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Introduction

We consider a nonlinear wave equation equation known as the ϕ 6 model. For the potential function U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 and U (ϕ) = 2ϕ -8ϕ 3 + 6ϕ 5 , the equation is written as

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U (ϕ(t, x)) = 0, (t, x) ∈ R × R. (1) 
The potential energy E pot , the kinetic energy E kin and total energy E total associated to the equation ( 1) are given by mod x

E pot (ϕ(t)) = 1 2 R ∂ x ϕ(t, x) 2 dx + R ϕ(t, x) 2 (1 -ϕ(t, x) 2 ) 2 dx, E kin (ϕ(t)) = 1 2 R ∂ t ϕ(t, x) 2 dx, E total (ϕ(t), ∂ t ϕ(t)) = 1 2 R ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x) 2 dx + R ϕ(t, x) 2 (1 -ϕ(t, x) 2 ) 2 dx.
We say that if a solution ϕ(t, x) of the integral equation associated to [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF] has E total (ϕ, ∂ t ϕ) < +∞, then it is in the energy space. The solutions of (1) in the energy space have constant total energy E total (ϕ(t), ∂ t ϕ(t)). By standard arguments, the Cauchy Problem associated (1) is locally well-posed in the energy space, moreover is globally well-posed since U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 satisfies lim |ϕ|→∞ U (ϕ) = +∞. The stationary solutions of (1) are the critical points of the potential energy. The only non-constant stationary solutions in [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF] are the topological solitons called kinks and anti-kinks, for more details see chapter 5 of [START_REF] Manton | Topological Solitons[END_REF]. The kinks of (1) are given by

H 0,1 (x -a) = e √ 2(x-a) (1 + e 2 √ 2(x-a) ) 1 2 
, H -1,0 (x -a) = -H 0,1 (-x + a)

for any real a. The study of kink and multi kinks solitons solutions of nonlinear wave equations has applications in many domains of mathematical physics. More precisely, the model (1) that we study has applications in condensed matter physics [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF] and cosmology [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF], [START_REF] Hawking | Bubble collisions in the very early universe[END_REF], [START_REF] Giblin | How to run through walls: Dynamics of bubble and soliton collisions[END_REF].

It is well known that the set of solutions in energy Space of [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF] for any potential U is invariant under space translation, time translation and space reflection. Also, for one of the stationary solutions H of (1) and any -1 < v < 1, we have that the following solitary wave

H x -vt (1 -v 2 ) 1 2
, which is the Lorentz transform of H is a solution of [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF].

The problem of stability of multi-kinks is of great interest in mathematical physics, see for example [START_REF] Dorey | Kink-antikink collisions in the ϕ 6 model[END_REF], [START_REF] Vakhid | Kink interactions in the (1+1)dimensional ϕ 6 model[END_REF]. For the integrable model mKdV, Muñoz proved in [START_REF] Muñoz | The Gardner equation and the stability of multi-kink solutions of the mKdV equation[END_REF] the H 1 stability and asymptotic stability of multi-kinks. However, for many non-integrable models such as the ϕ 6 nonlinear wave equation, the asymptotic and long time dynamics of multi-kinks after the instant where the collision or interaction happens are still unknown, even though there are numerical studies of kink-kink collision for the ϕ 6 model, see [START_REF] Vakhid | Kink interactions in the (1+1)dimensional ϕ 6 model[END_REF], which motivate our research on the topic of the description of long time behavior of a kink-kink pair.

For nonlinear wave equation models in 1 + 1 space dimension, results of stability for a single kink were obtained, for example for the ϕ 4 model it was obtained asymptotic stability for odd perturbations in [START_REF] Kowalczyk | Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space[END_REF] and [START_REF] Delort | On the stability of kink solutions of the ϕ 4 model in 1 + 1 space time dimensions[END_REF]. Also, it was recently proved in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] by Martel, Muñoz, Kowalczyk, and Van Den Bosch asymptotic stability of a single kink for a general class of nonlinear wave equations, including the model which we study here.

The main purpose of our material is to describe the long time behavior of solutions ϕ(t, x) of (1) in the energy space such that lim x→+∞ ϕ(t, x) = 1, lim x→-∞ ϕ(t, x) = -1 with total energy equals to 2E pot (H 01 ) + ϵ, for 0 < ϵ ≪ 1. More precisely, we proved orbital stability for a sum of two moving kinks with total energy 2E pot (H 0,1 ) + ϵ and we verified that the remainder has a better estimate during a long time interval which goes to R as ϵ → 0, indeed we proved that the estimate of the remainder during this long time interval is optimal. Also, we prove that the dynamics of the kinks movement is very close to two explicit functions d j : R → R defined in Theorem 1.11 during a long time interval. This result is very important to understand the behavior of two kinks after the instant of collision, which happens when the kinetic energy is minimal, indeed, our main results Theorem 1.7 and Theorem 1.11 describe the dynamics of the kinks before and after the collision instant for a long time interval. The numerical study of interaction and collision between kinks for the ϕ 6 model was done in [START_REF] Vakhid | Kink interactions in the (1+1)dimensional ϕ 6 model[END_REF], in which it was verified that the collision of kinks is close to an elastic collision when the speed of each kink is low and smaller than a critical speed v c .

For nonlinear wave equation models in dimension 2 + 1, there are similar results obtained in the dynamics of topological multi-solitons. For the Higgs Model, there are results in the description dynamics of multi-vortices in [START_REF] Stuart | Dynamics of Abelian Higgs vortices in the near Bogolmony regime regime[END_REF] obtained by Stuart and in [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF] obtained by Gustafson and Sigal. Indeed, we took inspiration from the proof and statement of Theorem 2 of [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF] to construct our main results. Also, in [START_REF] Stuart | The geodesic approximation for Yang-Mills-Highs equations[END_REF], Stuart described the dynamics of monopole solutions for the Yang-Mills-Higgs equation. For more references, see also [START_REF] Stuart | Analysis of the adiabatic limit for solitons in classical field theory[END_REF], [START_REF] Dunajski | Reduced dynamics of Ward solitons[END_REF], [START_REF] Manton | Asymptotic interactions of critically coupled vortices[END_REF] and [START_REF] Gorshkov | Interactions of solitons in nonintegrable systems: Direct perturbation method and applications[END_REF].

In [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF], Bethuel, Orlandi and Smets described the asymptotic behavior of solutions of a parabolic Ginzburg-Landau equation closed to multi-vortices in the initial instant. For mores references, see also [START_REF] Leon | Dynamics of Ginzburg-Landau vortices[END_REF] and [START_REF] Sandier | Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics[END_REF].

There are also results in the dynamics in multi-vortices for nonlinear Schrödinger equation, for example the description of the dynamics of multi-vortices for the Gross-Pitaevski equation was obtained in [START_REF] Yu N Ovchinnikov | The Ginzburg-Landau equation III. vortices dynamics[END_REF] by Ovchinnikov and Sigal and results in the dynamics of vortices for the Ginzburg-Landau-Schrödinger equations were proved in [START_REF] Colliander | Vortex dynamics for the Ginzburg-Landau-Schrödinger equation[END_REF] by Colliander and Jerrard, see also [START_REF] Leon | Refined jacobian estimates and Gross-Pitaevsky vortex dynamics[END_REF] for more information about Gross-Pitaevski equation.

Main results

We recall that the objective of this paper is to show orbital stability for the solutions of the equation [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF] which are close to a sum of two interacting kinks in an initial instant and estimate the size of the time interval where better stability properties hold. The main techniques of the proof are modulation techniques adapted from [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical nls[END_REF] and a refined energy estimate method to control the size of the remainder term. Notation 1.1. For any D ⊂ R, any real function f : D ⊂ R → R, a real positive function g with domain D is in O(f (x)) if and only if there is a uniform constant C > 0 such that 0 < g(x) < C|f (x)|. We denote that two real non-negative functions f, g :

D ⊂ R → R ≥0 satisfy f ≲ g, if there is a constant C > 0 such that | f (x) |≤ C | g(x) | , for all x ∈ D.
If f ≲ g and g ≲ f, we denote that f ∼ = g. We use the notation (x) + := max(x, 0).

If g(t, x) ∈ C 1 (R, L 2 (R)) ∩ C(R, H 1 (R)), then we define --→ g(t) ∈ H 1 (R) × L 2 (R) by --→ g(t) = (g(t), ∂ t g(t)),
and we also denote the energy norm of the remainder --→ g(t) as

--→ g(t) = ∥g(t)∥ H 1 (R) + ∥∂ t g(t)∥ L 2 (R)
to simplify our notation in the text.

Definition 1.2. We define S as the set g ∈ L ∞ (R) such that 1. dg dx ∈ L 2 (R), 2.

R>0 |g(x) -1| 2 dx < ∞, 3.

R<0 |g(x) + 1| 2 dx < ∞. The partial differential equation ( 1) is locally well-posed in the affine space S × L 2 (R). Motivated by the proof and computations that we are going to present, we also consider: Definition 1.3. We define for x 1 , x 2 ∈ R H x2 0,1 (x) := H 0,1 (x -x 2 ) and H x1 -1,0 (x) := H -1,0 (x -x 1 ), and we say that x 2 is the kink center of H x2 0,1 (x) and x 1 is the kink center of H x1 -1,0 (x).

Remark 1.4. Indeed,

S = {g ∈ L ∞ (R) | g -H 0,1 -H -1,0 ∈ H 1 (R)}.
There are also non-stationary solutions (ϕ(t, x), ∂ t ϕ(t, x)) of ( 1) with finite total energy E total (ϕ(t), ∂ t ϕ(t)) that satisfies for all t ∈ R lim

x→+∞ ϕ(t, x) = 1, lim x→-∞ ϕ(t, x) = 0. (2) 
But, for any a ∈ R, the kinks H 0,1 (x -a) are the unique functions that minimize the Potential Energy in the set of functions ϕ(x) satisfying condition [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF], the proof of this fact follows from the Bogomolny identity, see [START_REF] Manton | Topological Solitons[END_REF] or section 2 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. By a similar reasoning, we can verify that all functions ϕ(x) ∈ S have E pot (ϕ) > 2E pot (H 0,1 ).

Definition 1.5. We define the energy excess ϵ of a solution (ϕ(t), ∂ t ϕ(t)) ∈ S × L 2 (R) as the following value ϵ = E total (ϕ(t), ∂ t ϕ(t)) -2E pot (H 0,1 ).

Also, for ϕ(t) solution of (1), we denote the Kinetic Energy of ϕ(t) by E kin (ϕ(t)) = E(ϕ, ∂ t ϕ) -E pot (ϕ(t)). We recall the notation (x) + := max(x, 0). It's not difficult to verify the following inequalities Moreover, since Ḧ0,1 (x) = U (H 0,1 (x)),

we can verify by induction the following estimate

d k H 0,1 (x) dx k ≲ k min e -2 √ 2x , e √ 2x (4) 
for all k ∈ N \ {0}. The following result is crucial in the framework of this material:

Lemma 1.6 (Modulation Lemma). ∃ C 0 , δ 0 > 0, such that if 0 < δ ≤ δ 0 , x 2 , x 1 are real numbers with x 2 -x 1 ≥ 1 δ and g ∈ H 1 (R) satisfies ∥g∥ H 1 ≤ δ, then for ϕ(x) = H -1,0 (x -x 1 ) + H 0,1 (x -x 2 ) + g(x), ∃! y 1 , y 2 such that for g 1 (x) = ϕ(x) -H -1,0 (x -y 1 ) -H 0,1 (x -y 2 ), the four following statements are true

1 ⟨g 1 , ∂ x H -1,0 (x -y 1 )⟩ L 2 = 0, 2 ⟨g 1 , ∂ x H 0,1 (x -y 2 )⟩ L 2 = 0, 3 ∥g 1 ∥ H 1 (R) ≤ C 0 δ, 4 | y 2 -x 2 | + | y 1 -x 1 |≤ C 0 δ.
We will refer the first and second statements as the orthogonality conditions of the Modulation Lemma.

Proof. See the Appendix section A. Now, our main results are the following:

Theorem 1.7. ∃ C, δ 0 > 0, such that if ϵ < δ 0 and

(ϕ(0), ∂ t ϕ(0)) ∈ S × L 2 (R)
with E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then there are x 2 , x 1 ∈ C 2 (R) functions such that the unique global time solution ϕ(t, x) of (1) is given by ϕ(t) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t), [START_REF] Colliander | Vortex dynamics for the Ginzburg-Landau-Schrödinger equation[END_REF] with g(t) satisfying orthogonality conditions of the Modulation Lemma and e - √ 2(x2(t)-x1(t)) + max j∈{1,2} | ẍj (t) | + max j∈{1,2} ẋj (t) 2 + ∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 ≲ ϵ. Furthermore, we have that

∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 ≤ C ∥(g(0), ∂ t g(0))∥ 2 H 1 ×L 2 + ϵ 2 exp Cϵ 1 2 | t | ln ( 1 ϵ )
for all t ∈ R.

Remark 1.8. In notation of the statement of Theorem 1.7, for any δ > 0, there is 0 < K(δ) < 1 such that if 0 < ϵ < K(δ), E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then we have that ∥(g(0), ∂ t g(0))∥ H 1 ×L 2 < δ and x 2 (0) -x 1 (0) > 1 δ , for the proof see Lemma A.3 and Corollary A.4 in the Appendix section A. Remark 1.9 (Optimal decay.). The result of Theorem 1.7 is optimal in the sense that for any function r : R + → R + with lim h→0 r(h) = 0, there is a positive value δ(r) such that if 0 < ϵ < δ(r) and

--→ g(0) ≤ r(ϵ)ϵ, then ϵ ≲ --→ g(t) for some 0 < t = O ln ( 1 ϵ ) ϵ 1 2
. The proof of this fact is in the Appendix section B. Remark 1.10. From Remark 1.9, we obtain that there is an 0 < δ 0 such that if 0 < ϵ < δ 0 , then for any (ϕ(0, x), ∂ t ϕ(0, x)) ∈ S × L 2 (R) with E total (ϕ(0), ∂ t ϕ(0)) equals to 2E pot (H 0,1 ) + ϵ, g(t, x) defined in identity [START_REF] Colliander | Vortex dynamics for the Ginzburg-Landau-Schrödinger equation[END_REF] satisfies ϵ ≲ lim sup t→+∞ --→ g(t) , similarly we have that ϵ ≲ lim sup t→-∞ --→ g (t) . The proof of this fact is in the Appendix section B. Theorem 1.11. ∃C, δ 0 > 0, such that if 0 < ϵ < δ 0 , (ϕ(0), ∂ t ϕ(0)) ∈ S × L 2 (R), and E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then there are v 1 , v 2 ∈ R such that ϕ(0) ∂ t ϕ(0) = H 0,1 (x -x 2 (0)) + H -1,0 (x -x 1 (0)) + g 0 (x)

v 2 ∂ x H 0,1 (x -x 2 (0)) + v 1 ∂ x H -1,0 (x -x 1 (0)) + g 1 (x)
with g 0 satisfying the orthogonality conditions of Modulation Lemma

Ḣ0,1 (x -x 2 (0)), g 1 (x) L 2 (R) = -v 2 Ḧ0,1 (x -x 2 (0)), g 0 (x) L 2 (R) , Ḣ-1,0 (x -x 1 (0)), g 1 (x) L 2 (R) = -v 1 Ḧ-1,0 (x -x 1 (0)), g 0 (x) L 2 (R)
and ϵ the energy excess of the solution (ϕ(t, x), ∂ t ϕ(t, x)) of (1). Indeed, let the smooth functions d 1 (t), d 2 (t) be defined by

d 1 (t) = a + bt - 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 7 
)
d 2 (t) = a + bt + 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 8 
)
such that d j (0) = x j (0), ḋj (0) = -v j for j ∈ {1, 2}. Let d(t) = d 2 (t) -d 1 (t), then, for all t ∈ R | z(t) -d(t) |≲ min(ϵ 1 2 | t |, ϵt 2 ), | ż(t) -ḋ(t) |≲ ϵ | t |,
moreover, we have the following estimates

ϵ max j∈{1, 2} | d j (t) -x j (t) |= O max --→ g(0) , ϵ
Remark 1.12. The proof of Theorem 1.7 and Theorem 1.11 for t ≤ 0 is analogous to the proof for t ≥ 0, so we will only prove them for t ≥ 0.

Theorem 1.7 will be obtained as a consequence of Theorem 1.11. Clearly, from Theorem 1.11, we can deduce the following corollary. Corollary 1.13. With the same hypotheses as in Theorem 1.11, we have that

max j∈{1, 2} | dj (t)-ẍ j (t) |= O max --→ g(0) , ϵ ϵ 1 2 exp Cϵ 1 2 | t | ln ( 1 ϵ ) + max --→ g(0) , ϵ 2 ln 1 ϵ 11 exp Cϵ 1 2 | t | ln ( 1 ϵ )
.

Proof of Corollary 1.13. It follows directly from Theorem 1.11 and from Lemma A.1 presented in the Appendix Section A.

Resume of the proof

In this subsection, we present how the article is organized and explain briefly the content of each section. Section 2. In this section, we prove orbital stability of a perturbation of a sum of two kinks. Moreover, we prove that if the initial data (ϕ(0, x), ∂ t ϕ(0, x)) satisfies the hypothesis of Theorem 1.7, then there are real functions x 1 , x 2 of class C 2 such that for all t ≥ 0

ϕ(t, x) -H x2(t) 0,1 -H x1(t) -1,0 H 1 (R) ≲ ϵ 1 2 , ∂ t ϕ(t, x) -H x2(t) 0,1 -H x1(t) -1,0 L 2 (R) ≲ ϵ 1 2 .
The proof of the orbital stability follows from studying the expression

E pot (H x2(t) 0,1 + H x1(t) -1,0 + g) -E pot (H x2(t) 0,1 + H x1(t) -1,0 ), which is bigger than --→ g(t)
2 less some remaining terms from Taylor's Expansion Theorem and the fact that the kinks are critical points of E pot . But, from the modulation lemma, we will introduce the functions x 2 , x 1 that will guarantee the following coercitivity property

--→ g(t) 2 ≲ E pot (H x2(t) 0,1 + H x1(t) -1,0 + g) -E pot (H x2(t) 0,1 + H x1(t) -1,0 ).
From the orthogonality conditions of the modulation lemma and standard ordinary differential equation techniques, we also obtain uniform bounds for ∥ ẋj (t)∥ L ∞ (R) , ∥ẍ j (t)∥ L ∞ (R) for j ∈ {1, 2}. The main techniques of this section are an adaption of section 2 and 3 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. Section 3. In this section, we study the long time behavior of ẋj (t), x j (t) for j ∈ {1, 2}. More precisely, we elaborate a Lemma similar to the Lemma 3.5 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], but our estimates are more precise, more precisely the errors of our estimate are written in function of z(t), ẋj (t), ẋj (t) and --→ g(t) .

Section 4.

In Section 4, we introduce a functional F (t) with the objective of controlling --→ g(t) for a long time interval. More precisely, we show that the function F (t) satisfies for a constant K > 0 the global estimate --→ g(t) 2 ≲ F (t) + Kϵ 2 and we show that | Ḟ (t)| is small enough for a long time interval. We start the functional from the quadratic part of the total energy of ϕ(t), more precisely with

D(t) = ∥∂ t g(t, x)∥ 2 L 2 (R) + ∥∂ x g(t, x)∥ 2 L 2 (R) + R Ü (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) 2 dx.
However, we obtain that the terms of worst decay that appear in the computation of Ḋ(t) are expressions similar to

R ∂ t g(t, x)F (x 1 , x 2 , ẋ1 , ẋ2 , x) dx.
But, we can cancel these bad terms after we add to the functional D(t) correction terms similar to

- R g(t, x)F (x 1 , x 2 , ẋ1 , ẋ2 , x) dx,
and now in the time derivative of D(t) plus the correction terms, we obtain an expression with size smaller or equivalent to

--→ g(t) ∥∂ t (F (x 1 , x 2 , ẋ1 , ẋ2 , x))∥ L 2 x (R) max j∈1,2 | ẋj (t)|.
Finally, based on the correction term described in the proof of Lemma 4.2 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we aggregate another kind of correction term such that its time derivative cancels with

- R U (3) (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))( ẋ2 (t)∂ x H x2(t) 0,1 + ẋ1 (t)∂ x H x1(t) -1,0 )g(t, x) 2 ,
and then we evaluate the time derivative of the functional obtained from this sum D(t) with all the corrections terms.

Remaining Sections. In the remaining part of this paper, we prove our main results, Theorem 1.7 is a consequence of the energy estimate obtained in Section 4 and the estimates with higher precision of the modulations parameters x 1 (t), x 2 (t) which are obtained in Section 5. In Section 5, we prove the result of Theorem 1.11, where we study the evolution of the precision of the modulation parameters estimates by comparing it with a solution of a system of ordinary differential equations. Complementary information are given in Appendices A and B.

Global Stability of two moving kinks

Before the presentation of the proof of the main theorem, we define a functional to study the potential energy of a sum of two kinks.

Definition 2.1. The function A : R + → R is defined by

A(z) := E pot (H z 0,1 (x) + H -1,0 (x)). ( 11 
)
The study of the function A is essential to obtain global in time control of the norm of the remainder g and the lower bound of x 2 (t) -x 1 (t) in Theorem 1.7.

Remark 2.2. It's easy to verify that

E pot (H 0,1 (x -x 2 ) + H -1,0 (x -x 1 )) = E pot (H 0,1 (x -(x 2 -x 1 )) + H -1,0 (x)).
We will use several times the following elementary estimate from the Lemma 2.5 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] given by: Lemma 2.3. For any real numbers x 2 , x 1 , such that x 2 -x 1 > 0 and α, β > 0 with α ̸ = β the following bound holds: R e -α(x-x1)+ e -β(x2-x)+ ≲ α,β e -min(α,β)(x2-x1) , For any α > 0, the following bound holds

R e -α(x-x1)+ e -α(x2-x)+ ≲ α (1 + (x 2 -x 1 ))e -α(x2-x1) .
The main result of this section is the following Lemma 2.4. The function A is of class C 2 and there is a constant C > 0, such that

1. | Ä(z) -4 √ 2e - √ 2z | ≤ Cze -2 √ 2z , 2. | Ȧ(z) + 4e - √ 2z | ≤ Cze -2 √ 2z , 3. |A(z) -2E pot (H 0,1 ) -2 √ 2e - √ 2z | ≤ Cze -2 √ 2z .
Proof. By definition of A, it's clear that

A(z) = 1 2 R ∂ x H z 0,1 (x) + H -1,0 (x) 2 dx + R U (H z 0,1 (x) + H -1,0 (x)) dx = ∥∂ x H 0,1 ∥ 2 L 2 (R) + R ∂ x H z 0,1 (x)∂ x H -1,0 (x) dx + R U (H z 0,1 (x) + H -1,0 (x)) dx.
Since the functions U and H 0,1 are smooth and ∂ x H 0,1 (x) has exponential decay when |x| → +∞, it's possible to differentiate A(z) in z. More precisely, we obtain

Ȧ(z) = - R ∂ 2 x H z 0,1 (x)∂ x H -1,0 (x) dx - R U (H z 0,1 (x) + H -1,0 (x))∂ x H z 0,1 (x) dx (12) = R ∂ x H z 0,1 (x) U (H -1,0 )(x) -U (H -1,0 (x) + H z 0,1 (x)) dx. ( 13 
)
By similar reasons, it is always possible to differentiate A(z) twice, precisely, we obtain

Ä(z) = R ∂ x H z 0,1 (x) 2 Ü (H -1,0 (x) + H z 0,1 (x)) -∂ 2 x H z 0,1 (x) U (H -1,0 (x)) -U H -1,0 (x) + H z 0,1 (x)) dx.
Then, integrating by parts, we obtain

Ä(z) = R ∂ x H z 0,1 (x)∂ x H -1,0 (x) Ü (H -1,0 (x)) -Ü (H -1,0 (x) + H z 0,1 (x)) dx. ( 14 
)
Now, consider the function

B(z) = R ∂ x H 0,1 (x)∂ x H -1,0 (x + z) Ü (0) -Ü (H 0,1 (x)) dx. ( 15 
)
Then, we have

| Ä(z) -B(z)| = R ∂ x H z 0,1 (x)∂ x H -1,0 (x) Ü (H -1,0 (x)) -Ü (H -1,0 (x) + H z 0,1 (x)) -Ü (0) -Ü (H z 0,1 (x)) dx . ( 16 
) Also, it's not difficult to verify the following identity

Ü (H -1,0 (x))-Ü (H -1,0 (x)+H z 0,1 (x)) -Ü (0)-Ü (H z 0,1 (x)) = - H-1,0(x) 0 H z 0,1 (x) 0 U (4) (ω 1 +ω 2 ) dω 1 dω 2 . ( 17 
)
So, the identities ( 17) and ( 16) imply the following inequality

| Ä(z) -B(z)| ≤ R |∂ x H z 0,1 (x)∂ x H -1,0 (x)| H-1,0(x) 0 H z 0,1 (x) 0 |U (4) (ω 1 + ω 2 )| dω 1 dω 2 dx. ( 18 
)
Since U is smooth and ∥H 0,1 ∥ L ∞ = 1, we have that there is a constant C > 0 such that

| Ä(z) -B(z)| ≤ C R |∂ x H z 0,1 (x)∂ x H -1,0 (x)H -1,0 (x)H z 0,1 (x)| dx. ( 19 
)
Now, Using the inequalities from (D1) to (D4) and Lemma 2.3 to the above inequality [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we obtain that exist a constant C 1 non dependent of z such that

| Ä(z) -B(z)| ≤ C 1 ze -2 √ 2z . ( 20 
)
Also, it's not difficult to verify that the estimate

∂ x H -1,0 (x) - √ 2e - √ 2x ≤ C min(e -3 √ 2x , e - √ 2x ). ( 21 
)
and the identity (15) imply the inequality

B(z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x)( Ü (0) -Ü (H 0,1 (x))) dx ≲ R |∂ x H 0,1 (x)| min e -3 √ 2(x+z) , e - √ 2(x+z) dx ≲ R e -2 √ 2(-x)+ min e -3 √ 2(x+z) , e - √ 2(x+z) dx ≲ 0 -∞ e -2 √ 2(z-x)+ e - √ 2x dx+ +∞ 0 e -2 √ 2(z-x)+ e -3 √ 2(x)+ dx. ( 22 
)
Since, we have the following identity and an estimate from Lemma 2.3

0 -∞ e -2 √ 2(z-x) e - √ 2x dx = e -2 √ 2z √ 2 , ( 23 
) +∞ 0 e -2 √ 2(z-x)+ e -3 √ 2(x)+ ≲ e -2 √ 2z , ( 24 
)
we obtain, then:

B(z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x) Ü (0) -Ü (H 0,1 (x)) dx ≲ e -2 √ 2z , ( 25 
)
which clearly implies with [START_REF] Manton | Asymptotic interactions of critically coupled vortices[END_REF] the inequality

Ä(z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x) Ü (0) -Ü (H 0,1 (x)) dx ≲ ze -2 √ 2z . ( 26 
)
Also we have the identity

R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx = 2 √ 2, ( 27 
)
for the proof consult the Appendix A. Also, since we have the identity Ü (0)-Ü (ϕ) = 24ϕ 2 -30ϕ 4 , by integration by parts, we obtain

R e - √ 2x √ 2 ∂ x H 0,1 (x) Ü (0) -Ü (H 0,1 (x)) dx = R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx. ( 28 
)
In conclusion, inequality [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical nls[END_REF] 

is equivalent to Ä(z) -4 √ 2e - √ 2z ≲ ze -2 √ 2z . The identities U (ϕ) + U (θ) -U (ϕ + θ) = 24ϕθ(ϕ + θ) -6 4 j=1 5 j ϕ j ω 5-j , Ȧ(z) = - R ∂ x H z 0,1 (x) U (H z 0,1 (x) + H -1,0 (x)) + U (H -1,0 (x)) -U (H z 0,1 (x)) dx
and Lemma 2.3 imply the following estimate for z > 0

| Ȧ(z)| ≲ e - √ 2z , so lim |z|→+∞ | Ȧ(z)| = 0. In conclusion, integrating inequality Ä(z) -4 √ 2e - √ 2z ≲ ze -2 √
2z from z to +∞ we obtain the second result of the lemma

Ȧ(z) + 4e - √ 2z ≲ ze -2 √ 2z . ( 29 
)
Finally, from the fact that lim z→+∞ E pot (H -1,0 + H z 0,1 (x)) = 2E pot (H 0,1 ), we obtain the last estimate integrating inequality (29) from z to +∞, which is

2E pot (H 0,1 ) + 2 √ 2e - √ 2z -A(z) ≲ ze -2 √ 2z .
It is not difficult to verify that the Fréchet derivative of E pot as a linear functional from H 1 (R) to R is given by

(DE pot (ϕ))(v) := R ∂ x ϕ(x)∂ x v(x) + U (ϕ(x))v(x) dx. ( 30 
)
Also, it is not difficult to verify that for any v, w ∈ H 1 (R), we have

D 2 E pot (ϕ)v, w L 2 (R) = R ∂ x v(x)∂ x w(x) dx + R Ü (ϕ(x))v(x)w(x) dx. ( 31 
) Lemma 2.5 (Coercitivity Lemma). ∃ C, c, δ > 0, such that if x 2 -x 1 ≥ 1 δ , then for any g ∈ H 1 (R) we have D 2 E pot (H x2 0,1 + H x1 -1,0 )g, g L 2 (R) ≥ c ∥g∥ 2 H 1 (R) -C ⟨g, ∂ x H x1 -1,0 ⟩ 2 + ⟨g, ∂ x H x2 0,1 ⟩ 2 . ( 32 
)
The proof of this lemma is based in the proof of Lemma 2.4 from [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. To prove the Coercitivity Lemma, we need the following result about the spectrum and kernel of the operators

D 2 E pot (H x1 -1,0 ), D 2 E pot (H x2 0,1 ).
Lemma 2.6. The operators

D 2 E pot (H x1 -1,0 ), D 2 E pot (H x2 0,1
) satisfy the following properties

1 ker D 2 E pot (H x1 -1,0 ) = c∂ x H x1 -1,0 , c ∈ C , ker D 2 E pot (H x2 0,1 ) = c∂ x H x2 0,1 , c ∈ C 2 σ(D 2 E pot (H x2 0,1 )) = σ(D 2 E pot (H x1 -1,0 )) ⊂ {0} ∪ [λ 1 , +∞), with λ 1 > 0.
Proof. Since the operators D 2 E pot (H x1 -1,0 ) and D 2 E pot (H x1 -1,0 ) are equivalent by reflection and translation, they have the same spectrum that D 2 E pot (H -1,0 ). So, we'll just analyse the spectrum of the operator

D 2 E pot (H x1 -1,0 ) = -∂ 2 x + Ü (H x1 -1,0 ). ( 33 
)
Also, we will only study the kernel of D 2 E pot (H x1 -1,0 ), since the kernel of the other operator can be found by similar reasoning.

If we derive the Bogomolny equation satisfied by H -1,0

∂ 2 x H x1 -1,0 (x) = U (H x1 -1,0 (x)) (34) 
with respect to x, we obtain the identity

∂ 2 x (∂ x H x1 -1,0 (x)) = Ü (H x1 -1,0 (x))∂ x H x1 -1,0 (x), (35) 
which implies that

∂ x H x1 -1,0 ∈ ker D 2 E pot (H x1 -1,0 ). Also, ∂ x H -1,0 (x 
) ̸ = 0 for all x ∈ R, so the Sturm-Liouville Oscillation Theory implies indeed that 0 is the minimum element of the discrete spectrum of

D 2 E pot (H x1 -1,0 ) and ker D 2 E pot (H x1 -1,0 ) = c∂ x H x1 -1,0 , c ∈ C . ( 36 
)
In conclusion, we have obtained that for some constant λ 1 > 0

σ d (D 2 E pot (H x1 -1,0 )) ⊂ {0} ∪ [λ 1 , +∞). ( 37 
)
By similar reasoning, we have

σ d (D 2 E pot (H x2 0,1 )) ⊂ {0} ∪ [λ 1 , +∞), ( 38 
) ker(D 2 E pot (H x2 0,1 )) = c∂ x H x2 0,1 , c ∈ C . ( 39 
)
Now, it remains to estimate the lower bound of the essential spectrum of both operators. The main tool used to estimate the essential spectrum is a theorem of Spectral Theory written in the book [START_REF] Borthwick | Spectral Theory-Basic Concepts and Applications[END_REF].

Theorem 2.7. Suppose A and B are self-adjoint operators on a Hilbert Space H.

If ∃z ∈ C, such that (A -z) -1 -(B -z) -1 is compact, then σ ess (A) = σ ess (B). Since D 2 E pot (H x1 -1,0 ) = -∂ 2 x + (2 -24(H x1 -1,0 ) 2 + 30(H x1 -1,0 ) 4 )
, we can rewrite this operator as

D 2 E pot (H x1 -1,0 ) = -∂ 2 x + 2-24(H x1 -1,0 ) 2 +30(H x1 -1,0 ) 4 -2χ [0,+∞) (x)-8χ (-∞,0) (x) + 2χ [0,+∞) (x)+8χ (-∞,0) (x) .

Now, we consider

T 1 = -∂ 2 x + 2χ [0,+∞) (x) + 8χ (-∞,0) (x)
. The next step is to check that for the self-adjoint operators A = D 2 E pot (H x1 -1,0 ), B = T 1 and for z = -i all the hypothesis of Theorem 2.7 are fulfilled, which would imply that σ ess (D 2 E pot (H x1 -1,0 )) = σ ess (T 1 ). Since we have the identity

(D 2 E pot (H x1 -1,0 ) + i) -1 -(T 1 + i) -1 = -(D 2 E pot (H x1 -1,0 ) + i) -1 • 2 -24(H x1 -1,0 ) 2 + 30(H x1 -1,0 ) 4 -2χ [0,+∞) (x) -8χ (-∞,0) (x) • (T 1 + i) -1 , ( 40 
)
to prove that D 2 E pot (H x1 -1,0 ) and T 1 have same essential spectrum, we only need to verify that

T 2 = 2 -24(H x1 -1,0 ) 2 + 30(H x1 -1,0 ) 4 -2χ [0,+∞) (x) -8χ (-∞,0) (x) • (T 1 + i) -1 (41) 
is a compact operator on L 2 (R). By asymptotic properties of H -1,0 , it is not difficult to verify that

Y = 2 -24(H x1 -1,0 ) 2 + 30(H x1 -1,0 ) 4 -2χ [0,+∞) (x) -8χ (-∞,0) (x)
decays exponentially when |x| goes to +∞. Also, it is not difficult to verify that (T

1 + i) -1 is a bounded map from L 2 (R) to H 1 (R) ⊂ L ∞ (R).
The last information and the Banach-Alaoglu Theorem imply that for any bounded sequence (v n ) ⊂ L 2 (R), ∃ w ∈ H 1 (R) and a subsequence that for simplicity we'll still denote by (v n ) such that (T

1 + i) -1 (v n ) ⇀ H 1 w. ( 42 
)
Also, from the fact that (T

1 + i) -1 (v n ) is uniformly bounded in H 1 (R), it can be verified that for any compact interval K ⊂ R that (T 1 + i) -1 (v n ) → L ∞ (K)
w, and this fact with the exponential decay of Y and H 1 (R) ⊂ L ∞ (R) implies directly the following convergence

T 2 (v n ) → L 2 Y (w), (43) 
which implies that T 1 and D 2 E pot (H x1 -1,0 ) have the same essential spectrum, more precisely

σ ess D 2 E pot (H x1 -1,0 ) ⊂ [2, +∞), (44) 
and so,

σ ess D 2 E pot (H x2 0,1 ) ⊂ [2, +∞). ( 45 
)
This finishes the proof of Lemma 2.6.

Before starting the demonstration of the Coercitivity Lemma, let's consider from now on the function 0 ≤ ζ ≤ 1 to be a smooth function satisfying:

ζ(x) = 1, if x ≤ 3 4 , 0, if x ≥ 4 5 . ( 46 
)
Proof of Coercitivity Lemma. Our proof follows the scheme of proof of Lemma 2.4 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. Here we denote ⟨, ⟩ to be the scalar product on L 2 (R). First, because of Lemma 2.6, there is a λ > 0 such that for any v ∈ H 1 (R)

D 2 E pot (H x1 -1,0 )v, v ≥ λ(∥v∥ 2 L 2 (R) -∥∂ x H -1,0 ∥ -2 L 2 ⟨v, ∂ x H x1 -1,0 ⟩ 2 ). (47) 
Also, because of the identity (33), we have

D 2 E pot (H x1 -1,0 )v, v = ∥∂ x v∥ 2 L 2 (R) + R Ü (H x1 -1,0 (x))(v(x)) 2 dx. ( 48 
)
Then, inequalities (47) and (48) imply for any 0 < θ < 1 that

D 2 E pot (H x1 -1,0 )v, v ≥ θλ ∥v∥ 2 L 2 (R) -∥∂ x H -1,0 ∥ -2 L 2 ⟨v, ∂ x H x1 -1,0 ⟩ 2 +(1-θ) ∥∂ x v∥ 2 L 2 (R) + R Ü (H x2 0,1 (x))(v(x)) 2 dx .
(49) Since Ü (H -1,0 (x)) L ∞ < ∞, we can choose θ close enough to 1, and obtain from (49) the following inequality for a positive constant c > 0 such that

D 2 E pot (H x1 -1,0 )v, v ≥ c ∥v∥ 2 H 1 (R) -∥∂ x H -1,0 ∥ -2 L 2 ⟨v, ∂ x H x1 -1,0 ⟩ 2 . ( 50 
)
By similar reasoning, we also have

⟨D 2 E pot (H x2 0,1 )v, v⟩ ≥ c ∥v∥ 2 H 1 (R) -∥∂ x H -1,0 ∥ -2 L 2 ⟨v, ∂ x H x2 0,1 ⟩ 2 . ( 51 
)
Now to study the operator

D 2 E pot (H x2 0,1 + H x1 -1,0 ), consider the function ζ 1 (x) = ζ( x-x1 x2-x1
) and also

V := ( Ü (H x1 -1,0 + H x2 0,1 ) -Ü (H x2 0,1 )), ( 52 
)
D 2 E pot (H x2 0,1 + H x1 -1,0 ) = -∂ 2 x + Ü (H x2 0,1 ) + V. ( 53 
)
It can be verified that the support of (1

-ζ 1 (x)) is included in {x ∈ R | x-x1 x2-x1 ≥ 3 4 }, and so (1 -ζ 1 (x))|H x1 -1,0 (x)| ≤ e -3 √ 2(x 2 -x 1 ) 4 , ( 54 
)
⟨V (x)(1 -ζ 1 (x))v(x), (1 -ζ 1 (x))v(x)⟩ ≲ e -3 √ 2(x 2 -x 1 ) 4 ∥v∥ 2 L 2 . ( 55 
)
Therefore, if δ > 0 is small enough, from x 2 -x 1 ≥ 1 δ , we obtain from the inequality (55) that

⟨V (x)(1 -ζ 1 (x))v(x), (1 -ζ 1 (x))v(x)⟩ ≤ O(δ) ∥v∥ 2 L 2 , ( 56 
)
so the inequalities (56) and (51) imply for a c > 0

D 2 E pot (H x1 -1,0 + H x2 0,1 )((1 -ζ 1 (x))v), (1 -ζ 1 (x))v ≥ c ∥(1 -ζ 1 )v∥ 2 H 1 (R) -∥∂ x H 0,1 ∥ -2 L 2 ⟨(1 -ζ 1 )v, ∂ x H x2 0,1 ⟩ 2 -O(δ) ∥v∥ 2 L 2 (R) . (57) Also the support of ζ 1 (x) is included {x| x-x2
x2-x1 ≤ -1 5 }. So, by similar arguments, we can verify the analogous inequality

D 2 E pot (H x1 -1,0 + H x2 0,1 )(ζ 1 (x)v), ζ 1 (x)v ≥ c ∥ζ 1 v∥ 2 H 1 (R) -∥∂ x H -1,0 ∥ -2 L 2 ⟨ζ 1 v, ∂ x H x1 -1,0 ⟩ 2 -O(δ) ∥v∥ 2 L 2 (R) .
(58) Also, we obtain that there is a uniform constant C > 0 such that if δ > 0 is small enough, then we obtain the following estimate for all v ∈ H 1 (R)

⟨∂ x (ζ 1 (x)v(x)), ∂ x [(1 -ζ 1 (x))v(x)]⟩ ≥ -Cδ ∥v∥ 2 H 1 (R) . ( 59 
) Also, if δ > 0 is small enough, we have that Ü (H -1,0 (x)) > 1 for 3(x2-x1) 4 ≤ x -x 1 ≤ 4(x2-x1) 5
. In conclusion, since the support of (1

-ζ 1 (x))ζ 1 (x) is included in {x -x 1 ∈ [ 3(x2-x1) 4 , 4(x2-x1) 5
]}, we have the following inequality

R Ü (H x1 -1,0 (x))ζ 1 (x)(1 -ζ 1 (x))(v(x)) 2 dx ≥ 0. ( 60 
)
Finally, from the mean value theorem, the knowledge of the support of ζ 1 and the exponential decay of H 0,1 (x), we have that

R Ü (H x1 -1,0 (x) + H x2 0,1 (x)) -Ü (H x1 -1,0 (x)) ζ 1 (x)(1 -ζ 1 (x))v(x) 2 dx ≤ o(1) ∥v∥ 2 L 2 . ( 61 
)
Therefore, the inequalities (59), ( 60) and (61) imply for a uniform constant C > 0 that

⟨D 2 E pot (H x1 -1,0 + H x2 0,1 )(ζ 1 v), (1 -ζ 1 )v⟩ ≥ -Cδ ∥v∥ 2 L 2 (R) . ( 62 
)
Since we know that support of ζ 1 is included in {x| x-x2 x2-x1 ≤ -1 5 }, we can deduce the estimate

⟨∂ x H x2 0,1 , (1 -ζ 1 )v⟩ 2 -⟨∂ x H x2 0,1 , v⟩ 2 = ⟨∂ x H x2 0,1 , ζ 1 v⟩⟨∂ x H x2 0,1 , (2 -ζ 1 )v⟩ ≤ O(δ) ∥v∥ 2 L 2 , ( 63 
)
and similarly,

⟨∂ x H x1 -1,0 , ζ 1 v⟩ 2 -⟨∂ x H x1 -1,0 , v⟩ 2 ≤ O(δ) ∥v∥ 2 L 2 . ( 64 
)
Therefore, we have that (57), (58), (62), (63) and (64) imply the inequality (32) of the statement.

Lemma 2.8.

There is a constant C 2 , such that if

x 2 -x 1 > 0, then DE pot (H x2 0,1 + H x1 -1,0 ) L 2 (R) ≤ C 2 e - √ 2(x2-x1) . ( 65 
)
Proof. By the definition of the potential energy, the equation (3) and the exponential decay of the two kinks functions, we have that

DE pot (H x2 0,1 + H x1 -1,0 ) = U (H x2 0,1 + H x1 -1,0 ) -U (H x2 0,1 ) -U (H x1 -1,0 )
as a bounded linear operator from L 2 (R) to C. So, we have that

DE pot (H x2 0,1 + H x1 -1,0 ) = -24H x2 0,1 H x1 -1,0 H x2 0,1 + H x1 -1,0 + 6 4 j=1 5 j (H x1 -1,0 ) j (H x2 0,1 ) 5-j ,
and, then, the conclusion follows directly from Lemma 2.3, (D1) and (D2).

Theorem 2.9 (Orbital Stability of a sum of two moving kinks). ∃δ 0 > 0 such that if the solution ϕ of (1) satisfies (ϕ(0), ∂ t ϕ(0)) ∈ S×L 2 (R) and the energy excess ϵ = E(ϕ)-2E pot (H 0,1 ) is smaller than δ 0 , then ∃x 1 , x 2 : R → R functions of class C 2 , such that for all t ∈ R denoting g(t) = ϕ(t) -H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) and z(t) = x 2 (t) -x 1 (t), we have:

1. ∥g(t)∥ H 1 (R) = O(ϵ 1 2 ), 2. z(t) ≥ 1 √ 2 [ln ( 1 ϵ ) + ln 2], 3. ∥∂ t ϕ(t)∥ 2 L 2 (R) ≤ 2ϵ, 4. max j∈{1,2} | ẋj (t)| 2 + max j∈{1,2} |ẍ j (t)| = O(ϵ).
Proof. First, from the fact that E total (ϕ(x)) > 2E pot (H 0,1 ), we deduce, from the conservation of total energy, the estimate

∥∂ t ϕ(t)∥ 2 L 2 ≤ 2ϵ. ( 66 
)
From Remark 1.8, we can assume if ϵ ≪ 1 that there are p 1 , p 2 ∈ R such that

ϕ(0, x) = H 0,1 (x -p 2 ) + H -1,0 (x -p 1 ) + g 1 (x), such that ∥g 1 ∥ H 1 (R) < δ, p 2 -p 1 > 1 δ ,
for a small constant δ > 0. Since the equation 1 is locally well-posed in the space S × L 2 (R), we conclude that there is a δ 1 > 0 depending only on δ and ϵ such that if -δ

1 ≤ t ≤ δ 1 , then ∥ϕ(t, x) -H 0,1 (x -p 2 ) -H -1,0 (x -p 1 )∥ H 1 (R) ≤ 2δ. ( 67 
)
If δ, ϵ > 0 are small enough, then, from the inequality (67) and the Modulation Lemma, we obtain in the time interval [-δ 1 , δ 1 ] the existence of modulations parameters x 1 (t), x 2 (t) such that for

g(t) = ϕ(t) -H 0,1 (x -x 2 (t)) -H -1,0 (x -x 1 (t)),
we have

⟨g(t), ∂ x H 0,1 (x -x 2 (t))⟩ L 2 = ⟨g(t), ∂ x H -1,0 (x -x 1 (t))⟩ L 2 = 0, (68) 1 |x 2 (t) -x 1 (t)| + ∥g(t)∥ H 1 ≲ δ. ( 69 
)
From now on, we denote z(t) = x 2 (t) -x 1 (t). From the Energy Conservation Law, we have for -δ

1 ≤ t ≤ δ 1 that E(ϕ(t)) = 2E pot (H 0,1 ) + ϵ = ∥∂ t ϕ(t)∥ 2 L 2 (R) 2 + E pot H x2(t) 0,1 + H x1(t) -1,0 + DE pot H x2(t) 0,1 + H x1(t) -1,0 , g(t) L 2 (R) + D 2 E pot H x2(t) 0,1 + H x1(t) -1,0 g(t), g(t) L 2 (R) 2 + O(∥g(t)∥ 3 H 1 ).
From Lemma 2.4 and (69), the above identity implies that

ϵ = ∥∂ t ϕ(t)∥ 2 L 2 (R) 2 +2 √ 2e - √ 2z(t) + DE pot H x2(t) 0,1 +H x1(t) -1,0 , g(t) L 2 (R) + D 2 E pot H x2(t) 0,1 + H x1(t) -1,0 g(t), g(t) L 2 (R) 2 + O ∥g(t)∥ 3 H 1 + z(t)e -2 √ 2z(t) (70) 
for -δ 1 ≤ t ≤ δ 1 . From (65), it is not difficult to verify that |⟨DE pot (H

x2(t) 0,1 +H x1(t) -1,0 ), g(t)⟩| ≤ C 2 e - √ 2z(t) ∥g(t)∥ H 1 (R)
. So, the equation (70) and the Coercitivity Lemma imply, while -δ 1 ≤ t ≤ δ 1 , the following inequality

ϵ + C 2 e - √ 2z(t) ∥g(t)∥ H 1 (R) ≥ ∥∂ t ϕ(t)∥ 2 L 2 2 + 2 √ 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 (R) 2 + O ∥g(t)∥ 3 H 1 + z(t)e -2 √ 2z(t) . (71)
Finally, applying the Young Inequality in the term

C 2 e - √ 2z(t) ∥g(t)∥ H 1 (R)
, we obtain that the inequality (71) can be rewritten in the form

ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 2 + 2 √ 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 (R) 4 + O ∥g(t)∥ 3 H 1 + z(t)e -2 √ 2z(t) + e -2 √ 2z(t) . ( 72 
)
Then, the estimates (72), (69) imply for δ > 0 small enough the following inequality

ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 2 + 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 (R) 8 . ( 73 
)
So, the inequality (73) implies the estimates

e - √ 2z(t) < ϵ 2 , ( 74 
)
∥g(t)∥ 2 H 1 (R) ≲ ϵ, ( 75 
) for t ∈ [-δ 1 , δ 1 ]. In conclusion, if 1 δ ≲ ln ( 1 ϵ ) 1 2
, we can conclude by a bootstrap argument that the inequalities (66), ( 74), (75) are true for all t ∈ R. More precisely, we study the set

C = b ∈ R >0 | ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 2 + 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 (R) 8 , if |t| ≤ b.
and prove that M = sup b∈C b = +∞. We already have checked that C is not empty, also C is closed by its definition. Now from the previous argument, we can verify that the set where inequality ( 73) holds is open. So, by connectivity, we obtain that C = R >0 .

In conclusion, it remains to prove that the modulation parameters x 1 (t), x 2 (t) are of class C 2 and that the fourth item of the statement of Theorem 2.9 is true. (Proof of the C 2 regularity of x 1 , x 2 , and of the fourth item.)

For δ 0 > 0 small enough, we denote (y 1 (t), y 2 (t)) to be the solution of the following system of ordinary differential equations, with the function g

1 (t) = ϕ(t, x) -H y2(t) 0,1 (x) -H y1(t) -1,0 (x), ∥∂ x H 0,1 ∥ 2 L 2 -g 1 (t), ∂ 2 x H y1(t) -1,0 ẏ1 (t) + ∂ x H y2(t) 0,1 , ∂ x H y1(t) -1,0 ẏ2 (t) = -∂ t ϕ(t), ∂ x H y1(t) -1,0 (x) , (76) ∂ x H y2(t) 0,1 , ∂ x H y1(t) -1,0 ẏ1 (t) + ∥∂ x H 0,1 (t)∥ 2 L 2 -g 1 (t), ∂ 2 x H y2 0,1 ẏ2 (t) = -∂ t ϕ(t), ∂ x H y2(t) 0,1 (x) , ( 77 
)
with initial condition (y 2 (0), y 1 (0)) = (x 2 (0), x 1 (0)). This ordinary differential equation system is motivated from the time derivative of the orthogonality conditions of the Modulation Lemma.

Since we have the estimate ln ( 1 ϵ ) ≲ x 2 (0) -x 1 (0) and g 1 (0) = g(0), Lemma 2.3 and the inequality (75) imply that the matrix

  ∥∂ x H 0,1 ∥ 2 L 2 -g 1 (0), ∂ 2 x H y1(0) -1,0 ∂ x H y2(0) 0,1 , ∂ x H y1(0) -1,0 ∂ x H y2(0) 0,1 , ∂ x H y1(0) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 -g 1 (0), ∂ 2 x H y2 0,1   (78) 
is positive, so we have from Picard-Lindelöf Theorem that (y 2 (t), y 1 (t)) are of class C 1 for some interval [-δ, δ], with δ > 0 depending on |x 2 (0)-x 1 (0)| and ϵ. From the fact that (y 2 (0), y 1 (0)) = (x 2 (0), x 1 (0)), we obtain, from the equations ( 76) and (77), that (y 2 (t), y 1 (t)) also satisfies the orthogonality conditions of Modulation Lemma for t ∈ [-δ, δ]. In conclusion, the uniqueness of Modulation Lemma implies that (y

2 (t), y 1 (t)) = (x 2 (t), x 1 (t)) for t ∈ [-δ, δ]. From this argument, we also have for t ∈ [-δ, δ] that e - √ 2(y2(t)-y1(t)) ≤ ϵ 2 √ 2 .
By bootstrap, we can show, repeating the argument above, that

sup {C > 0| (y 2 (t), y 1 (t)) = (x 2 (t), x 1 (t)), for t ∈ [-C, C]} = +∞. ( 79 
)
Also, the argument above implies that if (y

1 (t), y 2 (t)) = (x 1 (t), x 2 (t)) in an instant t, then y 1 , y 2 are of class C 1 in a neighborhood of t. In conclusion, x 1 , x 2 are functions in C 1 (R). Finally, since ∥g(t)∥ H 1 = O(ϵ 1 2
) and e - √ 2z(t) = O(ϵ), the following matrix

M (t) :=   ∥∂ x H 0,1 ∥ 2 L 2 -g(t), ∂ 2 x H x1(t) -1,0 ∂ x H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∂ x H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 -g(t), ∂ 2 x H x2(t) 0,1   ( 80 
)
is uniformly positive for all t ∈ R. So, from the estimate

∥∂ t ϕ(t)∥ L 2 (R) = O(ϵ 1 2
), the identities x j (t) = y j (t) for j = 1, 2 and the equations ( 76) and (77), we obtain max

j∈{1,2} | ẋj (t)| = O(ϵ 1 2 ). ( 81 
)
Since the matrix M (t) is invertible for any t ∈ R, we can obtain from the equations ( 76), (77) that the functions ẋ1 (t), ẋ2 (t) are given by

ẋ1 (t) ẋ2 (t) = M (t) -1   -∂ t ϕ(t), ∂ x H x1(t) -1,0 (x) -∂ t ϕ(t), ∂ x H x2(t) 0,1 (x)   . (82)
Now, since we have that (ϕ(t),

∂ t ϕ(t)) ∈ C(R, S × L 2 (R)) and x 1 (t), x 2 (t) are of class C 1 , we can deduce that (g(t), ∂ t g(t)) ∈ C(R, H 1 (R) × L 2 (R))
. So, by definition, we can verify that M (t) ∈ C 1 (R, R 4 ). Also, since ϕ(t, x) is the solution in distributional sense of (1), we have that for any y 1 , y 2 ∈ R the following identities hold

∂ x H y2 0,1 , ∂ 2 t ϕ(t) = ∂ x H y2 0,1 , ∂ 2 x ϕ(t) -U (ϕ(t)) = -∂ 2 x H y2 0,1 , ∂ x ϕ(t) -∂ x H y2(t) 0,1 , U (ϕ(t)) , ∂ x H y1 -1,0 , ∂ 2 t ϕ(t) = ∂ x H y1 -1,0 , ∂ 2 x ϕ(t) -U (ϕ(t)) = -∂ 2 x H y1 -1,0 , ∂ x ϕ(t) -∂ x H y1 -1,0 , U (ϕ(t)) .
Since ( 1) is locally well-posed in S × L 2 (R), we obtain from the identities above that the following functions h(t, y)

:= ∂ x H y 0,1 , ∂ 2 t ϕ(t) and l(t, y) := ∂ x H y -1,0 , ∂ 2 t ϕ(t)
are continuous in the domain R × R. So, from the continuity of the functions h(t, y), l(t, y) and from the fact that x 1 , x 2 ∈ C 1 (R), we obtain that the functions

h 1 (t) := -⟨∂ t ϕ(t), ∂ x H x1(t) -1,0 (x)⟩, h 2 (t) := -⟨∂ t ϕ(t), ∂ x H x2(t) 0,1 (x)⟩ are of class C 1 .
In conclusion, from the equation (82), by chain rule and product rule, we verify that

x 1 , x 2 are in C 2 (R). Now, since x 1 , x 2 ∈ C 2 (R)
and ẋ1 , ẋ2 satisfy (82), we deduce after derive at time the function

M (t) ẋ1 (t) ẋ2 (t) , the following equations ẍ1 (t) ∥∂ x H 0,1 ∥ 2 L 2 + ∂ x g(t), ∂ x H x1(t) -1,0 + ẍ2 (t) ∂ x H x1(t) -1,0 , ∂ x H x2(t) 0,1 = ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 , ∂ x g(t) + ẋ1 (t) ∂ 2 x H x1(t) -1,0 , ∂ t g(t) + ẋ1 (t) ẋ2 (t) ∂ 2 x H x1(t) -1,0 , ∂ x H x2(t) 0,1 + ẋ2 (t) 2 ∂ x H x1(t) -1,0 , ∂ 2 x H x2(t) 0,1 + ẋ1 (t) ∂ 2 x H x1(t) -1,0 , ∂ t ϕ(t) -∂ x H x1(t) -1,0 , ∂ 2 t ϕ(t) , (83) ẍ2 (t) ∥∂ x H 0,1 ∥ 2 L 2 + ∂ x g(t), ∂ x H x2(t) 0,1 + ẍ1 (t) ∂ x H x1(t) -1,0 , ∂ x H x2(t) 0,1 = ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 , ∂ x g(t) + ẋ2 (t) ∂ 2 x H x2(t) 0,1 , ∂ t g(t) + ẋ1 (t) ẋ2 (t) ∂ x H x1(t) -1,0 , ∂ 2 x H x2(t) 0,1 +( ẋ1 (t)) 2 ∂ x H x2(t) 0,1 , ∂ 2 x H x1(t) -1,0 + ẋ2 (t) ∂ 2 x H x2(t) 0,1 , ∂ t ϕ(t) -∂ x H x2(t) 0,1 , ∂ 2 t ϕ(t) . (84) Also, from the identity g(t) = ϕ(t) -H x1(t) -1,0 -H x2(t) 0,1 , we obtain that ∂ t g(t) = ∂ t ϕ(t, x) + ẋ1 (t)∂ x H x1(t) -1,0 + ẋ2 (t)∂ x H x2(t)
0,1 , so, from the estimates (66) and (81), we obtain that

∥∂ t g(t)∥ L 2 = O(ϵ 1 2 ). ( 85 
)
Now, since ϕ(t) is a distributional solution of (1), we also have, from the global equality

ϕ(t) = H x1(t) -1,0 + H x2(t) 0,1 + g(t), the following identity ∂ x H x1(t) -1,0 , ∂ 2 t ϕ(t) = ∂ x H x1(t) -1,0 , ∂ 2 x g(t) -Ü H x1(t) -1,0 g(t) -∂ x H x1(t) -1,0 , Ü H x1(t) -1,0 + H x2(t) 0,1 -Ü H x1(t) -1,0 g(t) + ∂ x H x1(t) -1,0 , U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 -∂ x H x1(t) -1,0 , U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 -Ü H x1(t) -1,0 + H x2(t) 0,1 g(t) (86) Since ∂ x H x1(t) -1,0 ∈ kerD 2 E pot H x1(t)
-1,0 , we have by integration by parts that

∂ x H x1(t) -1,0 , ∂ 2 x g(t) -Ü H x1(t) -1,0 g(t) = 0. Since, we have U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 = 24H x1(t) -1,0 H x2(t) 0,1 (H x1(t) -1,0 +H x2(t) 0,1 )-6 4 j=1 5 j H x1(t) -1,0 j H x2(t) 0,1 5-j , ( 87 
) Lemma 2.3 implies that ∂ x H x1(t) -1,0 , U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 = O e - √ 2(z(t))
. Also, we have from Taylor's Expansion Theorem the estimate

∂ x H x1(t) -1,0 , U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 -Ü H x1(t) -1,0 + H x2(t) 0,1 g(t) = O(∥g(t)∥ 2 H 1 ).
From Lemma 2.3, the fact that U is a smooth function and H 0,1 ∈ L ∞ (R), we can obtain

∂ x H x1(t) -1,0 , Ü H x1(t) -1,0 + H x2(t) 0,1 -Ü H x1(t) -1,0 g(t) = O R ∂ x H x1(t) -1,0 H x2(t) 0,1 |g(t)| dx = O e - √ 2z(t) ∥g(t)∥ H 1 z(t) 1 2
.

In conclusion, we have

∂ x H x1(t) -1,0 , ∂ 2 t ϕ(t) = O ∥g(t)∥ 2 H 1 + e - √ 2z(t) , ( 88 
)
and by similar arguments, we have

∂ x H x2(t) 0,1 , ∂ 2 t ϕ(t) = O ∥g(t)∥ 2 H 1 + e - √ 2z(t) . ( 89 
)
Also, the equations ( 83) and ( 84) form a linear system with ẍ1 (t), ẍ2 (t). Recalling that the Matrix M (t) is uniformly positive, we obtain from the estimates (75), ( 81), ( 85), ( 88) and (89) that max j∈{1,2}

|ẍ j (t)| = O(ϵ). ( 90 
)
The Theorem 2.9 can also be improved when the kinetic energy of the solution is included in the computation and additional conditions are added, more precisely:

Theorem 2.10. ∃δ 0 > 0, such that if 0 < ϵ ≤ δ 0 , (ϕ(0, x), ∂ t ϕ(0, x)) ∈ S×L 2 (R) and E total ((ϕ(0, x), ∂ t ϕ(0, x))) = 2E pot (H 0,1 ) + ϵ, then there are x 2 , x 1 ∈ C 2 (R) such that g(t, x) = ϕ(t, x) -H x2(t) 0,1 (x) -H x1(t) -1,0 satisfies g(t, x), ∂ x H x2(t) 0,1 (x) = 0, g(t, x), ∂ x H x1(t) -1,0 (x) = 0, and ϵ ∼ = e - √ 2(x2(t)-x1(t)) + ∥(g(t), ∂ t g(t))∥ 2 H 1 ,L 2 + | ẋ1 (t)| 2 + | ẋ2 (t)| 2 , ( 91 
)
for all t ∈ R, which means the existence of positive constants C, c independent on ϵ, such that for all

t ∈ R cϵ ≤ e - √ 2(x2(t)-x1(t)) + ∥(g(t), ∂ t g(t))∥ 2 H 1 ,L 2 + | ẋ1 (t)| 2 + | ẋ2 (t)| 2 ≤ Cϵ. ( 92 
)
Proof. In this proof, L 2 , H 1 mean, respectively, L 2 (R), H 1 (R). From Modulation Lemma and Theorem 2.9, we can rewrite the solution ϕ(t) in the form

ϕ(t, x) = H x1(t) -1,0 (x) + H x2(t) 0,1 (x) + g(t, x)
with x 1 (t), x 2 (t), g(t) satisfying the conclusion of Theorem 2.9. First we denote

ϕ σ (t) = H x1(t) -1,0 (x) + H x2(t) 0,1 (x), -ẋ1 (t)∂ x H x1(t) -1,0 -ẋ2 (t)∂ x H x2(t) 0,1 ∈ S × L 2 (R), (93) 
then we apply Taylor's Expansion Theorem in E(ϕ(t)) around ϕ σ (t), more precisely for R σ (t) the residue of second order of Energy's Taylor Expansion of E(ϕ(t), ∂ t ϕ(t)) around ϕ σ (t), we have:

2E pot (H 0,1 )+ϵ = E(ϕ σ (t))+⟨DE(ϕ σ (t)), (g(t), ∂ t g(t))⟩ L 2 ×L 2 + D 2 E(ϕ σ (t)) g(t), ∂ t g(t) , g(t), ∂ t g(t) L 2 ×L 2 2 + R σ (t), ( 94 
) such that for (w 1 , w 2 ) ∈ S × L 2 (R) and (v 1 , v 2 ) ∈ H 1 (R) × L 2 (R)
, we have the identities

E(w 1 , w 2 ) = ∥∂ x w 1 ∥ 2 L 2 + ∥w 2 ∥ 2 L 2 2 + R U (w 1 (x)) dx, ⟨DE(w 1 , w 2 ), (v 1 , v 2 )⟩ L 2 ×L 2 = R ∂ x w 1 (x)∂ x v 1 (x) + U (w 1 )v 1 + w 2 (x)v 2 (x) dx, ( 95 
)
D 2 E(w 1 , w 2 ) = -∂ 2 x + Ü (w 1 ) 0 0 I (96) 
with D 2 E(w 1 , w 2 ) defined as a bilinear operator from H 1 × L 2 to C. So, from identities (95) and (96), it is not difficult to verify that

R σ (t) = R U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) + g(t, x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) - Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) 2 2 dx,
and, so,

|R σ (t)| = O(∥g(t)∥ 3 H 1 ). ( 97 
)
Also, we have

⟨DE(ϕ σ (t)), (g(t), ∂ t g(t))⟩ L 2 ×L 2 = DE pot H x1(t) -1,0 + H x2(t) 0,1 , g(t) + -ẋ1 (t)∂ x H x1(t) -1,0 -ẋ2 (t)∂ x H x2(t) 0,1 , ∂ t g(t) .
(98) The orthogonality conditions satisfied by g(t) also imply for all t ∈ R that

∂ t g(t), ∂ x H x1(t) -1,0 L 2 = ẋ1 (t)⟨g(t), ∂ 2 x H x1(t) -1,0 ⟩ L 2 , ( 99 
)
∂ t g(t), ∂ x H x2(t) 0,1 L 2 = ẋ2 (t)⟨g(t), ∂ 2 x H x2(t) 0,1 ⟩ L 2 . ( 100 
)
So, the inequality (65) and the identities (98), ( 99), (100) imply that

|⟨DE(ϕ σ (t)), (g(t), ∂ t g(t))⟩ L 2 ×L 2 | = O sup j∈{1,2} | ẋj (t)| 2 ∥g(t)∥ H 1 + e - √ 2z(t) ∥g(t)∥ H 1 . ( 101 
)
From the Coercitivity Lemma and the definition of D 2 E(ϕ σ (t)), we have that

D 2 E(ϕ σ (t))(g(t), ∂ t g(t)), (g(t), ∂ t g(t)) L 2 ×L 2 ∼ = ∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 . ( 102 
)
Finally, there is the identity

ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) 2 L 2 = 2 ẋ1 (t) ẋ2 (t) ∂ x H z(t) 0,1 , ∂ x H -1,0 L 2 + | ẋ1 (t)| 2 ∥∂ x H 0,1 ∥ 2 L 2 + | ẋ2 (t)| 2 ∥∂ x H 0,1 ∥ 2 L 2 . ( 103 
)
From Lemma 2.3, we have that

|⟨∂ x H z 0,1 , ∂ x H -1,0 ⟩ L 2 | = O ze - √ 2z
for z big enough. Then, it is not difficult to verify that Lemma 2.4, (97), (101), ( 102) and (103) imply directly the statement of the Theorem 2.10 which finishes the proof. Remark 2.11. Theorem 2.10 implies that it is possible to have a solution ϕ of the equation (1) with energy excess ϵ > 0 small enough satisfying all the hypotheses of Theorem 1.7. More precisely, in notation of Theorem

1.7, if ∥(g(0, x), ∂ t g(0, x))∥ H 1 ×L 2 ≪ ϵ 1 2
, then, from Theorem 2.10, we have that

e - √ 2z(0) + v 2 1 + v 2 2 ∼ = ϵ.
In conclusion, we obtain that

E(ϕ(0), ∂ t ϕ(0)) -2E pot (H 0,1 ) ∼ = ϵ.

Long Time Behavior of Modulation Parameters

Even though Theorem 2.9 proves the orbital stability of a sum of two kinks with low energy excess, this theorem doesn't explain the movement of the kinks' centers x 2 (t), x 1 (t) and their speed for long time. More precisely, we still don't know if there is a explicit smooth real function d(t), such that (z(t), ż(t)) is close to (d(t), ḋ(t)) in a large time interval. But, the global estimates on the modulus of the first and second derivatives of x 1 (t), x 2 (t) obtained in Theorem 2.9 will be very useful to estimate with high precision the functions x 1 (t), x 2 (t) during a very large time interval. Moreover, we first have the following auxiliary lemma. Lemma 3.1. Let 0 < θ, γ < 1. We recall the function

A(z) = E pot (H z 0,1 + H -1,0 )
for any z > 0. If the same hypothesis of Theorem 2.9 are true and let χ(x) be a smooth function such that

χ(x) = 1, if x ≤ θ(1 -γ), 0, if x ≥ θ. ( 104 
)
and 0 ≤ χ(x) ≤ 1 for all x ∈ R. In notation of Theorem 2.9, we denote

χ 0 (t, x) = χ x -x 1 (t) z(t) , --→ g(t) = (g(t), ∂ t g(t)) ∈ H 1 (R) × L 2 (R) and --→ g(t) = ∥(g(t), ∂ t g(t))∥ H 1 (R)×L 2 (R) , α(t) = max j∈{1,2} | ẋj (t)| 2 z(t)e - √ 2z(t) + max j∈{1, 2} | ẋj (t)| 2 z(t)γ e -2 √ 2z(t)( 1-γ 2-γ ) + --→ g(t) max j∈{1, 2} | ẋj (t)| 1+ 1 z(t)γ + 1 z(t) 2 γ 2 max j∈{1, 2} | ẋj (t)| e - √ 2z(t)( 1-γ 2-γ ) + --→ g(t) 2 1 γ 2 z(t) 2 + 1 γz(t) + e - √ 2z(t)( 1-γ 2-γ ) . ( 105 
)
Then, for θ = 1-γ 2-γ and the correction terms

p 1 (t) = - ∂ t ϕ(t), ∂ x H x1(t) -1,0 (x) + ∂ x (χ 0 (t, x)g(t)) ∥∂ x H 0,1 ∥ 2 L 2 , p 2 (t) = - ∂ t ϕ(t), ∂ x H x2(t) 0,1 (x) + ∂ x ([1 -χ 0 (t, x)]g(t)) ∥∂ x H 0,1 ∥ 2 L 2
, we have the estimates, for j ∈ {1, 2},

| ẋj (t) -p j (t)| ≲ 1 + ∥ χ∥ L ∞ z(t) max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 + max j∈{1,2} | ẋj (t)|z(t)e - √ 2z(t) , ( 106 
) ṗj (t) + (-1) j Ȧ(z(t)) ∥∂ x H 0,1 ∥ 2 L 2 ≲ α(t). ( 107 
)
Remark 3.2. We will take γ = ln ln ( 1 ϵ ) ln ( 1ϵ ) . With this value of γ and the estimates of Theorem 2.9, we will see in Lemma 5.1 that ∃C > 0 such that

α(t) ≲ ∥(g 0 , g 1 )∥ H 1 ×L 2 + ϵ ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) exp 2C|t|ϵ 1 2 ln ( 1 ϵ )
.

Proof. For γ ≪ 1 enough and from the definition of χ(x), it is not difficult to verify that

∥ χ∥ L ∞ (R) ≲ 1 γ , ∥ χ∥ L ∞ (R) ≲ 1 γ 2 . ( 108 
)
We will only do the proof of the estimates (106) and (107) for j = 1, the proof for the case j = 2 is completely analogous. From the proof of Theorem 2.9, we know that ẋ1 (t), ẋ2 (t) solve the linear system

M (t) ẋ1 (t) ẋ2 (t) = -⟨∂ t ϕ(t), ∂ x H x1(t) -1,0 ⟩ -⟨∂ t ϕ(t), ∂ x H x2(t) 0,1 ⟩
, where M (t) is the matrix defined by(80). Then, from Cramer's rule, we obtain that

ẋ1 (t) = -∂ t ϕ(t), ∂ x H x1(t) -1,0 ∂ x H x2(t) 0,1 , ∂ x g(t) + ∥∂ x H 0,1 ∥ 2 L 2 det(M (t)) + ∂ t ϕ(t), ∂ x H x2(t) 0,1 ∂ x H x2(t) 0,1 , ∂ x H x1(t) -1,0 det(M (t)) . ( 109 
)
Using the definition (80) of the matrix

M (t), --→ g(t) = O(ϵ 1 2
) and Lemma 2.3 which implies the following estimate

∂ x H x2(t) 0,1 , ∂ x H x1(t) -1,0 = O(z(t)e - √ 2z(t) ), (110) 
we obtain that

det(M (t)) -∥∂ x H 0,1 ∥ 4 L 2 = O --→ g(t) + z(t) 2 e -2 √ 2z(t) = O(ϵ 1 2 ). (111)
So, from the estimate (111) and the identity (109), we obtain that ẋ1 (t) + 1

∥∂ x H 0,1 ∥ 2 L 2 (R) ∂ t ϕ(t), ∂ x H x1(t) -1,0 = O ∂ x H x1(t) -1,0 , ∂ x g(t) ∂ t ϕ(t), ∂ x H x1(t) -1,0 + O ∂ x H x1(t) -1,0 , ∂ x H x2(t) 0,1 ∂ t ϕ(t), ∂ x H x2(t) 0,1 + O ∂ t ϕ(t), ∂ x H x1(t) -1,0 (x) --→ g(t) + z(t) 2 e -2 √ 2z(t) . ( 112 
)
Finally, from the definition of g(t, x) in Theorem 2.9 we know that

∂ t ϕ(t, x) = -ẋ1 (t)∂ x H x1(t) -1,0 (x) -ẋ2 (t)∂ x H x2(t) 0,1 (x) + ∂ t g(t, x),
from the Modulation Lemma we also have verified that

∂ t g(t), ∂ x H x1(t) -1,0 = O --→ g(t) | ẋ1 (t)| , ∂ t g(t), ∂ x H x2(t) 0,1 = O --→ g(t) | ẋ2 (t)|
and from Theorem 2.9 we have that

--→ g(t) + max j∈{1,2} | ẋj (t)| ≪ 1.
In conclusion, we can rewrite the estimate (112) as ẋ1 (t) + 1

∥∂ x H 0,1 ∥ 2 L 2 (R) ∂ t ϕ(t), ∂ x H x1(t) -1,0 = O max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 + z(t)e - √ 2z(t) max j∈{1,2}
| ẋj (t)| .

(113) By a similar reasoning, we can also deduce that ẋ2 (t) + 1

∥∂ x H 0,1 ∥ 2 L 2 (R) ∂ t ϕ(t), ∂ x H x2(t) 0,1 = O max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 + z(t)e - √ 2z(t) max j∈{1,2}
| ẋj (t)| .

(114) Following the reasoning of Lemma 3.5 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we will use the terms p 1 (t), p 2 (t) with the objective of obtaining the estimates (107), which have high precision and will be useful later to approximate x j (t), ẋj (t) by explicit smooth functions during a long time interval.

First, it is not difficult to verify that

⟨∂ t ϕ(t), ∂ x (χ 0 (t)g(t))⟩ = O 1 + ∥ χ∥ L ∞ z(t) --→ g(t) 2 + max j∈{1,2} | ẋj (t)| --→ g(t) ,
which clearly implies with estimate (113) the inequality (106) for j = 1. The proof of inequality (106) for j = 2 is completely analog. Now, the demonstration of the inequality (107) is similar to the proof of the second inequality of Lemma 3.5 of [START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. First, we have

ṗ1 (t) = - ∂ t ϕ(t), ∂ t ∂ x H x1(t) -1,0 (x) ∥∂ x H 0,1 ∥ 2 L 2 - ∂ t ϕ(t), ∂ x ∂ t χ 0 (t)g(t) ∥∂ x H 0,1 ∥ 2 L 2 - ∂ x χ 0 (t)∂ t g(t) , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 - ∂ x H x1(t) -1,0 , ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 - ∂ x χ 0 (t)g(t), ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 - χ 0 (t)∂ x g(t), ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 = I + II + III + IV + V + V I, (115)
and we will estimate each term one by one. More precisely, from now on, we will work with a general cut function χ(x), that is a smooth function 0 ≤ χ ≤ 1 satisfying

χ(x) = 1, if x ≤ θ(1 -γ), 0, if x ≥ θ. ( 116 
)
with 0 < θ, γ < 1 and

χ 0 (t, x) = χ x -x 1 (t) z(t) . ( 117 
)
The reason for this notation is to improve the precision of the estimate of ṗ1 (t) by the searching of the γ, θ which minimize α(t).

Step 1.(Estimate of I) We will only use the identity I = ẋ1 (t)

∂tϕ(t), ∂ 2 x H x 1 (t) -1,0 ∥∂xH0,1∥ 2 L 2 .
Step 2.(Estimate of II.) We have, by chain rule and definition of χ 0 , that

II = - ∂ t ϕ(t), ∂ x ∂ t χ 0 (t)g(t) ∥∂ x H 0,1 ∥ 2 L 2 = - ∂ t ϕ(t), ∂ x d dt χ x-x1(t) z(t) g(t, x) ∥∂ x H 0,1 ∥ 2 L 2 = - ∂ t ϕ(t), ∂ x χ x-x1(t) z(t) d dt x-x1(t) z(t) g(t) ∥∂ x H 0,1 ∥ 2 L 2 = ∂ t ϕ(t), ∂ x χ x-x1(t) z(t) ẋ1(t)z(t)+(x-x1(t)) ż(t) z(t) 2 g(t) ∥∂ x H 0,1 ∥ 2 L 2
.

So, we obtain that

II = ∂ t ϕ(t), χ x-x1(t) z(t) ẋ1(t) z(t) + (x-x1(t)) ż(t) z(t) 2 g(t) z(t) ∥∂ x H 0,1 ∥ 2 L 2 + ∂ t ϕ(t), χ x-x1(t) z(t) ż(t) z(t) 2 g(t) ∥∂ x H 0,1 ∥ 2 L 2 + ∂ t ϕ(t), χ x-x1(t) z(t) ẋ1(t) z(t) + (x-x1(t)) ż(t) z(t) 2 ∂ x g(t) ∥∂ x H 0,1 ∥ 2 L 2 . (118)
First, note that since the support of χ is contained in [θ(1 -γ), θ], from the estimates (D3) and (D4) we obtain that

∂ x H x1(t) -1,0 2 L 2 x supp ∂xχ0(t,x) = O e -2 √ 2θ(1-γ)z(t) , ( 119 
)
∂ x H x2(t) 0,1 2 L 2 x supp ∂xχ0(t,x) = O e -2 √ 2(1-θ)z(t) , ( 120 
)
Now, we recall the identity

∂ t ϕ(t, x) = -ẋ1 (t)∂ x H x1(t) -1,0 -ẋ2 (t)∂ x H x2(t) 0,1 + ∂ t g(t)
, by using the estimates (119), (120) in the identity (118), we deduce that

II = O ∥ χ∥ L ∞ (R) max j∈{1, 2} | ẋj (t)| z(t) --→ g(t) 2 + ∥ χ∥ L ∞ (R) --→ g(t) 2 max j∈{1, 2} | ẋj (t)| z(t) 2 + (e - √ 2θ(1-γ)z(t) + e - √ z(t)(1-θ) ) ∥ χ∥ L ∞ (R) max j∈{1, 2} ẋj (t) 2 z(t) 2 --→ g(t) + --→ g(t) (e - √ 2z(t)(1-θ) + e - √ 2θ(1-γ)z(t) ) ∥ χ∥ L ∞ (R) z(t) 2 + ∥ χ∥ L ∞ (R) z(t) max j∈{1, 2} ẋj (t) 2 . (121) Since 1-γ 2-γ ≤ max((1 -θ), θ(1 -γ)) for 0 < γ, θ < 1,
we have that the estimate (121) is minimal when θ = 1-γ 2-γ . So, from now on, we consider

θ = 1 -γ 2 -γ , ( 122 
)
which with (108) and (121) imply that II = O(α(t)).

Step 3.(Estimate of III.) We deduce from the identity

III = - ⟨∂ x (χ 0 (t)∂ t g(t)), ∂ t ϕ(t)⟩ ∥∂ x H 0,1 ∥ 2 L 2 that III = - χ x-x1(t) z(t) ∂ t g(t), -ẋ1 (t)∂ x H x1(t) -1,0 -ẋ2 (t)∂ x H x2(t) 0,1 + ∂ t g(t, x) z(t) ∥∂ x H 0,1 ∥ 2 L 2 - χ 0 (t, x)∂ 2 t,x g(t, x), -ẋ1 (t)∂ x H x1(t) -1,0 -ẋ2 (t)∂ x H x2(t) 0,1 + ∂ t g(t, x) ∥∂ x H 0,1 ∥ 2 L 2 = III.1 + III.2. ( 123 
)
The identity (122) and the estimates (108), ( 119) and (120) imply by Cauchy-Schwarz inequality that

III.1 = O max j∈{1, 2} | ẋj (t)|e - √ 2z(t)( 1-γ 2-γ ) γz(t) --→ g(t) + 1 z(t)γ --→ g(t) 2 . ( 124 
)
In conclusion, we have the estimate that III.1 = O(α(t)). Also, from condition (116) and the estimate (4), we can deduce that

(1 -χ 0 (t))∂ 2 x H x1(t) -1,0 L 2 x (R) + χ 0 (t)∂ 2 x H x2(t) 0,1 L 2 x (R) = O e - √ 2z(t)( 1-γ 2-γ ) . (125)
Also, we have that

III.2 = - χ 0 (t, x) ∂ 2 t,x ϕ(t) + ẋ1 (t)∂ 2 x H x1(t) -1,0 + ẋ2 (t)∂ 2 x H x2(t) 0,1 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 . ( 126 
)
By integration by parts, we have that

χ x -x 1 (t) z(t) ∂ 2 t,x ϕ(t, x), ∂ t ϕ(t, x) = O 1 γz(t) ∥∂ t ϕ(t)∥ 2 L 2
x (supp ∂xχ0(t)) .

In conclusion, from the estimates (108), ( 119), (120) and identity (122), we obtain that

χ x -x 1 (t) z(t) ∂ 2 t,x ϕ(t, x), ∂ t ϕ(t, x) = O 1 γz(t) --→ g(t) 2 + max j∈{1, 2} ẋj (t) 2 1 γz(t) e -2 √ 2z(t)( 1-γ 2-γ ) . ( 127 
)
Also, from Lemma (2.3), the estimate (4) and the fact of 0 ≤ χ 0 ≤ 1, we deduce that

χ 0 (t, x)∂ 2 x H x2(t) 0,1 , ∂ x H x1(t) -1,0 = O z(t)e - √ 2z(t) , ( 128 
) (1 -χ 0 (t, x))∂ 2 x H x1(t) -1,0 , ∂ x H x2(t) 0,1 = O z(t)e - √ 2z(t) . ( 129 
)
From the estimates (119), (120) and identity (122), we can verify by integration by parts the following estimates

(1 -χ 0 (t)) ẋ1 (t)∂ 2 x H x1(t) -1,0 , ẋ1 (t)∂ x H x1(t) -1,0 = O ẋ1 (t) 2 γz(t) e -2 √ 2z(t)( 1-γ 2-γ ) , ( 130 
)
χ 0 (t) ẋ2 (t)∂ 2 x H x2(t) 0,1 , ẋ2 (t)∂ x H x2(t) 0,1 = O ẋ2 (t) 2 γz(t) e -2 √ 2z(t)( 1-γ 2-γ ) . (131) 
Finally, from Cauchy-Schwarz inequality and the estimate (125) we obtain that

(1 -χ 0 (t)) ẋ1 (t)∂ 2 x H x1(t) -1,0 , ∂ t g(t) = O | ẋ1 (t)| --→ g(t) e - √ 2z(t)( 1-γ 2-γ ) , ( 132 
)
χ 0 (t) ẋ1 (t)∂ 2 x H x2(t) 0,1 , ∂ t g(t) = O | ẋ2 (t)| --→ g(t) e - √ 2z(t)( 1-γ 2-γ ) . ( 133 
)
In conclusion, we obtain from the estimates (128), ( 129), ( 130), (131) (132) and (133) that

III.2 = -ẋ1 (t) ∂ 2 x H x1(t) -1,0 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 + O(α(t)). ( 134 
)
This estimate of III.2 and the estimate (124) of III.1 imply

III = -ẋ1 (t) ∂ 2 x H x1(t) -1,0 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 + O(α(t)). ( 135 
)
In conclusion, from the estimates II = O(α(t)), (135) and the definition of I, we have that

I +II +III = O(α(t)). Step 4.(Estimate of V.) We recall that V = - ⟨∂xχ0(t)g(t), ∂ 2 t ϕ(t)⟩ ∥∂xH0,1∥ 2 L 2
, and that

∂ 2 t ϕ(t) = ∂ 2 x g(t)+ U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 + U H x1(t) -1,0 + H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 + g(t) .
(136) First, by integration by parts, using estimate (108), we have the following estimate

- 1 ∥∂ x H 0,1 ∥ 2 L 2 ⟨∂ x χ 0 (t)∂ 2 x g(t), g(t)⟩ = O 1 γz(t) + 1 γ 2 z(t) 2 --→ g(t) 2 = O(α(t)). ( 137 
)
Second, since U is smooth and ∥g(t

)∥ L ∞ = O ϵ 1 2
for all t ∈ R, we deduce that

U H x1(t) -1,0 + H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 + g(t) , ∂ x χ 0 (t)g(t) = O 1 z(t)γ --→ g(t) 2 = O(α(t)). ( 138 
)
Next, from equation (87) and Lemma 2.3, we have that

U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 L 2 (R) = O(e - √ 2z(t) ), (139) 
then, by Hölder inequality we have that

U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 , ∂ x χ 0 (t)∂ x g(t) = O 1 γz(t) --→ g(t) e - √ 2z(t) = O(α(t)).
(140) Clearly, the estimates (137), ( 138) and (140) imply that V = O(α(t)).

Step 5.(Estimate of V I.) We know that

V I = - ∂ x g(t)χ 0 (t), ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 .
We recall the equation (136) which implies that

∥∂ x H 0,1 ∥ 2 L 2 V I = -∂ x g(t)χ 0 (t), ∂ 2 x g(t) + ∂ x g(t)χ 0 (t), U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 + ∂ x g(t)χ 0 (t), U H x1(t) -1,0 + H x2(t) 0,1 -U H x1(t) -1,0 -U H x2(t) 0,1
.

By integration by parts, we have from estimate (108) that

⟨∂ x g(t, x)χ 0 (t, x), ∂ 2 x g(t, x)⟩ = O 1 γz(t) --→ g(t) 2 . ( 141 
)
From the estimate (139) and Cauchy-Schwarz inequality, we can obtain the following estimate

∂ x g(t)χ 0 (t), U H x1(t) -1,0 + H x2(t) 0,1 -U H x1(t) -1,0 -U H x2(t) 0,1 = O e - √ 2z(t) --→ g(t) . ( 142 
)
Then, to conclude the estimate of V I we just need to study the following term

C(t) := ∂ x g(t)χ 0 (t), U (H x1(t) -1,0 + H x2(t) 0,1 + g(t)) -U (H x1(t) -1,0 + H x2(t) 0,1
) . Since we have from the Taylor's theorem that U H

x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 = 6 k=2 U (k) H x1(t) -1,0 + H x2(t) 0,1 g(t) k-1 (k -1)! ,
from estimate (108), we can deduce by integration by parts that

C(t) = -χ 0 (t)∂ x H x1(t) -1,0 + H x2(t) 0,1 , 6 k=3 
U (k) H x1(t) -1,0 + H x2(t) 0,1 g(t) k-1 (k -1)! + O 1 γz(t) --→ g(t) 2 . Since χ 0 (t)∂ x H x2(t) 0,1 L ∞ + (1 -χ 0 (t))∂ x H x1(t) -1,0 L ∞ = O e - √ 2z(t)( 1-γ 2-γ ) ,
we obtain that

C(t) = -∂ x H x1(t) -1,0 , 6 k=3 U (k) H x1(t) -1,0 + H x2(t) 0,1 g(t) k-1 (k -1)! + O 1 γz(t) --→ g(t) 2 + e - √ 2z(t)( 1-γ 2-γ ) --→ g(t) 2 .
Also, from Lemma 2.3 and the fact that ∥g(t)∥ L ∞ ≲ --→ g(t) , we deduce that

∂ x H x1 -1,0 , Ü H x1(t) -1,0 -Ü H x1(t) -1,0 + H x2(t) 0,1 g(t) = O e - √ 2z(t) --→ g(t) . ( 143 
)
In conclusion, we obtain that

C(t) = - R ∂ x H x1(t) -1,0 U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 dx+ R ∂ x H x1(t) -1,0 Ü H x1(t) -1,0 g(t, x) dx + O(α(t)). ( 144 
) So V I = - R ∂ x H x1(t) -1,0 U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U (H x1(t) -1,0 + H x2(t) 0,1 ) dx ∥∂ x H 0,1 ∥ 2 L 2 + R ∂ x H x1(t) -1,0 Ü H x1(t) -1,0 g(t, x) dx ∥∂ x H 0,1 ∥ 2 L 2 + O(α(t)). (145)
Step 6.(Sum of IV, V I.) From the identities (136) and

IV = - ∂ x H x1(t) -1,0 , ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2
, we obtain that

IV = - ∂ 2 x g(t) -U H x1(t) -1,0 + H x2(t) 0,1 + g(t) -U H x1(t) -1,0 + H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 - U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 . ( 146 
)
In conclusion, from the identity

∂ 2 x -Ü H x1(t) -1,0 ∂ x H x1(t)
-1,0 = 0 and by integration by parts we have that

IV + V I = - U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 + O(α(t)). ( 147 
)
From our previous results, we conclude that

I +II +III +IV +V +V I = - U H x1(t) -1,0 + U H x2(t) 0,1 -U H x1(t) -1,0 + H x2(t) 0,1 , ∂ x H x1(t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 +O(α(t)). ( 148 
)
The conclusion of the lemma follows from estimate (148) with identity

Ȧ(z(t)) = -U (H -1,0 ) + U H z(t) 0,1 -U H -1,0 + H z(t) 0,1 , ∂ x H -1,0 ,
which can be obtained from ( 13) by integration by parts with the fact that

U H -1,0 + H z(t) 0,1 , ∂ x H -1,0 + ∂ x H z(t) 0,1 = 0.
Remark 3.3. Since, we know from Lemma 2.3 that

Ȧ(z(t)) + 4e - √ 2z(t) ≲ z(t)e -2 √ 2z(t) ,
and, by elementary calculus with change of variables, that

∥∂ x H 0,1 ∥ 2 L 2 = 1 2 √
2 , then the estimates (106) and (107) obtained in Lemma 3.1 motivate us to study the following ordinary differential equation

z(t) = 16 √ 2e - √ 2z(t) . ( 149 
)
Clearly, the solution of (149) satisfies the equation

d dt ż(t) 2 4 + 8e - √ 2z(t) = 0. ( 150 
)
As a consequence, it can be verified that if z(t 0 ) > 0 for some t 0 ∈ R, then there are real constants v > 0, c such that

z(t) = 1 √ 2 ln 8 v 2 cosh √ 2vt + c 2 for all t ∈ R. ( 151 
)
In conclusion, the solution of the equations

d1 (t) = -8 √ 2e - √ 2z(t) , d2 (t) = 8 √ 2e - √ 2z(t) , d 2 (t) -d 1 (t) = z(t) > 0,
are given by

d 2 (t) = a + bt + 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 152 
)
d 1 (t) = a + bt - 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 153 
)
for a, b real constants. So, we now are motivated to study how close the modulations parameters x 1 , x 2 of Theorem 2.9 can be to functions d 1 , d 2 satisfying, respectively the identities (153) and (152) for constants v ̸ = 0, a, b.

At first view, the statement of the Lemma 3.1 seems too complex and unnecessary for use and that a simplified version should be more useful for our objectives. However, we will show later that for a suitable choice of γ depending on the energy excess of the solution ϕ(t), we can get a high precision in the approximation of the modulation parameters x 1 , x 2 by smooth functions d 1 , d 2 satisfying (153) and (152) for a large time interval.

Energy Estimate Method

Before applying Lemma 3.1, we need to construct a functional F (t) to get lower estimate on the value of ∥(g(t), ∂ t g(t))∥ H 1 ×L 2 than that obtained in Theorem 2.9.

From now on, we consider

ϕ(t) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t,
x), with x 1 (t), x 2 (t) satisfying the orthogonality conditions of the Modulation Lemma and x 1 , x 2 , (g(t), ∂ t g(t)) and ϵ > 0 satisfying all the properties of Theorem 2.9. Before the enunciation of the main theorem of this section, to simplify the notation in computations, we denote:

D 2 E(H x2(t) 0,1 + H x1(t) -1,0 ) = -∂ 2 x + Ü (H x2(t) 0,1 + H x1(t) -1,0 ) 0 0 I as a bilinear operator from H 1 (R) × L 2 (R) to C. We also denote ω 1 (t, x) = ω x-x1(t) x2(t)-x1(t)
for ω a smooth cut function with image contained in the interval [0, 1], satisfying the following condition

ω(x) = 1, if x ≤ 3 4 , 0, if x ≥ 4 5 .
We consider now the following functional

F (t) = D 2 E(H x2(t) 0,1 + H x1(t) -1,0 ) --→ g(t), --→ g(t) L 2 ×L 2 + 2 R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)ω 1 (t, x) + ẋ2 (t)(1 -ω 1 (t, x)) dx -2 R g(t, x) U (H x1(t) -1,0 (x)) + U (H x2(t) 0,1 (x)) -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x)) dx + 2 R g(t, x) ( ẋ1 (t)) 2 ∂ 2 x H x1(t) -1,0 (x) + ( ẋ2 (t)) 2 ∂ 2 x H x2(t) 0,1 (x) dx + 1 3 R U (3) (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) 3 dx. ( 154 
)
Since x 1 , x 2 are functions of class C 2 , is not difficult to verify that (g(t), ∂ t g(t)) solves the integral equation associated to the following partial differential equation

∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) = -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x) + g(t, x)) -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x)) -Ü (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) + U (H x1(t) -1,0 (x)) + U (H x2(t) 0,1 (x)) -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x)) -ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x) -ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) + ẍ1 (t)∂ x H x1(t) -1,0 (x) + ẍ2 (t)∂ x H x2(t) 0,1 (x) (II) in the space H 1 (R) × L 2 (R).
Theorem 4.1. Assuming the hypotheses of Theorem 2.9 and recalling its notation, let δ(t) be the following quantity

δ(t) = --→ g(t) e - √ 2z(t) max j∈{1,2} | ẋj (t)| + max j∈{1,2} | ẋj (t)| 3 e - √ 2z(t) 5 + max j∈{1,2} | ẋj (t)||ẍ j (t)| + --→ g(t) 2 max j∈{1, 2} | ẋj (t)| z(t) + max j∈{1, 2} ẋj (t) 2 + max j∈{1, 2} |ẍ j (t)| + --→ g(t) 4 .
Then, ∃ positive constants A 1 , A 2 , A 3 such that the functional F (t) satisfies the inequalities

F (t) + A 1 ϵ 2 ≥ A 2 --→ g(t) 2 , | Ḟ (t)| ≤ A 3 δ(t).
Remark 4.2. Theorem 2.9 and Theorem 4.1 imply

| Ḟ (t)| ≲ ϵ 1 2 ln ( 1 ϵ ) --→ g(t) 2 + --→ g(t) ϵ 3 2 .
Proof. Since the formula defining function F (t) is very large, we decompose the function in a sum of five terms F 1 , F 2 , F 3 , F 4 and F 5 . More specifically:

F 1 (t) = R ∂ t g(t, x) 2 + ∂ x g(t, x) 2 + Ü (H x1(t) -1,0 (x) + H x2(t) 0,1 (x))g(t, x) 2 dx, F 2 (t) = -2 R g(t, x) U (H x1(t) -1,0 (x)) + U (H x2(t) 0,1 (x)) -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x)) dx, F 3 (t) = 2 R g(t, x) ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x) + ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) dx, F 4 (t) = 2 R ∂ t g(t, x)∂ x g(t, x)( ẋ1 (t)ω 1 (t, x) + ẋ2 (t)(1 -ω 1 (t, x))) dx, F 5 (t) = 1 3 R U (3) (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) 3 dx. First, We prove that | Ḟ (t)| ≲ δ(t).
The main idea of the proof of this item is to estimate each derivative

dFj (t)
dt , for 1 ≤ j ≤ 5, with an error of size O(δ(t)), then we will check that the sum of these estimates are going to be a value of order O(δ(t)), which means that the estimates of these derivatives cancel.

Step 1.(The derivative of F 1 (t).) By definition of F 1 (t), we have that

dF 1 (t) dt = 2 R ∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 dx. (155)
Moreover, from the identity (II) satisfied by g(t, x), we can rewrite the value of dF1(t) dt as

dF 1 (t) dt = 2 R U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) ∂ t g(t, x) dx -2 R U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) + g(t, x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) ∂ t g(t, x) dx -2 R ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x)+ ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) ∂ t g(t, x) dx+2 R ẍ1 (t)∂ x H x1(t) -1,0 (x)+ẍ 2 (t)∂ x H x2(t) 0,1 (x) ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) 2 dx,
and, from the orthogonality conditions of the Modulation Lemma, we obtain

dF 1 (t) dt = 2 R U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) ∂ t g(t, x) dx -2 R U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) + g(t, x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) ∂ t g(t, x) dx -2 R ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x)+ ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) ∂ t g(t, x) dx+2 R ẍ1 (t) ẋ1 (t)∂ 2 x H x1(t) -1,0 (x)+ẍ 2 (t) ẋ2 (t)∂ 2 x H x2(t) 0,1 (x) g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 dx, which implies dF 1 (t) dt = 2 R U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) ∂ t g(t, x) dx -2 R U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) + g(t, x) -U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) ∂ t g(t, x) dx -2 R ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x) + ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 dx + O(δ(t)). ( 156 
)
Step 2.(The derivative of F 2 (t).) It is not difficult to verify that

dF 2 (t) dt = -2 R ∂ t g(t, x) U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) dx + 2 R g(t, x) Ü H x1(t) -1,0 (x) ∂ x H x1(t) -1,0 (x) ẋ1 (t) + Ü H x2(t) 0,1 (x) ∂ x H x2(t) 0,1 (x) ẋ2 (t) dx -2 R Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) ∂ x H x1(t) -1,0 (x) ẋ1 (t) + ∂ x H x2(t) 0,1 (x) ẋ2 (t) g(t, x) dx.
Since from the definition of the function U , we can deduce that

Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) -Ü H x1(t) -1,0 (x) = O H x1(t) -1,0 (x)H x2(t) 0,1 (x) + H x2(t) 0,1 (x) 2 , | Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) -Ü H x2(t) 0,1 (x) | = O H x1(t) -1,0 (x)H x2(t) 0,1 (x) + H x1(t) -1,0 (x) 2 ,
we obtain from Lemma 2.3 and Cauchy-Schwarz Inequality that t) .

R Ü H x2(t) 0,1 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) ∂ x H x2(t) 0,1 (x)g(t, x) dx = O --→ g(t) e - √ 2z(t) , R Ü H x1(t) -1,0 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) ∂ x H x1(t) -1,0 (x)g(t, x) dx = O --→ g(t) e - √ 2z ( 
In conclusion, we obtain from the identity satisfied by dF2(t) dt that

dF 2 (t) dt = -2 R ∂ t g(t, x) U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) dx + O(δ(t)). ( 157 
)
Step 3.(The derivative of F 3 (t).) From the definition of F 3 (t), we obtain that

dF 3 (t) dt = 2 R ∂ t g(t, x) ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x) + ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) dx -2 R g(t, x) ẋ1 (t) 3 ∂ 3 x H x1(t) -1,0 (x)+ ẋ2 (t) 3 ∂ 3 x H x2(t) 0,1 (x) dx+4 R g(t, x) ẋ1 (t)ẍ 1 (t)∂ 2 x H x1(t) -1,0 (x)+ ẋ2 (t)ẍ 2 (t)∂ 2 x H x2(t) 0,1 (x) dx,
which can be rewritten as

dF 3 (t) dt = 2 R ∂ t g(t, x) ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x)+ ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) dx-2 R g(t, x) ẋ1 (t) 3 ∂ 3 x H x1(t) -1,0 (x)+ ẋ2 (t) 3 ∂ 3 x H x2(t) 0,1 (x) dx + O(δ(t)). ( 158 
)
Step 4.(Sum of dF1 dt , dF2 dt , dF3 dt .) If we sum the estimates (156), ( 157) and (158), we obtain that

3 i=1 dF i (t) dt = -2 R U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) + g(t, x) -U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 dx -2 R g(t, x) ẋ1 (t) 3 ∂ 3 x H x1(t) -1,0 (x) + ẋ2 (t) 3 ∂ 3 x H x2(t) 0,1 (x) dx + O(δ(t)). ( 159 
)
More precisely, from Taylor's Expansion Theorem and since

--→ g(t) 4 ≤ δ(t), 3 i=1 dF i (t) dt = - R U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) 2 dx -2 R g(t, x) ẋ1 (t) 3 ∂ 3 x H x1(t) -1,0 (x) + ẋ2 (t) 3 ∂ 3 x H x2(t) 0,1 (x) dx + O(δ(t)). ( 160 
)
Step 5.(The derivative of F 4 (t).) The computation of the derivative of F 4 (t) will be more careful, since the motivation for the addition of this term is to cancel with the expression 

- R ẋ1 (t)∂ x H x1(t) -1,0 (x) + ẋ2 (t)∂ x H x2(t) 0,1 (x) U (3) H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t,
d dt 2 R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)ω 1 (t, x) dx = 2ẍ 1 (t) R ω 1 (t, x)∂ t g(t, x)∂ x g(t, x) dx +2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t, x) dx+2 ẋ1 (t) R ∂ t ω 1 (t, x)∂ t g(t, x)∂ x g(t, x) dx+2 ẋ1 (t) R ω 1 (t, x)∂ 2 t,x g(t, x)∂ t g(t, x) dx. ( 162 
)
From the definition of ω 1 (t, x) = ω x-x1(t) x2(t)-x1(t) , we have

∂ t ω 1 (t, x) = ω x -x 1 (t) x 2 (t) -x 1 (t) -ẋ1 (t)z(t) -ż(t)(x -x 1 (t)) z(t) 2 . ( 163 
)
Since in the support of ω(x) is contained in the set 3 4 ≤ x ≤ 4 5 , we obtain the following estimate:

2 ẋ1 (t) R ∂ t ω 1 (t, x)∂ t g(t, x)∂ x g(t, x) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)). ( 164 
)
Clearly from integration by parts, we deduce that

2 ẋ1 (t) R ω 1 (t, x)∂ 2 t,x g(t, x)∂ t g(t, x) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)). ( 165 
)
Also, we have

2ẍ 1 (t) R ω 1 (t, x)∂ t g(t, x)∂ x g(t, x) dx = O max j∈{1,2} |ẍ j (t)| --→ g(t) 2 = O(δ(t)). ( 166 
)
So, to estimate the time derivative of (161) with precision O(δ(t)), it is enough to estimate

2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t, x) dx.
We have that

2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t, x) dx = 2 ẋ1 (t) R ω 1 (t, x)∂ 2 x g(t, x)∂ x g(t, x) dx -2 ẋ1 (t) R ω 1 (t, x) Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x)∂ x g(t, x) dx + 2 ẋ1 (t) R ω 1 (t, x) ∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) ∂ x g(t, x) dx. ( 167 
)
From integration by parts, the first term of the equation (167) satisfies

2 ẋ1 (t) R ω 1 (t, x)∂ 2 x g(t, x)∂ x g(t, x) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)). ( 168 
)
From Taylor's Expansion Theorem, we have that

U H x2(t) 0,1 + H x1(t) -1,0 + g(t) -U H x2(t) 0,1 + H x1(t) -1,0 -Ü H x2(t) 0,1 + H x1(t) -1,0 g(t) -U (3) H x2(t) 0,1 + H x1(t) -1,0 g(t) 2 2 L 2 (R) = O --→ g(t) 3 . (169)
Also, we have verified the identity

U (ϕ) + U (θ) -U (ϕ + θ) = 24ϕθ(ϕ + θ) -6 4 j=1 5 j ϕ j θ 5-j ,
which clearly with the inequalities (D1), (D2) and Lemma 2.3 imply the estimate

U H x2(t) 0,1 + U H x1(t) -1,0 -U H x2(t) 0,1 + H x1(t) -1,0 L 2 (R) = O(e - √ 2z(t) ). ( 170 
)
Finally, is not difficult to verify that

-ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 -ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 + ẍ1 (t)∂ x H x1(t) -1,0 + ẍ2 (t)∂ x H x2(t) 0,1 L 2 (R) = O max j∈{1,2} | ẋj (t)| 2 + |ẍ j (t)| .
(171) Then, from estimates (169), ( 170) and ( 171) and the Partial Differential Equation (II) satisfied by g(t, x), we can obtain the estimate

2 ẋ1 (t) R ω 1 (t, x) ∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) ∂ x g(t, x) dx = -ẋ1 (t) R ω 1 (t, x)U (3) H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) 2 ∂ x g(t, x) dx -2 ẋ1 (t) 3 R ∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx -2 ẋ1 (t) 3 R (ω 1 (t, x) -1)∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx -2 ẋ1 (t) ẋ2 (t) 2 R ω 1 (t, x)∂ 2 x H x2(t) 0,1 (x)∂ x g(t, x) dx + O max j∈{1,2} |ẍ j (t) ẋj (t)| --→ g(t) + e - √ 2z(t) max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 4 max j∈{1,2}
| ẋj (t)| , which, by integration by parts and by Cauchy-Schwarz inequality using the estimate (125) for ω 1 , we obtain that

2 ẋ1 (t) R ω 1 (t, x) ∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x) ∂ x g(t, x) dx = ẋ1 (t) 3 R ω 1 (t)U (4) H x1(t) -1,0 + H x2(t) 0,1 ∂ x H x1(t) -1,0 + ∂ x H x2(t) 0,1 g(t) 3 dx + O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 3 -2 ẋ1 (t) 3 R ∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx + O max j∈{1,2} | ẋj (t)| 3 e - √ 2z(t) 5 --→ g(t) + O(δ(t)). (172)
Now, to finish the estimate of 2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t, x) dx, it remains to study the integral given by

-2 ẋ1 (t) R ω 1 (t, x) Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x)∂ x g(t, x) dx, ( 173 
)
which by integration by parts is equal to

ẋ1 (t) R ω 1 (t, x)U (3) H x1(t) -1,0 (x) + H x2(t) 0,1 (x) ∂ x H x1(t) -1,0 (x) + ∂ x H x2(t) 0,1 (x) g(t, x) 2 dx + O(δ(t)). ( 174 
)
Since the support of

ω 1 (t, x) is included in {x| (x -x 2 (t)) ≤ -z(t) 5 } and the support of 1 -ω 1 (t, x) is included in {x| (x -x 1 (t)) ≥ 3z(t)
4 }, from the exponential decay properties of the kink solutions in (D1), (D2), (D3), (D4)

we obtain the estimates

ẋ1 (t) R (ω 1 (t, x) -1)U (3) H x1(t) -1,0 (x) + H x2(t) 0,1 (x) (∂ x H x1(t) -1,0 (x))g(t, x) 2 dx = O(δ(t)), (175) ẋ2 (t) R ω 1 (t, x)U (3) H x1(t) -1,0 (x) + H x2(t) 0,1 (x) ∂ x H x2(t) 0,1 (x)g(t, x) 2 dx = O(δ(t)), (176) 1 3 ẋ1 (t) R (1 -ω 1 (t))U (4) (H x1(t) -1,0 + H x2(t) 0,1 )∂ x H x1(t) -1,0 g(t) 3 dt = O(δ(t)), (177) 1 3 ẋ2 (t) R (ω 1 (t))U (4) H x1(t) -1,0 + H x2(t) 0,1 ∂ x H x2(t) 0,1 g(t) 3 dt = O(δ(t)). ( 178 
)
In conclusion, we obtain that the estimates (175), (176) imply the following estimate

-2 ẋ1 (t) R ω 1 (t, x) Ü H x1(t) -1,0 (x) + H x2(t) 0,1 (x) g(t, x)∂ x g(t, x) dx = R ẋ1 (t)∂ x H x1(t) -1,0 (x)U (3) H x2(t) 0,1 + H x1(t) -1,0 g(t) 2 dx + O(δ(t)). (179)
Then, the estimates (167), ( 172), ( 177), ( 178) and ( 179) imply that

2 d dt R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)ω 1 (t, x) dx = 1 3 R U (4) H x1(t) -1,0 + H x2(t) 0,1 ẋ1 (t)∂ x H x1(t) -1,0 g(t) 3 dx + R ẋ1 (t)∂ x H x1(t) -1,0 )U (3) (H x2(t) 0,1 + H x1(t) -1,0 )g(t) 2 dx -2 ẋ1 (t) 3 R ∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx. + O(δ(t)).
By an analogous argument, we deduce that

2 d dt R ∂ t g(t, x)∂ x g(t, x) ẋ2 (t)(1 -ω 1 (t, x)) dx = 1 3 R U (4) H x1(t) -1,0 + H x2(t) 0,1 ẋ2 (t)∂ x H x2(t) 0,1 g(t) 3 dx + R ẋ2 (t)∂ x H x2(t) 0,1 )U (3) H x2(t) 0,1 + H x1(t) -1,0 g(t) 2 dx -2 ẋ2 (t) 3 R ∂ 2 x H x2(t) 0,1 (x)∂ x g(t, x) dx + O(δ(t)).
In conclusion, we have that

dF 4 (t) dt = R ẋ1 (t)∂ x H x1(t) -1,0 + ẋ2 (t)∂ x H x2(t) 0,1 U (3) H x2(t) 0,1 + H x1(t) -1,0 g(t) 2 dx-2 ẋ2 (t) 3 R ∂ 2 x H x2(t) 0,1 (x)∂ x g(t, x) dx + 1 3 R U (4) H x1(t) -1,0 + H x2(t) 0,1 ẋ1 (t)∂ x H x1(t) -1,0 + ẋ2 (t)∂ x H x2(t) 0,1 g(t) 3 dx-2 ẋ1 (t) 3 R ∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx+O(δ(t)). ( 180 
)
Step 6.(The derivative of F 5 (t).) We have that 

dF 5 (t) dt = R U (3) H x1(t) -1,0 + H x2(t) 0,1 g(t) 2 ∂ t g(t) dx- 1 3 R U (4) H x1(t) -1,0 + H x2(t) 0,1 ẋ1 (t)∂ x H x1(t) -1,0 + ẋ2 (t)∂ x H x2(t) 0,1 g(t) 3 dx. ( 181 
dF 4 (t) dt + dF 5 (t) dt = R ẋ1 (t)∂ x H x1(t) -1,0 + ẋ2 (t)∂ x H x2(t) 0,1 U (3) H x2(t) 0,1 + H x1(t) -1,0 g(t) 2 dx-2 ẋ1 (t) 3 R ∂ 2 x H x1(t) -1,0 (x)∂ x g(t, x) dx -2 ẋ2 (t) 3 R ∂ 2 x H x2(t) 0,1 (x)∂ x g(t, x) dx + R U (3) H x1(t) -1,0 + H x2(t) 0,1 g(t) 2 ∂ t g(t) dx + O(δ(t)). (182)
Then, the sum of identities ( 160) and (182) implies

5 i=1 dFi(t) dt = O(δ(t)), this finishes the proof of inequality | Ḟ (t)| = O(δ(t)). Proof of F (t) + A 1 ϵ 2 ≥ A 2 ϵ 2 . The Coercitivity Lemma implies that ∃ c > 0, such that F 1 (t) ≥ c --→ g(t)
2

. Also, from Theorem 2.9, we have the global estimate max

j∈{1,2} | ẋj (t)| 2 + |ẍ j (t)| + e - √ 2z(t) + --→ g(t) 2 = O(ϵ) (183) that implies that |F 3 (t)| = O --→ g(t) ϵ , |F 4 (t)| = O --→ g(t) 2 ϵ 1 2 , |F 5 (t)| = O --→ g(t) 2 ϵ 1 2
. Also, since

U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) = O H x1(t) -1,0 (x)H x2(t) 0,1 (x) H x2(t) 0,1 (x)+H x1(t) -1,0 (x) ,
the Lemma 2.3 and Cauchy-Schwarz Inequality imply that

|F 2 (t)| = O --→ g(t) e - √ 2z(t) .
Then, the conclusion of

F (t) + A 1 ϵ 2 ≥ A 2 --→ g(t)
2 follows from Young Inequality for ϵ small enough.

Remark 4.3. In the proof of Theorem 4.1, from Theorem 2.9 we have |F

2 (t)| + |F 3 (t)| = O --→ g(t) ϵ . Since |F 4 (t)| + |F 5 (t)| = O --→ g(t) 2 ϵ 1 2 and |F 1 (t)| ≲ --→ g(t)
2

, then Young Inequality implies that

|F (t)| ≲ --→ g(t) 2 + ϵ 2 .
Remark 4.4 (General Energy Estimate). For any 0 < θ, γ < 1, we can create a smooth cut function 0 ≤ χ(x) ≤ 1 such that

χ(x) = 0, if x ≤ θ(1 -γ), 1, if x ≥ θ.
We define

χ 0 (t, x) = χ x -x 1 (t) x 2 (t) -x 1 (t)
.

If we consider the following functional

L(t) = D 2 E(H x2(t) 0,1 + H x1(t) -1,0 ) --→ g(t), --→ g(t) L 2 ×L 2 + 2 R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)χ 0 (t, x) + ẋ2 (t)(1 -χ 0 (t, x)) dx -2 R g(t, x) U (H x1(t) -1,0 (x)) + U (H x2(t) 0,1 (x)) -U (H x2(t) 0,1 (x) + H x1(t) -1,0 (x)) dx + 2 R g(t, x) ( ẋ1 (t)) 2 ∂ 2 x H x1(t) -1,0 (x) + ( ẋ2 (t)) 2 ∂ 2 x H x2(t) 0,1 (x) dx + 1 3 R U (3) (H x2(t) 0,1 (x) + H x1(t) -1,0 (x))g(t, x) 3 dx, ( 184 
)
then, by a similar proof to the Theorem 4.1, we obtain that if 0 < ϵ ≪ 1 and

δ 1 (t) = δ(t) + max j∈{1,2} | ẋj (t)| 3 max(e - √ 2z(t)(1-θ) , e - √ 2z(t)θ(1-γ) ) --→ g(t) -max j∈{1,2} | ẋj (t)| 3 e - √ 2 5 z(t) --→ g(t) , ( 185 
)
then there are positive constants

A 1 , A 2 > 0 such that | L(t)| = O(δ 1 (t)), L(t) + A 1 ϵ 2 ≥ A 2 ϵ 2 .
Our first application of Theorem 4.1 is to estimate the size of the remainder --→ g(t) during a long time interval. More precisely, this corresponds to the following theorem, which is a weaker version of Theorem 1.7.

Theorem 4.5.

There is δ > 0, such that if 0 < ϵ < δ enough, (ϕ(0), ∂ t ϕ(0)) ∈ S×L 2 (R) and E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 )+ϵ, then there are x 2 , x 1 ∈ C 2 (R) functions such that the unique global time solution of (1) is given, for

ϕ(t) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t), ( 186 
)
with g(t) satisfying orthogonality conditions of the Modulation Lemma and

∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 ≤ C ∥(g(0, x), ∂ t g(0, x))∥ 2 H 1 ×L 2 + ϵ 2 ln 1 ϵ 2 exp C|t| ϵ 1 2 ln ( 1 ϵ ) . ( 187 
)
Proof of Theorem 4.5. In notation of Theorem 4.1, from Theorem 4.1 and Remark 4.3, there are uniform positive constants A 2 , A 1 such that for all t ≥ 0

A 2 --→ g(t) 2 ≤ F (t) + A 1 ϵ 2 ≤ C --→ g(t) 2 + ϵ 2 . ( 188 
)
From now on, we denote

G(t) := |F (t)| + A 1 ϵ 2 ln ( 1 ϵ ) 2 .
From the inequality (188) and Remark 4.2, there is a constant C > 0 such that, for all t ≥ 0, G(t) satisfies

G(t) ≤ G(0) + C t 0 G(s) ϵ 1 2 ln ( 1 ϵ ) , ds . ( 189 
)
In conclusion, from the Fundamental Theorem of Calculus, we obtain that G(t) ≤ G(0) exp Ctϵ ln ( 1 ϵ ) . Then, from the definition of G and inequality (188), we verify the inequality (187).

Global Dynamics of Modulation Parameters

Lemma 5.1. In notation of Theorem 1.7, ∃C > 0, such that if the hypotheses of Theorem 1.7 are true, then for (g 0 (x), g 1 (x)) = (g(0, x), ∂ t g(0, x)) we have that there are functions p 1 (t), p 2 (t) ∈ C 1 (R ≥0 ), such that for j ∈ {1, 2}, we have:

| ẋj (t) -p j (t)| ≲ ∥(g 0 , g 1 )∥ H 1 ×L 2 + ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) , ( 190 
) ṗj (t) -(-1) j 8 √ 2e - √ 2z(t) ≲ ∥(g 0 , g 1 )∥ H 1 ×L 2 + ϵ ln 1 ϵ 2 ln ln ( 1 ϵ ) exp 2Ctϵ 1 2 ln ( 1 ϵ ) . ( 191 
)
Proof. In the notation of Lemma 3.1, we consider the functions p j (t) for j ∈ {1, 2} and we consider θ = 1-γ 2-γ , the value of γ will be chosen later. From Lemma 3.1, we have that

| ẋj (t) -p j (t)| ≲ 1 + 1 γz(t) max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 + max j∈{1,2} | ẋj (t)|z(t)e - √ 2z(t) .
We recall from Theorem 2.9 the estimates max j∈{1,

2} | ẋj (t)| = O(ϵ 1 2 ), e - √ 2z(t) = O(ϵ). From Theorem 4.5, we have that --→ g(t) ≲ --→ g(0) + ϵ ln 1 ϵ exp Cϵ 1 2 t ln ( 1 ϵ )
.

To simplify our computations we denote

c 0 = --→ g(0) +ϵ ln( 1 ϵ ) ϵ ln( 1 ϵ )
. Then, we obtain for j ∈ {1, 2} that

| ẋj (t) -p j (t)| ≲ 1 + 1 γ ln ( 1 ϵ ) c 0 ϵ 3 2 ln 1 ϵ exp Cϵ 1 2 t ln ( 1 ϵ ) + c 2 0 ϵ 2 ln 1 ϵ 2 exp 2Cϵ 1 2 t ln 1 ϵ . ( 192 
) Since e - √ 2z(t) ≲ ϵ, we deduce for ϵ ≪ 1 that z(t)e - √ 2z(t) ≲ ϵ ln ( 1 ϵ ) < ϵ 1-γ (2-γ)2 ln ( 1 ϵ )
. Then, we obtain from the same estimates and the definition (105) of α(t), that

α(t) ≲ c 2 0 ϵ ln 1 ϵ 2 max k∈{1, 2} 1 γz(t) k + ϵ 1-γ 2-γ exp 2 Cϵ 1 2 t ln ( 1 ϵ ) + c 0 ϵ 2-γ (2-γ)2 ln 1 ϵ exp Cϵ 1 2 t ln ( 1 ϵ ) 1 + 1 γz(t) + ϵ 1 2 (γz(t)) 2 + ϵ 1+ 2(1-γ) 2-γ z(t)γ . ( 193 
)
However, if γ ln ( 1 ϵ ) ≤ 1 and z(0) ∼ = ln ( 1 ϵ ), which is possible, then the right-hand side of inequality (193) is greater than or equivalent to ϵ 2 ln ( 1 ϵ )

2 while t ≲ ln ( 1 ϵ ) ϵ 1 2
. But, it is not difficult to verify that for γ = ln ln ( 1 ϵ ) ln ( 1ϵ ) , the right-hand side of inequality (193) is smaller than ϵ 2 ln ( 1 ϵ ) 2 . In conclusion, from now on, we are going to study the right-hand side of (193) for 1 ln( 1 ϵ ) < γ < 1. Since we know that ln ( 1 ϵ ) ≲ z(t) from Theorem 2.9, the inequality (193) implies for

1 ln ( 1 ϵ ) < γ < 1 that α(t) ≲ β(t) := c 0 ϵ ln 1 ϵ 2 1 γ ln ( 1 ϵ ) + ϵ 1-γ 2-γ exp 2 Cϵ 1 2 t ln ( 1 ϵ ) + c 0 ϵ 2-γ 2(2-γ) ln 1 ϵ exp Cϵ 1 2 t ln ( 1 ϵ ) + ϵ 1+ 2(1-γ) 2-γ γ ln ( 1 ϵ ) = β 1 (t) + β 2 (t) + β 3 (t), respectively. (194) For ϵ > 0 small enough, it is not difficult to verify that if β 3 (t) ≥ β 1 (t), then γ ≥ ln ln ( 1 ϵ ) ln ( 1 ϵ ) . Moreover, if we have that 1 > γ > 8 ln ln ( 1 ϵ ) ln ( 1 ϵ )
, we obtain from the following estimate

β 3 (t) = ϵ 2 ϵ -γ 2-γ γ ln ( 1 ϵ ) > ϵ 2 ln ( 1 ϵ ) exp 8 ln ln 1 ϵ 2 -γ = ϵ 2 ln ( 1 ϵ ) ln 1 ϵ 8 2-γ , that β 3 (t) > ϵ 2 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) . If γ ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) , then ϵ 2 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) ≲ β 1 (t).
In conclusion, for any case we have that

ϵ 2 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) ≲ β(t), so we choose γ = ln ln ( 1 ϵ ) ln ( 1 ϵ ) . As a consequence, α(t) is less than or equivalent to c 2 0 ϵ 2 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ ) . ( 195 
)
So, the estimates (192), (195), Remark 3.3 and our choice of γ imply the inequalities (190) and (191).

Remark 5.2. If ϵ

1 2 ln ( 1 ϵ ) m ≲ --→ g(0)
for a constant m > 0, then, for γ = 1 8 , we have from Lemma 3.1 that there is p

(t) ∈ C 2 (R) such that for all t ≥ 0 | ż(t) -p(t)| ≲ ϵ 1 2 --→ g(0) , (196) | ṗ(t) -16 √ 2e - √ 2z(t) | ≲ --→ g(0) 2 z(t) . ( 197 
)
Then, for the smooth real function d(t) satisfying

d(t) = 16 √ 2e - √ 2d(t) , (d(0), ḋ(0)) = (z(0), ż(0)),
and since e - √ 2z(t) ≲ ϵ, ln ( 1 ϵ ) ≲ z(t), we can deduce that Y (t) = (z(t) -d(t)) satisfies the following integral inequality for a constant K > 0

|Y (t)| ≤ K   ϵ 1 2 --→ g(0) t + --→ g(0) 2 ln ( 1 ϵ ) t 2 + t 0 s 0 ϵ|Y (s 1 )| ds 1 ds    , Y (0) = 0, Ẏ (0) = 0. ( 198 
)
In conclusion, from the Gronwall Lemma, we obtain that

|Y (t)| ≲ Q(tK 1 2
), where Q(t) is the solution of the following integral equation

Q(t) = ϵ 1 2 --→ g(0) t + --→ g(0) 2 ln ( 1 ϵ ) t 2 + t 0 s 0 ϵQ(s 1 ) ds 1 ds.

By standard ordinary differential equation techniques, we deduce that

|z(t) -d(t)| ≲ Q(tK 1 2 ) =    --→ g(0) 2 + --→ g(0) 2 ϵ ln ( 1 ϵ )    e ϵ 1 2 tK 1 2 +    - --→ g(0) 2 + --→ g(0) 2 ϵ ln ( 1 ϵ )    e -ϵ 1 2 tK 1 2 -2 --→ g(0) 2 ϵ ln ( 1 ϵ ) , ( 199 
)
and from ż(0) = ḋ(0) and the estimates (196) and (197), we obtain that

| ż(t) -ḋ(t)| ≲ |p(0) -ż(0)| + t 0 ϵ|z(s) -d(s)| ds, ( 200 
)
from which with (199), we obtain that

| ż(t) -ḋ(t)| ≲ e ϵ 1 2 |t|K 1 2 ϵ 1 2    --→ g(0) + --→ g(0) 2 ϵ ln ( 1 ϵ )    . ( 201 
)
However, the precision of the estimates (199) and (201) is very bad when ϵ -1 2 ≪ t, which motivate us to apply Lemma (3.1) to estimate the modulations parameters

x 1 (t), x 2 (t) for t ≲ ln ( 1 ϵ ) ϵ 1 2
.

We recall from Theorem 1.11 the definitions of the functions

d 1 (t), d 2 (t). If --→ g(0) ≥ ϵ 1 2
ln ( 1 ϵ ) 5 , because Theorem 2.9 and max j∈{1,2} | ḋj (0)-ẋj (0)| = 0 imply that max j∈{1, 2} |d j (t)-x j (t)| = O(min(ϵt, ϵ

1 2 t)), max j∈{1, 2} | ḋj (t)- ẋj (t)| = O(ϵt),
we deduce for a constant C > 0 large enough the estimates ( 9) and ( 10) of Theorem 1.11. For the case

--→ g(0) ≤ ϵ 1 2
ln ( 1 ϵ ) 5 , the estimates of max j∈{1,2} |x j (t) -d j (t)|, max j∈{1, 2} | ẋj (t) -ḋj (t)| will be done by studying separated cases depending on the initial data z(0), ż(0).

Lemma 5.3. ∃K > 0 such that if --→ g(0) ≤ ϵ 1 2
ln ( 1 ϵ ) 5 , (g 0 (x), g 1 (x)) = (g(0, x), ∂ t g(0, x)) and all the hypotheses of Theorem 1.11 are true and

ϵ ln ( 1 ϵ ) 8 ≲ e - √ 2z(0) ≲ ϵ, then we have for 0 ≤ t that max j∈{1, 2} |x j (t) -d j (t)| = O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 6 ϵ ln ln( 1 ϵ ) exp Kϵ 1 2 t ln ( 1 ϵ )    , ( 202 
) max j∈{1, 2} | ẋj (t) -ḋj (t)| = O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 6 ϵ 1 2 ln ln ( 1 ϵ ) exp Kϵ 1 2 t ln ( 1 ϵ ) . ( 203 
)
Proof of Lemma 5.3. First, in notation of Lemma 5.1, we define

p(t) := p 2 (t) -p 1 (t), z(t) := x 2 (t) -x 1 (t), ż(t) := ẋ2 (t) -ẋ1 (t).
Also, motivated by Remark 3.3, we consider the smooth function d(t) solution of the following ordinary differential equation

d(t) = 16 √ 2e - √ 2d(t) ,
(d(0), ḋ(0)) = (z(0), ż(0)).

Step 1.(Estimate of z(t), ż(t)) From now on, we denote the functions

W (t) = z(t) -d(t), V (t) = p(t) -ḋ(t).
Then, Lemma 5.1 implies that W, V satisfy the following ordinary differential estimates

| Ẇ (t) -V (t)| = O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) , V (t) + 16 √ 2e - √ 2d(t) -16 √ 2e - √ 2z(t) = O    max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    .
From the above estimates and the Taylor's Expansion Theorem, we deduce the following almost ordinary differential system of equations, while |W (t)| < 1 :

         Ẇ (t) = V (t) + O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) , V (t) = -32e - √ 2d(t) W (t) + O e - √ 2d(t) W (t) 2 + O   max ∥(g0,g1)∥,ϵ ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )   .
Recalling Remark 3.3, we have that

d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt + c) 2 , (204) 
where v > 0 and c ∈ R are chosen such that (d(0), ḋ(0)) = (z(0), ż(0)). Moreover, it is not difficult to verify that

v = ż(0) 2 4 + 8e - √ 2z(0) 1 2 , c = arctanh   ż(0) 32e - √ 2z(0) + ż(0) 2 1 2   . Moreover, since 8e - √ 2z(0) = v 2 sech (c) 2 ≤ 4v 2 e -2|c|
, we obtain from the hypothesis for e - √ 2z(0) that ϵ

1 2 ln ( 1 ϵ ) 4 ≲ v ≲ ϵ 1 2
and as a consequence the estimate |c| ≲ ln (ln ( 1 ϵ )). Also, it is not difficult to verify that the functions

n(t) = ( √ 2vt + c) tanh ( √ 2vt + c) -1, m(t) = tanh ( √ 2vt + c)
generate all solutions of the following ordinary differential equation

ÿ(t) = -32e - √ 2d(t) y(t), (205) 
which is obtained from the linear part of the system (5).

To simplify our computations we use the following notation

error 1 (t) = max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) , error 2 (t) = e - √ 2d(t) (z(t) -d(t)) 2 + max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )
.

From the variation of parameters technique for ordinary differential equation, we can write that

W (t) V (t) = c 1 (t) m(t) ṁ(t) + c 2 (t) n(t) ṅ(t) , ( 206 
) such that                m(t) n(t) ṁ(t) ṅ(t) ċ1 (t) ċ2 (t) = O(error 1 (t)) O(error 2 (t)) , m(0) n(0) ṁ(0) ṅ(0) c 1 (0) c 2 (0) = 0 O ∥(g 0 , g 1 )∥ + ϵ ln ( 1 ϵ ) ϵ 1 2
.

The presence of an error in the condition of the initial data c 1 (0), c 2 (0) comes from estimate (190) of Lemma 5.1. Since for all t ∈ R m(t) ṅ(t) -ṁ(t)n(t) = √ 2v, we can verify by Cramer's rule and from the fact that

ϵ 1 2 ln ( 1 ϵ ) 4 ≲ v that c 1 (0) = O max --→ g(0) , ϵ ln 1 ϵ |c tanh (c) -1| ln 1 ϵ 4 , ( 207 
)
c 2 (0) = O max --→ g(0) , ϵ ln 1 ϵ | tanh (c)| ln 1 ϵ 4 , (208) 
and

| ċ1 (t)| = O m(t) + ( √ 2vt + c) sech ( √ 2vt + c) 2 max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) + O      v sech ( √ 2vt + c) 2 |W (t)| 2 + max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 v ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    |n(t)|    , (209) | ċ2 (t)| = O      v sech ( √ 2vt + c) 2 |W (t)| 2 + max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 v ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    |m(t)|    + O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ exp 2Cϵ 1 2 t ln ( 1 ϵ ) ϵ 1 2 sech( √ 2vt + c) 2 . ( 210 
)
Since we have for all x ≥ 0 that

d dx - sech (x) 2 x 2 + 3 tanh (x) 2 = sech (x) 2 2 + x tanh (x) sech (x) 2 ≥ |x tanh (x) -1| sech (x) 2 2 ,
we deduce from the Fundamental Theorem of Calculus, the identity

n(t) = ( √ 2vt + c) tanh( √ 2vt + c) -1, the inequality ϵ 1 2
ln ( 1 ϵ ) 4 ≲ v and the estimates (209), (210) that

|c 1 (t) -c 1 (0)| = O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ln 1 ϵ exp 2Ctϵ 1 2 ln ( 1 ϵ ) -1 + O exp 2Cϵ 1 2 t ln ( 1 ϵ ) -1 ∥n(s)∥ L ∞ s [0,t] max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 5 ϵ ln ln( 1 ϵ ) + O - sech (x) 2 x 2 + 3 tanh (x) 2 √ 2vt+c c ∥W (s)∥ 2 L ∞ s [0,t] . ( 211 
)
From a similar argument, we deduce that

|c 2 (t) -c 2 (0)| = O ∥W (s)∥ 2 L ∞ s [0,t] tanh ( √ 2vt + c) -tanh (c) +O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 exp 2Cϵ 1 2 t ln ( 1 ϵ ) -1 ln ( 1 ϵ ) 5 ϵ ln ln ( 1 ϵ ) + max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ln 1 ϵ exp 2Ct ϵ 1 2 ln ( 1 ϵ ) . ( 212 
)
From the estimates v ≲ ϵ 1 2 , |c| ≲ ln ln ( 1 ϵ ), we obtain for ϵ ≪ 1 while

∥W (s)∥ L ∞ s [0,t] ϵ 1 2 t + ln ln 1 ϵ ln ln 1 ϵ ≤ 1, (213) that ∥W (s)∥ 2 L ∞ s [0,t] (1 + |n(t)|) ≲ ∥W (s)∥ L ∞ s [0,t] 1 ln ln ( 1 ϵ ) . (214) Also, from |n(t)| ≤ ( √ 2v|t| + |c|),
we deduce for t ≥ 0 that

|n(t)| ≲ ϵ 1 2 t + ln ln 1 ϵ ≲ ln 1 ϵ exp ϵ 1 2 t ln ( 1 ϵ ) (215) 
In conclusion, the estimates (211), ( 212), ( 214), ( 215) and the definition of W (t) = z(t) -d(t) implies that while the condition (213) is true, then

|W (t)| ≲ f (t) = max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 6 ϵ ln ln( 1 ϵ ) exp (2C + 1)ϵ 1 2 t ln ( 1 ϵ ) (216) 
Then, from the expression for V (t) in the equation ( 206) and the estimates (211), ( 212), (215), we obtain that if inequality (216) is true, then

|V (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 6 ϵ 1 2 ln ln ( 1 ϵ ) exp (4C + 3)ϵ 1 2 t ln ( 1 ϵ ) + max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 4 ln ( 1 ϵ ) 12 ϵ 3 2 ln ln ( 1 ϵ ) 2 exp (4C + 3)ϵ 1 2 t ln ( 1 ϵ ) , (217) 
which implies the following estimate

| Ẇ (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 6 ϵ 1 2 ln ln ( 1 ϵ ) exp (4C + 3)ϵ 1 2 t ln ( 1 ϵ ) . ( 218 
)
Indeed, from the bound

--→ g(0) ≲ ϵ 1 2 ln ( 1 ϵ ) 4 , we deduce that (213) is true for 0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) (4C+2)ϵ 1 2
. As a consequence, the estimates (216) and (218) are true for 0

≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) (4C+2)ϵ 1 2
. But, for t ≥ 0, we have that

|W (t)| ≲ ϵ 1 2 t ≲ 3 ln 1 ϵ exp ϵ 1 2 t 3 ln ( 1 ϵ ) , | Ẇ (t)| ≲ ϵt ≲ 3ϵ 1 2 ln 1 ϵ exp ϵ 1 2 t 3 ln ( 1 ϵ ) . ( 219 
)
Since f (t) defined in inequality ( 216) is strictly increasing and f (0) ≲

1 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) , there is an instant T M > 0 such that exp ϵ 1 2 T M ln ( 1 ϵ ) f (T M ) = 1 ln ( 1 ϵ ) ln ln ( 1 ϵ ) 2 , ( 220 
)
from which with estimate (216) and condition (213) we deduce that (216) is true for 0 ≤ t ≤ T M . Also, from the identity (220) and the fact that

--→ g(0) ≲ ϵ 1 2 ln ( 1 ϵ ) 4 we deduce 1 ln ( 1 ϵ ) ln ln ( 1 ϵ ) 2 ≲ 1 ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) exp (2C + 2)ϵ 1 2 T M ln ( 1 ϵ )
, from which we obtain that

T M ≥ 3 8(C+1) ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
for ϵ ≪ 1. In conclusion, since f (t) is an increasing function, we have for t ≥ T M and ϵ ≪ 1 that

f (t) exp [17(C + 1) + 4]ϵ 1 2 t 3 ln ( 1 ϵ ) ≥ 1 ln ( 1 ϵ ) ln ln ( 1 ϵ ) 2 exp [17(C + 1) + 1]ϵ 1 2 t 3 ln ( 1 ϵ ) ≥ ln ( 1 ϵ ) 1+ 1 8 ln ln ( 1 ϵ ) 2 exp ϵ 1 2 t 3 ln ( 1 ϵ )
, from which with the estimates (219) and ( 216) we deduce for all t ≥ 0 that

|W (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 6 ϵ ln ln( 1 ϵ ) exp (8C + 9)ϵ 1 2 t ln ( 1 ϵ ) . ( 221 
)
As consequence, we obtain from the estimates (207), ( 208), ( 211), ( 212) and (221) that

| Ẇ (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 6 ϵ 1 2 ln ln( 1 ϵ ) exp (16C + 18)ϵ 1 2 t ln ( 1 ϵ ) (222) 
for all t ≥ 0.

Step 2.(Estimate of |x 1 (t) + x 2 (t)|, | ẋ1 (t) + ẋ2 (t)|.) First, we define

M (t) := (x 1 (t) + x 2 (t)) -(d 1 (t) + d 2 (t)), N (t) := (p 1 (t) + p 2 (t)) -( ḋ1 (t) + ḋ2 (t)). ( 223 
)
From the inequalities (190), (191) of Lemma 5.1, we obtain, respectively:

| Ṁ (t)-N (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp Cϵ 1 2 t ln 1 ϵ , | Ṅ (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ln( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )
.

Also, from inequality (190) and the fact that for j ∈ {1, 2} d j (0) = x j (0), ḋj (0) = ẋj (0), we deduce that

M (0) = 0 and |N (0)| ≲ max --→ g(0) , ϵ ln ( 1 ϵ ) ϵ 1 2
. Then, from the Fundamental Theorem of Calculus, we obtain that

N (t) = O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) ϵ 1 2 ln ln ( 1 ϵ ) exp 4Cϵ 1 2 t ln ( 1 ϵ )    , (224) 
M (t) = O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ ) exp 4Cϵ 1 2 t ln ( 1 ϵ )    . (225) 
In conclusion, for K = 16C + 18, we verify from triangle inequality that the estimates (221) and ( 225) imply (202) and the estimates (222) and ( 224) imply (203).

Remark 5.4. The estimates (225) and (224) are true for any initial data (g 0 , g 1 ) ∈ H 1 (R) × L 2 (R) such that the hypothesis of Theorem 1.11 are true.

Remark 5.5 (Similar Case). If we add the following conditions

e - √ 2z(0) ≪ ϵ ln ( 1 ϵ ) 8 , ϵ 1 2 ln ( 1 ϵ ) 4 ≲ v ≲ ϵ 1 2 , -ln 1 ϵ 2 < c < 0,
to the hypotheses of Theorem 1.11, then, by repeating the above proof of Lemma 5.3, we would still obtain (209), (210), ( 211) and (212).

However, since now |c| ≤ ln ( 1 ϵ ) 2 , if ϵ ≪ 1 enough, we can verify while ∥W (s)∥ L ∞ s [0,t] ϵ 1 2 t + ln 1 ϵ 2 ln ln 1 ϵ ≤ 1, ( 226 
) that ∥W (s)∥ 2 L ∞ s [0,t] (1 + |n(t)|) ≲ ∥W (s)∥ L ∞ s [0,t] 1 ln ln ( 1 ϵ )
, which implies by a similar reasoning to the proof of Lemma 5.3 for a uniform constant C > 1 the following estimates

|W (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 7 ϵ ln ln( 1 ϵ ) exp Cϵ 1 2 t ln ( 1 ϵ ) = f 1 (t, C), ( 227 
) | Ẇ (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 7 ϵ 1 2 ln ln ( 1 ϵ ) exp Cϵ 1 2 t ln ( 1 ϵ ) = f 2 (t, C). ( 228 
)
From the estimates (227), ( 228) and

--→ g(0) ≤ ϵ 1 2
ln ( 1 ϵ ) 5 , we deduce that the condition (226) holds while 10 , we can verify that there is an instant

0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) 4(C+1)ϵ 1 2 . Indeed, since --→ g(0) 2 ≤ ϵ ln ( 1 ϵ )
ln ln ( 1 ϵ ) ln ( 1 ϵ ) 4(C+1)ϵ 1 2
≤ T M such that (226) and (227) are true for 0 ≤ t ≤ T M and

f 1 (T M , C) exp ϵ 1 2 T M ln ( 1 ϵ ) = 1 ln ( 1 ϵ ) 2+ 1 2 ln ln ( 1 ϵ )
.

In conclusion, we can repeat the argument in the proof of step 1 of Lemma 5.3 and deduce that there is 1 < K ≲ C + 1 such that for all t ≥ 0

|W (t)| ≲ f 1 (t, K), | Ẇ (t)| ≲ f 2 (t, K). ( 229 
)
Lemma 5.6. In notation of Theorem 1.11,

∃K > 1, δ > 0 such that if 0 < ϵ < δ, 0 < v ≤ ϵ 1 2 ln ( 1 ϵ ) 4 , (g 0 (x), g 1 (x)) = (g(0, x), ∂ t g(0, x)) and --→ g(0) ≤ ϵ 1 2
ln ( 1 ϵ ) 5 , then we have for 0 ≤ t that

max j∈{1, 2} |d j (t) -x j (t)| = O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ ) ln 1 ϵ 2 exp Ktϵ 1 2 ln 1 ϵ    , ( 230 
) max j∈{1, 2} | ḋj (t) -ẋj (t)| = O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ϵ 1 2 ln ln ( 1 ϵ ) ln 1 ϵ exp Ktϵ 1 2 ln 1 ϵ    . ( 231 
)
Proof of Lemma 5.6. First, we recall that

d(t) = 1 √ 2 ln 8 v 2 cosh √ 2vt + c , which implies that e - √ 2d(t) = v 2 8 sech √ 2vt + c 2 . ( 232 
)
We recall the notation W (t) = z(t) -d(t), V (t) = p(t) -ḋ(t). From the first inequality of Lemma 5.1, we have that

|V (0)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 . ( 233 
)
We already verified that W, V satisfy the following ordinary differential system

       Ẇ (t) = V (t) + O max ∥(g 0 , g 1 )∥ , ϵ ln 1 ϵ ϵ 1 2 exp Cϵ 1 2 t ln ( 1 ϵ ) , V (t) = -32e - √ 2d(t) W (t) + O(e - √ 2z(t) (W (t)) 2 ) + O max(∥(g0,g1)∥,ϵ ln ( 1 ϵ )) 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )
.

However, since v 2 ≤ ϵ ln ( 1 ϵ ) 8 , we deduce from (232) that e - √ 2d(t) ≲ ϵ ln ( 1 
ϵ
)8 for all t ≥ 0. So, while ∥W (s)∥ L ∞ [0,t] < 1, we have from the differential ordinary system (5) for t ≥ 0 and some constant C > 0 independent of ϵ that

| V (t)| ≲ ϵ ln ( 1 ϵ ) 8 ∥W (s)∥ L ∞ [0,t] + max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )
, from which we deduce the following estimate

|V (t) -V (0)| = O ϵt ln ( 1 ϵ ) 8 ∥W (s)∥ L ∞ [0,t] + O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) ϵ 1 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    .
In conclusion, while ∥W (s)∥ L ∞ [0,t] < 1, we have that

| Ẇ (t)| ≤ |V (0)| + O    max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) ϵ 1 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    + O ϵt ln ( 1 ϵ )
Finally, since W (0) = 0, the fundamental theorem of calculus and (234) imply the following estimate

∥W (s)∥ L ∞ [0,t] ≤ |V (0)|t + O    ϵt 2 ln ( 1 ϵ ) 8 ∥W (s)∥ L ∞ [0,t] + max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )    .
(235) Then, the estimates (233) and (235) imply if ϵ ≪ 1 that

|W (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ ) exp (2C + 1)ϵ 1 2 t ln ( 1 ϵ ) , ( 236 
) for 0 ≤ t ≤ ln ( 1 ϵ ) ln ln( 1 ϵ ) (8C+4)ϵ 1 2
. From ( 236) and (234), we deduce for 0

≤ t ≤ ln ( 1 ϵ ) ln ln ( 1 ϵ ) (8C+4)ϵ 1 2 that | Ẇ (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ 1 2 ln ln ( 1 ϵ ) exp (2C + 1)ϵ 1 2 t ln ( 1 ϵ ) . ( 237 
) Since |W (t)| ≲ ϵ 1 2 t, | Ẇ (t)|
≲ ϵt for all t ≥ 0, we can verify by a similar argument to the proof of Step 1 of Lemma 5.3 that for all t ≥ 0 there is a constant 1 < K ≲ (C + 1) such that

|W (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ )
exp Kϵ

1 2 t ln ( 1 ϵ ) , ( 238 
) | Ẇ (t)| ≲ max ∥(g 0 , g 1 )∥ , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ 1 2 ln ln ( 1 ϵ ) exp Kϵ 1 2 t ln ( 1 ϵ ) . ( 239 
)
In conclusion, estimates (230) and (231) follow from Remark 5.4, inequalities (238), (239) and triangle inequality. 

ϵ ) 8 for 0 ≤ t ≲ ln ( 1 ϵ ) 2 ϵ 1 2 . Moreover, assuming e - √ 2z(0) ln ( 1 ϵ ) 8 ≪ ϵ, if c > 0, then we have for all t ≥ 0 that e - √ 2d(t) = v 2 8 sech( √ 2vt + c) 2 ≤ v 2 8 sech(c) 2 = e - √ 2z(0) ≪ ϵ ln ( 1 ϵ ) 8 , otherwise if c ≤ -ln ( 1 ϵ ) 2 , since v ≲ ϵ 1 2 , then there is 1 ≲ K such that for 0 ≤ t ≤ K ln ( 1 ϵ ) 2 ϵ 1 2 , then 2| √ 2vt+c| > |c|, and so e - √ 2d(t) ≤ v 2 sech - c 2 2 ≪ ϵ ln ( 1 ϵ ) 8 . 1 
In conclusion, the result of Lemma 5.6 would be true for these two cases. , c = arctanh ẋ2 (0) -ẋ1 (0) 2v , so Theorem 2.9 implies that v ≲ ϵ 1 2 . From the Corollary 1.13 and the Theorem 1.11, we deduce that ∃C > 0 such that if ϵ ≪ 1 and 0 ≤ t

≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
, then we have that max

j∈{1, 2} |ẍ j (t)| = O max j∈{1,2} | dj (t)| + O ϵ 3 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln ( 1 ϵ ) , ( 240 
) e - √ 2z(t) = e - √ 2d(t) + O max e - √ 2d(t) , e - √ 2z(t) |z(t) -d(t)| = e - √ 2d(t) + O ϵ 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln ( 1 ϵ ) . ( 241 
)
Next, we consider a smooth function 0 ≤ χ 2 (x) ≤ 1 that satisfies

χ 2 (x) = 1, if x ≤ 9 20 , 0, if x ≥ 1 2 .
We denote

χ 2 (t, x) = χ 2 x -x 1 (t)
x -x 2 (t) .

From Theorem 4.1 and Remark 4.4, the estimates (240) and (241) of the modulation parameters imply that for the following functional

L 1 (t) = D 2 E H x2(t) 0,1 + H x1(t) -1,0 --→ g(t), --→ g(t) L 2 ×L 2 +2 R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)χ 2 (t, x)+ ẋ2 (t)(1-χ 2 (t, x)) dx -2 R g(t, x) U H x1(t) -1,0 (x) + U H x2(t) 0,1 (x) -U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) dx + 2 R g(t, x) ( ẋ1 (t)) 2 ∂ 2 x H x1(t) -1,0 (x) + ( ẋ2 (t)) 2 ∂ 2 x H x2(t) 0,1 (x) dx + 1 3 R U (3) H x2(t) 0,1 (x) + H x1(t)
-1,0 (x) g(t, x) 3 dx, and the following quantity δ 1 (t) denoted by 

δ 1 (t) = --→ g(t) e - √ 2z ( 
δ 2 (t) = --→ g(t) v 2 ϵ 1 2 sech ( √ 2vt + c) 2 + --→ g(t) ϵ 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln ( 1 ϵ ) + ϵ 3 2 e -9 √ 2z(t) 20 --→ g(t) + max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 + --→ g(t) 4 , | L1 (t)| = O(δ 2 (t)) if 0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
. Now, similarly to the proof of Theorem 4.5, we denote G(s) = max --→ g(s) , ϵ . From Theorem 4.1 and Remark 4.4, we have that there are positive constants K, k > 0 independent of ϵ such that

k --→ g(t) 2 ≤ L 1 (t) + Kϵ 2 .
We recall that Theorem 2.9 implies that

ln 1 ϵ ≲ z(t), e - √ 2z(t) + max j | ẋj (t)| 2 + max j∈{1, 2} |ẍ j (t)| = O(ϵ),
from which with the definition of G(s) and estimates ( 240) and (241) we deduce that

δ 1 (t) ≲ G(t)v 2 sech ( √ 2vt + c) 2 ϵ 1 2 + G(t)ϵ 39 20 + G(t) 2 ϵ 1 2 ln ( 1 ϵ ) , while 0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
. In conclusion, the Fundamental Theorem of Calculus implies that ∃K > 0 independent of ϵ such that 2 , we verify that while the term

G(t) 2 ≤ K G(0) 2 + t 0 G(s)v 2 sech ( √ 2vs + c) 2 ϵ 1 2 + G(s)ϵ 39 20 + G(s) 2 ϵ 1 2 ln ( 1 ϵ ) ds , ( 242 
) while 0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2 . Since d dt [tanh ( √ 2vt + c)] = √ 2v sech ( √ 2vt + c)
G(s)v 2 sech ( √ 2vt + c) 2 ϵ 1 2
is the dominant in the integral of the estimate (242), then G(t) ≲ G(0). The remaining case corresponds when G(s) 2 ϵ

1 2 ln ( 1 ϵ ) is the dominant term in the integral of (242) from an instant 0 ≤ t 0 ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
. Similarly to the proof of 4.5, we have for

t 0 ≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2 that G(t) ≲ G(t 0 ) exp C (t-t0)ϵ 1 2 ln ( 1 ϵ )
.

In conclusion, in any case we have for 0

≤ t ≤ ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2 that G(t) ≲ G(0) exp C tϵ 1 2 ln ( 1 ϵ ) . ( 243 
)
However, for T ≥

ln ln ( 1 ϵ ) ln ( 1 ϵ ) ϵ 1 2
and K > 2 we have that

ϵ ln 1 ϵ exp K ϵ 1 2 T ln ( 1 2 ) ≤ ϵ exp 2Kϵ 1 2 T ln ( 1 2 )
.

In conclusion, from the result of Theorem 4.5, we can exchange the constant C > 0 by a larger constant such that estimate (243) is true for all t ≥ 0.

A Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma A.1. With the same hypothesis as in Theorem 1.11 and using its notation, we have while max j∈{1 ,2} |d j (t)-

x j (t)| < 1 that max j∈{1, 2} | dj (t) -ẍj (t)| = O max j∈{1, 2} |d j (t) -x j (t)|ϵ + ϵz(t)e - √ 2z(t) + --→ g(t) ϵ 1 2 . Lemma A.2. For U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 , we have that U H x1(t) -1,0 (x) + H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) -U H x2(t) 0,1 (x) = 24e - √ 2z(t) H x1(t) -1,0 (x) (1 + e -2 √ 2(x-x1(t)) ) 1 2 + H x2(t) 0,1 (x) (1 + e 2 √ 2(x-x2(t)) ) 1 2 -30e - √ 2z(t) H x1(t) -1,0 (x) 3 (1 + e -2 √ 2(x-x1(t)) ) 1 2 + H x2(t) 0,1 (x) 3 (1 + e 2 √ 2(x-x2(t)) ) 1 2 + r(t, x), such that ∥r(t)∥ L 2 x (R) = O(e -2 √ 2z(t) ).
Proof. By directly computations, we verify that U H

x1(t) -1,0 (x) + H x2(t) 0,1 (x) -U H x1(t) -1,0 (x) -U H x2(t) 0,1 (x) = -24H x1(t) -1,0 H x2(t) 0,1 (H x1(t) -1,0 + H x2(t) 0,1 ) + 30H x1(t) -1,0 H x2(t) 0,1 ((H x1(t) -1,0 ) 3 + (H x2(t) 0,1 ) 3 ) + 60(H x1(t) -1,0 H x2(t) 0,1 ) 2 (H x1(t) -1,0 + H x2(t) 0,1 ).
First, from the definition of H 0,1 (x), we verify that 60(H

x1(t) -1,0 H x2(t) 0,1 ) 2 (H x1(t) -1,0 + H x2(t) 0,1 ) = 60e -2 √ 2z(t) H x2(t) 0,1 (1 + e 2 √ 2(x-x2(t)) )(1 + e -2 √ 2(x-x1(t)) ) +60e -2 √ 2z(t) H x1(t) -1,0 (1 + e -2 √ 2(x-x1(t)) )(1 + e 2 √ 2(x-x2(t))
) .

Using (4), we can verify using by induction for any k ∈ N that

d k dx k 1 (1 + e 2 √ 2x ) = d k dx k 1 - e 2 √ 2x (1 + e 2 √ 2x ) = d k dx k H 0,1 (x) 2 = O(1), (244) 
and since

H0,1(x) (1+e 2 √ 2x ) = e √ 2x (1+e 2 √ 2x ) 3 2
is a Schwartz function, we deduce that 60(H

x1(t) -1,0 H x2(t) 0,1 ) 2 (H x1(t) -1,0 + H x2(t) 0,1 ) is in H k x (R) for all k > 0 and (H x1(t) -1,0 H x2(t) 0,1 ) 2 (H x1(t) -1,0 + H x2(t) 0,1 ) H k (R) = O(e -2 √ 2z(t) ). (245) 
Next, using the identity

H x1(t) -1,0 (x)H x2(t) 0,1 (x) = - e - √ 2z(t) (1 + e 2 √ 2(x-x2(t)) ) 1 2 (1 + e -2 √ 2(x-x1(t)) ) 1 2 , ( 246 
) the identity 1 - 1 (1 + e 2 √ 2x ) 1 2 = e 2 √ 2x (1 + e 2 √ 2x ) 1 2 + (1 + e 2 √ 2x
) , and Lemma 2.3, we deduce that 24(H

x1(t) -1,0 ) 2 H x2(t) 0,1 + 24e - √ 2z(t) H x1(t) -1,0 (x) (1 + e -2 √ 2(x-x1(t)) ) 1 2 L 2 x (R) = O(e -2 √ 2z(t) ), (247) 30( 
H x1(t) -1,0 ) 4 H x2(t) 0,1 + 30e - √ 2z(t) (H x1(t) -1,0 (x)) 3 (1 + e -2 √ 2(x-x1(t)) ) 1 2 L 2 x (R) = O(e -3 √ 2z(t) ). ( 248 
)
The estimate of the remaining terms -24H

x1(t) -1,0 (H x2(t) 0,1 ) 2 , 30H x1(t) -1,0 (H x2(t)
0,1 ) 4 is completely analogous to (247) and (248) respectively. In conclusion, all of the estimates above imply the estimate stated in the Lemma A.2.

Proof of Lemma A.1. First, we recall the global estimate e - √ 2z(t) ≲ ϵ. We also recall the identity ( 27

) R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx = 2 √ 2,
and the global estimate e - √ 2z(t) ≲ ϵ. which, by integration by parts, implies that

R 24 H 0,1 (x)∂ x H 0,1 (x) (1 + e 2 √ 2(x) ) 1 2 -30 (H 0,1 (x)) 3 ∂ x H 0,1 (x) (1 + e 2 √ 2(x) ) 1 2 dx = 4. (249) 
We recall d 1 (t), d 2 (t) defined in [START_REF] Dorey | Kink-antikink collisions in the ϕ 6 model[END_REF] t) . We also recall the partial differential equation satisfied by the remainder g(t, x) (II), which can be rewritten as

∥∂ x H 0,1 ∥ 2 L 2 = ∂ 2 x H 0,1 2 
L 2 = 1 2 √ 2 , imply that dj (t) ∥∂ x H 0,1 ∥ 2 L 2 = (-1) j 4e - √ 2d ( 
U H x2(t) 0,1 (x) + H x1(t) -1,0 (x) -U H x1(t) -1,0 (x) -U H x2(t) 0,1 (x) -ẍ2 (t)∂ x H x2(t) 0,1 (x) = -∂ 2 t g(t, x) -∂ 2 x g(t, x) + Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) g(t, x) + 6 k=3 U (k) H x1(t) -1,0 + H x2(t) 0,1 g(t) k-1 (k -1)! -ẋ1 (t) 2 ∂ 2 x H x1(t) -1,0 (x) -ẋ2 (t) 2 ∂ 2 x H x2(t) 0,1 (x) + ẍ1 (t)∂ x H x1(t) -1,0 (x). ( 250 
)
In conclusion, from the estimate (249), Lemma A.2 and Lemma 2.3, we obtain that

U H x1(t) -1,0 + H x2(t) 0,1 -U H x1(t) -1,0 -U H x2(t) 0,1 , ∂ x H x2(t) 0,1 L 2 (R) -ẍ 2 (t) ∥∂ x H 0,1 ∥ 2 L 2 = -(ẍ 2 (t)-d2 (t)) ∥∂ x H 0,1 ∥ 2 L 2 + O |ẍ 1 (t)|z(t)e - √ 2z(t) + e - √ 2z(t) max j∈{1, 2} |x j (t) -d j (t)| + e -2 √ 2z(t) z(t) . ( 251 
)
We recall from the proof of Theorem 4.1 the following estimate t) .

R Ü H x2(t) 0,1 (x) -Ü H x2(t) 0,1 (x) + H x1(t) -1,0 (x) ∂ x H x2(t) 0,1 (x)g(t, x) dx = O --→ g(t) e - √ 2z ( 
Also, from the Modulation Lemma, we have that

⟨∂ 2 t g(t), ∂ x H x2(t) 0,1 ⟩ L 2 = d dt ⟨∂ t g(t), ∂ x H x2(t) 0,1 ⟩ L 2 + ẋ2 (t)⟨∂ t g(t), ∂ x H x2(t) 0,1 ⟩ L 2 = d dt ẋ2 (t)⟨g(t), ∂ 2 x H x2(t) 0,1 ⟩ L 2 + ẋ2 (t)⟨∂ t g(t), ∂ x H x2(t) 0,1 ⟩ L 2 = ẍ2 (t)⟨g(t), ∂ 2 x H x2(t) 0,1 ⟩ L 2 + 2 ẋ2 (t)⟨∂ t g(t), ∂ x H x2(t) 0,1 ⟩ L 2 .
In conclusion, since

∂ x H x2(t) 0,1 ∈ kerD 2 E pot H x2(t) 0,1
, we obtain from ( 251) and (250) that

|ẍ 2 (t) -d2 (t)| = O max j∈{1, 2} |d j (t) -x j (t)|ϵ + ϵz(t)e - √ 2z(t) + --→ g(t) e - √ 2z(t) + --→ g(t) ϵ 1 2
, the estimate of |ẍ 1 (t) -d1 (t)| is completely analogous, which finishes the demonstration.

Lemma A.3. For any δ > 0 there is a ϵ(δ) > 0 such that if

∥ϕ(x) -H 0,1 (x)∥ H 1 (R) < +∞, 0 < E pot (ϕ(x)) -E pot (H 0,1 ) < ϵ(δ), ( 252 
)
then there is a real number y such that

∥ϕ(x) -H 0,1 (x -y)∥ H 1 ≤ δ.
Proof of Lemma A.3. The proof of Lemma 2.6 will follow by a contradiction argument. We assume that there is a c > 0 and sequence of real functions (ϕ n (x)) n satisfying

lim n→+∞ E pot (ϕ n ) = E pot (H 0,1 ), ( 253 
) ∥ϕ n (x) -H 0,1 (x)∥ H 1 (R) < +∞, ( 254 
) such that inf y∈R ∥ϕ n (x) -H 0,1 (x + y)∥ H 1 (R) > c. ( 255 
) Since U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 and |E pot (ϕ n ) -E pot (H 0,1 )| ≪ 1 for 1 ≪ n, it is not difficult to verify from the definition of the potential energy functional E pot that if 1 ≪ n, then ∥ϕ n (x) -1∥ 2 L 2 ({x|ϕn(x)>1}) + dϕ n (x) dx 2 L 2 ({x|ϕn(x)>1}) ≲ |E pot (ϕ n ) -E pot (H 0,1 )| .
By an analogous argument, we can verify that

∥ϕ n (x)∥ 2 L 2 ({x|-1 2 <ϕn(x)<0}) + dϕ n (x) dx 2 L 2 ({x|-1 2 <ϕn(x)<0}) ≲ |E pot (ϕ n ) -E pot (H 0,1 )| ,
and if there is

x 0 ∈ R such that ϕ n (x 0 ) ≤ -1 2 , we would obtain that +∞ x0 1 2 dϕ n (x) dx 2 + U (ϕ n (x)) dx = +∞ x0 2U (ϕ n (x)) dϕ n (x) dx dx + 1 2 +∞ x0 dϕ n (x) dx -2U (ϕ n (x)) 2 dx ≥ 1 -1 2 2U (ϕ) dϕ = E pot (H 0,1 ) + 0 -1 2 2U (ϕ) dϕ > E pot (H 0,1 ), which contradicts (253) if n ≫ 1.
In conclusion, we can restrict the proof to the case where 0 ≤ ϕ n (x) ≤ 1 and n ≫ 1. Now, from the density of H 2 (R) in H 1 (R), we can also restrict the contradiction hypotheses to the situation where dϕn dx (x) is a continuous function for all n ∈ N. Also, we have that if ∥ϕ(x) -H 0,1 (x)∥ H 1 (R) < +∞, then E pot (ϕ(x)) ≥ E pot (H 0,1 (x)). In conclusion, there is a sequence of positive numbers (ϵ n ) n such that

E pot (ϕ n ) = E pot (H 0,1 ) + ϵ n , lim n→+∞ ϵ n = 0. Also, τ y ϕ(x) = ϕ(x -y) satisfies E pot (ϕ(x)) = E pot (τ y ϕ(x))
for any y ∈ R. In conclusion, since for all n ∈ N, lim x→+∞ ϕ n (x) = 1 and lim x→-∞ ϕ n (x) = 0, we can restrict to the case where

ϕ n (0) = 1 √ 2 , for all n ∈ N. For (v) + = max(v, 0) and (v) -= -(v -(v) + ) , since dϕn(x)
dx is a continuous function on x, we deduce that dϕn(x) dx + and dϕn(x) dx are also continuous functions on x for all n ∈ N. In conclusion, for any n ∈ N, we have that the set

U = x ∈ R| dϕ n (x) dx < 0 (256) is an enumerable union of disjoint open intervals (a k,n , b k,n ) k∈N , which are bounded, since lim x→+∞ ϕ n (x) = 1, lim x→-∞ ϕ n (x) = 0 and 0 ≤ ϕ n (x) ≤ 1. Now, let E be a set of open bounded intervals (h i,n , l i,n ) ⊂ R satisfying the conditions ϕ n (h i,n ) = ϕ n (l i,n ), (257) 
{i| (h i,n , l i,n ) ∈ E} = I ⊂ Z and, if j > i, l i,n < h j,n . For any i ∈ I, the following function

f i,n (x) = ϕ n (x) if x ≤ h i,n , ϕ n (x + l i,n -h i,n ) if x > h i,n , satisfies E pot (H 0,1 ) ≤ E pot (f i,n ) ≤ E pot (ϕ n ) = E pot (H 0,1 ) + ϵ n , which implies that li,n hi,n 1 2 dϕ n (x) dx 2 + U (ϕ n (x)) ≤ ϵ n .
Furthermore, we can deduce from Lebesgue's dominated convergence theorem that i∈I li,n hi,n 1 2

dϕ n (x) dx 2 + U (ϕ n (x)) ≤ ϵ n , (258) 
for every finite or enumerable collection

E of disjoint open bounded intervals (h i,n , l i,n ) ⊂ R, i ∈ I ⊂ Z such that ϕ n (h i,n ) = ϕ n (l i,n ). In conclusion, we can deduce from (258) that R dϕ n (x) dx 2 - dx ≤ 2ϵ n , (259) 
and so for 1 ≪ n we have that

dϕ n (x) dx - dϕ n (x) dx 2 L 2 (R) ≤ 8ϵ n , ϕ n (0) = 1 √ 2 . ( 260 
)
Moreover, we can verify that

E pot (ϕ n ) = 1 2 R dϕ n (x) dx -2U (ϕ n (x)) 2 dx + R 2U (ϕ n (x)) dϕ n (x) dx dx,
from which we deduce with lim x→-∞ ϕ n (x) = 0 and lim x→+∞ ϕ n (x) = 1 that

E pot (H 0,1 ) + ϵ n = E pot (ϕ n ) ≥ 1 2 R dϕ n (x) d(x) -2U (ϕ n (x)) 2 dx + 1 0 2U (ϕ) dϕ = 1 2 R dϕ n (x) d(x) -2U (ϕ n (x)) 2 dx + E pot (H 0,1 ).
Then, from estimate (260), we have that

dϕ n (x) dx = 2U (ϕ n (x)) + r n (x), ϕ n (0) = 1 √ 2 , ( 261 
) with ∥r n ∥ L 2 (R) ≲ ϵ n for all 1 ≪ n. We recall that U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 is a Lipschitz function in the set {ϕ| 0 ≤ ϕ ≤ 1}.
Then, because H 0,1 (x) is the unique solution of the following ordinary differential equation

dϕ(x) dx = 2U (ϕ(x)), ϕ(0) = 1 √ 2 ,
we deduce from Gronwall Lemma that for any K > 0 we have

lim n→+∞ ∥ϕ n (x) -H 0,1 (x)∥ L ∞ [-K,K] = 0, lim n→+∞ dϕ n (x) dx -Ḣ0,1 (x) L 2 [-K,K] = 0. (262) Also, if 1 ≪ n, then dϕn(x) dx 2 L 2 x (R)
< 2E pot (H 0,1 ) + 1, and so we obtain from Cauchy-Schwartz inequality that

|ϕ n (x) -ϕ n (y)| ≤ |x -y| 1 2 dϕ n dx 2 L 2 (R) < M |x -y| 1 2 , ( 263 
)
for a constant M > 0. The inequality (263) implies that for any 1 > ω > 0 there is a number h

(ω) ∈ N such that if n ≥ h(ω) then |ϕ n (x) -H 0,1 (x)| L ∞ {x| 1 ω <|x|} < ω, (264) 
otherwise we would obtain that there is 0 < θ < 1 4 and a subsequence (m n ) n∈N and a sequence of real numbers (

x n ) n∈N with lim n→+∞ m n = +∞, |x n | > n + 1 such that |ϕ mn (x n ) -1| > θ if x n > 0, ( 265 
)
|ϕ mn (x n )| > θ if x n < 0. (266) 
However, since we are considering ϕ n (x) ∈ H 2 (R) ⊂ C 1 (R) and 0 ≤ ϕ n ≤ 1, we would obtain from the mean value theorem that there would exist a sequence (y n ) n with y n > x n > n + 1 or

y n < x n < -n -1 such that 1 -θ ≤ ϕ mn (y n ) ≤ 1 + θ, if y n > 0, ( 267 
)
ϕ mn (y n ) = θ otherwise. (268) 
But, estimates (263), ( 267), (268) and identity

U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 would imply that 1 ≲ |x|≥n-2 U (ϕ mn (x)) dx for all n ≫ 1, (269) 
and because of estimate (262) and the following identity

lim K→+∞ K -K 1 2 Ḣ0,1 (x) 2 + U (H 0,1 (x)) = E pot (H 0,1 (x)), (270) 
estimate (269) would imply that lim n→+∞ E pot (ϕ mn ) > E pot (H 0,1 ) which contradicts our hypotheses. In conclusion, for any 1 > ω > 0 there is a number h(ω) such that if n ≥ h(ω) then (264) holds. So we deduce for any 0 < ω < 1 that there is a number h

1 (ω) such that if n ≥ h 1 (ω), then |ϕ n (x) -H 0,1 (x)| ≤ ω for all x ∈ R. (271) 
Then, if ω ≤ 1 100 , n ≥ h(ω) and K ≥ 200, estimates (271) and (262) imply that

+∞ K U (ϕ n (x)) + 1 2 dϕ n (x) dx 2 dx ≥ 1 2 +∞ K (1 -ϕ n (x)) 2 + dϕ n (x) dx 2 dx, ( 272 
) -K -∞ U (ϕ n (x)) + 1 2 dϕ n (x) dx 2 dx ≥ 1 2 -K -∞ ϕ n (x) 2 + dϕ n (x) dx 2 dx. ( 273 
)
In conclusion, from estimates (271), ( 272), (273) and

lim K→+∞ |x|≥K 1 2 Ḣ0,1 (x) 2 + U (H 0,1 (x)) dx = 0,
we obtain that lim n→+∞ ∥ϕ n -H 0,1 (x)∥ L 2 (R) = 0 and, from the equation in ( 261) is satisfied for each ϕ n , we conclude that lim n→+∞ dϕn dx -Ḣ0,1 (x)

L 2 (R) = 0. In conclusion, if 1 ≪ n, inequality (255) is false.
From Lemma A.3, we obtain the following corollary:

Corollary A.4. For any δ > 0 there is a ϵ 0 > 0 such that if ϵ ≤ ϵ 0 , ∥ϕ(x) -H 0,1 (x) -H -1,0 (x)∥ H 1 (R) < +∞ and E pot (ϕ) = 2E pot (H 0,1 ) + ϵ, then there are x 2 , x 1 ∈ R such that x 2 -x 1 ≥ 1 δ , ∥ϕ(x) -H 0,1 (x -x 2 ) + H -1,0 (x -x 1 )∥ H 1 x (R) ≤ δ. ( 274 
)
proof of Corollary A.4. First, from a similar reasoning to the proof of Lemma A.3 we can assume by density that dϕ(x) dx ∈ H 1 x (R). Next, from hypothesis ∥ϕ(x) -H 0,1 (x) -H -1,0 (x)∥ H 1 (R) < +∞, we deduce using the mean value theorem that there is an y ∈ R such that ϕ(y) = 0. Now, we consider the functions

ϕ -(x) = ϕ(x) if x ≤ y, 0 otherwise, and 
ϕ + (x) = 0 if x ≤ y, ϕ(x) otherwise.
Clearly, ϕ(x) = ϕ -(x) for x < y and ϕ(x) = ϕ + (x) for x > y. From identity U (0) = 0, we deduce that E pot (ϕ) = E pot (ϕ -) + E pot (ϕ + ), also we have that E pot (H -1,0 ) < E pot (ϕ -), E pot (H 0,1 ) < E pot (ϕ + ).

In conclusion, since E pot (ϕ) = 2E pot (H 0,1 ) + ϵ, Lemma A.3 implies that if ϵ < ϵ 0 ≪ 1, then there is

x 2 , x 1 ∈ R such that ∥ϕ(x) -H 0,1 (x -x 2 ) -H -1,0 (x -x 1 )∥ H 1 ≤ ∥ϕ + -H 0,1 (x -x 2 )∥ H 1 + ∥ϕ --H -1,0 (x -x 1 )∥ H 1 ≤ δ. ( 275 
)
So, to finish the proof of Corollary A.4, we need only to verify that we have x 2 -x 1 ≥ 1 δ if 0 < ϵ 0 ≪ 1. But, we recall that H 0,1 (0) = 1 √ 2 , from which with estimate (275) we deduce that

ϕ + (x 2 ) - 1 √ 2 ≲ δ, ϕ -(x 1 ) + 1 √ 2 ≲ δ, ( 276 
)
so if ϵ 0 ≪ 1, then x 1 < y < x 2 . From Lemma 2.8, we can verify that f (z) = DE pot (H z 0,1 (x) + H -1,0 (x)) L 2 is a bounded function in R + , from which with estimate (275) we deduce that if 0 < ϵ 0 ≪ 1, then

|E pot (ϕ) -E pot (H 0,1 (x -x 2 ) + H -1,0 (x -x 1 ))| < e -2 √ 2 1 δ .
In conclusion, we obtain from Lemma 2.4 and the estimate above that x 2 -x 1 ≥ 1 δ if 0 < ϵ 0 ≪ 1 and ϵ < ϵ 0 . Now, we complement our material by presenting the proof of Identity [START_REF] Sandier | Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics[END_REF] and the proof of The Modulation Lemma.

Proof of Identity [START_REF] Sandier | Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics[END_REF]. From the definition of the function H 0,1 (x), we have dy,

= 1 2 √ 2 (-4y -3 2 -4y -1 2 ) ∞ 1 = 2 √ 2.
Proof of the Modulation Lemma. First, let x 2 , x 1 ∈ R and g ∈ H 1 (R) such that x 2 -x 1 ≥ 1 δ0 with δ 0 > 0 small enough to be chosen later. Then, we define the following map F : R 2 × H 1 (R) → R 2 by

F ((h 2 , h 1 ), g(x)) = ⟨∂ x H x2+h2 0,1 , H x2 0,1 + H x1 -1,0 -H x1+h1 -1,0 + g⟩ L 2 ⟨∂ x H x1+h1 -1,0 , H x2 0,1 + H x1 -1,0 -H x2+h2 0,1 + g⟩ L 2
for any ((h 1 , h 2 ), g) ∈ R 2 ×H 1 (R). Clearly, F (0, 0, 0) = (0, 0), also, we can verify that the Derivative DF h2,h1 ((0, 0), g) is given by

∥∂ x H 0,1 ∥ 2 L 2 + ⟨∂ x H x2 0,1 , dg dx ⟩ ⟨∂ x H x2 0,1 , ∂ x H x1 -1,0 ⟩ ⟨∂ x H x2 0,1 , ∂ x H x1 -1,0 ⟩ ∥∂ x H 0,1 ∥ 2 L 2 + ⟨∂ x H x1 -1,0 , dg dx ⟩ .
Then, R g (h 2 , h 1 ) = F (h 2 , h 1 , g) -F (0, 0, g) -DF h2,h1 (0, 0, g)(h 2 , h 1 ) satisfies the following identity

R g (h 2 , h 1 ) = ⟨∂ x H x2+h2 0,1 -∂ x H x2 0,1 + h 2 ∂ 2 x H x2 0,1 , g⟩ ⟨∂ x H x1+h1 -1,0 -∂ x H x1 -1,0 + h 1 ∂ 2 x H x1 -1,0 , g⟩ + ⟨∂ x H x2+h2 0,1 , H x2 0,1 -H x2+h2 0,1 -h 2 ∂ x H x2+h2 0,1 ⟩ ⟨∂ x H x1+h1 -1,0 , H x1 -1,0 -H x1+h1 -1,0 -h 1 ∂ x H x1+h1 -1,0 ⟩ + ⟨∂ x H x2+h2 0,1 , H x1 -1,0 -H x1+h1 -1,0 ⟩ -h 1 ⟨∂ x H x2 0,1 , ∂ x H x1 -1,0 ⟩ ⟨∂ x H x1+h1 -1,0 , H x2 0,1 -H x2+h2 0,1 ⟩ -h 2 ⟨∂ x H x2 0,1 , ∂ x H x1 -1,0 ⟩ (277) 
for all (h 2 , h 1 ) ∈ R 2 , also it is not difficult to verify that R g (0, 0) = (0, 0). Also for δ 0 > 0 small enough, if max{|h ). As a consequence, the result of the Modulation Lemma follows from the Implicit Function Theorem for Banach Spaces with the fact that F ((0, 0), 0) = (0, 0).

B Optimality of Theorem 1.7

Theorem B.1. In notation of Theorem 1.7, for any constant C > 0 and any function s : R + → R + with lim h→0 s(h) = 0, we can find a positive value δ(s) such that if 0 < ϵ ≤ δ(s), then for any --→ g(0) ≤ ϵs(ϵ) there is a 0 < T ≲ ln ( 1 ϵ ) ϵ such that ϵ ≲ --→ g(T ) .

Proof of Optimality of Theorem 1.7. We use the notations of Theorem 1.7 and Theorem 1.11. Clearly, if the result of Theorem B.1 is false, then by contradiction there is a function q : R + → R + with lim h→0 q(h) = 0 such that for any 1 ≪ N ∈ N is possible to have --→ g(t) ≤ q(ϵ)ϵ (279) for all 0 ≤ t ≤ N ln ( -1,0 , the estimates (283), ( 284), ( 285), ( 287), ( 289) and (292) imply that there is a uniform constant K 1 > 0 such that if ϵ ≪ 1 enough, then for j ∈ {1, 2} we have that for 0 ≤ t ≤ N ln ( The conclusion of the demonstration will follow from studying separate cases in the choice of 0 < v, c. We also observe that K, K 1 are uniform constants and the value of N ∈ N >0 can be chosen in the beginning of the proof

(

  D1) | H 0,1 (x) |≤ e - √ 2(-x)+ , (D2) | H -1,0 (x) |≤ e -

) Step 7 .

 7 (Conclusion of estimate of | Ḟ (t)|) From the identities (181) and (180), we obtain that

Remark 5 . 7 . 1 ϵ 2 ,

 5712 We recall the definition (204) of d(t). It is not difficult to verify that if -) 8 and c ≤ -ln ( 1 ϵ ) was true, then we would have that e - √ 2d(t) ≪ ϵ ln (

From

  g(0) , ϵ , we deduce from Lemmas 5.3, 5.6 and Remarks 5.4, 5.5 and 5.7 the statement of Theorem 1.11.

2

  and since z(0) = d(0), ż(0) = ḋ(0), we have that v, c satisfy the following identities v

R 8 ( 2 √

 82 H 0,1 (x)) 3 -6(H 0,1 (x)) of variable y(x) = (1 + e 2x ), we obtain R 8(H 0,1 (x)) 3 -6(H 0,1 (x))

  x)2 dx of (160). The construction of functional F 4 (t) is based on the momentum correction term of Lemma 4.2 of[START_REF] Lawrie | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF].

	To estimate dF4(t) dt	with precision of O(δ(t)), it is just necessary to study the time derivative of
		2

R ∂ t g(t, x)∂ x g(t, x) ẋ1 (t)ω 1 (t, x) dx, (

161

)

since the estimate of the other term in F 4 (t) is completely analogous. First, we have the identity

6 Proof of Theorem 1.7

  We recall from Theorem 1.11 the notations v, c, d 1 (t), d 2 (t) and we denote d(t) = d 2 (t) -d 1 (t) that satisfies

	If assume that --→ g(0) ≥ ϵ ln ( 1 ϵ ) the result of Theorem 1.7 is a direct consequence of Theorem 4.5. So, from now on, we --→ g(0) < ϵ ln ( 1 ϵ ). d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt + c) 2 , e -√ 2d(t) = v 2 8 sech ( √ 2vt + c) 2 .
	From the definition of d 1 (t), d 2 (t), d(t), we know that max j{1, 2} | dj (t)| + e -	√	2d(t) = O v 2 sech ( √	2vt + c)

  1 |, |h 2 |} = O(δ 0 ), ∥g∥ H 1 (R) ≤ δ 0 , it is not difficult to verify from Lemma 2.3 that|R g (h 2 , h 1 )| ≲ ∥g∥ H 1 max{|h 1 |, |h 2 |} 2 + max{|h 1 |, |h 2 |} 3 + max{|h 1 |, |h 2 |} 2 (x 2 -x 1 )e - , h 1 ), g) ∈ R 2 × H 1 (R) such that max{|h 2 |, |h 1 |} = O(δ 0 ) and ∥g∥ H 1 ≤ δ 0 .In particular, estimate (278) implies that DF h2,h1 ((h 2 , h 1 ), g) is an uniformly non-degenerate matrix, for any (h 2 , h 1 ), (x 2 , x 1 ) ∈ R 2 and g ∈ H 1 (R) such x 2 -x 1 ≥ 1 δ0 , ∥g∥H 1 ≤ δ 0 and max{|h 2 |, |h 1 |} = O(δ 0

			√	2(x2-x1) ,
	from which we deduce that	|R g (h 2 , h 1 )| = O (δ 2 0 + e -	√ 2δ 0 )(|h 1 | + |h 2 |) , 2	(278)
	for any ((h 2			

  (x)⟩ L 2 (R) = 0, ⟨g(t, x), ∂ x H (x)⟩ L 2 (R) = 0. Also, for all t ≥ 0, we have that g(t, x) has a unique representation asg(t, x) = P 1 (t)∂ 2 x H ≲ ϵ ln ( 1 ϵ ) if 0 < ϵ ≪ 1,we deduce from the equation (282) that there is a uniform constant K > 1 such that for all t ≥ 0 we have the following estimate∥g(t)∥ L 2 K ≤ |P 1 (t)| + |P 2 (t)| + ∥r(t)∥ L 2 (R) ≤ K constant C > 0.From the partial differential equation (1) satisfied by ϕ(t, x) and the representation (280) of g(t, x), we deduce in the distributional sense that for any h(x) ∈ H1 (R) that + |P j (t)ẍ j (t)| + |P j (t) ẋj (t) 2 | .which with the Theorem 2.9 imply that there is a uniform constant C > 0 such that

	such that From Lemma A.2 and estimates (287) and (289), we obtain from (290) that
	⟨g(t, x), ∂ x H -1,0 x2(t) x1(t) h(x), ( P1 (t) + ẋ1 (t) 2 )∂ 2 x H x1(t) -1,0 + ( P2 (t) + ẋ2 (t) 2 )∂ 2 x H x2(t) 0,1 L 2 x (R) = h(x), -P 1 (t) -∂ 2 x + Ü (H -1,0 ) ∂ 2 x1(t) x H 0,1 x1(t) -1,0 (x) + P 2 (t)∂ 2 x H x2(t) 0,1 (x) + r(t, x), (280) x1(t) -1,0 h(x), -P 2 (t) -∂ 2 x + Ü (H x2(t) 0,1 ) ∂ 2 x H x2(t) 0,1 -∂ 2 t r(t) -∂ 2 x r(t) + Ü (H x2(t) 0,1 + H x1(t) -1,0 )r(t) L 2 x (R)	L 2 (R)
	such that r(t) satisfies the following new orthogonality conditions ⟨r(t), ∂ 2 x H x1(t) -1,0 ⟩ L 2 (R) = 0, ⟨r(t), ∂ 2 x H + O ∥h∥ L 2 max √ 2d(t) + |z(t) -d(t)|e -|ẍ j (t) -dj (t)| + e -j∈{1, 2} x2(t) 0,1 ⟩ L 2 (R) = 0. √ 2z(t) + e -2 In conclusion, we deduce that ∥g(t, x)∥ 2 L 2 (R) = Ḧ0,1 (x) +O ∥h∥ L 2 ∥g(t)∥ 2 H 1 + max j∈{1, 2} |ẍ j (t)| + max j∈{1, 2} | Ṗj (x) ẋj (t)| + max j∈{1, 2} |P j (t)|e -√ 2z(t) (291) √ 2z(t) (281) 2 L 2 (P 2 1 + P 2 2 ) + ∥r(t)∥ 2 L 2 x (R + 2P 1 P 2 ⟨ Ḧz(t) (282) 0,1 (x), Ḧ-1,0 (x)⟩ L 2 (R) . From the condition (281), we deduce that
	We recall from Theorem 2.9 that 1 √ 2 ln ( 1 ϵ ) < z(t) for all t ≥ 0. Since, from Lemma 2.3, we have that ⟨∂ 2 x H x1(t) -1,0 , ∂ 2 x H x2(t) 0,1 ⟩ ≲ z(t)e -√ 2z(t) and z(t)e -√ g(t) . (283) ∂ 2 t r(t), ∂ 2 x H x2(t) 0,1 L 2 = d dt ẋ2 (t) r(t), ∂ 3 x H x2(t) 0,1 L 2 + ẋ2 (t) ∂ t r(t), ∂ 3 x H x2(t) 0,1 L 2 , 2z(t) --→ ∂ 2 t r(t), ∂ 2 x H x1(t) -1,0 L 2 = d dt ẋ1 (t) r(t), ∂ 3 x H x1(t) -1,0 L 2 + ẋ1 (t) ∂ t r(t), ∂ 3 x H x1(t) -1,0 L 2 ,
	From Theorem 2.9 and orthogonality condition (281), we deduce that ∂ t r(t, x), ∂ 2 x H x2(t) 0,1 (x) L 2 = ẋ2 (t) r(t, x), ∂ 3 x H x2(t) 0,1 (x) ∂ 2 t r(t), ∂ 2 x H x2(t) 0,1 L 2 ≤ Cϵ 1 2 --→ r(t) , ∂ 2 t r(t), ∂ 2 x H x1(t) -1,0 L 2 ≤ Cϵ L 2 = O ∥r(t)∥ L 2 ϵ 1 2 --→ r(t) . 1 2 From (283), (284) and (285), we obtain that --→ r(t) ≲ --→ g(t) . In conclusion, after we apply the partial differential (292)
	equation (291) in distributional sense to ∂ 2 x H	x2(t) 0,1 , ∂ 2 x H	x1(t)
										(285)
	We recall from Theorem 2.10 the following estimate
						ϵ K	≤	--→ g(t)	2	+ ẋ1 (t) 2 + ẋ2 (t) 2 + e -	√	2z(t) ≤ Kϵ	(286)
										M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	,	(287)
				max j∈{1, 2}	| ẋj (t) -ḋj (t)| ≤ ϵ	3 2 ln	1 ϵ	M	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	,	(288)
						max j∈{1, 2}	|ẍ j (t) -dj (t)| ≤ ϵ	3 2 ln	1 ϵ	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	,	(289)
	for a uniform h(x), ( P1 (t) + ẋ1 (t) 2 )∂ 2 x H -1,0 + ( P2 (t) + ẋ2 (t) 2 )∂ 2 x1(t) x H	x2(t) 0,1	L 2 x (R)	= h(x), -P 1 (t) -∂ 2 x + Ü (H -1,0 ) ∂ 2 x1(t) x H	x1(t) -1,0
	h(x), -P 2 (t) -∂ 2 x + Ü (H	x2(t) 0,1 ) ∂ 2 x H 0,1 x2(t)	-∂ 2 t r(t) -∂ 2 x r(t) + Ü (H 0,1 x2(t)	+ H	x1(t) -1,0 )r(t)	L 2 x (R)
	-h(x), U (H 0,1 x2(t)	+ H	x1(t)			
	x2(t) 0,1	+ H	x1(t) -1,0 ) -Ü (H	x1(t) -1,0 ) ∂ 2 x H -1,0 -P 2 (t) Ü (H x1(t) 0,1 x2(t)	+ H -1,0 ) -Ü (H x1(t)	x2(t) 0,1 ) ∂ 2 x H 0,1 x2(t)
	1 ϵ ) 1 2 2 +O ∥h∥ L 2 ∥g(t)∥ ϵ H 1 + max j∈{1, 2}	|ẍ j (t)| + max j∈{1, 2}
										(290)

= T if ϵ ≪ 1 enough. From Modulation Lemma, we can denote the solution ϕ(t, x) as

ϕ(t, x) = H x1(t) -1,0 (x) + H x2(t) 0,1 (x) + g(t, x), .

In conclusion, estimate (283) and Lemma 2.3 imply that there is a K > 1 such that

| Ṗ1 (t)| + | Ṗ2 (t)| + ∥∂ t r(t)∥ L 2 (R) ≤ K --→ g(t)

(284)

for all t ≥ 0. Finally, Minkowski inequality and estimate (283) imply that there is a uniform constant

K > 1 such that ∥∂ x r(t, x)∥ L 2 (R) ≤ K --→ g(t) .

for some uniform constant K > 1. Now, from hypothesis (279), we obtain from Theorem 1.11 and Corollary 1.13 that there are constants M ∈ N and C > 0 such that for all t ≥ 0 the following inequalities are true max

j∈{1, 2} |x j (t) -d j (t)| ≤ ϵ ln 1 ϵ -1,0 ) -U (H x2(t) 0,1 ) -U (H x1(t) -1,0 ) -ẍ1 (t)∂ x H x1(t) -1,0 (x) -ẍ2 (t)∂ x H x2(t) 0,1 (x) L 2 x (R)

h(x), -P 1 (t) Ü (H | Ṗj (x) ẋj (t)| + max j∈{1, 2} |P j (t)|e - √ 2z(t) + |P j (t)ẍ j (t)| + |P j (t) ẋj (t) 2 | .

  Pj (t) + ẋj (t) 2 ≤ K 1 e -

							ϵ	1 2	1 ϵ )							
																	√	2d(t) + ϵ	3 2 ln	1 ϵ	M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	+ ϵq(ϵ) ,
	from which we deduce for all 0 ≤ t ≤ N	ln ( 1 ϵ ) 2 ϵ 1	that
						2 j=1	Pj (t) + ẋj (t) 2 ≤ 2K 1 e -√	2d(t) + ϵ	3 2 ln	1 ϵ	M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	+ ϵq(ϵ) .	(293)
	Since		2 j=1 Pj (t) ≥ -			2 j=1 Pj (t) + ẋj (t) 2 +	2 j=1 ẋj (t) 2 , we deduce from the estimates (293) and (286) that
	2 j=1	Pj (t) ≥	ϵ K	-e -	√	2z(t) +	--→ g(t)	2	-2K 1 e -√	2d(t) + ϵ	3 2 ln	1 ϵ	M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	-2K 1 ϵq(ϵ). (294)
	We recall that from the statement of Theorem 1.11 that e -	√	2d(t) = v 2 8 sech ( √	2vt + c)	2 , with v = ż(0) 2 4	+
	8e -	√	2z(0)	1 2 , which implies that v ≲ ϵ	1 2 . Since we have verified in Theorem 2.9 that e -	√	2z(t) ≲ ϵ, the mean
	value theorem implies that |e -	√	2z(t) -e -	√	2d(t) | = O(ϵ|z(t) -d(t)|), from which we deduce from 287 that
												|e -	√	2z(t) -e -	√	2d(t) | = O ϵ 2 ln	1 ϵ	M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t	.
	In conclusion, if ϵ ≪ 1 enough, we obtain for 0 ≤ t ≤	N ln ( 1 ϵ ) 2 ϵ 1	from (294) that
	2 j=1	Pj (t) ≥	ϵ K	-e -√	2d(t) +	--→ g(t)	3 2 ln	1 ϵ	M +1	exp	10Cϵ ln ( 1 ϵ ) 1 2 t

2 -4K 1 e - √ 2d(t) + ϵ -2K 1 ϵq(ϵ). (295)

∥W (s)∥ L ∞ [0,t] . (234)

to be as much large as we need. Case 1.(v 2 ≤ 8ϵ (1+4K1)2K .) From inequality (295), we deduce that

then, from (279) we deduce for 0

that if ϵ is small enough, then 

so we obtain a contradiction by similar argument to the Case 1.

, we have during the

implies that 2 j=1 Pj (t) ≥ ϵ 4K is true in this time interval. From the Fundamental Calculus Theorem, we have that

In conclusion, hypothesis (279) and estimate (284) imply for T = 2 (1+2K1)

√ 2 ln ( 1 ϵ ) 8K