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Abstract 

 

Motivation: During each cell division, tens of thousands of DNA replication origins are 

coordinately activated to ensure the complete duplication of the entire human genome. 

However, the progression of replication forks can be challenged by numerous factors. One such 

factor is transcription-replication conflicts (TRC), which can either be co-directional or head-

on with the latter being revealed as more dangerous for genome integrity.  

Results: In order to study the direction of replication fork movement and TRC, we developed 

a bioinformatics tool, called OKseqHMM, to directly measure the genome-wide replication 

fork directionality (RFD) as well as replication initiation and termination from data obtained 

by Okazaki fragment sequencing (OK-Seq) and related techniques.  

Availability and Implementation: We have gathered and analyzed OK-seq data from a large 

number of organisms including yeast, mouse and human, to generate high-quality RFD profiles 

and determine initiation zones and termination zones by using Hidden Markov Model (HMM) 

algorithm (all tools and data are available at https://github.com/CL-CHEN-Lab/OK-Seq). In 

addition, we have extended our analysis to data obtained by related techniques, such as eSPAN 

and TrAEL-seq, which also contain RFD information. Our works, therefore, provide an 

important tool and resource for the community to further study TRC and genome instability, in 

a wide range of cell line models and growth conditions, which is of prime importance for 

human health.  

Contact: Chun-Long Chen (Institut Curie), chunlong.chen@curie.fr  

 

Keywords: DNA replication, Replication fork direction, Replication initiation, Transcription-

Replication conflicts, Hidden Markov Model  
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1. Introduction 

The faithful transmission of genetic information to daughter cells is crucial for maintaining 

genome stability. In humans, at each cell division, tens of thousands of replication origins need 

to be coordinately activated to ensure the complete duplication of >6 billion base pairs (bp) of 

the human genome. However, the DNA replication program is routinely exposed to 

endogenous and exogenous stresses, which play an important role in many human diseases. In 
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particular, replication stress-induced genome alterations can represent an important early cause 

of cancer (Gnan et al., 2020).  

The progression of replication forks can be challenged by numerous factors. One such factor 

is transcription-replication conflicts (TRC) since the replication and transcription machineries 

share the same DNA template. TRC can either be co-directional (CD) or head-on (HO), and 

the latter has been revealed as more detrimental for genome integrity (Hamperl et al., 2017). 

Previous bioinformatics analyses have revealed that, in large numbers of genomes from 

bacteria (Merrikh, 2017) to human (Chen et al., 2011; Huvet et al., 2007), most genes are co-

directionally oriented with replication forks to avoid the more deleterious HO TRC. Recently, 

a new method to directly measure the genome-wide replication fork directionality (RFD) along 

the human genome by sequencing of Okazaki fragments (OK-Seq) (Petryk et al., 2016), which 

are present only on the lagging replicating strand, allows quantitatively analyzing and 

accurately detecting replication initiation and termination. The analysis of OK-seq data of 

human cells has also demonstrated a significant co-direction of replication fork progression 

with gene transcription within active genes  (Petryk et al., 2016).  

More and more techniques are now being developed, for instance, Pu-seq (Daigaku et al., 2015), 

eSPAN (Li et al., 2020), SCAR-seq (Petryk et al., 2018), GLOE-seq (Sriramachandran et al., 

2020) and TrAEL-seq (Kara et al., 2021), which also provide genome-wide RFD information. 

Moreover, in recent years, strong evidence shows that replication- and transcription-related 

mutational asymmetries are widespread across cancer development (Haradhvala et al., 2016). 

Especially APOBEC-associated mutations (also called APOBEC mutation signatures) in 

humans are represented in up to 15% of all sequenced tumors and contribute to 50% of all 

mutations in many tumors. APOBEC-associated mutations preferentially occur on the lagging-

strand template during DNA replication, and are also highly associated with mismatch repair 

and transcription-coupled damage repair in cancer (Cortez et al., 2019; Hoopes et al., 2016; 

Shi et al., 2019; M. J. Shi et al., 2020; Mas-Ponte and Supek, 2020). Furthermore, N6-

methyladenosine (m6A) modifications have been considered as one of the most prevalent 

internal modifications in mammalian mRNAs and the abnormal m6A modification caused by 

m6A modulators, e.g., methyltransferase-like 3 (METTL3), is a common feature of various 

tumors (Y. Shi et al., 2020; Wang et al., 2020; Huang et al., 2020). Evidence has shown that 

METTL3 and m6A could promote homologous recombination-mediated repair of double-

strand breaks (DSBs) by modulating DNA-RNA Hybrid (R-loops) accumulation (Zhang et al., 

2020). Importantly, R-loops have been recently shown, by others and us, to be frequently 

accumulated at transcription termination sites of actively transcribed genes displaying high HO 
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TRCs (Promonet et al., 2020; Liu et al., 2021). Therefore, systematically unveiling the 

genome-wide DNA replication panorama is essential for human health.  

Despite its importance, to date, there is no published available tool to analyze RFD data and to 

determine the replication initiation and termination positions genome-wide, although several 

methods have been previously described for OK-seq data analysis, such as using the Hidden 

Markov Model (HMM) to analyze human OK-seq data (Petryk et al., 2016) or the origin 

efficiency metric (OEM) to analyze yeast OK-seq data (McGuffee et al., 2013). It is, therefore, 

important to have a uniform framework of OK-seq data (and related data) analyses. Here, we 

developed a bioinformatics toolkit, called OKseqHMM, to directly obtain the high-resolution 

RFD profile genome-wide. Besides the fork direction, the toolkit also deciphers the information 

of replication initiation/termination zones using an algorithm based on HMM, calculates the 

OEM to visualize the transition of RFD profile at multiple scales, and finally generates the 

average metagene profiles and heatmaps to provide RFD/OEM distributions along the regions 

of interest (Fig. 1). We have gathered a large number of published available OK-seq data (13 

in total) from S. cerevisiae, mouse and human cells, and successfully obtained the high-

resolutive (~1 kb for mouse and human cells and ~50 bp for yeast) RFD profiles and the 

accurate calling of corresponding replication initiation and termination zones genome-wide. 

2. Implementation and availability 

OKseqHMM toolkit is an R package for profiling OK-Seq data to study the genome-wide 

replication program. This R package contains multi-functions and is served for analyzing OK-

Seq data from the original mapping bam file(s) to count matrices, RFD calculation, 

initiation/termination zone calling and average metagene profiles/heatmaps. The package is 

available at https://github.com/CL-CHEN-Lab/OK-Seq. 

2.1 Function OKseqHMM  

This function transforms OK-seq data into RFD profiles for a primary visualization (e.g., with 

the genomic visualization browsers, such as IGV), then, it can accurately identify replication 

initiation zones (IZs, upward transitions on RFD profile), termination zones (TZs, downward 

transitions on RFD profile) and also the intermediate states (flat RFD profile) along the genome 

by using the HMM. 

For each window, RFD was computed as follows: 

𝑹𝑭𝑫 =
𝑪 −𝑾
𝑪 +𝑾 
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where C and W correspond to the number of reads mapped on the Crick and Watson strands, 

which reveal, respectively, the proportions of rightward- and leftward- moving forks within 

each window (e.g., 1 kb window was used for OK-seq data of human cells). Since the total 

amount of replication on both strands should be constant across the genome, we normalized 

the difference between the two strands by the total read count to account for the variations in 

read-depth due to copy number, sequence bias and so on. RFD ranges from -1 (100% leftward-

moving forks) to +1 (100% rightward-moving forks), and 0 means equal proportions of 

leftward- and rightward-moving forks. Data obtained from biological replicates produced RFD 

profiles that strongly correlated to each other, for HeLa cells, Pearson R=0.92, p<10-15 (t-test) 

and for GM06990 cells, R=0.93, p<10-15. Similar correlations were observed between RFD 

profiles with EdU or EdC labeling (Petryk et al., 2016).  

Figure 1. Schematic presentation of data analysis pipeline of OKseqHMM toolkit. The raw sequencing data 

can be pre-processed into aligned files by corresponding bioinformatics tools indicated in blue (left panel). The 

middle panel shows the major functions of the OKseqHMM toolkit. The first function of OKseqHMM checks the 

input aligned bam files to determine whether they are single- or paired-end sequencing data, then automatically 

splits the reads into Watson and Crick strands and calculates the replication fork directionality (RFD). By default, 

the calculation is performed within 1 kb adjacent windows (recommended for human cells) and then smoothed 

into 15 kb sliding windows with 1 kb step. These parameters can be easily adjusted based on the nature of the 

data. Different replication features, i.e., initiation zones (IZ), two intermediate states and termination zones, are 

predicted based on an HMM algorithm (See Implementation for detail). The second function (OKseqOEM) uses 

the reads on Watson and Crick strands to generate origin efficiency metrics (OEMs) at multiple scales to visualize 

the RFD transition. And the last function allows users to generate an average metagene profile and heatmap to 

analyze distributions of RFD and OEM around the genes/regions of interest. Results can be visualized in the 

genomic visualization browsers (such as IGV) as shown in the right panel.    
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Figure 2. Schematic presentation of HMM algorithm for initiation and termination zone detection. (A) A 4-

state HMM model used in the segmentation process: Up, regions of predominant initiation (IZ); Down, regions 

of predominant termination (TZ); Flat1 and Flat2, two intermediate transition states. (B) Transition and emission 

probabilities. (C) and (D) Examples of RFD profile of HeLa cells from chromosome 1 with the corresponding 

IZs, TZs and 2 Flat states identified by OKseqHMM. Each point on the RFD profile gives the RFD value 

calculated within each 1 kb adjacent window, and the windows with positive and negative RFD values are shown 

in red and blue, respectively.  

 

As in (Petryk et al., 2016), a four-state HMM was used in OKseqHMM to detect within the 

RFD profiles the ascending (AS), descending (DS) and flat (FS) segments representing regions 

of predominant initiation (‘Up’ state), predominant termination (‘Down’ state) and constant 

RFD (‘Flat1’ and ‘Flat2’ states) (Fig. 2A). In the HMM segmentation process, the RFD values 

were computed within 15 kb (for human OK-seq data) sliding windows (by default, stepped by 

1 kb across the autosomes). The HMM used the ∆𝑅𝐹𝐷 values between adjacent windows, in 

which ∆𝑅𝐹𝐷! =
"#$!"#%"#$!

&
 for the window n. By default, windows with <30 reads on both 

strands were masked. The ∆𝑅𝐹𝐷  values (also between -1 and 1) were divided into five 

quantiles and the HMM package of R (http://www.r-project.org/) was used to perform the 

HMM prediction with probabilities of transition and emission, which are manually defined by 
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the training dataset (Fig. 2B). The same transition and emission probabilities used in our 

previous study (Petryk et al., 2016) were set as default values and used in all OK-seq data 

analyses in the current study. The choice of a 15 kb sliding window is based on a compromise 

between spatial resolution and reproducibility of AS detection among biological replicates. 

Finally, the efficiency of the detected AS was estimated as: 

∆𝑹𝑭𝑫𝒔𝒆𝒈𝒎𝒆𝒏𝒕 =
𝑹𝑭𝑫𝒆𝒏𝒅 − 𝑹𝑭𝑫𝒔𝒕𝒂𝒓𝒕

𝟐  

where RFDstart and RFDend correspond, respectively, to the RFD values computed in 5 kb 

windows around the left and right extremities of each segment. 

2.2 Function OKseqOEM 

For a further investigation of origin efficiency (i.e., ∆𝑅𝐹𝐷), we provide here a second function 

to visualize it directly at multiple scales. 

As defined in the previous publication for yeast OK-seq data analysis 23, the density of Okazaki 

fragments on the Watson and Crick strands are compared within 4 fixed-size sliding bins, 

which are strand-specific 10 kb quadrant values to calculate an Origin Efficiency Metric 

(OEM), computed as 𝑂𝐸𝑀 = 0$
0$12$

− 0%
0%12%

 (WL and WR measure, respectively, the read 

density in the left and right quadrants on the Watson strand, while CL and CR  refer to the density 

on the Crick strand), ranging from -1 to 1 for each base in the genome. Maximal values in the 

OEM scores represent replication origins, while the minimal ones are considered as regions of 

replication termination. In addition, the different amplitudes of positive OEMs (from 0 to 1) 

are referred to as origin-firing efficiency; and the degree of termination at each position can be 

measured from 0 to -1. 

Here, we further extend OEM calculation within a fixed window size into multiple-scales to 

better fit OK-seq data analysis of other organisms, such as human cells.  

𝑶𝑬𝑴𝒊	𝒇𝒐𝒓	𝒍𝒊𝒔𝒕[𝒏] =
4𝑾𝒊1𝒍𝒊𝒔𝒕[𝒏] −𝑾𝒊5

4𝑾𝒊1𝒍𝒊𝒔𝒕[𝒏] −𝑾𝒊5 + (𝑪𝒊1𝒍𝒊𝒔𝒕[𝒏] − 𝑪𝒊)
 

Where list[n] can be defined by users as a list of windows (e.g. [1,10, 20, 50, 100]), i is from 1 

to the total length of the data – list[n]. C and W correspond to the number of reads mapped on, 

respectively, the Crick and Watson strands within corresponding windows. 

Using the two bam files of reads within, respectively, Watson and Crick strands generated by 

the previous OKseqHMM function and the annotation coordinates, the function OKseqOEM 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476022
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

can automatically calculate the OEM profiles at a series of defined scales (e.g., from 1 kb to 1 

Mb for human cells), which allows us to directly visualize the transition states of replication 

and also to validate the IZs identified by OKseqHMM then to double-check the size and 

boundary of IZs. 

2.3 Average metagene profile/heatmap 

To analyze RFD distributions around and/or among the genomic regions of interest, such as 

the identified IZs or the annotated genes, we developed an additional module for the metadata 

analysis. With the gene coordinates (or IZs) together with the RFD and/or OEM big wiggle 

files generated from OKseqHMM and/or OKseqOEM functions, we can easily obtain the 

corresponding profiles/heatmaps by using the computeMatrix and plotProfile/plotHeatmap 

functions of deepTools (https://deeptools.readthedocs.io/en/develop/index.html) (Ramírez et 

al., 2016) via defining the genomic distances of interest for the upstream and downstream 

borders. 

3 Performance 

3.1 Genome-wide replication fork directionality and origin detection in yeast 

To evaluate the performance, we first applied our tool to the available yeast OK-seq data 

(Hennion et al., 2020). OKseqHMM was successfully applied to the yeast OK-seq data to 

generate the RFD profile at a fine resolution (50 bp), the OEM profiles at different scales (from 

50 bp to 25 kb) and a precise IZ/Origin calling (Fig. 3A). About 350 IZs were identified by 

OKseqHMM, which range from 0.5 kb to 5.5 kb with an average length of 1.5 kb (Fig. 3B, 

Table 1). To check the accuracy of IZ calling results, we compared OK-seq IZs with the known 

yeast origins, i.e. autonomously replicating sequence (ARS) from OriDB 2.1.0 (Siow et al., 

2012), and up to 80% of our detected IZs were found at ≤ 1 kb distance from a known ARS 

(Fig. 3C and D). 
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Figure 3. Analysis of OK-seq data by OKseqHMM in Yeast. (A) Yeast RFD profile was calculated at 50 bp 

resolution with the corresponding IZs identified by OKseqHMM, which are highly correlated with the confirmed 

origins from OriDB (Siow et al., 2012). RFD profile as in Fig. 2C, but with 50 bp resolution. Below, the OEM 

profiles calculated from 50 bp to 25 kb scales, and the windows with positive and negative OEM values are shown 

in red and blue, respectively. (B) Length distribution of detected OK-seq IZs. (C) The density profile shows the 

distribution (in red) of distances between an IZ detected by OkseqHMM and the closest confirmed origin from 

OriDB, which is much closer compared with the random simulation control (in black). (D) Venn diagram showing 

the overlap between OK-seq IZs and published origins from OriDB, in which overlap means that the closest 

distance between each other is less than 1 kb. In case of overlap, the numbers of OK-seq IZ are shown together 

with the corresponding numbers of OriDB origins indicated in brackets.   
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3.2 Genome-wide replication fork directionality and initiation zone detection for different 

human cell lines 

We then further applied the OKseqHMM to analyze the OK-seq data of human cells. In 

addition to the published OK-seq data of HeLa MRL2 cells (Petryk et al., 2016), we also 

generated new additional OK-seq data from HeLa S3 cells, a widely used Encode Tier 2 cell 

line. The RFD profiles of the two HeLa cell lines are very similar (R=0.86, p<10-15), suggesting 

that a similar replication program and IZ positions are used (Fig. 4A). About 10,000 IZs have 

been identified in each HeLa cell line (Table 1), two-third of which are common between the 

two cell lines (Fig. 4B). The conservation of IZs is even higher in the early-replicating regions, 

with 80% of early IZs being shared between the two HeLa cell lines (Fig. 4B). A very striking 

difference of human RFD data compared to those of yeast is that, instead of a sharp 1 kb upward 

transition of RFD at fixed yeast origins, the size of upward transition of RFD, therefore the IZ 

length, of human cells is around 10-50 kb (average ~30 kb, ~20-folds larger than the IZ of 

yeast) (Fig. 4A, Table 1). The heatmaps of OEM profiles computed around IZs at different 

scales show the strongest positive signals at the corresponding scales, i.e., 10 kb scale for the 

small IZs (<10 kb), 20 kb scale for the IZs of mid-size (20-50 kb) and 50 or 100 kb for the 

large IZs (>50 kb), respectively (Fig. 4C), confirming that RFD transition is associated with 

the detected IZ length. This further supports the difference between the yeast and human OK-

seq pattern and the accuracy of IZ detection obtained by OKseqHMM.   

Replication initiation has been previously reported to be enriched within intergenic regions 

between active genes (Petryk et al., 2016). To demonstrate how our toolkit can help in the 

analysis of the association between DNA replication and gene transcription, we analyzed the 

average profiles and the corresponding heatmap of expression level (RNA-seq and GRO-seq) 

for all detected IZs sorted by their length and confirm that gene transcription presents 

immediately surround the IZs while with a much lower level within IZs (Fig. 5A). To further 

compare the distribution of RFD and gene transcription, we calculated the average RFD profile 

and the corresponding heatmap around TSSs (transcription start sites) and TTSs (transcription 

termination site) of 16,336 active genes (RPKM > 0) in HeLa cells with an extension ± 50 kb 

upstream or downstream (Fig. 5B). This clearly indicates a frequent replication initiation 

(upward transition of RFD) at both regions upstream of TSS and downstream of TTS, which 

leads to a co-direction between replication and transcription at TSS while a higher head-on 

TRC at TTS, in agreement with previous publications (Petryk et al., 2016; Promonet et al., 

2020).  
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Figure 4. Analysis of OK-seq data of HeLa cells by OKseqHMM. (A) Replication timing profile obtained by 

Repli-seq (Chen et al., 2010), RFD profiles and corresponding detected IZs for published HeLa MRL2 OK-seq 

data (Petryk et al., 2016) and OK-seq data of HeLa S3 cells generated in the current study, the OEM profiles of 

HeLa S3 cells from 1 kb to 1 Mb scales, and the transcription data provided by GRO-seq and RNA-seq along a 

~4 Mb region on chromosome 1. (B) Venn diagrams showing that two-third of Ok-seq IZs matched between the 

two HeLa cell lines and the overlap goes up to 80 % for the early IZs (with replication timing S50 < 0.4). (C) 

Mean OEM profiles and heatmaps of OEM (heatmap color scale is indicated on the right) around the HeLa S3 IZ 

centers at indicated scales (i.e., 10, 20, 50 and 100 kb) sorted by the length of detected IZs.  
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Figure 5.  OKseqHMM reveals the coordination between DNA replication and gene transcription. (A) Mean 

profiles and heatmaps of RNA-seq and GRO-seq around the HeLa S3 OK-seq IZ centers. (B) Mean profile and 

heatmap of HeLa S3 RFD between TSS (transcription start site) and TTS (transcription termination site) of active 

genes with an extension of +/- 50 kb. The heatmap color scales are indicated in each panel. 

 
Figure 6. Genome-wide RFD profiles of different human cell lines show the cell-type-specific replication 

program. Cell-type-specific RFD profiles and the corresponding detected IZs for indicated human cell lines, 

IMR90, TF1, K562, TLSE19, GM06990, Raji and BL79, respectively. 
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Table 1. All OK-seq data analyzed by OKseqHMM. 

Name Cell type Replicate 

Initiation zones Termination zones 
Accession number 

(Reference) 
Number 

Size (kb) 

Mean ± SD 
Number 

Size (kb) 

Mean ± SD 

BL79 Burkitt’s lymphoma   7798 29±18 7791 211±244 
ENA: PRJEB25180  

(Wu et al., 2018) 

GM06990 
Lymphoblastoid 

cells 
2* 5684 33±19 5715 182±166 

SRA: SRP065949 

(Petryk et al., 2016) 

HeLa MRL2 
Epithelial cell of 

adenocarcinoma 
2* 9836 31±18 9441 141±144 

SRA: SRP065949 

(Petryk et al., 2016) 

HeLa S3 
Epithelial cell of 

adenocarcinoma 
 9089 32±19 9084 223±245 (Current study) 

IARC385 

B lymphocytes 

from Burkitt’s 

lymphoma 

 4465 36±19 4455 125±164 
ENA: PRJEB25180  

(Wu et al., 2018) 

IB118 Leiomyosarcoma  3645 26±16 3640 428±440 
ENA: PRJEB25180  

(Wu et al., 2018) 

IMR90 Fibroblast  12482 26±17 12468 151±147 
ENA: PRJEB25180  

(Wu et al., 2018) 

K562 Late-stage chronic 
myeloid leukemia 

 6982 28±15 6967 136±158 
ENA: PRJEB25180  

(Wu et al., 2018) 

mESC E14 Mouse embryonic 
stem cells 

 3370 27±14 3347 483±554 
GEO: GSE142996  

(Li et al., 2020)  

Raji Burkitt’s lymphoma  8096 29±16 8080 143±135 
ENA: PRJEB25180  

(Wu et al., 2018) 

TF1 

BCR-ABL negative 

cell line from 

erythroblast 

 8377 27±17 8371 196±193 
ENA: PRJEB25180  

(Wu et al., 2018) 

TLSE19 Leiomyosarcoma  10500 27±17 10492 146±144 
ENA: PRJEB25180  

(Wu et al., 2018) 

Yeast S. cerevisiae 2* 348 1.5±0.7 787 14±13 
ENA: PRJEB36782 

(Hennion et al., 2020) 

* If data of biological replicates are available, the profiles obtained with the combined data are used in the figures, and only the segments (i.e. 
IZs and TZs) reproducibly identified in both biological replicates were retained.  
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In addition to OK-seq data of HeLa cell lines, we have gathered and reanalyzed with 

OKseqHMM, the OK-seq data from previous publications for a large amount of human cell 

lines of different cell types (Wu et al., 2018; Petryk et al., 2016), such as fibroblast (IMR90), 

lymphoblastoid (GM06990) and lymphoma (Raji, BL79, IARC385), leiomyosarcoma and 

leukemia (IB118, TLSE19, K562), and erythroblast (TF1) (Table 1, Fig. 6). OKseqHMM 

generated high-quality cell-type-specific RFD profiles and robust IZ calling for all data 

analyzed. The sizes of IZs in different cell types are within the same range (average size 

between 26 to 36 kb), demonstrating that it is a common feature of human cells.  

 

 

Figure 7. Genome-wide RFD profiles obtained from TrAEL-seq and eSPAN data. (A) RFD profiles and the 

corresponding IZs in 50 bp bin size of OK-seq and TrAEL-seq data of yeast (Kara et al., 2021). The known origins 

(ARSs) are downloaded from OriDB. (B) Venn diagram showing the overlap between OK-seq IZs, TrAEL-seq 

IZs and published origins (ARSs) from OriDB, in which overlap means that the closest distance between each 

other is less than 1 kb. (C) Metagene average RFD profiles computed from OK-seq of mouse embryonic stem 

cells (mESC) and H4K20me2 eSPAN data of MCM2-2A mutant cells (Li et al., 2020). Mean and standard error 

bands are shown for both data, while the standard error bands of OK-seq data are too narrow to be seen. 
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3.3 Extend OKseqHMM to analyze the RFD profiles from other sequencing data 

In addition to OK-seq, the OKseqHMM toolkit can be applied to calculate RFD profiles from 

the sequencing data obtained with other related techniques. As a demonstration, we further 

extended our toolkit to analyze the published eSPAN (Li et al., 2020) and TrAEL-seq (Kara et 

al., 2021) data. The RFD data computed from the yeast TrAEL-seq data are very close to those 

obtained by OK-seq (Fig. 7A, R=0.93, p<10-15), and the RFD profile obtained by TrAEL-seq 

even shows a higher quality with less local noise than the OK-seq RFD profile, which is 

probably because the TrAEL-seq data used in the analysis contain about two-fold more reads 

compared with the available OK-seq data. The comparison between the TrAEL-seq IZs, OK-

seq IZs and yeast ARSs showed that up to 96% of detected IZs from TrAEL-seq were found 

within 1 kb distance from a known ARS and around 76% of OK-seq IZs associated with ARSs 

were also detected by TrAEL-seq (Fig. 7B). We also successfully applied OKseqHMM to the 

OK-seq and eSPAN data of mouse embryonic stem cells (mESC). However, due to the lower 

amount of reads for the available dataset of eSPAN data, although we used a larger window 

size (e.g., 10 kb smoothing window instead of 1 kb window) we still got too noisy RFD profiles 

to perform a robust IZ calling. Nevertheless, we still obtained a mean RFD profile similar to 

those of OK-seq around the IZs identified in the mESC OK-seq data (Fig. 7C).    

4 Discussion 

Genome-wide replication fork directionality data have become an important key in 

understanding numerous biological processes, such as transcription-replication conflicts, 

replication-associated mutagenesis, replication couple epigenetic maintenance, etc. Here, we 

present OKseqHMM, a comprehensive R package, to analyze OK-seq data from various cell 

types and species to generate and visualize high-resolutive RFD and OEM profiles along the 

genomes, as well as generate the average profiles/heatmaps on the regions/genes of interest. 

The toolkit also allows accurate detection of replication initiation/termination zones with an 

HMM algorithm. To our knowledge, this is the first bioinformatics tool available to date to 

handle and analyze the RFD data obtained from various techniques.  

We successfully applied OKseqHMM to a large amount of available OK-seq data from 

different species, including yeast, mouse cells as well as numerous normal and cancer human 

cell lines (Table 1). This provides an important resource for large research communities, who 

are interested in studying DNA replication programs, transcription-replication conflicts, 

replication-associated chromatin organization, replication-associated mutations, genome 
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instability and cancer genomics, among others. Importantly, in addition to OK-seq, more and 

more new techniques have been developed to study DNA replication and are also able to 

provide the replication fork direction information. These include the methods like eSPAN and 

SCAR-seq performing stranded sequencing of BrdU or EdU labeled nascent replicated DNA 

associated with specific histone modifications, or like TrAEL-seq and GLOE-seq based on the 

single-stranded end presented on specific replicative templates. Here, we demonstrated that 

OKseqHMM can be applied to analyze data obtained by both kinds of techniques, i.e., eSPAN 

and TrAEL-seq, and obtained high-quality results (Fig. 7).  Notably, techniques like TrAEL-

seq, which do not need to incorporate labels and need fewer cells to generate a high-quality 

RFD profile compared to OK-seq, will provide a good alternative to study DNA replication 

and genomic instability in different cell types within various stress conditions.  

It should be noted that the initiation parameters, such as the transition and emission 

probabilities, are defined based on the OK-seq datasets of human cells. Although we have 

shown in the current study that they are quite robust and can be also applied to OK-seq data of 

yeast (Fig. 1) and mouse cells (Fig. 7, Table 1) to obtain satisfactory results, they might need 

to be adjusted based on the sequencing-depth and data quality of other datasets, in order to have 

an optimal IZ/TZ calling. In the future, with technical improvement, we might be able to further 

extend the OKseqHMM to study the extrinsic (cell-to-cell) or intrinsic (homolog-to-homolog) 

variability of DNA replication, if we can further extend the relative techniques to obtain data 

at the single-cell level and/or in an allele-specific manner as recently achieved for the 

replication timing study (Dileep and Gilbert, 2018; Gnan et al., 2021).  

 

Data Availability. The bioinformatics tool and all processing data underlying this article are 

available at the GitHub page of the team  https://github.com/CL-CHEN-Lab/OK-Seq. And the 

raw sequencing data of OK-seq are available with the corresponding accession numbers 

indicated in Table 1. The OK-seq data of HeLa S3 cells were generated as described in (Petryk 

et al., 2016) and are available at GEO. The RNA-seq and GRO-seq data of HeLa cells are from 

(Promonet et al., 2020) and (Andersson et al., 2014), respectively. The known yeast origins 

(ARSs) are downloaded from OriDB (http://cerevisiae.oridb.org/) (Siow et al., 2012).  
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