental procedures (e.g. cell sorting into G1
and S phase, manual processing on 96-well plates) required by
other approaches21–23. Similarly, Massey and Koren34 also used
the 10x Genomics system to study scRT. Our down-sampling
analysis indicates that with Kronos scRT, about 0.75 million reads
are sufficient to obtain robust scRT data at a good resolution for a
human diploid genome (Fig. 1d). On the basis of the current
sequencing cost (~15 k€ for 10 G 100 bp paired-end reads on
NovaSeq), the price is ~1€ per single cell. We successfully used
Kronos scRT to obtain thousands of high-quality scRT profiles
from various mouse and human cell types. This allowed us to
study the stochastic replication events at an unprecedented depth.
In agreement with recent ORM data using synchronized early
S-phase cells24,35, our results obtained directly from asynchro-
nously growing cells also support a stochastic replication model.
This indicates that the early replication events observed within
the late-replicating regions detected by ORM are not due to
activation of dormant origins upon cell synchronization.

Our analysis demonstrated that we can apply dimensionality
reduction to scRT/scCNV profiles to identify cell sub-populations
within heterogeneous samples. By normalizing the CN of S-phase
MCF7 cell sub-populations relative to their corresponding G1/
G2-phase sub-populations, we unveiled two different, although
relatively similar, RT programmes (Fig. 5 and Supplementary
Fig. 1d).

Moreover, dimensionality reduction analysis of scRT profiles
gives a reconstruction of the replication timeline, from early to
late S phase, in a given population, therefore forming pseudo-
trajectories. Single-cell deconvolution of cell heterogeneity is an
important factor to take into consideration, especially for data
obtained from cancer samples, where normal and mutated cells
coexist and mutated cells have undergone multiple rounds of
random mutation and clonal expansion33,36. Furthermore, the
possibility to identify sub-populations in a tissue might allow
studying the RT programme of cells that cannot be cultured
in vitro and for which specific markers are not available.
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Surprisingly, although the two MCF7 sub-populations identi-
fied in this study displayed significant CN differences (Fig. 4 and
Supplementary Fig. 3), their RT profiles were highly correlated
(R= 0.946) (Fig. 5). This suggests that the RT programme is an
extremely robust process and that different copies of the same
chromosome follow the same (or similar) replication programme.
This is in agreement with previous reports showing that in the
same cell type, the intracellular RT variation between homologues
(using Mus musculus 129/Sv x M. m. castaneus hybrid cells) is
similar to the intercellular variation observed between different
cells21. Due to the low SNP coverage and low sequencing depth
per single cell in our samples, we could not calculate the scRT of
different homologues. Without separating the reads mapped on
each allele, it is impossible to distinguish whether a bin has been
replicated asynchronously between alleles (in the case of diploid
cells), or if the two alleles are replicated synchronously while the
region under study is not completely replicated. The situation is
even more complex with aneuploid cell lines. Therefore, at the

current technical stage, we can only analyze scRT within each bin
as a binary system (i.e. replicated and non-replicated). New
algorithms need to be developed to obtain the haplotype-resolved
scRT in order to explore the variation of replication programme
between homologous chromosomes in normal human diploid
cells or in cancer cells with complex karyotypes. This will help to
better investigate the link between structural variations and RT
changes, and its role in human diseases (e.g. during cancer
development).

Additional studies are necessary to determine the molecular
mechanisms that contribute to the degree of RT stochasticity. The
combination of scRT and other single-cell omics data will provide
additional insights into DNA replication regulation. It should be
noted that RT has long been correlated with chromatin organi-
zation. Specifically, the RT data obtained in population and
single-cell studies show that early/late-replicating domains are
associated with A/B compartments;21,23,37–40 although, the direct
causal relationship remains unclear. Interestingly, although
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Fig. 7 Kronos scRT analysis of scRT using scHi-C data. a Top: pseudo-bulk RT profile of mESC grown in 2i (purple) or in serum (green) compared with
bulk RT (black). Bottom: scRT profiles ordered, from top to bottom, in function of the genome replication percentage of each cell. b Pairwise comparisons of
the pseudo-bulk RT and bulk RT profiles in mESC, mESC-2i, and mESC Serum. Same as in Fig. 2b. c Twidth calculated for the indicated five RT categories
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*** < 10−3, **** < 10−4.
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changes in RT and compartments during mESC differentiation
are tightly linked, they can be separated in specific contexts23.
Comparison of haplotype-resolved bulk RNA-seq and scRT data
from mESCs indicated that allelic replication asynchrony is fre-
quently, but not always, associated with allelic expression22.
Multiple mechanisms might cause extrinsic (cell-to-cell) and
intrinsic (homologue-to-homologue) replication variability.
Moreover, a major open question is whether the observed asso-
ciation between DNA replication and gene transcription results
from transcription or from the open chromatin state of active
genes9,28. Therefore, it is important to perform simultaneous
multi-omic studies in the same single cells to better understand
replication kinetics. Due to the remarkable simplicity of our tool
that allows integrating higher cell numbers, Kronos scRT could be
easily combined with the single-cell analysis of the transcriptome,
DNA architecture, CpG methylation and chromatin
accessibility41–44, among others, offering the opportunity to study
RT regulation at both a multi-omic scale and at the single-cell
level. These single-cell multi-omic data could also be used to
extract the RT landscapes, in addition to their original purpose
(e.g. DNA architecture for scHi-C, chromatin accessibility for
scATAC, transcription for scRNA-seq, etc). We think that it is
important to increase the number of such studies to better
comprehend DNA replication control and its stochasticity at the
single-cell level.

Methods
Cell culture. Oestrogen receptor-positive breast cancer MCF7 cells were cultured
and treated as described in45. Briefly, cells were maintained in complete medium
(DMEM supplemented with 10% FBS, 50 U/mL penicillin, and 50 µg/mL strep-
tomycin) in 5% CO2 at 37 °C. Oestrogen (E2) treatment was performed after
hormone starvation. Cells were plated at ~25% confluency in complete medium for
at least 16 h, rinsed thrice with PBS, and then hormone-starved for 48 h in DMEM
without phenol red supplemented with 10% charcoal-stripped FBS (Dutscher),
50 U/mL penicillin, and 50 µg/mL streptomycin, before incubation with 100 nM E2
(dissolved in EtOH) for 24 h. Then, cells were harvested (70-80% confluence) by
trypsin detachment.

HeLa S3 cells were cultured in DMEM high glucose medium with 10% FBS, and
JEFF cells were grown in RPMI 1640 supplemented with 5% FBS. HeLa S3 cells
were harvested by trypsin detachment at ~70–80% confluent, and JEFF cells were
harvested at the density of 0.7–0.8 × 106 cells/mL by 200 g centrifugation for 5 min
at room temperature.

Sample preparation for single-cell copy number variation analysis. Libraries
were generated starting from exponentially growing cells. If mentioned, a step of
S-phase enrichment by FACS sorting was performed. Cells were processed using
the 10x Genomics Chromium single-cell CNV solution according to the manu-
facturer’s instructions. Libraries were sequenced on an Illumina NovaSeq
6000 system using PE100, with the objective of obtaining ~2 million unique reads
per single cell.

S-phase enrichment by fluorescence-activated cell sorting. Exponentially
growing cells were collected and stained with 20 µg/mL Hoechst 33342 in complete
medium at 37 °C for 1 h. Stained cells were rinsed twice with PBS, clumps were
removed by passing each sample twice through a 40 µm strainer. The resulting
single-cell suspension was stained with 50 µg/mL propidium iodide (PI) before
FACS sorting. PI-positive cells were discarded. Cell-cycle stages were estimated in
function of the Hoechst signal. Gates were positioned to collect S-phase cells and
partially G1- and G2/M-phase cells. Sorted cells were collected in a 15 mL tube
with 1 mL complete culture medium, rinsed once in PBS (Ca2+ free, Mg2+ free)/
0.04% BSA and then processed with the 10x Genomics Chromium single-cell CNV
solution kit, as previously described.

Fluorescence in situ hybridization (FISH). For FISH analysis, cells were treated
with colcemid (100 ng/ml, Roche) for 3 h and mitotic cells were collected by mitotic
shake-off after a short trypsin treatment and centrifuged at 188 g for 10 min. Cell
pellets were resuspended in 75 mM KCl and incubated in a 37 °C water bath for
15 min. Carnoy fixative solution (methanol:acetic acid, 3:1) was prepared and 1:10
volume added to the cells, before centrifugation at 188 g for 15 min. Cells were then
fixed at room temperature in the Carnoy solution for 30 min, centrifuged and
washed once more with the fixative solution. A minimum volume of fixative
solution was left to resuspend the pellet and cells were dropped onto clean glass
slides. FISH staining was performed following the manufacturer’s instructions

(MetaSystems) using chromosome painting and centromere enumeration probes to
specifically identify chromosome 3 (Metasystems probes). The Metafer imaging
platform (MetaSystems) was used for automated acquisition of chromosome
spread images. Picture triplets were merged with Fiji (v2.1.0) and the resulting
images were manually scrutinized for chromosome 3 enumeration. Representative
images were acquired using a Deltavision Core system (Applied Precision).

10x Genomics data processing. Data produced with the 10x Genomics system
(various human cell lines) were processed using Cell Ranger DNA (10x Genomics
software, version 1.0.0). The 10x Genomics subset-bam (version 1.0, https://github.
com/10XGenomics/subset-bam) was used for bam file subsetting to obtain single-
cell bam files. Duplicated reads were removed using Picard MarkDuplicates (ver-
sion 2.6.0, http://broadinstitute.github.io/picard) and the resulting files were used
as input for the CNV module of Kronos scRT (Supplementary Fig. 1a).

Trimming and aligning reads. The fastqtoBAM module of Kronos scRT uses
demultiplexed fastq files as input and removes standard adaptors from reads.
Adaptor trimming is performed using Trim Galore (version 0.4.4, https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/), a modified version of cuta-
dapt and FastQC. After trimming, reads are aligned to the provided reference
genome (in our study, the human genome version hg38 and the mouse genome
version mm10) using the RBowtie2 package (version 1.4.0) and only the best
mapping for each read was reported. SAM files are then sorted, converted into
BAM files using Rsamtools (version 1.34.1), and deduplicated using Picard
MarkDuplicates (version 2.6.0). The fastqtoBam module was used to process all the
mouse data analyzed in the current study.

Calculate bin mappability and GC content for copy number estimation. The
binning module of Kronos scRT was used to calculate mappability and GC content
in each genomic bin. This information is later used by the CNV module to nor-
malize read counts and select the bins that will be considered for analysis. By
default, the bin size is 20 kb, but it can be adjusted by the user in function of the
sample mean sequencing depth. Moreover, only autosomal chromosomes are used
by default, but the user can decide to keep also one or both sex chromosomes. GC
content is calculated as the frequency of C and G in the reference sequence
belonging to a bin.

To calculate mappability, this module simulates 1X coverage reads from a
reference genome, adds mutations with an error rate of 0.1% (that can be adjusted
by the user to fit the error rate of their datasets46) and maps the reads back to the
reference genome using Rbowtie2 with the same settings used in the fastqtoBAM
module. Read parameters (e.g. read length, single-end or paired-end reads, and
fragment size) can be estimated from the BAM files of the single-cell experiment or
manually set by the user. Then, the mappability of bin n (Mn) is calculated as the
number of remapped reads of this bin (Rrn), divided by the number of reads that
were originally generated at the same location (Rsn) (formula 1):

Mn ¼ Rrn
Rsn

ð1Þ

CNV calling and intracellular bin-to-bin variability. The CNV module of Kronos
scRT counts the number of high-quality reads (i.e. mapping quality score ≥ 30)
over the bins generated by the binning module. For CNV calculation of paired-end
reads, if reads of a pair are mapped in the same bin, they are counted only once,
otherwise, they are counted independently. Cells with <2 × 105 reads are discarded
(the user can manually adjust this threshold). Regions with a mappability <0.8 or
>1.5 are excluded from the analysis (the user can also provide a list of blacklisted
genomic regions and/or change the mappability thresholds). Read counts are then
adjusted based on the mappability with formula (2):

rmn ¼ rn
Mn

ð2Þ

where rn is the read count on bin n, Mn is the mappability of bin n obtained from
(1) and rmn is the adjusted read count based on its mappability.

Read counts are then corrected for the GC content bias (formula 3):

Rn ¼ rmn � grmGCjnfrm ð3Þ

where Rn is the normalized read count of bin n, rmn is the adjusted read counts (2),
GC|n represents all the bins with the same GC content as bin n, and the tilde
represents the median.

The CNV module first calculates the bin-to-bin variability. To do so, it bins the
genome into 500 kb bins and calculates the total read count for each bin. Then, it
calculates the DIMAPD as defined in the 10x Genomics CNV Solution (https://
support.10xgenomics.com/single-cell-dna/software). Assuming that the majority of
analyzed cells are in the G1/G2 phase, in which the bin-to-bin variation is minimal,
DIMAPD values are fitted to a Gaussian distribution, and cells that have
significantly higher DIMAPD (formula 4, 5, 6 and 7) are considered to be in S
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phase:

Dx ¼
Ri;x � Riþ1;x

�R
i 2 1;N½ Þ ð4Þ

where Dx is a vector containing differences between neighbouring 500 kb bins for
cell x, Rx is a vector containing the number of reads in 500 kb bins for cell x, and
the index i identifies a bin (ranges betwen 1 to the total number of bins −1);

Cx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1

Ri;x

Gs

s
ð5Þ

where Cx is the square root of the coverage, N is the number of 500 kb bins, Ri,x is
the number of reads in bin i in cell x, and Gs is the genome size in Mb;

MAPDCx ¼
g

Dx �fDx

��� ��� � Cx
ð6Þ

where Dx comes from (4), and Cx from (5).
As the MAPDC value increases linearly with the square root of the cell

coverage, it was normalized as follows (formula 7) to obtain the DIMAPD:

DIMAPDx ¼ 1þMAPDCx � a Cx � eC� �
� b ð7Þ

where MAPDCx is defined in formula (6), Cx in formula (5), and C is a vector
containing the Cx values for all cells in the experiment; a and b are two coefficients
estimated through a linear fitting of MAPDC in function of the cell coverage
distance from the median coverage of the experiment.

CNs are called starting from 20 kb bin tracks that are smoothed and segmented
using a circular binary segmentation algorithm from the R package DNAcopy
(version 1.56.0). Then, CNs are estimated by minimization of the following target
function, as suggested by the 10x Genomics CNV Solution (https://support.
10xgenomics.com/single-cell-dna/software; formula 8):

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

n¼1
Sn � sin2

π � Rn

X

s
ð8Þ

where Sn represents the size of segment n, Rn represents the read count of segment
n, and X is a number between the 5th and the 95th percentile of the read counts of
all segments in a cell. Each local minimum of this equation is a possible solution to
calculate CN. Therefore, a filter on local minimum values that lead to unreasonable
mean ploidy (formula 10) is applied, and CN is calculated (formula 9). The filters
used in this study can be found in Supplementary Table 2 (Ploidy limits). For
sorted G1 and sorted mid S-phase cells in the mouse datasets, the ploidy value
closer to 2 was selected:

CNn ¼ Rn

Xmin

� �
ð9Þ

where Xmin is the value of X for ~χ which is minimized (formula 7), Rn is the read
count in segment n, and CNn is an integer that represents the CN of segment n.
The mean ploidy of a cell can then be calculated as follows (10):

P ¼
∑
N

n¼1
Sn � CNn

∑
N

n¼1
Sn

ð10Þ

where P is the mean ploidy, Sn is the size of segment n, and CNn is the copy
number of segment n. The difference between the absolute minimum values and its
closest relative minimum is used to evaluate how good the CN calling is. For values
<2, the CN is not considered reliable (ploidy confidence). Negative values of ploidy
confidence are imposed, as suggested by 10X Genomics. Bins included in the
provided blacklist47 are removed, as done here with the bins for mESCs and mNE-
7d cells.

Single-cell replication profiling and scRT calculation. As already mentioned, the
DIMAPD parameter can be used to distinguish replicating cells (in S phase) from
non-replicating cells (in G1/G2 phase). The automatic threshold is a reasonable
choice if the cell population has not been sorted for S-phase cell enrichment. For
S-phase enriched cells, the diagnostic module can be used to manually select more
adequate thresholds. The thresholds used in this study are reported in Supple-
mentary Table 2. If available, FACS metadata can be integrated through the
WhoIsWho module of Kronos scRT.

As shown in Fig. 1b, the function that we use to identify CN (formula 8)
introduces some constraints in the calculation of the mean ploidy. Firstly, it is not
possible to distinguish G1 from G2 cells that co-occupy the same area (Fig. 1b, blue
population). Secondly, the S-phase cells are split into two groups (Fig. 1b, green
population): the first group progresses normally, while the second group
approaches the G1/G2 population from the left side of the plot, as indicated by the
two arrows. Therefore, the Kronos scRT diagnostic module calculates two
parameters to correct S-phase cell populations. Preferentially, the program tries to
reunite all S-phase cells in a monomodal distribution in which the ploidy variability
is maximized. When this is not possible, parameters are chosen to create a bimodal

distribution with a minimized ploidy variability. The user can manually set these
parameters.

The CN of each segment is well corrected based on these values. According to
our down-sampling (Fig. 1d and Supplementary Fig. 1b, c), cells with low coverage
were filtered out. Coverage thresholds for each dataset are reported in
Supplementary Table 2.

The genome is then binned again to calculate the scRT. Based on the
sequencing depth of our samples, bins of 200 kb were used in our study. The bin
size can be adjusted by the user. A weighted median CN is then calculated, where
the weights are the sizes of overlaps between each 200 kb bin and the previously
calculated segments.

The G1/G2-phase cell population was used to calculate a median pseudo-bulk
CN profile that was used to normalize each S-phase cell as follows (formula 11):

nCNn;x ¼ log2
CN200n;xgCNGn

 !
ð11Þ

where nCNn,x is the normalized copy number of bin n in the S-phase cell x,
CN200n,x is the copy number of bin n in the S-phase cell x before normalization,
and CNGn is the CN of bin n in all G1/G2-phase cells.

Each S-phase cell profile is then binarized. To do so, Kronos scRT identifies a
value of nCN for which the following target function is minimized (12):

εth;x ¼ nCNn;x �
1 if nCNn;x ≥ th

0 if nCNn;x < th

( !2

th 2 ½0; 1� ð12Þ

where εth,x is the Euclidian distance using the threshold th for cell x, and nCNn,x is
obtained from (formula 11). Once the threshold that minimizes εx is identified,
scRT profiles can be calculated as follows (formula 13):

scRTn;x ¼
1 if nCNn;x ≥ thmx

0 if nCNn;x < thmx

(
ð13Þ

where scRTn,x is a binary value representing whether the bin n in cell x has been
replicated (1) or not (0), nCNn,x comes from (11) and thmx is the th for each εx
minimized in cell x.

Simple matching coefficient distances are then calculated for each pair of cells.
The population is filtered to remove cells that diverge by at least 25% from 60% of
the single-cell population. Cells are then sorted in function of their genome
replication percentage and tracks are averaged within each bin of replication
percentage. To ensure a symmetrical distribution, outlier cells (i.e. very early and/or
very late) are filtered out. Replication tracks per percentage interval are then
averaged together to create the pseudo-bulk RT that is compared with the bulk RT.
In this study, the coordinates of bulk RT of mESCs and NE-7d cells (issued from
BrdU-IP samples) were converted to mm10 with the R package liftOver (v1.10).
The bulk RT data of human cells were converted from hg19 to hg38 using the ucsc-
liftOver tool (v366).

Studying variability and sample differences. To study cell-to-cell variability,
Kronos RT calculates Twidth as defined in21: the time needed for genomic regions to
be replicated in 25% to 75% of cells in a S phase lasting 10 h. The module Compare
TW of Kronos RT allows users to apply a null hypothesis test by bootstrapping
with H0 (Twidth_group1 = Twidth_group2) and with H1 (Twidth_group1 ≠ Twidth_group2).
For this, it randomly assigns the bins belonging to two groups to either of them,
keeping the total original number of bins in each group constant. Newly assigned
bins are then used to calculate the absolute difference between Twidth_group1 and
Twidth_group2 that is then compared with the real difference (formula 14):

p ¼ 1
N
� ∑

N

i¼1

1 if Tw1i � Tw2i
�� ��≥ Twidth1 � Twidth2

�� ��
0 if Tw1i � Tw2i
�� ��< Twidth1 � Twidth2

�� ��
(

ð14Þ

where p is the p value, N is the number of iterations (by default 104), Tw1i and Tw2i
are the Twidth calculated for the two groups in the iteration i, while Twidth1 and
Twidth2 are the values of the real groups.

Down-sampling. To test the CN calling stability in function of the sequencing
depth, G1/G2- and S-phase cells were selected from each experimental setting: i.e.
10x Genomics system, scWGA and scHi-C. Down-sampling was performed using
Picard DownsampleSam (version 2.6.0, http://broadinstitute.github.io/picard). For
each down-sampling coverage, cells with higher RPMb were used. In our study,
RPMb thresholds were set as the value at which at least 75% of cells have a ploidy
estimation that does not differ more than 5% from the original value. If the user
does not define a specific threshold, Kronos scRT applies a threshold of 160 RPMb
per haploid genome by default, which is close to the highest threshold we found for
the different datasets analyzed in the current study (Fig. 1d and Supplementary
Fig. 1b, c).

Dimensionality reduction. Kronos DRed is the dimensionality reduction
module. This module uses genome-wide scCNV or scRT data to transform the
data and provide a low-dimensional representation that reflects the important
features (e.g. cell type, cell population, etc.). For CNV data, original values are used,
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while for RT data, simple matching coefficient distances calculated with the R
package ade4 (v1.7) are used. T-distributed Stochastic Neighbour Embedding
(t-SNE)48 and UMAP26,27 are performed with the R packages Rtsne (v0.15) and
umap (v0.2.7), respectively. For t-SNE, perplexity corresponds to a 50th of the
number of cells or a minimum value of 10, theta to 0.25, and a partial principal
component analysis is performed to calculate t-SNE coordinates over 5000 itera-
tions. For binarized scRT data, the single matching coefficient distance matrix is
provided to the Rtsne or umap functions (options input_mat=‘dist’ for umap and
is_distance=True for Rtsne). For CN data, the scCNV calling results from the RT
module are provided (options input_mat=‘data’ for umap and is_distance=False
for Rtsne).

MCF7 sub-population separation. Kronos RT (option–extract_G1_G2_cells) was
used to generate complete S- and G1/G2-phase CNV in 200 kb bins. Bins containing
missing values or those belonging to sex chromosomes were removed. Dimension-
ality reduction of the resulting data was performed with UMAP using the R package
umap (v0.2.7, option random_state=20210813). 2D UMAP coordinates were pro-
jected with the cell replication percentage to differentiate between G1/G2 and S phase.
Cells were labelled based on manually attributed cut-off coordinates from the UMAP
projection. For each resulting group, genome-wide scCNV data were visualized
(Fig. 4b and Supplementary Fig. 3d). This allowed the manual attribution of S-phase
cell groups to their corresponding G1/G2 cell groups and thus, the correct normal-
ization of these groups in the downstream scRT analysis.

Replication timing simulation. The Replicon simulation code29 was used to
simulate the RT profiles. The Replicon simulator uses the initiation probability
landscape (IPLS), i.e. the relative probability of initiating at any point in the
genome, as input. In our simulations, the probability for each 200 kb of being
replicated in early S-phase cells (that completed up to 30% of their genome
replication) was based on the scRT data of the corresponding cell type. The same
setting of other parameters as in our previous publication24 was used, following the
suggestion of the original study30.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mouse scWGS data were obtained from [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE108556]. The mouse scHi-C data were obtained from [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE94489]. The bulk RT data were obtained from
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923442] for MCF7 cells,
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923449] for HeLa cells,
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923451] for GM12878 cells
(B-lymphoblastoid cell line) and [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE108556] for mESC and NE-7d cells. The mm10 blacklist was obtained from https://
github.com/Boyle-Lab/Blacklist. The raw and processed data generated in the current
study has been deposited in NCBI’s Gene Expression Omnibus (GEO) under accession
number [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186173].

Code availability
Kronos scRT is available in GitHub (https://github.com/CL-CHEN-Lab/Kronos_scRT)
and archived in Zenodo49.
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