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Dynamics of two interacting kinks for the ¢° model

immediate

Abstract

We consider the nonlinear wave equation known as the ¢° model in dimension 14+1. We describe the
long time behavior of all the solutions of this model close to a sum of two kinks with energy slightly larger
than twice the minimum energy of non constant stationary solutions. We prove orbital stability of two
moving kinks. We show for low energy excess e that these solutions can be described for long time less
o equivalent than —In (6)67% as the sum of two moving kinks such that each kink’s center is close to an
explicit function which is a solution of an ordinary differential system. We give an optimal estimate in the
energy norm of the remainder (g(t), 9:g(t)) and we prove that this estimate is achieved during a finite instant
t=T< fln(e)e_%.

1 Introduction

We consider a nonlinear wave equation equation known as the #% model. For the potential function U(¢) =
¢*(1 — ¢?)? and U(p) = 2¢ — 8¢ + 6¢°, the equation is written as

DPp(t,x) — 2p(t,x) + U(p(t,x)) =0, (t,x) € R x R. (1)

The potential energy Fp, the kinetic energy Ej;, and total energy Eioiq associated to the equation are
given by mod z

Epot(¢(t)) = %/Rax¢(t,x)2dx+/ﬂ§¢(t,x)2(l—qﬁ(t,m)z)?d%

Ein(6(t)) = % /R Dy p(t, )% du,

Frotat(6(t), 0:0(t)) = 1/R [0:0(t,2)* + 00(t, 2)°] d:c+/R¢>(t,x)2(1 — o(t,x)?)? d.

2

We say that if a solution ¢(¢, z) of the integral equation associated to has Eiotal (¢, 01¢) < 400, then it is in
the energy space. The solutions of in the energy space have constant total energy Fiorai(p(t), 0:d(t)). By
standard arguments, the Cauchy Problem associated is locally well-posed in the energy space, moreover is
globally well-posed since U(¢) = ¢*(1 — ¢?)? satisfies lim| 4|00 U () = +00.

The stationary solutions of are the critical points of the potential energy. The only non-constant
stationary solutions in (|1)) are the topological solitons called kinks and anti-kinks, for more details see chapter
5 of [2I]. The kinks of (1)) are given by

6\/5(17&)

Hyi(z—a) = (1 + e2V3—a))

- H_19(x —a) = —Hop1(—x + a)
2

for any real a. The study of kink and multi kinks solitons solutions of nonlinear wave equations has applications
in many domains of mathematical physics. More precisely, the model that we study has applications in
condensed matter physics [2] and cosmology [32], [13], [10].

It is well known that the set of solutions in energy Space of for any potential U is invariant under space
translation, time translation and space reflection. Also, for one of the stationary solutions H of and any
—1 < v < 1, we have that the following solitary wave

— ot
I ( x—v 1 )7
(1-v)f
which is the Lorentz transform of H is a solution of .
The problem of stability of multi-kinks is of great interest in mathematical physics, see for example [7], [9].

For the integrable model mKdV, Muiioz proved in [24] the H'! stability and asymptotic stability of multi-kinks.
However, for many non-integrable models such as the ¢® nonlinear wave equation, the asymptotic and long time



dynamics of multi-kinks after the instant where the collision or interaction happens are still unknown, even
though there are numerical studies of kink-kink collision for the ¢® model, see [9], which motivate our research
on the topic of the description of long time behavior of a kink-kink pair.

For nonlinear wave equation models in 1 + 1 space dimension, results of stability for a single kink were
obtained, for example for the ¢* model it was obtained asymptotic stability for odd perturbations in [I7] and
[6]. Also, it was recently proved in [I§] by Martel, Munoz, Kowalczyk, and Van Den Bosch asymptotic stability
of a single kink for a general class of nonlinear wave equations, including the model which we study here.

The main purpose of our material is to describe the long time behavior of solutions ¢(¢,z) of in the
energy space such that

lim ¢t z) =1,

r—+00

mggloo ¢(t7 .’E) =-1

with total energy equals to 2E,.(Ho1) + ¢, for 0 < e < 1. More precisely, we proved orbital stability for a sum
of two moving kinks with total energy 2E,,(Hp 1) + € and we verified that the remainder has a better estimate
during a long time interval which goes to R as € — 0, indeed we proved that the estimate of the remainder
during this long time interval is optimal. Also, we prove that the dynamics of the kinks movement is very close
to two explicit functions d; : R — R defined in Theorem during a long time interval. This result is very
important to understand the behavior of two kinks after the instant of collision, which happens when the kinetic
energy is minimal, indeed, our main results Theorem [I.7] and Theorem describe the dynamics of the kinks
before and after the collision instant for a long time interval. The numerical study of interaction and collision
between kinks for the ¢® model was done in [9], in which it was verified that the collision of kinks is close to an
elastic collision when the speed of each kink is low and smaller than a critical speed v..

For nonlinear wave equation models in dimension 2+ 1, there are similar results obtained in the dynamics of
topological multi-solitons. For the Higgs Model, there are results in the description dynamics of multi-vortices
in [28] obtained by Stuart and in [I2] obtained by Gustafson and Sigal. Indeed, we took inspiration from the
proof and statement of Theorem 2 of [I2] to construct our main results. Also, in [29], Stuart described the
dynamics of monopole solutions for the Yang-Mills-Higgs equation. For more references, see also [30], []], [20]
and [IT].

In [I], Bethuel, Orlandi and Smets described the asymptotic behavior of solutions of a parabolic Ginzburg-
Landau equation closed to multi-vortices in the initial instant. For mores references, see also [L5] and [27].

There are also results in the dynamics in multi-vortices for nonlinear Schrédinger equation, for example
the description of the dynamics of multi-vortices for the Gross-Pitaevski equation was obtained in [25] by
Ovchinnikov and Sigal and results in the dynamics of vortices for the Ginzburg-Landau-Schrédinger equations
were proved in [5] by Colliander and Jerrard, see also [16] for more information about Gross-Pitaevski equation.

1.1 Main results

We recall that the objective of this paper is to show orbital stability for the solutions of the equation which
are close to a sum of two interacting kinks in an initial instant and estimate the size of the time interval where
better stability properties hold. The main techniques of the proof are modulation techniques adapted from [19],
[23] and [26] and a refined energy estimate method to control the size of the remainder term.

Notation 1.1. For any D C R, any real function f: D C R — R, a real positive function g with domain D is
in O(f(z)) if and only if there is a uniform constant C > 0 such that 0 < g(z) < C|f(x)|. We denote that two
real non-negative functions f,g: D C R — R>( satisfy

SY
if there is a constant C' > 0 such that
| f(z)|<C|g(x)]|, for allx € D.
If f <gand g < f, we denote that f = g. We use the notation (x), = max(x,0). If g(t,z) € CY(R, L3(R)) N
C(R, H\(R)), then we define g(t) € H'(R) x LA(R) by
(8] = (9(0), 1o (1),

and we also denote the energy norm of the remainder gﬁs as

9@ = 19Ol g0 + 109 2s

to simplify our notation in the text.



Definition 1.2. We define S as the set g € L>(R) such that
1. % ¢ [2(R),
2. Jo, l9(z) — 112 dr < o,
3. fR<0 lg(x) + 1|2 dz < oc.

The partial differential equation is locally well-posed in the affine space S x L?(R). Motivated by the
proof and computations that we are going to present, we also consider:

Definition 1.3. We define for x1, o € R

Hgi(x) = Ho1(x — x2) and H™ o(x) = H_10(z — 71),
and we say that xo is the kink center of Hy(w) and x1 is the kink center of H”} (x).
Remark 1.4. Indeed, S ={g € L*(R) | g— Ho1 — H_10 € H'(R)}.

There are also non-stationary solutions (¢(t, ), 9:¢(t, x)) of (1)) with finite total energy Fiotai(P(t), Orp(t))

that satisfies for all ¢ € R
lim ¢(t,z) =1, lim ¢(t,z)=0. (2)
Tr—r — 00

r—r 400

But, for any a € R, the kinks Hy 1(z —a) are the unique functions that minimize the Potential Energy in the set
of functions ¢(z) satisfying condition (2]), the proof of this fact follows from the Bogomolny identity, see [21] or
section 2 of [I9]. By a similar reasoning, we can verify that all functions ¢(z) € S have Epoi(¢) > 2Epot(Ho1).

Definition 1.5. We define the energy excess € of a solution (p(t),0;¢(t)) € S x L?(R) as the following value

€= Etotal(¢(t)7 5t¢’(t)) - 2Epot(H0,1)~

Also, for ¢(t) solution of (T)), we denote the Kinetic Energy of ¢(t) by Eyin(¢(t)) = E(,0;¢) — Epor(6(2)).
We recall the notation (z)4 = max(z,0). It’s not difficult to verify the following inequalities

(D1) | Hoq(x) |< e V224,
(D2) | H_y () |< e™V2@+,
(D3) | Hoa(z) |< v2e V24,
(D4) | H_yo(x) |< v2em V@),

Moreover, since ) _
Hoa(z) = U(Ho,1(x)), (3)

we can verify by induction the following estimate

dkHQJ (.’L‘)

e <, min (6_2‘/593, eﬁx) (4)

~

for all k € N\ {0}. The following result is crucial in the framework of this material:

Lemma 1.6 (Modulation Lemma). 3Cy,dp > 0, such that if 0 < § < &g, w2, 1 are real numbers with
x —x1 > 5 and g € HY(R) satisfies ||g|| 2 < 0, then for ¢(x) = H_10(x — x1) + Ho1(x — x2) + g(x), Ny, yo
such that for

91(z) = ¢(z) — H_10(z — y1) — Hoa(z — y2),

the four following statements are true
1 (g1, 0:H 1 0(z —y1))12 =0,
2 (g1, OxHo1(z — y2))r2 =0,
3 HngHl(]R) < Cyo,
4 ly2—zo |+ |1 — a1 | < Cod.
We will refer the first and second statements as the orthogonality conditions of the Modulation Lemma.

Proof. See the Appendix section [A]l O



Now, our main results are the following:
Theorem 1.7. 3C,§y > 0, such that if € < &y and
(6(0),:9(0)) € S x L*(R)

with Eiota1(6(0), 0:0(0)) = 2Ep0(Ho,1) + €, then there are x2,x1 € C?(R) functions such that the unique global
time solution ¢(t,x) of is given by

¢(t) = Hoa(z — 22(t)) + Ho10(z — 21(¢)) + 9(1), (5)
with g(t) satisfying orthogonality conditions of the Modulation Lemma and
e Ve~ ) 4 max ;e 0y | #5(t) | +maxje(r2) 2562 + [[(9(t), g ()32 S €
Furthermore, we have that
Cez | |
In (%)

Remark 1.8. In notation of the statement of Theorem for any § > 0, there is 0 < K(8) < 1 such that
if 0 < € < K(5), Erorar(¢(0),0:¢0(0)) = 2E,0(Ho,1) + €, then we have that [|(g(0),0:9(0))|| g1yp2 < 6 and

22(0) — 21(0) > %, for the proof see Lemma and C’omllary in the Appendiz section .

Remark 1.9 (Optimal decay.). The result of Theorem is optimal in the sense that for any function r :
Ry — Ry with limp_,o r(h) = 0, there is a positive value 6(r) such that if 0 < e < 6(r) and Hm“ < r(e)e, then

€< Hﬁ“ for some 0 <t = O(@) The proof of this fact is in the Appendix section E
€2

1(9(8), 09N 12 < C[1(9(0), 090N g2 + €] exp ( ) for allt € . (6)

Remark 1.10. From Remark [1.9, we obtain that there is an 0 < &y such that if 0 < € < &g, then for any
(¢(Oa 'T)7at¢(0,z)) S S X LZ(R) wlth Etotal(¢(0)7at¢(0)) equals to 2Epot(H0,l) +€7 g(t7x) deﬁn6d mn zdentzty

satisfies € < lim sup Hﬁ ‘

t—+oo
section [B.

, similarly we have that € < lim sup Hg(t H . The proof of this fact is in the Appendizx

t——o0

Theorem 1.11. 3C, 8y > 0, such that if 0 < € < &y, (¢(0),0:$(0)) € S x L*(R), and Eiota1(¢(0),0:¢(0)) =
2E,0t(Ho 1) + €, then there are vy, va € R such that

( ¢(0) > _ ( Ho1(z — 22(0)) + H-1,0(z — 21(0)) + go() >
d19(0) 020, Ho 1 (x — 22(0)) + v10, H_1 o(x — 21(0)) + g1 ()

with go satisfying the orthogonality conditions of Modulation Lemma
(Ho,1(z — 22(0)), 91($)>L2(R) = —vy (Ho 1 (2 — 22(0)), 90($)>L2(]R) ,
(H_10(z — 21(0)), 91(2)) 2y = V1 (H_1,0(z — 21(0)), 90($)>L2(R)

and € the energy excess of the solution (¢(t,x), 8, ¢(t,)) of (I). Indeed, let the smooth functions di(t), do(t) be
defined by

di(t) =a+bt — 2—\1/5111 (% cosh (\/ivt—&—c)Q)7 (7)
do(t) = a + bt + 2—% In (% cosh (V2vt + c)z), (8)

such that d;(0) = x;(0), d;(0) = —v; for j € {1, 2}. Let d(t) = da(t) — dy(t), then, for allt € R
| 2(8) = d(t) [< min(e? [ £ ],et?), | £(1) = d(t) [Se| T

moreover, we have the following estimates

Jje{1,2}

() e (G

() e (5

e max | d;(t) —z;(t) |:O<maX(Hm

je{1,2}

€7 max | d;i(t) —2,(t) |= O (max ( Hm



Remark 1.12. The proof of Theorem[I.7 and Theorem [I.11] for t < 0 is analogous to the proof for t > 0, so
we will only prove them for t > 0.

Theorem [I.7] will be obtained as a consequence of Theorem [I.11]} Clearly, from Theorem [[.11] we can deduce
the following corollary.

Corollary 1.13. With the same hypotheses as in Theorem [1.11], we have that

,e)e% exp(cvl:(u ‘) —&—max(H

max |Jﬂﬂ—iﬂﬂ|=()<nmx(”(0

1 Cez | t|
je{1,2} ) ( ) exp( ln(%) ) ’
Proof of Corollary[1.13 It follows directly from Theorem [I.1T]and from Lemma[A T presented in the Appendix
Section [Al -

1.2 Resume of the proof

In this subsection, we present how the article is organized and explain briefly the content of each section.
Section 2. In this section, we prove orbital stability of a perturbation of a sum of two kinks. Moreover, we
prove that if the initial data (¢(0,x),0:¢(0,x)) satisfies the hypothesis of Theorem then there are real
functions z;, xs of class C? such that for all ¢t > 0

t . sz(t) _ Hl'l(t)H < .3
Hﬁf)( ,T) 0,1 —1,0 Hi®R) ™ €2,

x2(t x1(t 1
‘ Oy (¢(t795) - H0,21( )~ H711(,0))‘ L®) Sez.

The proof of the orbital stability follows from studying the expression

Epor(H33 " + HQ + 9) = Bpor (33" + HZYP),

2
which is bigger than HMH less some remaining terms from Taylor’s Expansion Theorem and the fact that the

kinks are critical points of Eps. But, from the modulation lemma, we will introduce the functions z9, z; that
will guarantee the following coercitivity property

Hﬁ“ (t) + Hfll(,f)) + g) _ EPOt(HJEQ(t) + Hg;l(t))

From the orthogonality conditions of the modulation lemma and standard ordinary differential equation tech-
niques, we also obtain uniform bounds for ||Z;(¢)[| o gy + 1€ ()]l oo gy for j € {1, 2}. The main techniques of
this section are an adaption of section 2 and 3 of [19].

Section 3. In this section, we study the long time behavior of @;(¢), z;(t) for j € {1, 2}. More precisely, we
elaborate a Lemma similar to the Lemma 3.5 of [19], but our estimates are more precise, more precisely the

errors of our estimate are written in function of z(t), &;(t), &;(¢) and Hﬂ
Section 4. In Section 4, we introduce a functional F'(t) with the objective of controlling H ﬂH for a long
time interval. More precisely, we show that the function F'(t) satisfies for a constant K > 0 the global estimate

2 .
HEH < F(t) + Ke? and we show that |F(t)| is small enough for a long time interval. We start the functional
from the quadratic part of the total energy of ¢(¢), more precisely with

D(t) = [[0ig(t, 2) |72 + 10209(t, )| F2z) + / UHZ (@) + H () g(t, 2)? da.

However, we obtain that the terms of worst decay that appear in the computation of D(t) are expressions similar
to

/8tg(t,x)F(x1,x2,¢1,jcg,x) dx.
R

But, we can cancel these bad terms after we add to the functional D(t) correction terms similar to

—/ g(t,x)F(xy, 22,21, 22, x) du,
R

and now in the time derivative of D(t) plus the correction terms, we obtain an expression with size smaller or
equivalent to

9| N0 F 1,2, 00, )y s 1)

je12



Finally, based on the correction term described in the proof of Lemma 4.2 of [19], we aggregate another kind of
correction term such that its time derivative cancels with

- / U (HG () + H Y () (@2 ()0, Hy2Y + i1 (00, H ) g (¢, 2)?,
R

and then we evaluate the time derivative of the functional obtained from this sum D(t) with all the corrections
terms.

Remaining Sections. In the remaining part of this paper, we prove our main results, Theorem is a conse-
quence of the energy estimate obtained in Section 4 and the estimates with higher precision of the modulations
parameters x1(t), z2(t) which are obtained in Section 5. In Section 5, we prove the result of Theorem [L.11]
where we study the evolution of the precision of the modulation parameters estimates by comparing it with a
solution of a system of ordinary differential equations. Complementary information are given in Appendices [A]

and [B

2 Global Stability of two moving kinks

Before the presentation of the proof of the main theorem, we define a functional to study the potential energy
of a sum of two kinks.

Definition 2.1. The function A : Ry — R is defined by
A(z) = Epot(Hg 1 () + H_1,0()). (11)

The study of the function A is essential to obtain global in time control of the norm of the remainder g and
the lower bound of z5(t) — 21(t) in Theorem

Remark 2.2. It’s easy to verify that Epo(Ho1(x—22) +H_10(x —21)) = Epot(Ho1(x— (w2 — 1))+ H_1,0(2)).
We will use several times the following elementary estimate from the Lemma 2.5 of [I9] given by:

Lemma 2.3. For any real numbers xo,x1, such that ro —x1 > 0 and «, 5 > 0 with o # B the following bound
holds:
/efa(mfx1)+€fﬁ(x27r)+ Sa,ﬁ e~ min(a,ﬁ)(ngxl)’
R

For any a > 0, the following bound holds

/ efoc(:rfacl)Jrefoz(asgfa:)Jr Sa (1 + (x2 _ xl))efa(wzfml)‘
R

The main result of this section is the following
Lemma 2.4. The function A is of class C? and there is a constant C' > 0, such that
1. |A(2) — 4v2e7 V27| < Cze2V22,
2. |A(2) + 4e7 V2| < Cze2V22,
3. |A(z) — 2Epor(Ho 1) — 2v/2e7 V2| < Cze™2V22,
Proof. By definition of A, it’s clear that

E/R(aw[Hg’l(x)+H,1,0(x)])2dx—i—/RU(Hg’l(x)—&—H,LO(:U))dJ:

AG) = 5

= ||3xH0,1||2La(R)+/Raa:H5,1($)awH—1,0($) d$+AU(H5,1($)+H—1,0($))dI-

Since the functions U and Hp 1 are smooth and d,Hy 1(x) has exponential decay when |z| — 400, it’s possible
to differentiate A(z) in z. More precisely, we obtain

Az) = - / O2HZ ()0, Hy o(x) dir — / O (HE 1 (1) + H 1 0(2))0, HE () da (12)

= [ 20, @) VU1 0)(&) = U(H-10(0) + H s (0))] o (13)



By similar reasons, it is always possible to differentiate A(z) twice, precisely, we obtain

/ 0uHg 1 (2)?U(H-1,0(2) + H§ y (2)) = 92H§ 1 () [U(H-1,0(2)) = U(H-1,0(2) + H 1 (2))] da.

Then, integrating by parts, we obtain
/ Oy H§ 1 (2) 0, Ho1,0(2) [U(H-1,0(2)) = U(H-1,0(x) + Hg 1 (2))] d. (14)

Now, consider the function
= / OuHo 1 (2)0:,H_10(z + 2)[U(0) — U(Ho(2))] dx.

Then, we have
A(2) = B = | [ 005 1000 Hov o) (U (H-1.0(0) = U(H-1,0(0) + H5 1 (00) = (010) = U(H3 1 (2)] da
(16)

Also, it’s not difficult to verify the following identity

. . . .. H_i0(z) pHg,(®)
[U(H-1,0(x))~U(H-1,0(x)+Hg 1 (x))] = [U(0)~U(Hg 1 (x))] = —/O /0 U™ (w1+ws) dwy dews
(17)

So, the identities and imply the following inequality
(18)

. H_10(z) pHS (z) .
|A(z) — B(2)| g/|a$Hg,1(x)axH_170(x)|‘/ / U (w1 + ws)| duwy duws | da.
R 0 0

Since U is smooth and ||Ho,1[| ;.. = 1, we have that there is a constant C' > 0 such that

A(2) = B < C [ 10.H5 1000 Hor o) Hor o) Hi g o) do (19)
Now, Using the inequalities from (D1) to (D4) and Lemma to the above inequality (19), we obtain that
exist a constant C; non dependent of z such that
|A(2) = B(2)| < Cyze 2V?, (20)
Also, it’s not difficult to verify that the estimate
10(z) — V2e —Var| < C'min(e” 32, e‘ﬂm). (21)

and the identity imply the inequality

|B(z) -~ Vae V2 / ¢ V29, Ho (2)(U(0) — U (Hoa (2))) da| S / |0 Ho 1 ()| min (e=3V2(rt2) o= V2(r+2)) gy
R

+
e~ 2V2ema)s o~V da:—l—/ e~ 2V2=)4 o=3V2(@)+ gy

0
< / e~ 2V2(=0)+ i (e_gﬁ(“‘z), e~ V2(at2) ) dx < /
R —o0 0
(22)

~

Since, we have the following identity and an estimate from Lemma
e—2\/§z
(23)

0
—2v/2(z—2) —\/2x _
e e dx = ,
/_oo V2

+oo
/ e—2\/§(z—ac)+6—3\/5(31:)4r 5 6—2\/5,27
0

(24)

we obtain, then:
B(z) - V2e V% / e~ V270, Ho 1 () [U/(0) — U (Ho 1 ( dw‘ eV (25)
R



which clearly implies with the inequality

‘A(z) V2 VR /R V250, Hy () [U7(0) — U (Ho 1 (2))] dx’ < ze 2V (26)

Also we have the identity
/ (8(Ho (2))* — 6(Ho (2)7)e V7 dx = 2V/3, (27)
R

for the proof consult the Appendix Also, since we have the identity U(0)—U(¢) = 24¢2 —30¢*, by integration
by parts, we obtain

/]R %OIHM(@ [7(0) — U(Hoa (2))] de = /]R (8(Hou (2))* — 6(Ho (2))) e da. (28)

In conclusion, inequality is equivalent to ’A(z) - 4\/56_\/52 < ze~2V2%_ The identities

U(p)+U(B) —U(op+0) = 24¢0(d + 0) — (i()dﬂ 5])

Jj=1

/(9 H; 1 () [U(H§ y (x) + Ho10(2)) + U(H-10()) = U(H§ , (2))] da

and Lemma [2.3] imply the following estimate for z > 0

0 lim| ;|4 00 |A(2)| = 0. In conclusion, integrating inequality ‘A(z) — 426 V2" < ze~2V2% from z to 400 we
obtain the second result of the lemma

‘A(z) FdemVE| < g2V (29)

Finally, from the fact that lim, oo Epot(H-1,0 + H§1(z)) = 2Ep0t(Ho,1), we obtain the last estimate
integrating inequality . ) from 2z to 400, which is

2B pur(Ho) + 235 — A(2)] £ 22V

O

It is not difficult to verify that the Fréchet derivative of E,o; as a linear functional from H!(R) to R is given
by

(DEpot(9))(v) = /R 0:6(2)0z0(z) + U(¢(2))v() dx. (30)

Also, it is not difficult to verify that for any v, w € H*(R), we have
(D2Epon(6)0, w) / D.v(2) 0w (x) da + / 0(6(2))v(z)w(z) dz. (31)
R
Lemma 2.5 (Coercitivity Lemma). 3C, ¢, § > 0, such that if xo — x1 > %, then for any g € H'(R) we have

T T 2 T T
(D* Byt (H33 + H )9 8) ey > <ll0lnmy — C ({9 0nHT 0 + (g, 9:H53)?] (32

The proof of this lemma is based in the proof of Lemma 2.4 from [I9]. To prove the Coercitivity Lemma,
we need the following result about the spectrum and kernel of the operators D?Epoi(H"Y 1), D*Epor(Hg? ).

Lemma 2.6. The operators DQE'pot(HflLo)7 D2Epot(Hgf'1) satisfy the following properties
1 ker D?Epot(HTY ) = {c0H®} , ¢ € C}, ker D*Epoy (Hg3) = {c0: Hg?, c € C}

2 0(D?Epoy (HE2)) = 0(D?Epoy(H™ ) C {0} U [Ay, +00), with Ay > 0.



Proof. Since the operators D?Ep(H ™ o) and D?E,o(H ™ o) are equivalent by reflection and translation, they
have the same spectrum that DZEpOt(H,LO). So, we’ll just analyse the spectrum of the operator

D?Epot(H" ) = =02 + U(H™ ). (33)

Also, we will only study the kernel of D2Epot(Hf11,O), since the kernel of the other operator can be found by
similar reasoning.
If we derive the Bogomolny equation satisfied by H_1 ¢

ORHTY o(x) = U(H™ o(x)) (34)

with respect to x, we obtain the identity

02(0,H™, () = U(H™Y ()0 HT} o (), (35)
which implies that 8folLo € ker DzEpot(Hfll’O). Also, 0;H_19(x) # 0 for all = € R, so the Sturm-Liouville

Oscillation Theory implies indeed that 0 is the minimum element of the discrete spectrum of DzEpot(Hfll)o)
and

ker DQEpot(HflLO) = {c0,H", y, c€ C}. (36)
In conclusion, we have obtained that for some constant Ay > 0
ad(D2Epot(Hfﬁ,0)) C {0} U [A1, +00). (37)
By similar reasoning, we have
0a(D? Bpot(Hg3)) € {0} U [\, +00), (38)
ker(D?Epor(H33)) = {c0,Hy3, c € C} . (39)

Now, it remains to estimate the lower bound of the essential spectrum of both operators. The main tool
used to estimate the essential spectrum is a theorem of Spectral Theory written in the book [3].

Theorem 2.7. Suppose A and B are self-adjoint operators on a Hilbert Space H. If 3z € C, such that
(A—2)"t — (B — 2)7! is compact, then 0ess(A) = 0ess(B).

Since D?Epor(H™ o) = —02 + (2 — 24(H™} ()* + 30(H™} )*), we can rewrite this operator as
D?Epot(H™ ) = (_6§+[2_24(Hf11,0)2+30(H211,0)4_2X[0,+00)(x)_8X(*0010)(33)]+[2X[0,+00)($)+8X(*0070) (ﬂf)D~

Now, we consider
T, = —83 + [2X[0,+OO) (.r) + 8)((,00,0) (x)]
The next step is to check that for the self-adjoint operators A = D*Epo(H"} ), B =Ty and for z = —i all the

hypothesis of Theorem are fulfilled, which would imply that o (DQEpot(H fll’o)) = Oess(T1).
Since we have the identity

(D2 Epot(H™ ) )~ = (Ty +) ™! = ~(D*Bpor(H? ) +1) " o (2= 24(HT )?
+ 30(H} )" = 2X(0,40) (8) = 8X(~0.0)(2) ) © (T1 +1) 7", (40)

to prove that D?E,.(H ™ o) and T} have same essential spectrum, we only need to verify that

Ty = (2 - 24(H" ) + 30(H™ 0)* — 2x(0,100) (2) —~ X&) ) © (T3 + 1) (41)
is a compact operator on L?*(R). By asymptotic properties of H_j g, it is not difficult to verify that

Y = (2= 24(H 0)? + 30(H} 0)" = 2X(o,150)(®) = 8X(o0,0)())

decays exponentially when |x| goes to +o00. Also, it is not difficult to verify that (T3 +i)~! is a bounded map
from L?(R) to H'(R) C L*°(R). The last information and the Banach-Alaoglu Theorem imply that for any
bounded sequence (v,,) C L*(R), 3w € H'(R) and a subsequence that for simplicity we’ll still denote by (v,,)
such that

(T, +14) " (vy) —w, (42)



Also, from the fact that (T} + i)~ !(v,) is uniformly bounded in H*(R), it can be verified that for any compact
interval K C R that

Ty +4) " (vn

(T 407 () | 2w,

and this fact with the exponential decay of Y and H'(R) C L°>°(R) implies directly the following convergence

Ta(vn) 3 ¥ (w), (43)

which implies that T; and DzEpot(Hfll)o) have the same essential spectrum, more precisely

Tess (D*Epor(H™Y ) C [2,+00), (44)
and so,

Oess (D*Epot(HG3)) C [2,400). (45)
This finishes the proof of Lemma [2.6 O

Before starting the demonstration of the Coercitivity Lemma, let’s consider from now on the function
0 < ¢ <1 to be a smooth function satisfying:

1, ifx <3,
«m{ i (46)
Z 5.
Proof of Coercitivity Lemma. Our proof follows the scheme of proof of Lemma 2.4 of [I9]. Here we denote (, )
to be the scalar product on L?(R). First, because of Lemma there is a A > 0 such that for any v € H'(R)
T 2 -2 T
<D2Epot(H—11,o)Ua U> 2 A(HUHH(R) —10:H 1,0l (v, axH—11,0>2)~ (47)

Also, because of the identity , we have

(D?Epor(H p)v, v) = [1050] 72 g +AU(HfH,o(x))(U(w))2dx- (48)

Then, inequalities and imply for any 0 < # < 1 that

(D?Epor(H g)v, v) = OA[[|0]| 72y 10 H-1,0]| 2 (v, 0 HEY )] +(1-0) [ 1020172 sy +/R U(Hg(x))(v(2))* da].

. (49)
Since ||[U(H-1,0(2))|| ,~ < 00, we can choose 6 close enough to 1, and obtain from the following inequality
for a positive constant ¢ > 0 such that

T 2 -2 x
<D2Epot(H—11,0)va U> 2 C[ HUHHl(]R) — 10z H 1,0l 2 (v, 8acH—11,0>2]~ (50)

By similar reasoning, we also have

T 2 -2 x
(D Epor (H )0, v) 2 e[ [0l 32y — 10:H -0l 72 (v, 0:HF3)?). (51)
Now to study the operator D*Eyo(Hg?3 + H™, ), consider the function ¢; () = ((3==%-) and also
V= (U(H? o+ Hi3) — UHGR)), (52)
D*Epor(HG3 + HT o) = =02 + U(HG3) + V. (53)
t can be verified that the support o — (1(7)) 18 Included 1In {x € —L > 21 and so
1 b ified that th PP f (1 —¢i(x)) is included in { R|;2”frl i} d
- _ 3V2(wg—wq)
(1= G(x)[HD p(z)] < e T, (54)

_ 3V2(wg—wq)
1

(V@)1 = G@)e), (- G@)we)| se ol (55)
Therefore, if § > 0 is small enough, from x5 — z; > %, we obtain from the inequality that

(V@) = G, (- a@)e)] < 0e) ol (56)
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so the inequalities and imply for a ¢ >0

(D?Epot (H2Y o + H53)((1 = Gu(@))0), (1= Gu@))o) = e[ (1= C)vllig gy = 102 Hoall g2 (1= Ca)v, 8- HG3)?]
—0(0) vl g2y - (57)

Also the support of ¢1(z) is included {z| Z=2 < —+}. So, by similar arguments, we can verify the analogous
inequality

(D?Epor(HY o + H33)(G1(@)0), Gu(@)v) = e 6ol gy — 10 H-10ll 12 (G, 0. HE 6)°] = O(0) [[0] 72z
(58)
Also, we obtain that there is a uniform constant C' > 0 such that if 6 > 0 is small enough, then we obtain the
following estimate for all v € H'(R)

(0 (G (@)v(@)), 0 [(1 = Cu@))v(@)]) = =C8 [[v]|7 ) - (59)

Also, if § > 0 is small enough, we have that U(H_; o(z)) > 1 for @ <z—x1 < @ In conclusion,

since the support of (1 — ¢(;(z))¢1(x) is included in {x — 21 € [3(“4_11), Az TI)]} we have the following
inequality

/R (™ o) () (1 — C(2) (0()? d > 0. (60)

Finally, from the mean value theorem, the knowledge of the support of ¢; and the exponential decay of Hy 1(z),
we have that

| [ 100 (o) + 53 @) = U g @) @)1 = Ga@))ola)? da] < o) ol (61)

Therefore, the inequalities 7 and imply for a uniform constant C' > 0 that

(D?Epot (H?} o + H53)(G10)s (1= Qo) = =C8 0] 72z, - (62)
Since we know that support of ¢; is included in {z| J7=22 < } we can deduce the estimate
(OuHEL, (1= C)0)? = (O.HER, )2| = |(0:HFR, o) (0. HER, (2= Gl <00) ol (63)
and similarly,
[(0:H7 g, 1) = (0.HT g, 0)2] < O(0) o]l (64)

Therefore, we have that , , , and imply the inequality of the statement. O

Lemma 2.8. There is a constant Ca, such that if xo —x1 > 0, then

| DEyor (HE3 + H™ )| < COpe~V2@2—a), (65)

L2(R)

Proof. By the definition of the potential energy, the equation and the exponential decay of the two kinks
functions, we have that

DEpot(Hg,Ql + Hfll,o) = U(H(Q)E?l + Hfll,o) - U(ngl) - U(Hfll,o)
as a bounded linear operator from L?(R) to C. So, we have that
DEyoi(Hg3 + HY o) = —24Hg3 H, o [Hg? + HY o] + G[Z < > (HZ o) (Hg,zl)&j};
j=1
and, then, the conclusion follows directly from Lemma (D1) and (D2). O

Theorem 2.9 (Orbital Stability of a sum of two moving kinks). 3dg > 0 such that if the solution ¢ of satisfies
(¢(0), 0;¢(0)) € Sx L*(R) and the energy excess e = E(¢)—2FEp0t(Ho 1) is smaller than 0o, then 3x1, T2 : R — R
functions of class C?, such that for all t € R denoting g(t) = ¢(t) — Ho1(z — z2(t)) + H_1,0(x — z1(t)) and
2(t) = xo(t) — z1(t), we have:
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L Ng@l gy = O(e?),

2. 2(t) > f[ln( ) +1n2],

3. 10 ()72 < 26,

4. maxjeqy oy |75 (8)]* + max;eq 0y [5(t)] = O(e).

Proof. First, from the fact that Eyiqi(¢(z)) > 2Ep0(Ho 1), we deduce, from the conservation of total energy,
the estimate

10:()]172 < 2. (66)
From Remark we can assume if € < 1 that there are p1, ps € R such that
#(0,2) = Ho1 (v —p2) + H_10(x — p1) + g1(2),
such that .
lg1ll 1wy <0, P2 —p1 > 5

for a small constant § > 0. Since the equation [1]is locally well-posed in the space S x L?(R), we conclude that
there is a d; > 0 depending only on § and e such that if —d; <t < §y, then

(¢, ) — Hoa(x = pa) — Hov oz — p1) |y < 26. (67)

If §,€ > 0 are small enough, then, from the inequality and the Modulation Lemma, we obtain in the time
interval [—d7,01] the existence of modulations parameters x(t), z2(t) such that for

g(t) = ¢(t) — Hop(x — w2(t)) — H_10(x — 21(2)),

we have
(9(t), OxHo1(z — 22(1))) 1> = (9(t), OxH_1,0(x — 21(t))) 2 =0, (68)

m + gDl S ()

From now on, we denote z(t) = x2(t) — 21(¢). From the Energy Conservation Law, we have for —0; <t < §;
that

_ lloee(t )HL2(]R)

E(6(t)) = 2Epor(Hoa) + + Epor (o + HQ) + (DEpoy (G + HAQ), 9(1)) 2

(D2 Eyor (HG3" + HED) (1), 9(0)) 2y

5 O(llg(®)[[3)-

From Lemma and , the above identity implies that

2 @2 (t) Il(t)
||at¢( )”LZ(R) 2\/7 fz(t)+<DEpot( ( )+H931(t)) g(t>> <D Epot (H + H ) (t)a g(t)>L2(R)

2@t 5
+0( g3 + (0220 (70)

for =6y <t < ;. From (63)), it is not difficult to verify that [(DEpe (Hp (t)—|—HI1(t)) g())] < Cpe= V220 9 1 )
So, the equation and the Coercitivity Lemma imply, while —d; S t < 41, the following inequality

v 0,0(0) s o L ol e i
€+ a0 [0 gy = 120N o pvmeto WOV o5y, 4 seva0).

Finally, applying the Young Inequality in the term Coe=V2(®) ||g(t)]| F1(r) We obtain that the inequality
can be rewritten in the form

20| e lg(t) 3
> 10001z 4 g fgevaeto ¢ DI 4 o (g(a) + 220 1 e720) . (7a)
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Then, the estimates , imply for 6 > 0 small enough the following inequality

2 2
o 198Oz | o —vaey | 9O @)
- 2 8

(73)

So, the inequality implies the estimates
e~ V22(t) - ; (74)
||g(t)H§{1(R) Se (75)

1
for t € [—d1,01]. In conclusion, if % <In (%) *, we can conclude by a bootstrap argument that the inequalities
(66), (74)), are true for all t € R. More precisely, we study the set

2
c|lg(t
C—{b€R>O|E> H t¢( )||L2 26\/§Z(t)+|g()8||m(R)’lf |t§b}

and prove that M = sup,co b = +00. We already have checked that C is not empty, also C' is closed by its
definition. Now from the previous argument, we can verify that the set where inequality holds is open. So,
by connectivity, we obtain that C' = Ry.

In conclusion, it remains to prove that the modulation parameters x1(t), z2(t) are of class C? and that the
fourth item of the statement of Theorem 2.9 is true.
(Proof of the C? regularity of 21, 72, and of the fourth item.)

For §p > 0 small enough, we denote (y1(t), y2(t)) to be the solution of the following system of ordinary

differential equations, with the function g;(t) = ¢(t, x) — Hé’fl(t)(x) - Hﬂ%) (z),
(102 Hoal2 = (o), 025G ) in (1) + (0 HEY, 0.1 )in) = = (Br0(t), 0. H" [ (@), (76)

(0o, 0,87 )in () + (10:Hoa ()17 = (91(8), O2HER) )iat) = = (Dr0(0), 0 HYE (), (77)

with initial condition (y2(0),y1(0)) = (22(0),21(0)). This ordinary differential equation system is motivated
from the time derivative of the orthogonality conditions of the Modulation Lemma.

Since we have the estimate In (1) < 22(0) — 21(0) and g,(0) = g(0), Lemma and the inequality
imply that the matrix

||a:vH0,1H2Lz —< 1(0), 52Hy1(0)> <3 Hy2(0) aIHgll(’(()))>

y2(0) y1(0) 2 17Y2 (78)
<awH0,1 ) azH—Lo > Ha:z:HO,IHLz - <91(0), 81H0,1>

is positive, so we have from Picard-Lindeléf Theorem that (ya(t), y1(t)) are of class C! for some interval [, §],
with 6 > 0 depending on |z2(0) —z1(0)| and e. From the fact that (y2(0), y1(0)) = (22(0), z1(0)), we obtain, from
the equations and 7 that (ya2(¢),y1(t)) also satisfies the orthogonality conditions of Modulation Lemma
for t € [=4,6]. In conclusion, the uniqueness of Modulation Lemma implies that (y2(t),y1(t)) = (z2(t), z1(t))

for ¢ € [—4,6]. From this argument, we also have for t € [—d,] that e~ V2(#(H)-n(®) < ﬁ By bootstrap, we
can show, repeating the argument above, that

sup {C > 0] (y2(t),y1(t)) = (z2(t), z1(¢)),for t € [-C, C]} = +o0. (79)

Also, the argument above implies that if (y1(¢),y2(t)) = (z1(¢),22(¢)) in an instant ¢, then y;, yo are of class
C' in a neighborhood of ¢. In conclusion, z;, x5 are functions in C*(R). Finally, since gl = O(e%) and

e~ V22(t) = O(e), the following matrix

||69:H0,1||2Lz —< () 82 fll f))> <8 ngl(t a, H:rl(t

<8ng,21(t)v 6me11EE)> HaxHo,lHLz - < (t), 02H, I2(t)> (80)

is uniformly positive for all ¢ € R. So, from the estimate |[0;$(1)|| 2 () = O(e z), the identities () = y;(t) for
j = 1,2 and the equations and , we obtain

S, |2 ()] = O(e?). (81)
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Since the matrix M (t) is invertible for any ¢ € R, we can obtain from the equations , that the
functions & (t), 2 (t) are given by

. _ 1 (t) T
|:a)‘1(t):| — M) Ov(t), 0. HZY g (x) (82)

&2(t) —(0e0(1), 0. H33" ()
Now, since we have that (¢(t),9;¢(t)) € C(R, S x L?(R)) and x1(t), 22(t) are of class C', we can deduce that
(g(t),0:9(t)) € C(R, HY(R) x L*(R)). So, by definition, we can verify that M (t) € C*(R,R?).

Also, since @(t,z) is the solution in distributional sense of (1)), we have that for any y;, y» € R the following
identities hold

(0, HY, 020()) = (9, HYY, 020(t) — U((t))) = —(92HY, 9:0(1)) — (0. HEZD, U(p(1))),
<axH€a,o, D2(t)) = (D HYY 4, D2o(t) — <<t>>>=—<82 Y 0s 020(t)) — (0. HY o, U(6(1))).

Since is locally well-posed in S x LQ(R), we obtain from the identities above that the following functions
h(t,y) (0H{ 1, 07¢(t)) and I(t,y) == (8. HY, o, O7p(t)) are continuous in the domain R x R,

So, from the continuity of the functlons h(t,y), l(t,y) and from the fact that 1, x5 € C1(R), we obtain that
the functions

ha(t) = —(b(1), B H"YE (), ha(t) = —(0,0(t), 0, H32" (2))

are of class C'. In conclusion, from the equation , by chain rule and product rule, we verify that x;, x5 are
in C?(R).

Now, since x1, 2 € C?(R) and i1, i satisfy , we deduce after derive at time the function

M) Fl(“] ,

Zo(t)
the following equations
il(t)(HBmHo 1||§2 +< g(t), 8, H“<t>>) +;E2(t)(<8 B0, 0, H§2(t)>> & (t)2(<a§Hf3§g% axg(t)>)
i (1) (O2HHN, Dug()) s ()ia(t) (D2, 0,HGE )ava(0)? (0, HY) 02HGE )i (8) (92HL), Dro(t))
— (0:HHD, 920()) . (89)

() (10:Ho 72 + (9e9(0), 0 Hi3 ") ) +itn (0 (0. HID, 0, HZ ) ) = () ((02H537, Da9(1)) )
i (8) ((2H3", 0ug()) ) ina () (t) (0, HG, 02HAD ) +(aa(0)) (0, H53", 92HIG) )i (0) (0253, Dr0(1))
— (0.H33", 3f(t)) . (84)

Also, from the identity g(t) = ¢(t) — Hfll(g) - Hgf’l(t), we obtain that d:g(t) = 0o (t, z) + jrl(t)aszll%) +
d:g(t)angfl(t), so, from the estimates and , we obtain that

10g(t)]l 2 = O(e?). (85)

Now, since ¢(t) is a distributional solution of (), we also have, from the global equality ¢(t) = H 111(6) +

H“(t) + g(t), the following identity
(.57, 920()) = (0,140, 029(0) = U (H)) 90))~ (0,875, [0 (B7D + H33) = U (1) ] 9(0))
+ (0.1, U () 4 U (") =0 (559 + 13 ) )
— (0,150, 0 (H2 + 13 4 g() - 0 (B9 + B30) = U (128 + 153 ) 9(0) - (36)

Since &Hfll(f)) € kerD*Ep o (Hfll(g)), we have by integration by parts that <6 H™ B), 2g(t) —U (Hfll(g)) g(t)> =
0. Since, we have

U (Hzl(t))+U( xz(t)) U (Hxl(t) +ngl(t)> _ 24Hz11(0)Hr2(t)(H +H6£21(t 62( > ( rll(g) (Hgﬁ( ))5—3"
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Lemma implies that <afo11§g>7 U (H ()) 4 U( xz(t)) 04 (Hm(t) +H12(t))> 0(8 V2(z t))) Also,
we have from Taylor’s Expansion Theorem the estimate

(.20 U (H) + 133+ 9(0)) = U (HAQ + H:3) = U (H5D + H:3Y) 9(1)) = OClg(®)I570)-

From Lemma the fact that U is a smooth function and Hp 1 € L>°(R), we can obtain

(o0, [0 (128 + 1153) = 0 (1749) ] a(0) = O( [ 017153 lg(0)] o) = O (V#0212 ).
In conclusion, we have

(.17, 920()) = O(g(®)lF + V20, (88)
and by similar arguments, we have

<axH§i“), 320(t)) = O( g(t)l5 + V20, (89)

Also, the equations (83) and (84)) form a linear system with g'él( ) i'5(t). Recalling that the Matrix M (¢) is
uniformly positive, we obtaln from the estimates , . . and (| . ) that

jax |2 ()| = O(e). (90)

O

The Theorem [2.9] can also be improved when the kinetic energy of the solution is included in the computation
and additional conditions are added, more precisely:

Theorem 2.10. 35y > 0, such that if 0 < € < &g, (#(0,2), D p(0,2)) € SxL*(R) and Etorar((¢(0, ), 0:¢(0,2))) =
2E,0t(Ho 1) + €, then there are z2, z1 € C%(R) such that g(t,z) = ¢(t,x) — ng(” (x) — Hfll(é) satisfies
(9(t,2),0.H3 (@) =0, (g(t, ), 0, H{) () ) =0,

and

e e~ V220 =m O] | (g(t), g (W) 3pr 12 + lia (D)7 + [a2(8) 2, (91)
for all t € R, which means the existence of positive constants C,c independent on €, such that for allt € R
ce < e V2r2M=m0) 4 |(g(8), Brg ()31 12 + |1 (1) + [32(8)|? < Ce. (92)

Proof. In this proof, L?, H' mean, respectively, L?(R), H*(R). From Modulation Lemma and Theorem we
can rewrite the solution ¢(¢) in the form

olt,x) = HG (@) + o3 (2) + g (t, )
with x1(¢), z2(t), g(t) satisfying the conclusion of Theorem First we denote
0(t) = (H21Q () + B3O (2), 1 (00, BT — 5200, HTZ" ) € 8 x L2(R), (93)

then we apply Taylor’s Expansion Theorem in E(¢(t)) around ¢, (t), more precisely for R, (t) the residue of
second order of Energy’s Taylor Expansion of E(¢(t), 0:¢(t)) around ¢, (t), we have:

(D2E(¢o (1) (9(t), g (1)), (9(1),0e9(1))) 2 12
2

2Ey0t(Ho1)+€ = E(¢q (1) +(DE(¢o (1)), (9(t), 0:g(t))) o 2+
+ Ro(t), (94)

such that for (wy,ws) € S x L?(R) and (vy,v2) € HY(R) x L?(R), we have the identities

 10awi|[7e + [lwa]| 7
E(wi,ws) = L2 B —l—/RU(wl(x))dx,
(DE(wy,wz), (v1,v2)) 22 = /Ramwl (z)0pv1(x) + U(wl)vl + wa(x)ve(x) dz, (95)

*83 + U(wl) 0

D2E(w1,w2) = |: 0 I
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with D?E(wy, ws) defined as a bilinear operator from H' x L? to C. So, from identities and , it is not
difficult to verify that

Ry (1) = / U (H50 @) + Hiy @) + g(t.2)) U (30 @) + B33 @) =0 (B0 (@) + B3O (@) ) gt o)

U (H20 @) + Hiy " @) g(t,2)°

— 5 dzx,

and, so,
[Ro ()] = O(lg(t)[[31)- (97)

Also, we have

(DE((0), (9(8). 09(0) 1212 = (DBpor (H2G + HFZ ) L 9(0))+( =1 ()0 H — o002, H53V, dug (1))

The orthogonality conditions satisfied by g(¢) also imply for all ¢t € R that )
(org(t), 0.H7D) | = ()g(t), G2HG) 1o, (99)
(Drg(t), 053" ) | = ia(®){g(t), 92HAY) 2. (100)
So, the inequality and the identities 7 , imply that
(DE(0(0). (00 gD sz = O swp [as O hoOlas + > lg(@llyn ). (100)
From the Coercitivity Lemma and the definition of D?E(¢,(t)), we have that
(D*E(5(1))(9(1), r9(t)), (9(2), 8eg())) 1o p2 = I(9(2), Deg(D) 57112 - (102)

Finally, there is the identity

2
H@l(t)amegfg) (@) + @ ()0, HZ Y (@Hp — 21 (£) (1) <6$Hgff>, 8$H_170>L2
+ a1 ()2 10Ho 172 + |2(t) | 10: Hoall72 . (103)

From Lemma we have that |(0,H§ 1, O H_1,0)12] = O(ze_‘/iz) for z big enough. Then, it is not difficult

to verify that Lemma (©7), (L01), (102) and (103)) imply directly the statement of the Theorem which

finishes the proof. O

Remark 2.11. Theorem implies that it is possible to have a solution ¢ of the equation with energy
excess € > 0 small enough satzsfymg all the hypotheses of Theorem- More precisely, in notatzon of Theorem

if 1(9(0,x),0:9(0,2))|| g1y 2 K €2, then, from Theorem we have that
e VZO) 4 v +v3 e

In conclusion, we obtain that E(¢(0),0,¢(0)) — 2Ep0(Ho1) Z €

3 Long Time Behavior of Modulation Parameters

Even though Theorem [2.9] proves the orbital stability of a sum of two kinks with low energy excess, this theorem
doesn’t explain the movement of the kinks’ centers xo(t), x1(t) and their speed for long time. More precisely,
we still don’t know if there is a explicit smooth real function d(t), such that (z(t), 2(t)) is close to (d(t),d(t)) in
a large time interval.

But, the global estimates on the modulus of the first and second derivatives of x1(t), x2(t) obtained in
Theorem will be very useful to estimate with high precision the functions x1(t), x2(t) during a very large
time interval. Moreover, we first have the following auxiliary lemma.

Lemma 3.1. Let 0 < 6, v < 1. We recall the function

A(2) = Epot(Hg 1 + H-1,)
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for any z > 0. If the same hypothesis of Theorem are true and let x(z) be a smooth function such that

x(x) = {07 o (104)
and 0 < x(x) <1 for all x € R. In notation of Theorem we denote
Yolt,a) = x(””;(ﬁ;“’), 9 = (9(1), dug(t)) € H'(R) x L*(R)

and || @) = 190, D9 1y 23 -

121 125 (0
£ = 2,1 —V32(t) max;e{1,2} |$J( —Qﬁz(t)(ﬁ)
aft) = ma [5(0) ()0 ZELE T (o )

o] e, 1O 4 g s ] (= PO o [t (o200

je{1,2} z2(t)y  2(t)%y? ]6{1 2} z(t)

Then, for 8 = ;:—1 and the correction terms

(0:(1), B H"Y) () + 82 (xo(t, 2)g(1)))

t)=— )
7 10, o 1
ooty = — (2r00): 2HEE0 @) + 0. (1L~ xolt, )lo(1)
10 Hoa |3 ,
we have the estimates, for j € {1,2},
50 = ps01 £ [0 58] (o s 01 o8] + o8] ) + ma 18501000, qaos)
e (1 AG®) |
p3(0) + (—1) VAR (107)

Inln (1)

Remark 3.2. We will take v = — Td)

Lemma that 3C > 0 such that

With this value of v and the estimates of Theorem we will see in

at) <

2
(M0, 9l + el (D) ocppled

Inln (1) ( In (1) )
Proof. For v < 1 enough and from the definition of x(z), it is not difficult to verify that
1
~2

= (108)

. .
HX”LOO(]R) S ;a HX”LOO(]R) <

We will only do the proof of the estimates (106]) and (107 for j = 1, the proof for the case j = 2 is completely
analogous. From the proof of Theorem we know that @1 (t), #2(t) solve the linear system

)] _ [~@0), 9. H)
M(2) L‘cza)} - l@qs(t), axﬂa”ﬁgbl ’

where M (t) is the matrix defined by. Then, from Cramer’s rule, we obtain that

— (0000, 2.17,3) (2151, 029(0)) +10:Hoali)  (0u0), 0.H33") (a1, 2.1

1(t) = det (M (1)) det (M (1))
(109)
Using the definition of the matrix M(t HﬁH % and Lemma which implies the following
estimate
(0,033, 0,17 g>> O(z(t)e~ V220, (110)
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we obtain that
| det(M(8)) — 110 Hoa 2

= O([|g@| + =ty >v*0) = 0(eH). (111)
So, from the estimate (111)) and the identity (109)), we obtain that

1
R R
102 Ho [l g

O (0540 (10,2553 ) 0| 0 =) [ [ 257,
(112)

i (2) (o), 0.1 ) | = 0| (0. 121G 029(0) (a10(0), 0,177 |)

Finally, from the definition of g(¢,z) in Theorem we know that
Qd(t, x) = —ir ()0 HA () — a2(1) 0. HG L' () + Dug(t, ),
from the Modulation Lemma we also have verified that

(0ug(t), 0,17 ) = O [l9@]]| 110))). {Bug(@), 21153 = O( [9(a]||15(0)])

and from Theorem [2.9| we have that HQFSH +max;e(1,2} [4;(t)] < 1. In conclusion, we can rewrite the estimate

) o

‘:’rl(t) L

+W<at¢(t),azmggg>>‘:o( max \a'cj(t)\HQF;H_’_HL@HQ_'_Z(]&)Gfﬁz(t) ——)
e 0,11 12(R)

je{1,2} je{1,2}

(113)
By a similar reasoning, we can also deduce that

1

+ W <8t¢(t)7 3;cH§,21(t)> ‘ = 0( max_|Z;(t)] H‘(XgH + Hﬁ‘r + Z(t)efﬂz(t) max |:c](t)|)
z420,11l 2 (R)

‘:’c2(t) ‘ |
Je{1,2} Je{1,2}
(114)
Following the reasoning of Lemma 3.5 of [19], we will use the terms p; (¢), p2(t) with the objective of obtaining
the estimates (L07)), which have high precision and will be useful later to approximate z;(t), &;(t) by explicit
smooth functions during a long time interval.

First, it is not difficult to verify that

v 2
@ro(t). 0, (x0(0g) = ([t + =T 155" 4 e 1,001 a8} ).
z(t) je{1,2}
which clearly implies with estimate the inequality for j = 1. The proof of inequality for j =2
is completely analog.
Now, the demonstration of the inequality is similar to the proof of the second inequality of Lemma
3.5 of [19]. First, we have

B <6t¢(t), 0, (9, H'(Y (x))> {091, 3 (9o (B)g()) (9= (xo(B)Dg (1)), Dro(t)) <51Hfi(,6’, 83¢(t)>

p(t) =
10, Hou I [0.Ho1 I 10: Ho, 10:Ho. I
duxo(t)g(t), 2o(t £)029(t), 07 (¢
~ (Pexo(t)g() 2t¢( ) {xo(t)dxg(t) 2t¢( ) — [+ II+IIT+1V+V+VI, (115)
182 Ho 1|7 102 Ho 1 |72

and we will estimate each term one by one. More precisely, from now on, we will work with a general cut
function x(x), that is a smooth function 0 < x < 1 satisfying

1, if x <0(1—7),
_ 116
x(@) {0, itz > 0. (116)
with 0 < 6, v <1 and
o —xy(t)

The reason for this notation is to improve the precision of the estimate of p;(t) by the searching of the ~, 6
which minimize a(t).
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K 52 1 (t)
Step 1.(Estimate of I) We will only use the identity I = il(t)%
=z 0,117 2

Step 2.(Estimate of I1.) We have, by chain rule and definition of g, that

(000, 0. (@ (Dg(®)) (2e000), 0. [ [x (=) ot )] )
100 Ho 1]/ - 102 Hot||7

<8t(b(t), o, (X(x_;(c;)(t))% [ac—;z;)(t)}g(t))> <8t¢(t)7 , (X(x—zﬂ(ctl)(t)) [a‘cl(t)z(t)-;((atc)—le(t))i(t)}g(t))>
. 0. B 10 Ho 1|22 |

So, we obtain that

{0 () o) (o (42) k)

2 + 2
2(t) |0:Ho 1 ||7» 10:Ho 1|72
S z=z1(t) \ | 1(2) (z—x1(8))2(t)
N <6t¢(t)7 X( Z(tl) ) [ Zl(t) =+ Zl(t)z }8xg(t)> (118)
. .
10z Ho,1 172

First, note that since the support of x is contained in [#(1 — ), 6], from the estimates (D3) and (D4) we obtain
that

L O e 19
L2 | supp 9z xo0(t,x)
2
‘ @5 (1) :O(e—zﬂ(l—mzm), (120)
’ L2 (supp BmXO(tJ))

Now, we recall the identity 0:¢(t,z) = —501(75)8901{311{3) — Jbg(t)angi(t) + Oeg(t), by using the estimates (119)),
(120)) in the identity (L18]), we deduce that

. max;ey 2y i (£)] 2 ) 2 max;eq1, 2y |5 (t)]
II:O(HXHLOO(R) geil, 2} B HHH +HX||Loo(R) HQHH jei(t)é ’

z(t)

max z
(O 4 VO ) DS o)

+ HEH (e‘ﬂz(t)(l—a) + e_\/ﬁe(l—'y)z(t)) lxﬂé?2(R) ||XLL(,S(R)‘| g{l?XQ} x](t)2> . (121)
J )

Since E < max((1—-10),0(1 —+)) for 0 < 7,0 < 1, we have that the estimate (121)) is minimal when 0 = %
So, from now on, we consider
o=—" (122)

which with (108) and (121]) imply that 1T = O(«(t)).
Step 3.(Estimate of I11.) We deduce from the identity

(92 (x0(t)Drg (1)), Or(1))
100 Ho 1/ -

11l = —

that

(2 (2282 09(0). —1 (D0, H™YY) — a0, HA® + Dygt.)
11T = 5
z2(t) |0z Ho |7
(X0t 2)92 ,g(t,2), =1 (D0 HHG = a2 (0. A + Drg(t,))

_ = II1.1+111.2. (123)
10 Hoo1 |72

The identity (122]) and the estimates (108)), (119) and (120]) imply by Cauchy-Schwarz inequality that

o]+ ) a2

1=y
maX;e(1,2} |a'cj(t)|e_\/§z(t)(2_1)

v2(t)

III.1:O<
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In conclusion, we have the estimate that I71.1 = O(a(t)). Also, from condition (116) and the estimate (), we
can deduce that

Iz(t

|0 = xomnazaz |, o+ [romazags

_ Of V20 (G2)
. O(e : ) (125)

Also, we have that

(xolt, ) [02,0(0) + 51 0020 + (022 HA"], 016(1)
102 Ho 1|32 .

1112 = —

(126)

By integration by parts, we have that

x —x1(t) 1 2
‘<X(W>8§x¢(t,x), dio(ta))| = O<77(t) 10:(8) 72 upp oo )
In conclusion, from the estimates (108)), (119)), (120) and identity , we obtain that

()t ott.0), 00te.20)| = O [0+ g 02 S [e=0)).

Also, from Lemma (2.3)), the estimate and the fact of 0 < yo < 1, we deduce that

‘<X0(t,x)6§Hﬁ(t), aszgfg>>\ - o(z(t)e*@(t)), (128)
(= olt, 20205, 0, H3E )| = O(s()e ). (129)

From the estimates (119)), (120) and identity ((122)), we can verify by integration by parts the following estimates

_ oo (t) M\ _ (P10 _avmaiz2)
(0= xo®n@RHLD, ir0o. a2 ) = (7 Fre ). (130)
< (D22 HZY, (1) sz(t)>:O(ﬂbz(t)2e—2ﬁz<t><§:—1>) (131)
X0 , L2 zdlgq vz(t) .
Finally, from Cauchy-Schwarz inequality and the estimate we obtain that
(1= xo()ir 02 HAD, Dy (1)) = O(laa ()] Jge] | 20, (132)
(xo(in @2 HA, Big(t)) = O (0)] o8] | 20, (133)

In conclusion, we obtain from the estimates (128]), (129)), (130)), (131)) (132 and (133) that
(02174, duo()
(t)

IIT.2 = —iy O(a(t)). (134)
10, Ho,u ||
This estimate of I11.2 and the estimate (124)) of I71.1 imply
(om0, o))
ITT = —i4(t) + O(a(t)). (135)

192 Ho1||”

In conclusion, from the estimates IT = O(«a(t)), (135]) and the definition of I, we have that I+IT+111 = O(«a(t)).

Step 4.(Estimate of V.) We recall that V = — (3mxlt‘)ét)gﬁt?“2?¢(t))7 and that
T 72

82¢(t) = 02g(t)+ [U (H“”l(t))JrU( ””2(”) —U (Hfll(j)) + Hg’j(”) ]+[U (H“(” T ngl(”) U (Hfll(,f)) + HyA Y 4 g(t))}

(136)
First, by integration by parts, using estimate (108]), we have the following estimate
1 1 1 2

— (D x0(t)0?g(t), g(t :O([ —|—7]HgtH)=Oat. 137

e 0022000, 90) = O[5 + ] 9@ (a(t)) (137)

Second, since U is smooth and ||g(¢)|| ;- = O(e%) for all ¢ € R, we deduce that

(O (B9 + 1530 = U (B2 + 73 + 9(1))  0ax0 (D9 () ) = O(ﬁ o[ ") = 0tae).  (139)
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Next, from equation and Lemma we have that

HU( m1(t)) G (ngl( )) U (Hml(w n Hgﬁ(t)ﬂ — O(e V20, (139)

L2(R)

then, by Holder inequality we have that

(0 (#39) + 0 (H530) = U (B2 + 73 0ax0(0)0sg() ) = o(vzl(t)

9@ |lev=0) Z O(a(t)).
H
(140)

Clearly, the estimates (137)), (138) and (140) imply that V = O(«a(t)).
Step 5.(Estimate of VI.) We know that

(Dug®x0(0), (1))

VI=— .
10 Ho 1|72

We recall the equation (136)) which implies that

102 Ho 1 ]2, VI = — (8,9(t)x0(t), 82g(t)>+<8xg(t)xo(t)’ o4 ( HOO 4 B3O 4 o t)) e ( i H§f§“)>
+ (0agOxo(t), U (HAG + o33 ) =0 (B2 Q) - U (H33")).

)

By integration by parts, we have from estimate (108)) that

o[ (141)
From the estimate (139)) and Cauchy-Schwarz inequality, we can obtain the following estimate
(Do), U (74 + H33) 0 (n739) — 0 (530) ) =0 (=0 o] ). (42)

Then, to conclude the estimate of VI we just need to study the following term C(t) := (9,9(t)x0(t), U(Hfll(g) +
H“(t) +g(t)) — U(Hxl(t) + Hx2(t))>. Since we have from the Taylor’s theorem that

(029(t, )x0(t, ), O2g(t, ) (

U (Hfll(g) + H(fi(t) + g(t)) -U <H—1(g) mQ(t)) Z vt ( a7 t) + sz(t)> (k(ikl)l"

from estimate (108)), we can deduce by integration by parts that

€10 =~ (14 53). 0 (i 4 53) S wo (g o)

Since
B TR )
we obtain that
6
t)k—l 1 2 ~ iy 5
C) = (0,50, S U (gm® 4 o) 90 0 H tH ﬁz@(%w)‘ tH _
(t) < —17071;3 ( 1,0 T gy >(k:—1)!>+ =) ﬁ +e QTS

Also, from Lemma and the fact that ||g(¢)| ;e S H (

(0ut™y 0, [U (H2G) = 0 (B2 + B350 [a(0)) = O (e

In conclusion, we obtain that

)

/8 Ha:l(t :zrl(t) +ng>1(t) +g(t)) 4 (Hﬂ(,f)) +H$2(t) dm+/ Oy Hxl(t U (Hfﬁ(,?) g(t,z) dx

+0(a(t). (144)
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So

— Jp 0,15 (0 (82 + B3 + g( )) = O + H ")) de

VI =

Jp 0:HYY t)U< Tl(t)) g(t, ) dx

+0(a(t). (145)

Step 6.(Sum of IV, VI.) From the identities (136]) and

(0.HA, 92o(1))
0, Ho.ull7

)

we obtain that

(29(t) = (0 (HHQ + B33 +9(0)) — U (520 + 133" ), 0.H7D)

IV = —
||amHO 1 ||L2
(v (79) + 0 (#537) - U (00 + 33%)  074R)
B (146)
HazHO,l ||L2
In conclusion, from the identity
(o2 — 7 (7)) Jo.rr™) = 0
and by integration by parts we have that
<U (H“(”) U (Hgﬁ( >) U (Hm(t) T HEO ) 7 afollgg>>
evi=- °L v o). ()

HaazHO,l ||L2
From our previous results, we conclude that
(0 1) 0 (550) -0 (1240 + 5%, 0.0
”amHO,l ||L2

I+II+IIT+IV4AVAVI = —

+O0(a(t)). (148)

The conclusion of the lemma follows from estimate (148]) with identity
A) = (U (Hor0) + U (H9) = 0 (Hov0+ H ) 00H 1,0,
which can be obtained from by integration by parts with the fact that

(O (Hovo+ H3) 0 H 10+ 05 ) =0,

Remark 3.3. Since, we know from Lemma [2.3 that

[A2(0) + 1070 < 2 (=220,

and, by elementary calculus with change of variables, that ||830H0’1Hi2 = 2\/57 then the estimates (106) and
(107)) obtained in Lemma motivate us to study the following ordinary differential equation

5(t) = 16v/2e~ V220, (149)

Clearly, the solution of (149) satisfies the equation

d 2(t)? “Va(t)] _
- (2 +se | =0 (150)

As a consequence, it can be verified that if z(tg) > 0 for some to € R, then there are real constants v > 0, ¢ such

that
1

Wi In (% cosh (\@vt + 0)2) for allt € R. (151)

z(t) =
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In conclusion, the solution of the equations

di (1) = —8v/2e™ V%),
dy(t) = 8v/2e7V22(0),
do(t) — dy (1) = 2(t) > 0,

are given by

da(t) = a+ bt + 2—\1/5 In (1% cosh (ﬁvt + 0)2), (152)
di(t) =a+bt — 2—\1/5111 (v% cosh (\/Evt—&—c)z)7 (153)

for a, b real constants. So, we now are motivated to study how close the modulations parameters x1, To of
Theorem can be to functions di, dy satisfying, respectively the identities (153) and (152) for constants
v#0,a,b

At first view, the statement of the Lemma[3.1]seems too complex and unnecessary for use and that a simplified
version should be more useful for our objectives. However, we will show later that for a suitable choice of ~
depending on the energy excess of the solution ¢(t), we can get a high precision in the approximation of the
modulation parameters x1, ro by smooth functions d;, ds satisfying and for a large time interval.

4 Energy Estimate Method

Before applying Lemma we need to construct a functional F(t) to get lower estimate on the value of
|(g(t), 0:g(t))] ;g1 - than that obtained in Theorem

From now on, we consider ¢(t) = Ho1(x — x2(t)) + H_1,0(x — z1(t)) + g(t, z), with z1(t), z2(t) satisfying
the orthogonality conditions of the Modulation Lemma and z1, 2, (g(t), 0:g(t)) and € > 0 satisfying all the
properties of Theorem [2.9] Before the enunciation of the main theorem of this section, to simplify the notation
in computations, we denote:

2 lz(t) I1(t)
D2E(HE® 4 ey [-0F+ UHGY” + HIYY) 0
(Hoy1 " +Hhy) O I
as a bilinear operator from H!(R) x L?(R) to C. We also denote w;(t,z) = w(%ﬁ)@

function with image contained in the interval [0, 1], satisfying the following condition

) for w a smooth cut

We consider now the following functional

F(t) = (D*BE(HZO + 170 96}, 90 Yo s +2/8tg (t,2)0pg(t m)[ (t)w1(t,a:)+9'c2(t)(1—w1(t,x))] dx
-2 / 9(t,2) (UHAQ @) + UHGE () = U3 (@) + B Q@) ) de
R
+2 / g(t.2) [ (@1 (0)2O2H D (2) + (2(0) 02 Hy 3 (@) do + 5 / U (H5A" (@) + HE) (2)g ¢, 2)° de.
(154)

Since x1, 29 are functions of class C?, is not difficult to verify that (g(t),9;g(t)) solves the integral equation
associated to the following partial differential equation

0g(t,x) — O2g(t,x) + U(Hg3" (@) + HY( (2))g(t, ) =

- [0 @) + H““’( )+ gt ) = U(HGEO @) + B2 (@) = UG (@) + B2 Q@)g(t,2)]
UHG (@) + UHE (@) - UHG (2) + B (2)
— i (1202 H ) () — ol 1202 Hy 3" (2) + iy ()0, H'G (2) + iva (1) 0, Hy 3 (2) (1)

in the space H*(R) x L3(R).
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Theorem 4.1. Assuming the hypotheses of Theorem and recalling its notation, let §(t) be the following
quantity

5(6) = [|@] (-2 mave Ja 0]+ max Jas(0)Fe T+ max a;(0)]1a(0))

jetisy je{1,2} je{1,2}
.\ Hﬁ“ (manE{Zlé)} |2;(1)] +J§{1‘2‘XQ} (1) +3£?X2} |5 (¢ ) T Hﬁ”

Then, 3 positive constants A1, As, As such that the functz’onal F(t) satisfies the inequalities

F(t) + Aré = Az | glt (t)] < A36(2).

Remark 4.2. Theorem[2.9 and Theorem [{.1] imply
1
. €2 2
B S s 9@+ [Jott
ln (E)

Proof. Since the formula defining function F(t) is very large, we decompose the function in a sum of five terms
Fy, Fs, F3, F, and F5. More specifically:

Fi(0) = [ B0(t.0 + 0,90t + TG (@) + 33O )t ) o

Fy(t) = 2 / g(t,2) [U(HA (@) + UHGE (2)) - UHE (@) + B2 (2))] da,
Fu(t) =2 [ glt.)[ia(POEH ) o) + (0021 @) do

Fi(t) =2 [ Oug(t,2)0ng(t,2) i1 (0 (t.2) + a(0)(1 = (t,2)

Folt) = 5 [ U0 (@) + B @)g(t. ) da,
R
First, We prove that |F(t)| < 6(t). The main idea of the proof of this item is to estimate each derivative %'t(t),
for 1 < j <5, with an error of size O((¢)), then we will check that the sum of these estimates are going to be

a value of order O(4(t)), which means that the estimates of these derivatives cancel.
Step 1.(The derivative of Fy(t).) By definition of Fi(t), we have that

dFy(¢)
dt

— 2/R (6fg(t,a:) —&g(t,z) + U(H, xz(t)( )+ Hfll(g(z))g(t,x)) Org(t, z) dx
7/ <i1(t)azHg(’g)(x)+i2(t)a“Hg’21(t)( )> v ( Hi (@ )+Hfi(,3)(r>) g(t, )2 dz. (155)
R

Moreover, from the identity satisfied by g(¢,x), we can rewrite the value of %t(t) as

dF;t(t) :Q/R [U (Hfllft>( )> +U( 2O (x )) 7U(Hx1(t)( )+ H2O @ ))]@g(t,x)dm

2 [ U (0@ + 58 @) + gtt.2)) U (B39 @)+ 130 @) = U (H30@) + B0 @) a(t.)] dgt.0) da

xl(t . za(t 1 (t . z2(t)
=2 [ [pn(0PoRn @y rin(e202 130 @)|org(t.a) o2 [ [ 00,57 (04200, 153 ()] 0. 0) da
‘/ (i1 (00 HG) (@) + 200, H3 3 (@) [UP (3 (2) + HI D (@)g(t,2)”
R

and, from the orthogonality conditions of the Modulation Lemma, we obtain

dFC’}t(t) ZQ/R [U (H“‘t)( )> +U( 2O (2 )> _U(Hm(t)( )+ B2O (@ ))}@g(t,x)d:c

2 [ o (0@ + B39 @) + gtt.2)) U (B30 @)+ 130 @) = U (H530@) + B0 @) a(t.)] dgt.0) da

,Q/R [il(t)2a§Hf11fg>(x)+¢2() O2H, xz(t)( )}&g(t,x) d:c+2/R [il(t)x'l(t)@ngll%)(x)Jrig(t) 5 ()02 H, xz(t)( )]g(t,z) dz

- / (i1 (00, H G (@) + 2200, H3 " () | 0D (H3 (@) + B (@) (8, 2)% do,
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which implies

dF;t(t) = 2/R [U (Hfﬁ(,g)(x)> LU (Hgi(t)(x)> U (Hrl(t)( )_’_ng(t)( ))] Drg(t,) da

—2 / U (#3 @)+ B2 @) + gt 0) = 0 (B3 Q@)+ HZ O @) = 0 (53 @) + B D @) g(t,2)| drg(t,2) da

=2 [ [P @) + a2 53 )| 09t ) do

- [ [0 ) + a0, 5O @ U (8

)

{0 @) + 2 (2)) gt 0)? do + O(3(1). - (156)
Step 2.(The derivative of F5(t).) It is not difficult to verify that
dF ‘ $1 912 : T2 1
o) _ —2/ oug(t, o) [U (HA @) + U (B33 () - 0 (B3O @) + H (@) | do
+2 / 9(t,7) [0 (HfaEQ (2)) 0. HAQ (@) (6) + U (H3 0 (@) 0, H3 " (@) (1) da

2 / U (H33" @) + B2Q @) 017 @) (1) + 0,030 (@)i2(0)| 9(t, ) da.

Since from the definition of the function U, we can deduce that
= xT xT x x 2
0 (853 @)+ B2 @) - 0 (B2 @) | = o(|B7 @B @) + | 5520 @),
. 2
0 (133 @) + 12 @) = U (153 @) | = o |1 @) 530 @)| + |1 Q@) ).

we obtain from Lemma [2.3] and Cauchy-Schwarz Inequality that

-of )
)

[0 (1529@) - 0 (1539 @) + 2 @) 0. 350 gt ) de

/R 0 (128 @) = U (#3 @) + 5550 @) | 0,1 ()9t 0) de

In conclusion, we obtain from the identity satisfied by %t(t) that

dF . 381 acg : T2 1
2(t) _ 72/ aug(t, ) [U (H™ Y (2 )) +U ( () (ac)) —U (HM(” () + B (x))} dz +O(8(t)). (157)
Step 3.(The derivative of F3(t).) From the definition of F3(t), we obtain that

d}j;,t —2/8,59 (t x) [1’1( ) 82 fll(}))( ) () 82 zz(t (JJ)] du

. / o(t, ) [ (02O HELE () 2 (1) 0P HELY ()] dr-+4 / ot ) [ (1)1 (102 () (8)32 (P HEZ ()] i,
R

R

which can be rewritten as

T —2 [ glt,0) [ (PR ) +ia(0P02H )] o2 [ gt )00 ) il 021171 )] o

R
LO((1). (158)

Step 4.(Sum of d;;l , df;z , d(%.) If we sum the estimates (156]), (157)) and (158)), we obtain that

 dF,(t
Z} =

_Q/R {U (H§,21<t) (x) + Hfll(to)(:c) —&—g(tx)) -U (ng(t)( ) + H:m(t)( >)
-U ( 962(15)( ) + Hﬂfl(t)( )) g(t,x)] Ovg(t, ) dx
- [ 00700 + 00,530 @] 0 (B0 @) + YY) 0

—2 / glt,@) [ (0 O2H G (@) + 22(0° 02 HAY (@)] dw+ O(6(1)). (159)
R
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4
More precisely, from Taylor’s Expansion Theorem and since H g@ H < 4(¢),

S [ 50 (e + ) ot 2] gt 2y
- [ 3100157 @) + 10,1350 @) U (B30 @) + B @) ot d
=2 [ gtt.o) 000D (@) + 12002 @) da 4 O(6(0). (160)
R

Step 5.(The derivative of Fy(t).) The computation of the derivative of Fy(t) will be more careful, since the
motivation for the addition of this term is to cancel with the expression

- [ [100. 17 @) + aa(0.1530 )] U (1330 @)+ 1A @) . 0)? do

of (T60). The construction of functional Fj(t) is based on the momentum correction term of Lemma 4.2 of [19].

4(t)

To estimate with precision of O(§(t)), it is just necessary to study the time derivative of

2 / vt 2)Pug(t, 2)ir (Hwn (¢, ) da, (161)
R

since the estimate of the other term in Fy(t) is completely analogous. First, we have the identity

f[z /R Byg(t, 2)Dug(t, 2)ir (Hwr (, ) dx} = 25, () / wi(t, 2)4g(t, 2)0ug(t, ) dx

R

200 (1) /R wr(t,2)2g (1, 2)0,g(t, @) de-+2i (1) /R Dueon (t,2)ug(t, 2)Dug (1, ) da+ 21 (1) / wi(t, )02 gt 2)drg(t, 7) do.

R
(162)
From the definition of wy (¢, x) = w(#ﬁ)@)), we have
L(_r—m(t) N —da(t)z(t) = 2(H)(x — 71 (t)
t = . 1
O () ”<x2<t) = xl(t)) ( FOE ) (163)
Since in the support of w(x) is contained in the set 3 <z< é, we obtain the following estimate:
. z;
21 (1) / Bwn (t, )8rg(t, ) Dpg(t, ) dz = o( 4 J 2l H‘?H ) (164)
R J€{1 2} (¢
Clearly from integration by parts, we deduce that
201(1) [ (8,0 9(t.)010(0,3) do = O mae )] ) = 0 (165)
R ’ JE{l 2} z
Also, we have
. 2
21 (¢) / wi(t, 2)hg(t, 2)Dug(t, ) da = o( max_|i;(t)] HRBH ) — 0(5(t)). (166)
R je{1,2}

So, to estimate the time derivative of with precision O(d(t)), it is enough to estimate
23'61(75)Awl(t,x)ﬁfg(t,z)azg(t,x) dz.
We have that
2i71(t)/Rwl(t,x)afg(t,x)ﬁwg(t,x) dx = 2&1(t) /Rwl(t,z)aﬁg(t,x)axg(t,x) dz
— 2, (¢) /R wi(t,2)U (H“(t)( )+ Hy2 O (x )) 9(t,2)0:9(t,x) dx

+ 21 (1) / wit,@) [93g(t,2) = D2g(t,2) + U (HAQ (@) + H33" (@)) g(t.2)| Dug(t, @) do. (167)
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From integration by parts, the first term of the equation (167 satisfies

29':1(t)/Rwl(t,:z:)aig(t,x)axg(t,x) dz=0( ma ®)l H’?H )=o0 (168)

JE{I 2} Z

From Taylor’s Expansion Theorem, we have that

2

=o([la@"). oo

HU (#53 + B+ 9) = U (BA® + BRQ) =0 (B3 + BHE) 9(0) - 0@ (H530 + B2 Q) 2 g(t)”

L2(R)

Also, we have verified the identity

U() + U(0) — U(¢+ 0) = 24¢8(¢ + ) —G(Z( >M5 ),

which clearly with the inequalities (D1), (D2) and Lemma imply the estimate

HU ( wz(t)) . (Hfllgg)> U (Hgﬁ(t) n Hfll(f)))‘ = O(e~VEW), (170)

L2(R)

Finally, is not difficult to verify that

2
. 0(]g§§}|$]()l + |2 (1)])-
171)

(
Then, from estimates ((169)), (170) and (171) and the Partial Differential Equation satisfied by g(t,x), we
can obtain the estimate

H_ 282 wl(t) ; () 62 Iz(t _|-gj1( )8 H 11(6 —|—.132( )8 H t)‘

241 (t) /R wn(t,2) [3Rg(t,2) — BRg(t.x) + U (HQ (@) + HAO (@) g(t,2)] Dug(t, 2) dx =
—il(t)/wl(t,x)U(3)< H D (2) + HyZ O ( )) g(t, 2)%0,g(t, x) dx — 24 (t) /32 H™ ) (2)8,9(t,x) do
R
—Q:tl(t)?’/(wl(t ) = DO2H™ ) (2)0,9(t, ) do — 21 (1)d Q(t)2/w1(t 2)02Hy3 " ()0, g(t, x) dx
R

+O( max |ﬁé‘j(t)i‘j(t)\HMH+e_ﬁz(t) max |z;(t) |HﬁH+HﬁH max |&;(t \),

je{1,2} je{1,2} je{1,2}

which, by integration by parts and by Cauchy-Schwarz inequality using the estimate (125 for wy, we obtain
that

201(t) [ (o) [BB(t,) — Byt + U (G (0) + HAY () g(t,0)] Dugit. ) do =
R
0D o (s 53 .5 - o s 00 W( >

\ﬁj\) +O@(1). (172)

Now, to finish the estimate of 21 (t) [, wi(t, ©)07g(t, 2)0yg(t, x) de, it remains to study the integral given by

V22 (t
— 2 (¢ /82 Il(t x)0,g(t, x) dx—l—O( max_|d;(t)]*e” =
je{1,2}

=200(t) [ arto)l (B9 @) + HZO @) g(t.0)0sg(t.2) da, (173)
R
which by integration by parts is equal to

i1 (1) / wi () U (B2 (@) + H3 (@) [0, 5 () + 0, H33 O ()] g, 2)? do + O((1). (174)

Since the support of wy (¢, ) is included in {z| (x —z2(t)) < —%} and the support of 1 —ws (¢, x) is included in
{z|(z — z1(t)) > 3z4(t) }, from the exponential decay properties of the kink solutions in (D1), (D2), (D3), (D4)
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we obtain the estimates

a1 () / (ilt,2) = YU (H2G @) + B3O @) 0.HQ @)g(t,2)2 da| = O(G@®),  (175)
N0 / wi () U (B2 Q@) + 133 () 00330 (@)t 2)2 da| = O((®),  (176)
010 [ - OUOEN + B0 g0 ¢t = 060), (7
R
\gmg (t) / (iU (B2 + 133" ) 0,155 g(1)° dt| = O(5(1). (178)

In conclusion, we obtain that the estimates (175)), (176]) imply the following estimate

*2i1(t)/Rw1(t,x)U (Hfll(f))(x) +H§f’1(t)(m)) g(t,7)0.g(t, v) dr = / i

(00, HQ @)U (H33 + HQ) g(1)? da
R

+0(4(t)). (179)
Then, the estimates , , , and imply that
2% ( /R Org(t, )0ug(t, x) i1 (twr (t, 2) dm) - % / U<4>( 7 +H§§<t>) (i1 (1)8, H™ D) g(t)? dx
+ / (@1 ()0, HA YU (HZ + HE ) g()? da — 2 (¢ / O2H"Y) (2),g(t, ) dx. + O(8(2)).
By an analogous argument, we deduce that

( [t 0,8 2ia(0)1 = (t.) d ) =5 [0 (9 + H330) (200,530 do

+ / (#2(t)0, HyZyU® (ng“uﬂfgfg) g(t)2 dx — 25 (t / 02H2 D (2)0,g(t, x) dx + O(8(t)).
R

In conclusion, we have that

dF;t(t) :/R{ L ()0 HY + ot )@H&ﬁ(ﬂ U® (Hé”ﬁ” o t)) (1) di—2io(t /62 oug(t,2) do
3/RU<4>( 19+ H2 ) [ (00,51 + aa (00, HA V| 9(0)° do—2i (1 /62 O (@)0,g(t, 2) de+O(5(1)).
(180)
Step 6.(The derivative of F5(t).) We have that
dF5 /U<3> HH +H8”21(t)) (0209 (1) /U<4> HH +H8”21(t)) (51 ()0 B4 (1)0, HZD) g (1)? dr

. (181)
Step 7.(Conclusion of estimate of |F'(¢)|) From the identities (181)) and ((180)), we obtain that
dFy(t) dF5(t)
dt dt
— 2io(t /82 ”(t) )02g(t, x) dx—|—/

R

- / (i1 (00, H74) a0, B3 U (B30 1+ 1) g(0) de—2t1 (1 / O2HY (2)0,g(t, 7) da

U® ( oc1( ) +Hac2(t)) (t)z(()tg(t) dl‘—|—0(5(t)). (182)

Then, the sum of identities (160)) and (182]) implies Zle dFi(t) — O(§(t)), this finishes the proof of inequality

|E()] = O(8(1)).
Proof of F(t) + Aje? > Aze?. The Coercitivity Lemma implies that 3¢ > 0, such that Fy(t) > ¢ Hﬁ” Also,
from Theorem [2.9] we have the global estimate

2
max iy (0 +125(0)] + 20+ ]| = 00 (183)

that implies that |F5(¢) (HﬁH ) |Fy(t) (Hﬁ” 62) |F5(t)| = O (HﬁH 62) Also, since
ACEE >) +U(H8”21“)( )) —U(H§,ﬁ(t)(w)+Hfﬁ‘,?(w))\ O( |8 (@) H3 " (@) [H53" () + B4 ()]

the Lemma [2.3] and Cauchy-Schwarz Inequality imply that

)
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2201 = O( a8 e=0).
Then, the conclusion of F(t) + Aj€? > A HgﬁH follows from Young Inequality for € small enough. O
Remark 4.3. In the proof of Theorem 1, from Theorem we have |Fy(t)| + |F3(t) (HﬁH ) Since

, then Young Inequality implies that

R0+ 17(0] =0 (o ) and IFi o) 5 ot
01 < o]+ e

Remark 4.4 (General Energy Estimate). For any 0 < 0,7 < 1, we can create a smooth cut function 0 <
x(x) <1 such that

x(@) = {1,ifx > 0.

We define

Xo(t, ) =x( z—ail) ) :

za(t) — 21(1)
If we consider the following functional

L(t) = (D*E(Hg? t) +HY ) ﬂ ﬂ L2 1 +2/8tg t, )0, g(t x)[ 1(B)xo(t, ) + &2(t)(1 —Xo(t,a:))} dx
-2 / g(t,2) (UHG (@) + UG (2) - U(HGEO @) + BY Q@) ) da
R

+2 [ glta) (@ (02 RH (@) + (o020 @) do+ 3 [ UOHE @)+ B @)

(184)
then, by a similar proof to the Theorem[[.1], we obtain that if 0 < € < 1 and
51(t) = 6(8) + max |i;(8)]* max(e—VEED1=0) ~VEx(0(1-7)) Hﬁ“ — max |&;(t)]Pe H (185)
je{1,2} je{1,2}

then there are positive constants A1, As > 0 such that
|L(t)| = O(81(t)), L(t) + A1€? > Agé’.

Our first application of Theorem is to estimate the size of the remainder Hﬁ during a long time
interval. More precisely, this corresponds to the following theorem, which is a weaker version of Theorem
Theorem 4.5. Thereisd > 0, such that if 0 < € < & enough, (¢(0),;¢(0)) € SxL*(R) and Eyota1((0), 0:¢(0)) =

2E,0(Ho1)+¢, then there are x3,x1 € C?(R) functions such that the unique global time solution of s given,
for

¢(t) = Ho(z — x2(t)) + Hoyo(z — 21(2)) + g(2), (186)
with g(t) satisfying orthogonality conditions of the Modulation Lemma and
2 9 9 1\2 e%
190 09N sz = € 19002, 090, 0D oz + 0 (2) oo | Ol | g5 ) ) (8D

Proof of Theorem[4.5 Innotation of Theorem[4.1] from Theorem[d.Iland Remark[4.3] there are uniform positive
constants As, A; such that for all t > 0

Ay HﬁHQ < F(t) + A1 < C( HﬁHQ + €2>. (188)

From now on, we denote G(t) := |F(t)| + A1 In (%)2 From the inequality (188]) and Remark M there is a
constant C' > 0 such that, for all t > 0, G(¢) satisfies

G(t) < G(0) + C( /0 tG(s)fl),ds). (189)

lng

1
In conclusion, from the Fundamental Theorem of Calculus, we obtain that G(t) < G(0) exp (%(E})) . Then, from

the definition of G and inequality (188)), we verify the inequality (187]). O
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5 Global Dynamics of Modulation Parameters

Lemma 5.1. In notation of Theorem[I.7, 3C > 0, such that if the hypotheses of Theorem [I.7 are true, then
for (go(x),91(x)) = (9(0,2),0:9(0,z)) we have that there are functions p1(t), p2(t) € Cl(RZO), such that for
Jj € {1, 2}, we have:

500) = 23] S (N 00z + e (1)) exp (2250), (190)

(oo (2))" oty (o)

Inln (1) In (1)

Proof. In the notation of Lemma we consider the functions p;(t) for j € {1, 2} and we consider § = ;:—Yy,
the value of v will be chosen later. From Lemma [3.I] we have that

ja5(8) — ps (D] [1+72( 5] (s 12400 O o] + @) + mae iy (0)1ze>0,

je{1,2}

[p3(8) = (~1y/8v2em V20| €

We recall from Theorem the estimates max;e(1, 2y |;(t)] = O(e?), e V%1 = O(¢). From Theorem we

o) = (] () ) s (55

In(¢)

g(0 +eln( . .
To simplify our computations we denote ¢y = . Then, we obtain for j € {1, 2} that

50 = (0] 5 |1+ g | (cock (%) exp (ﬁi’;) caem (Do (C90). am

Since e~ V2:() < ¢, we deduce for € < 1 that z(t)e"V2*®) < ¢ln (1) < < lTTm In (1). Then, we obtain from
the same estimates and the definition (105)) of «(t), that

a(t) <t (e In (%))2 Lg}i?g} (yzl(t))k + Eﬁ_l] exp (21?116(;)

1 Cezt 1 €z =
+coe” @2 1n (7> exp (7) 1+ + + . (193)
@) Mmoo T o
However, if yIn (1) < 1 and 2(0) = In (1), which is possible, then the right-hand side of inequality (193) is
ln(é) lnlrzg))7
the right-hand side of inequality (193) is smaller than €2 In ( 6) In conclusion, from now on, we are going to
study the r1ght hand side of - for % < v < 1. Since we know that In (1) < z(f) from Theorem the
<1

)
inequality (193]) implies for ; ; @ < that

alt) £ 8(t) = (cocln (%))2 [fylnl(i) + e] exp (21?(13) e T In (%) exp (se(lt)) + 67 ey

= B1(t) + B2(t) + B3(t), respectively. (194)

greater than or equivalent to €2 In (%)Qwhile t < But, it is not difficult to verify that for v =

1+2(21_—’;y)

or € > 0 small enough, it is not difficult to verify that if 53(¢) > p1(¢), then v > ——=¢. Moreover, if we have
F 0 small enough, it i difficul ify that if B5(¢) > 1 (), th 7>“;:zf M if we h

lnl()

that 1 >~ > 8- 15

, we obtain from the following estimate

€2e7— €2 8Inln (l) €2 1 %
t) = > € = 1 —
B =) 1n<1>e"p< 2=y 1n<i>n<e) ’

that 3 EmE) e ) ey Cln % < By(b). T Jusion, f have that ©12(2)°
at B3(t) > 3 D < Ty then 3 1(t). In conclusion, for any case we have tha i (1) S
B(t), so we choose v = % As a consequence, a( ) is less than or equivalent to
In (1)2 2Cert

2 2

che £ ex . 195

0 lnln(l) p(ln(%)) (195)
So, the estimates , -, Remark |3 E and our choice of 7 imply the inequalities (190) and ( . O
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Remark 5.2. If 57 < Hﬂ” for a constant m > 0, then, for v = %, we have from Lemma that there
is p(t) € C*(R) such that for allt >0

|(t) | < e |lg(0)]], (196)
[B(t) — 16V2eV30] < ng((?)” (197)

Then, for the smooth real function d(t) satisfying
d(t) = 16v2e™>", (d(0), d(0)) = (=(0). 2(0)),

and since e~ V21 < ¢ In (1) < 2(t), we can deduce that Y(t) = (2(t) — d(t)) satisfies the following integral
inequality for a constant K>0

ﬁHH

V(1) <K | e

t2 //qy s1)ldsvds | ,Y/(0) =0, Y(0) = 0. (198)

In conclusion, from the Gronwall Lemma, we obtain that |Y (t)] < Q(tK?2), where Q(t) is the solution of the

following integral equation
ﬁ”t—i— t2 / / €Q(s1) dsy ds.

By standard ordinary differential equation techm’ques we deduce that

1
= €2

)< Js] , WH s | WH Lk _ ﬁH ’
)~ d(0)] £ QU g+ et [ L I (199)
and from %(0) = d(0) and the estimates and (197), we obtain that
[2(t) = d(t)] < 1p(0) — £(0)| + /Ot €|z(s) — d(s)| ds, (200)
from which with , we obtain that
j4(0) — d(o)] < eH et [ oo + ‘ﬁu (201)

eln (=

However, the precision of the estimates (199) and (201)) is very bad when €72 < t, which motivate us to apply
1
Lemma (3.1) to estimate the modulations parameters x1(t), x2(t) fort < M}
€2

We recall from Theorem|1.11]the definitions of the functions d; (¢), do(t). If H rs H > *57 because Theorem

andmax]e{lmd() 5(0)] = 0 imply that max;je (1,2 |d; (t)—; ()| = O(min(et, ezt)) maxe 1, 2y |d; (1)~
o

()] = O(et), we deduce for a constant C' > 0 large enough the estimates @D and . of Theorem For

the case Hﬁ

studying separated cases depending on the initial data z(0), 2(0).

90} < 555 (90(2), 91(2)) = (9(0,2),019(0,2)) and all the hypotheses
e~ V22(0) < e, then we have for 0 <t that

< i ( )5, the estimates of max;c (1 9y |2;(t) — d;(t)|, maxje1, 2y [2;(t) — d;(t)| will be done by

Lemma 5.3. 3K > 0 such that if

of Theorem |1.11| are true (md

%)

max ([[go-g)ll el (D) W) el
a2 (1) = d;(1)] = PPYTTES b (5m) | (202)
. 1\\2 In(L)° Kebt
e, & () = d; ()] = O (max ( [(g0: g1)]| ; €In (g)) mexl) <ln(i)>> : (203)
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Proof of Lemma[5.3 First, in notation of Lemma [5.1] we define
p(t) = pa(t) — p1(t), 2(t) == wa(t) — x1(t), 2(t) == @a(t) — 1 (F).
Also, motivated by Remark we consider the smooth function d(t) solution of the following ordinary differ-
ential equation
{d(t) = 161/2e~ V241

(d(0),d(0)) = (2(0), 2(0))-

Step 1.(Estimate of z(t), 2(¢)) From now on, we denote the functions W (t) = z(t) — d(t), V(t) = p(t) — d(t).
Then, Lemma [5.1] implies that W, V satisfy the following ordinary differential estimates

W) - V(t) =0 <max(”(90’91>” et (2))et exp Gri)t)) ’

. max ( [|(go, 91|, eln (l» 203t
—\/Ed(t) _ —\/§z(t) _ ( € €
|V (£) + 16v/2e 16v/2¢ =0 TVINES exp ( 1n(§))

From the above estimates and the Taylor’s Expansion Theorem, we deduce the following almost ordinary
differential system of equations, while |WW(¢)| < 1:

W(t) =V({t)+ O(max ( (g0, 91) ,€n (%))6% €xp (215(1%;))’

2
. max ( [|(go,g1)ll,eIn (1) 1
V(t) = =32¢VAOW () + O (e VHOW (1)) + O T ) exp (3¢5}

Recalling Remark [3:3] we have that
8 2
d(t)= —1In (ﬁ cosh (V2ut + ¢) ), (204)
where v > 0 and ¢ € R are chosen such that (d(0),d(0)) = (2(0), 2(0)). Moreover, it is not difficult to verify that

£(0)2 3 2(0
v= (% + 86_\/§Z(O)> 2, ¢ = arctanh 20)

[32e=V2:(0) + 5(0)?]

Nl

1
Moreover, since 8¢~ V22(0) = 42 sech (¢)? < 4v2e~2/l, we obtain from the hypothesis for e=V2#(0) that lne(i)4 <

v < €7 and as a consequence the estimate |¢| < In (In (1)). Also, it is not difficult to verify that the functions

n(t) = (v2ut + ¢) tanh (vV2ut + ¢) — 1, m(t) = tanh (v/2vt + ¢)
generate all solutions of the following ordinary differential equation
(1) = =32~y (1), (205)

which is obtained from the linear part of the system .
To simplify our computations we use the following notation

QCe%t)
ln(%) ’

2
max ||(gOagl)H ,Gln % 206%
( Inln (1) ( )) P (111(5)

From the variation of parameters technique for ordinary differential equation, we can write that

[Vvvg))} =al) mm ealt) [28] ! (206)

1
errory (t) = max ( (g0, g1)|l s €ln (f))e% exp (
€

errory(t) = e_ﬁd(t)(z(t) —d(1)* +
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such that

O(errory (t))]
O(errora(t))|

m(0) n(0)] [er(0)] _ 0
|7(0) h(O)] [02(0)] B O({|(go,gl)||+eln(1)}e§)1'

The presence of an error in the condition of the initial data c;(0), c2(0) comes from estimate (190]) of Lemma
Since for all t € R m(t)n(t) — m(t)n(t) = v2v, we can verify by Cramer’s rule and from the fact that

1

lni)4 < v that

c1(0)=0 (max ( Hﬁ ,€ln (%))|ctanh (¢)—1]1n (1)4) , (207)
c2(0) =0 (max ( Hm ’ ,€ln (%)) [ tanh (¢)|1n (1)4) , (208)

and

s (00,901 eln (1))’

+ O | |vsech (\51}75—}—0)2 W () + T
vinln (¢)

max ,91)|,€1n 1 e%
lea(t)] = O vsech(\/ﬁvt+c)2|W(t)|2+ ! (”(9;15131”(1)1 (€>) eXP<201t) Im(t)]

L0 <max (n(go,gl)n eln (1)) exp (ff(;) sech(V3ut + c>2> (210

Since we have for all x > 0 that

d <_ sech (z)’x n 3 tanh (.13)) _ sech ()

2 |2 tanh (z) — 1| sech (z)*

+ z tanh () sech (z) 5 )

dx 2 2 2

we deduce from the Fundamental Theorem of Calculus, the identity n(t) = (v/2vt + ¢) tanh(v/2vt + ¢) — 1, the

€2

1
inequality MOu < v and the estimates (209)), (210) that
1 1 2Cte?
e1(t) = e1(0)] = O (max (n(go,gl)n el (6)) In (<) [exp (@) - 1])

cof

From a similar argument, we deduce that

1
€2t

= (3, o) 1} (5 0 (1590} 1 (1))11?15112)

+0 (‘Sech (I)Zx n 3 tanh (gj) '\/ivt-i-c

2

||W<s>|igo[o,ﬂ>- (211)

ea(t) = c2(0)] = O (IIW (5)]13 o)  tanh (v20t + ¢) — tanh () )

10 (max(”(go,gl)” an (1)) oo (28 ] 220 ()1t (2)) 1 () s (wtljl))) .
(212)
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From the estimates v < €2, |¢| < Inln (1), we obtain for e < 1 while

W) o [e%t +lnln (%)} Inln (%) <1, (213)
that
nw«swi?mﬂ(1+wnu»>s|wvwnu§mﬂlnhhi)- (214)
Also, from

n(t)] < (V2vlt] + el),

n()] < ¢4t + Inln (i) <In (i) exp (&f)) (215)

In conclusion, the estimates (211]), (212)), (214)), (215) and the definition of W (t) = z(t) — d(¢) implies that while
the condition (213)) is true, then

we deduce for t > 0 that

masc ([[(go. 90) | el (1)) " n (1)° !
wion < 0= emm“)) wpcxﬁﬁ§t> (216)

Then, from the expression for V(¢) in the equation (206) and the estimates (211)), (212), (215)), we obtain that
if inequality (216)) is true, then

12 In(L)° (4C + 3)ert
V(t 5max< , ,eln(f)) € ex ( )
V1S max (e (7)) s e (B9
14 In(H)™ AC + 3)e3t
Jrrnax(H(go,gl)H,eln (7)> P (2) - 2exp(( 1) ), (217)
€ €2 [Inln (1)] In (2)
which implies the following estimate
. 1\ 2 In(H)° (4C + 3)ezt
Wit §max(H 0 ,eln<7)) £ ex ( ) 218
W) 0w () e Cam (218)
Indeed, from the bound Hm“ < LAL we deduce that (213]) is true for 0 < ¢ < M As a consequence
’ ~ In($)"’ T T (4C+2)ez ’
. lnln(%)ln(%)
the estimates (216|) and (218]) are true for 0 < ¢ < Taciad But, for t > 0, we have that
W ()| < €7t <3 1 ex cht W ()| < et < 3¢% In = ex it (219)
Since f(t) defined in inequality (216) is strictly increasing and f(0) < m, there is an instant Ty > 0
such that ’ ’
G%TM 1
exp | — v | f(Tm) = ———, (220)
(hl(l)) ln(%)lnln(%)2

from which with estimate (216]) and condition (213)) we deduce that (216) is true for 0 < ¢ < Tjs. Also, from
the identity (220]) and the fact that Hm“ < ﬁ we deduce

1 1 (2C +2)ex Ty,
5 S 2 €xp i )
In(YHInln (2" 7 In (L) nin(d) In(2)
. . 3 Inln (1) In
from which we obtain that T, > SO0 <
we have for ¢t > Tj; and € < 1 that

xp [ LT(C+ D) + 4lebt L (hreaneudt)  m@tE (h
1) p( 3In (1) ) = In(1)Inin (1)* p( 3In (1) ) = Inln (1)* P <3ln(i)> ’

1
() fore < 1. In conclusion, since f(t) is an increasing function,

€2
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from which with the estimates (219)) and (216) we deduce for all ¢ > 0 that

1) ? 116
_max (g g0)l el (1)) (1) eXp<(80+9)€%t).

W (t 221
LAQIPS elnln(%) 1n(%) (221)
As consequence, we obtain from the estimates (207)), , 7 and that
max (g, a0l e (D) (D /160 1 18)ehe
. ) ) € € 62
W)l < T 1 exp 1 (222)
ez Inln($) In(2)
forall t > 0.
Step 2.(Estimate of |x1(t) + z2(t)|, |£1(t) + @2(¢)|.) First, we define
M(t) = (21 (t) + 2(t)) = (da(t) + da(1)), N(t) = (p1(t) + p2(t)) — (di(t) + da(t))- (223)

From the inequalities (190)), (191) of Lemma we obtain, respectively:

2
by max (o)l etn () o
() VOIS ( ey )eXpGnC(i)t)'

Also, from inequality (T90) and the fact that for j € {1,2}d;(0) = ;(0), d;(0) = ;(0), we deduce that
M(0) = 0 and |N(0)] < max (Hgﬁﬁ ‘ ,eln(%)) ¢z. Then, from the Fundamental Theorem of Calculus, we
obtain that

|M(t)—N(t)| < max ( (g0, 91)|,€ln (1>)€é exp

€

2
max ([(go. g1)] el (1)) In (1) 4
vl e ).
2
max ([[(go, g)l eln (1)) W () o
M) = elnln (1) P ( In () ) (225)

In conclusion, for K = 16C + 18, we verify from triangle inequality that the estimates (221) and (225) imply
(202) and the estimates (222)) and (224) imply (203). O

Remark 5.4. The estimates (225) and (224) are true for any initial data (go,g1) € H'(R) x L*(R) such that
the hypothesis of Theorem|1.11] are true.

Remark 5.5 (Similar Case). If we add the following conditions
€ €z 1,2
e~ V2:(0) > 4§v§e%,71n<7) <e<0,
In (%) In (%) €

to the hypotheses of Theorem then, by repeating the above proof of Lemma we would still obtain (209)),
E10), (1) and (1),

) 2, . .
However, since now |c| <In (1), if e < 1 enough, we can verify while

1\? 1
IW ()l oo 0.4 <eét+1n (6> ) Inln <6> <1, (226)

1

2

W 00 O+ 100D S W) vt00 iy

which implies by a similar reasoning to the proof of Lemma for a uniform constant C' > 1 the following
estimates

that

max (g0, 90l eln (D) W2 oy
W) < PPYEY p (@

) = hit.0), (227)

ln(%)7 Cezt

ex
ez Inln ) P (111 (1)

(0] < max (110,90l e (1))’ ) = £2(t.0). (228)
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From the estimates ., and Hﬁ” <o (i)o, we deduce that the condition (226]) holds while 0 < t <

1
M. Indeed, since Hg )H < W, we can verify that there is an instant

1
4(C+1)e2
(226]) and (227) are true for 0 <t < Ty and
1
exT 1
fl(TM,c>exp< M) i
1

ln(%) n % >*2 lnln(%)'

In conclusion, we can repeat the argument in the proof of step 1 of Lemma [5.3 and deduce that there is 1 <
K < C+1 such that for allt >0

Inin (3)In($) < Ty such that
4(C+1)e

l\)\»—t —

W) S fi(t, K), W) S falt, K). (229)

m\»—\

Lemma 5.6. In notation of Theorem|1.11, 3K > 1, § > 0 such that if0 < e <6, 0 <v < =1, (g0(2), 91(2)) =

o=
~—

(9(0,z),0:9(0,2)) and “ﬁ" < (I then we have for 0 <t that

2
max ([|(go, g0)ll e (D) 12 gy
di(t) — z;(1)| = (= nter 2
s |d(1) = ;(8) = O e n (=) ew( T ) (230)
max (oo o0l em (M) 1 g
) ) € €2
d £i(t)] =0 In (- . 231
]ér{l?XZ}| () xj( )| e%]nln(%) n(€)exp<ln% ) ( )
Proof of Lemma[5.6 First, we recall that
1 8
d(t) = 7 ( cosh (\fvt—l—c))
which implies that
2
e V2d(1) % sech (fvt—!—c) . (232)

We recall the notation W (t) = z(t) — d(t), V(t) = p(t) — d(t). From the first inequality of Lemma we have
that

V(O S mae (gt (1)) (233)

We already verified that W, V satisfy the following ordinary differential system

() = V(£) + 0 (max () (g, 90)ll el (1) )ed exp (€554)),

V(t) = —32e~VHOW (1) 4 O(e VO (W (1))?) + O (mllongl e GI” o (2t

However, since v? <

o ( (s we deduce from (232) that e—v24(®) S ( B for all t > 0. So, while [[W(s)|| (o4 <
1, we have from the differential ordinary system @ ) for ¢ > 0 and some constant C' > 0 independent of € that

2
e +max(||<go?gl>||,e1n<%>)
S oo
(3t e Inln (7)

from which we deduce the following estimate

2
" max (1l(g0, g0, eln (1)) m(d) ook
Vit - V(O)]=0 (m o ||W<s>mo,ﬂ> +0 T (D b (55))

2Ce%t>

VOl s 6

exp (

In conclusion, while [[W(s)|| (o4 < 1, we have that

max (Lo g0l el () (D) ey

€3 Inln (1) In ()

W (t)| < [V(0) + 0 (mztl)g |W(s)||L°°[0,t]> - (234)
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Finally, since W (0) = 0, the fundamental theorem of calculus and (234) imply the following estimate

2 2
o2 max (g0, g)l el (1)) () onedy
W@ lzspog < IVO+0 | g IV )lepo + PTYIYES exp(ln(%))
(235)
Then, the estimates (233)) and (235) imply if ¢ < 1 that
2 2
max ([l(go.g0)ll el (2) (D) (004 1)ee
W) < , 236
W(0)] £ YYE b () 9 (236)
In (L )lnln( ) In(L)Inln (L)
<t < ——7t <t< In()nin ()
for 0 <t crncd . From and ([234)), we deduce for 0 < ¢ scrncd that
2 2
o max (o, gDl e () (D)’ o0 4 1)kt
W)l < ( P ) s (U5 1) (237)
e2lnln () In(=)

Since [W(t)| < ezt, |W(t)| < et for all t > 0, we can verify by a similar argument to the proof of Step 1 of
Lemma [5.3| that for all ¢ > 0 there is a constant 1 < K < (C' + 1) such that

max ( [[(go, 1) eln (1)) (1)
( )

Kest
W (t)| < ( ) 238
OIF D e (135 (235)

2 2
i < ™ (11(go g0, eln () n (1) (Keét> )
ex .

~ eFnln (1) PAm (D)
In conclusion, estimates (230) and (231)) follow from Remark[5.4} inequalities (238)), (239) and triangle inequality.
O

1
Remark 5.7. We recall the definition (204) of d(t). It is not difficult to verify that if HﬁH < ln( i ﬁ <w

and one of the following statements

1. e V200 « ﬁg and ¢ > 0,

2. e~ V2200 « ﬁg andc<—1n(%)2,

-

ol

was true, then we would have that e~ V2(t)
€, if ¢ > 0, then we have for all t > 0 that

foro<t < M Moreover, assuming e —V22(0) 1y (%)8 <K

1(8 62

02 2
e V20 = sech(\fvt + c) < U—sech(c)z = VEO) € 5
3 8 ()

Kln(1)?

L
€2

otherwise if c < —In (%)27 sincev < e%, then there is 1 < K such that for 0 <t <
and so

, then 2|v/2vt+c| > |c],

2
e~ V2d(0) < v?sech (—E> < < g
2 In ()

In conclusion, the result of Lemma [5.0 would be true for these two cases.

From the following inequality

s -t (1)) <0 (4w (Js] ),

we deduce from Lemmas and Remarks and [5.7] the statement of Theorem
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6 Proof of Theorem

If HﬂH > eln (=) the result of Theorem [1.7]is a direct consequence of Theorem So, from now on, we

assume that Hﬁ” < eln(1). We recall from Theorem [1.11f the notations v, ¢, d1(t), d2(t) and we denote
d(t) = da(t) — dq1(t) that satisfies

1,
\f
From the definition of dy(t), da(t), d(t), we know that max;, 2y \d;(t)| + e~V — O(v2 sech (v/2vt + c)2)
and since z(0) = d(0), 2(0) = d(0), we have that v, ¢ satisfy the following identities

v = < —v22(0) ( 2(0) — il(o))2>% , ¢ = arctanh (7592(0) _ jjl(o))7

d(t) = (écosh V2ut 4 ¢) ), —V2d() = 5 sech(\[vt—i—c) .

2 2v

so Theorem implies that v < e2. From the Corollary and the Theorem we deduce that 3C' > 0

such that if e < 1 and 0 < ¢t < w, then we have that

€2

9

max _|&;(t)] = ( max_|d;(t )|> +0 <€§ In (%)

je{1,2} je{1,2}
(240)
1\? Ctes
e~ V2:() = =V2d() 4 o (max (e‘ﬁd(t), e‘ﬁz(t)> |2(t) — d(t)|) = V() 4 O <€2 In (7> exp (1 (612)>> .
€ n(<
(241)

Next, we consider a smooth function 0 < ya2(x) < 1 that satisfies

We denote

alt. ) = xa (L=,

x — xa(t)

From Theorem [4.1]and Remark the estimates (240)) and (241]) of the modulation parameters imply that for
the following functional

520 = (DB (B0 + 579 50, o8 L2xL2—|—2/8tgtJ: Brg(t,2) 11 (t)xat, ) Fr (1)1t )] da
=2 [ g (U (105 @) + 0 (1530 @) =0 (8530 @) + 1§ (@) ) de
+2/Rg<t,a:>[< (OPOH Y @) + (a0 ?02HA @) ot 5 [

v (B3O @) + B Q@) gt 0)? da,
R

and the following quantity d1(¢) denoted by

51(t) = ||| (720 max ay(0)] + mmase ()P = F + max i (0113 (0)])

Jje{1,2} Jj€{1,2} je{1,2}
max; 12}|17j()| .

i) (L )+ [Jote

o] (TG e 07+ 15500)) +

we have |L;(t)| = O(01(t)) for t > 0. Moreover, estimates ([240)), (241)) and the bound L;(t) = O(8;(t)) implies
that for
1,9 Ctez
2 — [
¢ hl(e) eXP(lnG))

t) = Hg‘(t_gH v2e? sech(\@thrc)2 + Hg‘(t_s
o]+ e, e o]+ o]

je{1,2} Z

3 Q\fz(t)

Ee 20
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Inln (1)In (1)
1

|Li(t)] = O(62(t)) if 0 < t < . Now, similarly to the proof of Theorem , we denote G(s) =

2
max ( H g@ﬁH ,e). From Theorem and Remark we have that there are positive constants K,k > 0

independent of € such that
2
k HMH < Lyi(t) + Ké2.

We recall that Theorem [2.9] implies that

1 _ .
In () £ 20, eV max iy () + max [#5(0)] = O(),

from which with the definition of G(s) and estimates (240) and (241]) we deduce that

1
€2

ln(%)’

81(1) < G(t)v?sech (V2ut + ¢)’e? + G(t)e¥ + G(1)?

While0§t<M

dent of € such that

In conclusion, the Fundamental Theorem of Calculus implies that 3K > 0 indepen-

G(t)? <K (G(0)2 + / t G(s)v? sech (V2us + ¢) et + G(s)eB + G(s)? ds> : (242)
0

1 1

while 0 < ¢t < % Since 4 [tanh (v2vt + ¢)] = V2vsech (v2ut + 0)2, we verify that while the term
€2

G(s)v?sech (v/2ut + c)ze% is the dominant in the integral of the estimate (242)), then G(t) < G(0). The remaining

lne(zé)
w Similarly to the proof of we have for t) <t < w that G(t) < G(to) exp (C (t;f(‘ﬁ);j )
2 €
Inln (1)In (1) that

€2

case corresponds when G(s)? is the dominant term in the integral of (242)) from an instant 0 < ¢ <

€2

™

In conclusion, in any case we have for 0 < ¢ <

G(t) < G(O)exp (C tet ). (243)

Inln (

*21“7() and K > 2 we have that

€2
1 T 2KexT
eln(—)exp | K—— | <eexp| ———— | .
(e) ( 1n(§)> < ln(%) )

In conclusion, from the result of Theorem we can exchange the constant C' > 0 by a larger constant such
that estimate (243) is true for all ¢ > 0.

However, for T >

A Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma A.1. With the same hypothesis as in Theorem‘ and using its notation, we have while max;ey 2y |d;(t)—
zi(t) <1 thatmaxje{1,2}|dj()f Z;(t) =0 (max]e{lﬂ} |dj(t) — x;(t)|e + e2(t) o—V22(t) JrH )

Lemma A.2. For U(¢) = ¢*(1 — ¢?)?, we have that

. . : H™ W (1) Hy3 ()
z1(t) z2o(t) z1(t) B zo(t) _ 7\/§z(t) —1,0 0,1
U (H o(@)+Hy 1" (z )) U (H71,0 (5”)) U<Ho,1 (x)) 24e <(1+6_2ﬁ(z_m(t))); + (14 e2V2(@—=2(1))3

— 30e~V2:(®) Hmll(g)( ) + H(g)ci(t) (z)° +r(t, x)
(1+e2V2@-a()s (14 e2V2a—e2)s %),

such that ||r(t)| 12 =) = O(e=2V2:(1)),
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Proof. By directly computations, we verify that
U (a7 (@) + 13 @) - U (0 @) - 0 (#5530 @) = —2am7 Qi (15 Q) + 153 )
+30H ) Hy O (HEG)? + (HGA ")) + 60(H ™ Hyy ) (G + HGy ™).

First, from the definition of Hy 1(z), we verify that

H:Cz(t)
o1 (t) prae(t)y2( pyea (t) w2(t)y _ —2v/22(t) 0,1
60(H y g Hyy ') (HZ} g +Hy7") = 60e <(1+62\/§(9c—x2(t)))(1+e—2\/§($—ac1(t)))
z1(t)
+60e~2V2=(0) Hog .
(1 + e=2V2(@=1(1)) (1 4 e2V2(@—=2(1)))

Using , we can verify using by induction for any k € N that

dk? 1 dk 62\/51 dk )

I | Ty || = aek |V e || T e =0(1 244

dz* {(14‘62\/%)” dz* (1 + e2V22) ’dxk [Ho. () }‘ (1), (244)
and since 2121@)  — e 0 Sehwartz function, we deduce that 60(H 1(0)H$2(t)) (H fll(f)) + Hﬁ(t)) is

(14+€2V27) ™ (14 e2vEa)3
in HX(R) for all k> 0 and

| QB 2+ HE) |, = 0eHO). (245)
Next, using the identity
—V/2z(t)
7 (@) HP P (2) = — < 246
—-10 (.’L‘) 0,1 ( ) (1 + 62\@(9’3*1’2@)))% (1 + 6*2\/5(9’3*1?1(75)))% ’ ( )
the identity
1 1 e2V2e
(1 + 62\/5.’,8)% - (1 + 62\/518)% + (1 + 62\/§x)’
and Lemma we deduce that
24 (2)
Il(t) zQ(t) —V/22(t) -1,0 _ —2v22(t)
24(H2 ) Hy " + 24e T e O(e ) (247)
L2(R)
H) ()
w1 (t)\4 prea(t) —v22(t) (H g _ —3v/2z(t)
30(H ) HyA " + 30e ((1 et )| Ole ). (248)

The estlmate of the remaining terms —24Hx11(6)(Hx2(t)) 30Hx1(t)(H$2(t)) is completely analogous to (247)
and (248) respectively. In conclusion, all of the estimates above 1mply the estimate stated in the Lemma O

Proof of Lemma[A.]] First, we recall the global estimate e~ V22(1) < e. We also recall the identity
/ (8(H0,1($))3 — 6(H0,1(:c))5)67‘/§"” df,C = 2\/57
R

and the global estimate e~ V() < e. which, by integration by parts, implies that

/ Ho 1(2)0: Hon(x) , (Hoa(x))*dpHoa(x)
e2f(z)) (14 e2V2())3

do = 4. (249)

We recall d; (t), da(t) defined in (7)) and (8) respectively and d(t) = da(t) — dy(¢). Since, we have for j € {1, 2}
that d;(t) = (—=1)78v/2e= V241 we have d(t) = 16v/2e~ V24" which clearly with the fact that

||3 HO 1||L2 == ||82H0 1HL2 = 2\/,’
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imply that d;(t) ||835H0,1||2L2 = (—1)74e~V24() We also recall the partial differential equation satisfied by the
remainder g(¢,z) (II), which can be rewritten as

U (1530 @)+ 12 (@) = U (0 @) = 0 (H337 @)) = a(6)0, H53 (2) =

6 k—1
= To €T T To t
— (Bg(t,2) = O2g(t,2) + U (Ho,f”(x) + H 0 @) g(t,0)) + U (HHQ + H") (g; ) I
k=3 :
i1 (0202HG () — () 202H3" (2) + i1 (10, H™ G (). (250)

In conclusion, from the estimate (249)), Lemma and Lemma [2.3] we obtain that
(0 (B39 + B33V -0 (H20) - 0 (537, o, HE") g —ia(0) = —(ia(t)—da(t)) 0 Ho 1 |

+0(|x1(t)|z(t)e*ﬂz<t>+e*ﬂz<t> max [z;(t) - dj(t)ue*?@(t)z(t)). (251)
J

We recall from the proof of Theorem [.1] the following estimate

= O( st e=>).

[0 (1529@) - 0 (1539 @) + B @) 0. 1350 gt ) de

Also, from the Modulation Lemma, we have that

(02 0(0), 0. Hy3 ") 12 = 5 [(000(0), 0, HA) 2] + (1) Dug (1), 0, )

Tt
ar., s . .
= {xz(txg(t), 8§H0’1(t)>L2] + @9 () (Deg(t), 6$H071(t)>L2
= i@(t)(g(t), 03 gzl(t)>L2 + 2j72(t)<atg(t),angj(t)>L2,

In conclusion, since 9, H Z(t) € kerD*Epo (ng(t)> we obtain from and ) that

|2 (t) — da(t)] = ( max _|d;(t) — z;(t)|e + ez(t)e” V220 4+ Hﬂ” —V2a(t) 4 Hﬂ‘

Jje{1,2}

),
the estimate of |7 (t) — dy(t)| is completely analogous, which finishes the demonstration. O
Lemma A.3. For any 0 > 0 there is a €(0) > 0 such that if

16(x) = Ho 1 ()|l g1 gy < 400, 0 < Epot(¢(2)) — Epot(Ho,1) < €(9), (252)
then there is a real number y such that

|¢(x) — Hop(x — y)|l 1 < 6.

Proof of Lemma[A-3 The proof of Lemma [2.6] will follow by a contradiction argument. We assume that there
is a ¢ > 0 and sequence of real functions (¢, (x)),, satisfying

ngrfoo Epot(¢n) = Epot(Ho,1), (253)
¢n(x) = Ho1 (@)l g1 gy < +00, (254)

such that
ilelﬂf{ [6n () = Ho1(x + y)ll 1 gy > ¢ (255)

Since U(¢) = ¢*(1 — ¢*)? and |Epot(pn) — Epot(Ho1)] < 1 for 1 < n, it is not difficult to verify from the
definition of the potential energy functional F,,; that if 1 < n, then

H dén (x

[ ¢n(x) — 1HL2({w\¢n(gp )>1}) S |Epot(¢n) - pot(HO )l

L2({z]¢pn(z)>1})

By an analogous argument, we can verify that

do () |*

S | Epot(9n) — Epot(Ho 1)l
L2 ({z|- L <¢n(2)<0})

2
160 ()22 ({2~ 3 <pn(@)<0y) T H
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and if there is xo € R such that ¢, (z) < —3, we would obtain that

2
dé, ()
e +2/m (‘ dw |

) \/ d¢ Epot HO 1 L \/ d¢ > Epot HO 1)
-2 -2

/;oold(b;( x)? U(én(z dx_/Jroo\/T‘d(bn

3 W) o

which contradicts (253)) if n > 1. In conclusion, we can restrict the proof to the case where 0 < ¢, (x) < 1
and n > 1. Now, from the density of H?(R) in H'(R), we can also restrict the contradiction hypotheses to the
situation where < 2+ () is a continuous function for all n € N. Also, we have that if [|¢(z) — Ho,1(2)| 1 ) < 400,

then E,ot(¢(x)) > Epot(Ho,1(x)). In conclusion, there is a sequence of positive numbers (e, ),, such that

Epot(¢n) = Ep0t<H07l> + €n, ngg_l €n = 0.

o

Also, Ty¢(z) = ¢(x — y) satisfies Epot(¢(2)) = Epot(Ty¢(2)) for any y € R. In conclusion, since for all n € N,
lim; 400 dn(z) = 1 and lim,—, o ¢n(2) = 0, we can restrict to the case where

1
n(0) = —=,
¢n(0) 7
for all n € N. For (v); = max(v,0) and (v)- = — (v — (v)4), since %’gﬂ('ﬂ is a continuous function on z, we

deduce that (%@@) and (%f(x)) are also continuous functions on x for all n € N. In conclusion, for any

U= { € R| dqﬁ”i 2) < 0} (256)

is an enumerable union of disjoint open intervals (ag n, bk n)ren, which are bounded, since limg_, o ¢ (x) =
1, limy s oo Ppp(x) = 0 and 0 < ¢, (x) < 1. Now, let E be a set of open bounded intervals (h;.,l;n) C R
satisfying the conditions

n € N, we have that the set

{i| (hin,lin) € EY=1CZand,if j >4, l;, < th For any ¢ € I, the following function

n\T if x < hi,na
funl) = 4 07 |
¢n($ + li,n — hz,n) if x > hi,'m

satisfies Epot(Ho,1) < Epot(fin) < Epot(¢n) = Epot(Ho.1) + €n, which implies that

h 1 dg(x)*
/hi,n 5 dx + U(d)"(x)) < e€n.

Furthermore, we can deduce from Lebesgue’s dominated convergence theorem that

> / S v, < (255)

el

for every finite or enumerable collection E of disjoint open bounded intervals (h;n,l;n) C R, 4 € I C Z such
that ¢p(hin) = ¢n(lin). In conclusion, we can deduce from (258) that

/R (d‘b;f))i da < 2en, (259)

d</>n | dgn(2)
dx

and so for 1 < n we have that

1
< 8en, dn(0) = —. 260
o €n, On(0) 7 (260)

Moreover, we can verify that

Fpor(én) = 5 M(‘d%w) _

2U (¢ (z ) dz

/W\d‘%
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from which we deduce with lim,_,_~ ¢,(z) =0 and lim,_, o ¢, (z) = 1 that

—

- 2U<¢n<x>>)2 w|+ [ V@

\V]

Epot(Ho1) + € = Epot(dn) > = [/R (’dﬁzx(;?)

=

2
— 2U(¢n(x))> dx

+ Epot(HO,1)~

DN =

Then, from estimate (260]), we have that

donla) _ L
dr ~ VU 0nl@) + (@), 6n(0) = 5,

with [[rp|[2r) S €n for all 1 < n. We recall that U(¢) = $?(1 — ¢*)? is a Lipschitz function in the set
{#]0 < ¢ < 1}. Then, because Hy 1(x) is the unique solution of the following ordinary differential equation

wle) . 2U($(x)),
6(0) = 75

(261)

we deduce from Gronwall Lemma that for any K > 0 we have

— H071(35)

=0. (262)

dop(x)
-z L2[— K K]

n—-+4oo n—-+oo

2
Also, if 1 < n, then H%I(x)

() < 2E,0t(Hp1) + 1, and so we obtain from Cauchy-Schwartz inequality that
L2(R

gy |’

- < Mlz —y|?, (263)

L2(R)

for a constant M > 0. The inequality (263) implies that for any 1 > w > 0 there is a number h(w) € N such
that if n > h(w) then
|6 (@) = Ho1 (%) pos f2) 1 <y < w5 (264)

otherwise we would obtain that there is 0 < 6 < % and a subsequence (my,)nen and a sequence of real numbers
(@n)nen with limg, 4 my, = 400, |z, > n + 1 such that

., (20) — 1| > 0 if 2, > 0, (265)
|, ()| > 0 if z, < 0. (266)

However, since we are considering ¢, (z) € H?(R) C C}(R) and 0 < ¢,, < 1, we would obtain from the mean
value theorem that there would exist a sequence (yy,), with y, > x, >n+ 1 or y, < z, < —n — 1 such that

1_9S¢mn(yn)§1+9, ifyn>07 (267)
Om,, (yn) = 6 otherwise. (268)

But, estimates (263)), (267), (268) and identity U(¢) = ¢*(1 — ¢?)? would imply that

1< / Ul () dz for all n > 1, (269)
|z[>n—2

and because of estimate (262]) and the following identity
K

Jm [ @) + U (@) = Br(Fos (@), (210)

estimate (269) would imply that lim, 400 Epot(dm,,) > Epot(Ho,1) which contradicts our hypotheses. In con-
clusion, for any 1 > w > 0 there is a number h(w) such that if n > h(w) then (264) holds. So we deduce for any
0 < w < 1 that there is a number hj(w) such that

if n > hy(w), then |¢,(z) — Hp1(z)| <w for all x € R. (271)
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Then, if w < 155, n > h(w) and K > 200, estimates (271)) and (262) imply that

+oo T 2 +o00 2 2

/K U(qﬁn(m))—i—%d(Zl( ) da > %/ (1= ¢n(z)® + dqb;i ) dz, (272)
-K

[ v+ ;d‘b”x > / a2 + o2 ) 4. (273)

In conclusion, from estimates (271)), (272)), (273)) and

1.
lim —Hy1(2)* + U(Ho(z)) dz =0,
K—+o00 |I|2K

we obtain that lim, 0 ||¢n — H071(x)||L2(R) = 0 and, from the equation in (261)) is satisfied for each ¢y, we

Ho,l(x)‘

conclude that lim,, ‘ df” = 0. In conclusion, if 1 < n, inequality (255) is false. O

L2 (R)
From Lemma we obtain the following corollary:

Corollary A.4. For any 6 > 0 there is a €9 > 0 such that if € < €, ||¢(x) — Ho1(x) — H_1,0( )||H1(]R) < 400
and Epo(¢) = 2Ep0(Ho,1) + €, then there are x2, 21 € R such that

1
To — X1 2 S, ||¢(.’E) — H071($ — 1'2) + H,1’0(5L' — xl)”H;(R) S 5 (274)

proof of Corollary[A-]} First, from a similar reasoning to the proof of Lemma we can assume by density
that 'm;—f) € H!(R). Next, from hypothesis ||¢(z) — Ho 1(z) — H_1,0()| g1 gy < +00, we deduce using the mean
value theorem that there is an y € R such that ¢(y) = 0. Now, we consider the functions

bo(z) = {<z><x> itz <y,

0 otherwise,

and

_J0 if v <y,
o+(2) = {(Z)(x) otherwise.

Clearly, ¢(x) = ¢_(z) for z < y and ¢(z) = ¢4 (x) for x > y. From identity U(0) = 0, we deduce that

Epot(¢) = Epot(¢—) + Epot(¢+)a

also we have that

Epot(H—l,O) < Epot(¢—)7 Epot(HO,l) < Epot(¢)+)'
In conclusion, since Epo (@) = 2Epo(Ho,1) + €, Lemma implies that if € < €9 < 1, then there is x5, z; € R
such that

lp(x) — Hop(x —x2) — Ho10(x — 21)|| 0 < |64 — Ho1(x — 22) || o +[0— — Ho10(x — 21) | g < 6. (275)

So, to finish the proof of Corollary |A.4] we need only to verlfy that we have o —x1 > = 1f 0 < ¢y < 1. But, we
recall that Hy 1(0) = from Wthh with estimate we deduce that

f’
b4 (23) — —=| <6, |6 (1) + —| <6 (276)
+\42 \/5 ~ Y \/5 ~ Y%
so if €9 < 1, then 21 < y < 3. From Lcmma | we can verify that f(z) = ||DEp0t HE (z) + H 1 0(x ||L2

a bounded functlon in Ry, from which with estlmate (1275) we deduce that f0<e < 1 then

_oyal
| Bpot (@) — Epot (Ho1(z = @) + Ho1,0(x — 1))] < e7>V75.
In conclusion, we obtain from Lemma and the estimate above that ©o —x1 > 1f O<e<<lande<e. O

Now, we complement our material by presenting the proof of Identity and the proof of The Modulation
Lemma.
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Proof of Identity , From the definition of the function Hy (x), we have

ge2V2e + 2¢4V2e

d
(1+evae)s 0

/ (8(Ho 1 (2))® — 6(Ho 1 (z))%) eV dx = /
R R

by the change of variable y(z) = (1 4 ¢2V2%), we obtain

i z))%) e V2 = A :i =6 3
| (81 @))* = 60201 (2)?) e I e i A A - L
(— dy=3 — 4y~ %):022\/5.

2f

Proof of the Modulation Lemma. First, let zo, x1 € R and g € H'(R) such that x5 — 21 > % with dg > 0 small
enough to be chosen later. Then, we define the following map F : R? x H!(R) — R? by

(0o H55™"2, Hoy + H™y o — HIG™ + g) e

F((ho,h = ;
(( 2 1)79(‘7;)) <8IHf11-jbh1’ Hg,21+Hfll,()*H§21+h2 +9>L2

for any ((h1, ha), g) € R?x H(R). Clearly, F(0,0,0) = (0,0), also, we can verify that the Derivative D Fj, 5, ((0,0),
is given by
2 x T T
10nHo |2, + (O HEL, %) (0,HEY, 0,17 )
<8$H§:21, 8avall,0> ”8 Hy 1||L2 < Hill ,00 dw>

Then, Ry(ha, h1) = F(ha, h1,g9) — F(0,0,9) — DFp, 1, (0,0, g)(ha, h1) satisfies the following identity

R (hz hl) _ <8 H12+hz O, H +h282Hg217 > N <a H862+hz H&ﬁ _ Hg’21+h2 _ h281H3’21+h2>
o <aerl,+h1 fafoa,whla?Hfa,o, )| @ BT~ B~ hd HE )

(0 Hyy ™=, H™Y o — HV) — hi(0.HG3, 0, H™Y )

<axH_azhl,H03—Hoa+h2>—h2<axH03,axH_m] 277)

for all (ho,h1) € R?, also it is not difficult to verify that R,(0,0) = (0,0). Also for §, > 0 small enough, if
max{|hil, [h2|} = O(do), [|9ll zr1 @) < o, it is not difficult to verify from Lemmathat

|Ry(h2, h1)| S llgll s max{ [, [ha]}? + max{ [ hal, [ho|} + max{|hal, [he|}? (ws — w1)e™ V2270,
from which we deduce that -
[Ry(hay )| = O( (88 + e™30) (1| + o) ) (278)
for any ((h2,h1),g) € R? x HY(R) such that max{|hsl, |h1|} = O(6) and ||g| ;: < do. In particular, estimate
[278) implies that DFy, 5, ((h2,h1),g) is an uniformly non-degenerate matrix, for any (hz, h1), (z2,71) € R?
and g € HY(R) such xg — 21 > %, llgll g2 < do and max{|hsal,|hi|} = O(dp). As a consequence, the result
of the Modulation Lemma follows from the Implicit Function Theorem for Banach Spaces with the fact that
£((0,0),0) = (0,0). 0

B Optimality of Theorem

Theorem B.1. In notation of Theorem |1.7, for any constant C > 0 and any function s : Ry — ]R+ with
limp_,0 s(h) = 0, we can find a positive value (5( ) such that if 0 < e < §(s), then for any HHH < es(e) there

isa0<T§ 1 suchthate<Hg )H

€2
Proof of Optimality of Theorem[1.7} We use the notations of Theorem and Theorem Clearly, if the

result of Theorem is false, then by contradiction there is a function ¢ : R4 — R with limy,_,¢ ¢(h) = 0 such
that for any 1 < N € N is possible to have

Hﬁ“ < qle)e (279)
forall0 <t < NZ (E) =T if e € 1 enough. From Modulation Lemma, we can denote the solution ¢(¢,x) as

€2

ot x) = H ) (2) + HyZ " (2) + g(t, @),
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such that
(g(t,2), 0 H G (2)) 122) = 0, (g(t,2), O HG 3" (2)) 2y = 0.

Also, for all t > 0, we have that g(¢,z) has a unique representation as
glt,x) = PUOOTHTYG (2) + Po()0ZHG 3 () + 7t ), (280)
such that r(t) satisfies the following new orthogonality conditions
(r(t), 2HN ) 12y = 0, (r(t), 2HGA") 122y = 0. (281)
In conclusion, we deduce that
.. 2 . ..
lg(t, )12y = | Hoa(@)|[,2 (P2 + P+ Ir(D)1 72 + 2P ol (2), Hoyo(2)) oy (282)

We recall from Theorem [2.9| that \}ln( ) < z(t) for all £ > 0. Since, from Lemma we have that

1
(02H™} f]), 82H§2’l(t)> < z(H)e V2 and z(t)e V2 < eln(1) if 0 < e < 1, we deduce from the equation
- that there is a unlform constant K > 1 such that for all ¢ > 0 we have the following estimate

”g(;)<||” < IR+ 1Po0)] + (0 2gey < K [|o ] =

From Theorem and orthogonality condition (281]), we deduce that
= () (r(t,2), 2H5 (@) = O(lIr(®)l= ).

In conclusion, estimate (283) and Lemma imply that there is a K > 1 such that

(or(t.2), 2H; @)
O]+ Bo0)] + 196 (1) 2 sy < K [ 90| (284)

for all ¢ > 0. Finally, Minkowski inequality and estimate (283 imply that there is a uniform constant K > 1

such that
1021 (8,2l 2y < K |90 (255)

We recall from Theorem [2.10] the following estimate

=< Hﬂ” F ()2 + da(t)? + e V2D < Ke (286)

for some uniform constant K > 1. Now, from hypothesis (279)), we obtain from Theorem and Corollary
that there are constants M € N and C' > 0 such that for all ¢ > 0 the following inequalities are true

1\ M+l 10Cez ¢
—d.: < - -

jnax, |2;(t) — d;(t)] _61n<6) eXp( I (1) ) (287)
. s 1\M 10Cezt
—d. < €2 Z - -

jnax, |2j(t) — d;(t)] < €2 In (6) eXp( I (1) ) (288)
. s, /1 10Ce3t
—d. < €3 — -

jnax, 125(t) —d;(t)] < e 1n<€)exp< I (1) ) (289)

for a uniform constant C' > 0. From the partial differential equation (1)) satisfied by ¢(¢, x) and the representation
[280) of g(t, ), we deduce in the distributional sense that for any h(z) € H'(R) that

= (hw),-Pi(0)[ (- 02 + U(Hn D))oz Q)

<h [( 02 + U (H ))62 HE t>] - [afr(o — 92r(t) + U(HZY + Hxl(t))r(t)b

(4o, ((0) + )G + (Palt) + ) 02H)

LZ(R)

~ (n(@), [U<H§3“> + HE{) — U(H&i“)) — o)) - 100,52 (@) - 200, Hy3 " (@) )

L2 (R)
(h@), ~Pu)[ (05D + 123 = O D))oz ] - Pae) [(O (1530 + 1) - U )02 Hg "] )

2 max |& max max e~ V2:(0) ()3 (t)d;(t)? .
0 (1l [l + mevs 15501+ s 12Dy 0]+ masg [P 4| 0)350)] + Pye)as0) @() |
290
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From Lemma m and estimates and -, we obtain from (290) that

:<h<x>,—P1<t>[( o2 + () oz )

(n(a), ~Pa(t) | (= 22 + U™ ) 021530 | = [0 () = 92r(t) + O(HED + H2 ()] )

(h(@), (Pr(t) + a2 ()ZHIG + (Polt) + ()02 H 3

>L§ () L2(R)

LZ(R)

0 (11l | s 135(0) = o) + V240 4 Jo0) = d(p)e250) 4 2220 )
J )

0 (Il [l ol + ms 155001+ s 17,050+ mag [P0 4| 003,0)] + P02 071 ).
(291)
From the condition (281)), we deduce that

<3t2 ), 32Hm(t)> _4d [.’Eg(t)< (t), B2HZ? t)> 2} +a(t) <8tr( ), agHa:z(t)>L27

L2 dt
(opr, o2m)) = = (i) (r), 2G| +an(0) (0 (0), B2HHT)
which with the Theorem imply that there is a uniform constant C' > 0 such that

r(t)] , ’<6t2r(t) Il(t)> ‘ < Ce?

(o), 02053") | < ced

(0. (292)

From (283)), (284)) and (285), we obtain that H?@ H < Hgﬁﬁ H . In conclusion, after we apply the partial differential
equation (291)) in distributional sense to ang’zl(t)’ 3§Hf11(’6), the estimates (283]), (284)), (285)), (287), (289) and
(292) imply that there is a uniform constant K; > 0 such that if ¢ < 1 enough, then for j € {1, 2} we have
thatforOStSw

€

[N

M+1

|P(t) + ()] < K (efﬁd(t) +eiln <%) exp (%) + eq(e)>,

from which we deduce for all 0 < ¢ < Nt (1 ) that

w

2 M+1 1
. 2 —\/Ed(t) 3 1 10062t
‘;_1: Pi(t) + @5(t) ‘ < 2K, (e +edn (6) exp (T 5 ) n eq(e)). (293)
Since ) 23:1 P;(t) ‘ ‘ Z] W AGERAN(: ‘ + Z] L 4(t)%, we deduce from the estimates (293 and (286) that

\ ipj(t)\ > % - {e*\/?z(t) n Hg@m 9K, [e*ﬁd(t) tedm (%)M+1 exp (?f(i)t)] —2Kyeq(e).  (294)
— !

2

We recall that from the statement of Theorem [1.11] that e~ V2d(®) — % sech (v/2vt + 0)2, with v = (2(2) +

1
86*\/52’(0)) 2, which implies that v < €z. Since we have verified in Theorem that e~V2:(®) < €, the mean
value theorem implies that [e=V2(®) — ¢=V2d®)| = O(e|2(t) — d(t)|), from which we deduce from that

<1f§;t>>.

In conclusion, if € < 1 enough, we obtain for 0 <t < Nlnl( <) from ) that
€2

M1
|e_‘/§z(t) — e_ﬁd(t” = 0(62 In (1)
€

- 1
DL Jo@] ] - s o0 5 (%)Mﬂ o ()] ~2ea(0 099

The conclusion of the demonstration will follow from studying separate cases in the choice of 0 < v, c¢. We also
observe that K, K; are uniform constants and the value of N € N5 can be chosen in the beginning of the proof
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to be as much large as we need.

Case 1.(v? < m .) From inequality (295)), we deduce that

!imlm—l\ﬂ\\ (e ()" e (0 ottt

and so,

then, from we deduce for 0 <t < (;) that if € is small enough, then ’ Z L P(t )‘ > 1%

@ 0|z - R0

which contradicts the fact that (284) and should be true for € < 1.

In(t
Case 2.(v? > (1+48W’ lc| > 2In(2). ) It is not difficult to verify that for 0 <t < mm(z\l% ,N%), we
have that e~ V24 < % sech (%)2 < €3, then estimate (295]) implies that ’ ijl P (t)‘ > 4% Is true in this time

. . 1
interval. Also, since now v = €2, we have that

so we obtain a contradiction by similar argument to the Case 1.

Case 3.(v? ¢/ <2In(1).) For 1 < N enough and tg (1+4K1)2K2 VZIn (1)

52

1 1
time interval {to <t<oUHKY? Iiz V2in(3) } that e~ V24 < % sech (2 In (%)) < €5 In conclusion, estimate

- 8 .
= (1+4K61)2Ka | , we have during the

€2

4) implies that ’ 52 S Bt )‘ > 1% is true in this time interval. From the Fundamental Calculus Theorem,
we have that

|3 i) = e — | 22, Piceo)|,

o =

) that

1 1
In conclusion, hypothesis (279) and estimate (284)) imply for T' = g UH2K1)2 K2 V2In (

T
€2

2. . € (14 2K;)%v2In (1)
)ZPJ»(T)( > e ,

which contradicts the fact that (279)) and (284)) should be true, which finishes our proof. O

Remark B.2. Indeed, we can use Theoremm \B. 1| to verify that there is a sequence (t,)ner such that t, — 400
and € < H

HixL?
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