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We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a U (3)-arithmetic manifold is purely local, that is, only depends on the Galois representation at places above p. This is a generalization to GL 3 of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil-Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge-Tate weights (2, 1, 0) as well as the Serre weight conjectures of Herzig ['The weight in a Serre-type conjecture for tame n-dimensional Galois representations', Duke Math. J. 149(1) (2009), 37-116] over an unramified field extending the results of Le et al. ['Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows', Invent. Math. 212(1) (2018), 1-107]. We also prove results in modular representation theory about lattices in Deligne-Lusztig representations for the group GL 3 (F q ).

Introduction

One of the most important developments in the Langlands program in recent years has been the p-adic local Langlands correspondence for GL 2 (Q p ). Unfortunately, extending this correspondence even to GL 2 (K ) has proven to be exceedingly difficult and all evidence suggests that the desired correspondence will be much more complicated. On the other hand, there has been some progress on several avatars of the p-adic local Langlands correspondence, namely, (generalized) Serre weight conjectures, geometric Breuil-Mézard conjecture, and Breuil's lattice conjecture. These conjectures inform our understanding of what the sought after p-adic correspondence should look like. In this paper, we prove versions of each of these three conjectures for GL 3 (K ) when K /Q p is unramified.

1.1. Breuil's lattice conjecture. Motivated by Emerton's local-global compatibility for completed cohomology, [START_REF] Caraiani | Patching and the p-adic local Langlands correspondence[END_REF] constructs a candidate for one direction of the p-adic local Langlands correspondence for GL n (K ). Namely, they associate to any continuous n-dimensional Q p -representation ρ of Gal(K /K ) an admissible Banach space representation V (ρ) of GL n (K ) by patching completed cohomology. However, the construction depends on a choice of global setup, and one expects it to be a deep and difficult problem to show that the correspondence ρ → V (ρ) is purely local.

In [START_REF] Breuil | Sur un problème de compatibilité local-global modulo p pour GL 2[END_REF], Breuil formulates a conjecture on lattices in tame types cut out by completed cohomology of Shimura curves which is closely related to the local nature of V (ρ). This conjecture was proven subsequently in the groundbreaking work of Emerton-Gee-Savitt [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]. Our first main theorem is a generalization of Breuil's conjecture to three-dimensional Galois representations and the completed cohomology of U (3)-arithmetic manifolds.

Specifically, let p be a prime, F/F + a CM extension (i.e. F a totally imaginary quadratic extension of a totally real field F + ) unramified everywhere, and r : G F → GL 3 (Q p ) a Galois representation. Let λ be the Hecke eigensystem corresponding to r , which appears in the cohomology of a U (3)-arithmetic manifold. Choose a place v| p of F + which splits in F, and let H be the integral p-adically completed cohomology with infinite level at v. One expects completed cohomology to realize a global p-adic Langlands correspondence generalizing the case of GL 2/Q . That is, by letting v denote a place of F above v and by letting G F v be the absolute Galois group of F v , the GL 3 (F v )representation on the Hecke eigenspace H [λ] corresponds to r | G F v via a hypothetical p-adic local Langlands correspondence (when the level outside v is chosen minimally). In particular, the globally constructed object H [λ] should depend only on r | G F v . Suppose that r is tamely potentially crystalline with Hodge-Tate weights (2, 1, 0) at each place above p. For simplicity, in Section 1, we suppose that r is unramified away from p, although our results hold if r is minimally split ramified. Assume that each place v| p in F + splits in F and fix a place v|v for all v| p in F + . Let σ (τ ) be the tame type corresponding to the Weil-Deligne representations associated with r | G F v for all v| p under the inertial local Langlands correspondence. Throughout Section 1, the tame type σ (τ ) is assumed to be sufficiently generic. If r is modular, then by classical local-global compatibility, H [λ][1/ p] contains σ (τ ) with multiplicity one. THEOREM 1.1.1 (Breuil's conjecture, cf. Theorem 5.3.5). Assume that p is unramified in F + and that r satisfies Taylor-Wiles hypotheses and is semisimple at places above p. Assume that the level of H outside p is minimal with respect to r . Then, the lattice

σ (τ ) 0 := σ (τ ) ∩ H [λ] ⊂ σ (τ )
depends only on the collection {r | G F v } v| p .

Let H be the mod p reduction of H so that H is the mod p cohomology with infinite level at places above p of a U (3)-arithmetic manifold. We prove the following 'mod p multiplicity one' result (cf. Theorem 5.3.4). THEOREM 1.1.2 (Theorem 5.3.4). Keep the assumptions of Theorem 1.1.1. Let σ (τ ) σ be a lattice in σ (τ ) such that its mod p reduction σ (τ ) σ has an irreducible upper alcove cosocle. Then Hom K p (σ (τ ) σ , H [λ]) is one-dimensional.

These theorems should be compared to [EGS15, Theorems 8.2.1 and 10.2.1] in dimension two. In the special case where p is split in F + and r is irreducible above p, both theorems were proven by the first author in [START_REF] Le | Lattices in the cohomology of U (3) arithmetic manifolds[END_REF].

The main ingredients used in [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF] are the Taylor-Wiles patching method, the geometric Breuil-Mézard conjecture for potentially Barsotti-Tate Galois deformation rings (building on the work of [START_REF] Breuil | Sur un problème de compatibilité local-global modulo p pour GL 2[END_REF]), and a classification of lattices in tame types (extending [START_REF] Breuil | Sur un problème de compatibilité local-global modulo p pour GL 2[END_REF][START_REF] Breuil | Towards a modulo p Langlands correspondence for GL 2[END_REF]). When we began this project, only the first of these tools was available in the case of GL 3 . The analogue of potentially Barsotti-Tate Galois deformation rings are potentially crystalline deformation rings with Hodge-Tate weights (2, 1, 0). In [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], we develop a technique for computing these Galois deformation rings when the descent data is tame and sufficiently generic. We discuss in Section 1.2 the geometric Breuil-Mézard conjecture for these rings. The representationtheoretic results are discussed in Section 1.3.

Several key differences which distinguish our situation from [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF] are worth mentioning. Breuil's conjecture for GL 2 gave an explicit description of the lattice σ (τ ) 0 in terms of the Dieudonné module of r | G F v . We prove abstractly that σ (τ ) 0 is 'purely local' (Theorems 5.2.3 and 5.3.5) but without giving any explicit description of the lattice. The lattice σ (τ ) 0 is determined by the parameters of the Galois deformation ring but in a complicated way.

Let σ (τ ) σ be a lattice in σ (τ ) whose reduction has irreducible cosocle σ . To prove Theorem 1.1.2, we show that a certain (minimal) patched module M ∞ (σ (τ ) σ ) is free of rank one over the local Galois deformation ring (with patching variables) R ∞ (τ ) (Theorem 5.1.1). In fact, this result is also a key step in our proof of Theorem 1.1.1. In loc. cit., the analogue of this result is Theorem 10.1.1 where they show that the patched module of any lattice with irreducible cosocle is free of rank one. In our situation, it is no longer true that all such patched modules are cyclic. Rather, this is only true when the cosocle σ is upper alcove in every embedding. As a consequence of this, one can deduce that the isomorphism class as an R ∞ (τ )-module of M ∞ (σ (τ ) σ ) is purely local for any lattice σ (τ ) σ ; however, it need not be free. For the proof that M ∞ (σ (τ ) σ ) is free of rank one when σ is upper alcove, we induct on the complexity of the deformation ring. The simplest deformation rings resemble those for GL 2 and so we follow the strategy similar to [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]. For the most complicated deformation rings, we build up M ∞ (σ (τ ) σ ) from its subquotients relying on the description of the submodule structure of reduction σ (τ ) σ discussed in Section 1.3 and crucially intersection theory results for components of mod p fiber of the Galois deformation ring.

Serre weight and Breuil-Mézard conjectures.

There is an analogous global context for a mod p Galois representation r : G F → GL 3 (F) whose corresponding Hecke eigensystem m appears in the mod p cohomology with infinite level at v of a U (3)-arithmetic manifold. One expects H [m] to correspond to r | G F v via a hypothetical mod p local Langlands correspondence. Furthermore, if we let W v (r ) be the set of Jordan-Hölder factors in the GL 3 (O F v )-socle of H [m] and r | G F v is tamely ramified, [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF][START_REF] Gee | General Serre weight conjectures[END_REF] predict that W v (r ) = W ? (r | I F v ), where I F v denotes the inertia subgroup of G F v and W ? (r | I F v ) is a set which is explicitly defined in terms of r | I F v (Strictly speaking, the Hecke eigenspace H [m] is a smooth representation of G(F + v ), where G /F + v is a reductive group having a reductive model

G v over O F + v together with an isomorphism ι v : G v (O F + v )
THEOREM 1.2.1 (The weight part of Serre's conjecture). Assume that p is unramified in F + and that r satisfies Taylor-Wiles hypotheses, has split ramification, and is semisimple and sufficiently generic at places above p. Then W v (r ) = W ? (r | I F v ).

In [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], we prove this theorem with the additional assumption that p is split in F + . The strategy is to show the numerical Breuil-Mézard conjecture for the simplest deformation rings (where the shape has length of at least 2) using [LLHLM18, Section 6.2]. The key new tool is a more conceptual and robust combinatorial technique for computing the intersection between the predicted weights W ? (r | I F v ) and the Jordan-Hölder factors of a type and which is developed in Section 2. This allows us to inductively prove that all predicted weights are modular.

Using a patching functor which is constructed globally, we show that the generic fibers of tamely potentially crystalline deformation rings of Hodge-Tate weight (2, 1, 0) are connected for ρ generic and deduce the full numerical Breuil-Mézard conjecture for these Galois deformation rings. Using the numerical formulation, we prove the following geometric version of the Breuil-Mézard conjecture (cf. [START_REF] Emerton | A geometric perspective on the Breuil-Mézard conjecture[END_REF], Proposition 3.6.1). THEOREM 1.2.2 (Proposition 3.6.1). Assume that r | G F v is semisimple and sufficiently generic. There is a unique assignment σ → p(σ ) taking Serre weights σ ∈ W ? (r | G F v ) to prime ideals in the unrestricted framed deformation ring R 2 

Spec (R 2 r | G F v /p(σ )).
Moreover, this is compatible with any patching functor.

1.3. Representation theory results. In order to deduce Breuil's lattice conjecture from the Breuil-Mézard conjecture, we need (and prove) new results on integral structures in Deligne-Lusztig representations, which may be of independent interest. The main theorem (Theorem 4.1.9) is a classification of integral lattices with irreducible cosocle in tame types, by means of an extension graph, which plays a key role in the proofs of Theorems 1.1.1 and 1.1.2. We now briefly describe the extension graph. In Section 2.1, we introduce a graph on the set of p-regular Serre weights (with fixed central character), with vertices corresponding to p-regular Serre weights and adjacency between vertices described in a combinatorially explicit way. We then show in Lemma 4.2.6 that two vertices are adjacent if and only if the corresponding Serre weights have a nontrivial GL 3 (F q )-extension between them, justifying the terminology. This gives a natural notion of graph distance d gph between two p-regular Serre weights. Theorem 4.1.9 states the following. THEOREM 1.3.1 (Theorem 4.1.9). Assume that R is a sufficiently generic Deligne-Lusztig representation of GL 3 (F q ). (In particular, the Jordan-Hölder factors of R occur with multiplicity one.) If σ is a Jordan-Hölder factor of R, let R σ be the unique lattice up to homothety with cosocle σ . If σ, σ ∈ JH(R) and that d gph (σ, σ ) = d, then:

(1) σ is a direct summand of the dth layer of the cosocle filtration of R σ ;

(2) if σ ∈ JH(R) is such that d gph (σ, σ ) = d + 1 and d gph (σ , σ ) = 1, then R σ has a subquotient which is isomorphic to the unique nonsplit extension of σ by σ ; and

(3) if R σ ⊆ R σ is a saturated inclusion of lattices, then p d R σ ⊆ R σ is also a saturated inclusion of lattices.

The argument is involved, using a mixture of local and global techniques, but we can distinguish two main steps in its proof. In the first step (Sections 4.2.3 and 4.2.4), we prove the first two items of Theorem 1.3.1 in the case when σ is a lower alcove weight of defect zero (cf. Definition 2.3.8 and Theorem 4.2.16). The proof uses methods from the modular representation theory of algebraic groups, embedding R σ in a Weyl module with non-p-restricted highest weights. The key local argument is a careful study of the restriction of algebraic representations to rational points (Proposition 4.2.10), which lets us constrain the submodule structure of (part of) the GL 3 (F q )-restriction of an algebraic Weyl module in terms of the extension graph. This method does not work for all weights σ ∈ JH(R), as the corresponding lattices will not always have simple socle and thus cannot be embedded into a Weyl module.

In the second step (Section 4.3), we reduce the theorem for the remaining lattices to the case treated in the first step. We relate the first two items and the last item of Theorem 1.3.1. The last item, a statement in characteristic zero, is amenable to an inductive analysis. First, we show that for a fixed weight σ ∈ JH(R), item (3) of Theorem 1.3.1 actually implies the other two items (cf. Proposition 4.3.16). This crucially uses Theorem 1.3.1(3) in the case d = 1 (cf. Proposition 4.3.7), which is proved using the computation of deformation rings in [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], combinatorics of Section 3, and the Kisin-Taylor-Wiles patching method. This argument follows the suggestion in [EGS15, Section B.2] that tamely potentially crystalline deformation rings strongly reflect aspects of local representation theory through global patching constructions.

Next, we show that the first two items of Theorem 1.3.1 applied to R and its dual in the case of lower alcove defect zero weights imply Theorem 1.3.1(3) in the case of lower alcove defect zero weights. From this starting point, an inductive argument proves Theorem 1.3.1(3), thus concluding the proof of Theorem 1.3.1.

1.4. Notation. If F is any field, we write G F def = Gal(F/F) for the absolute Galois group, where F is a separable closure of F. If F is a number field and v is a prime of F, we write G F v for the decomposition group at v and I F v for the inertia subgroup of G F v . If F is a p-adic field, we write I F to denote the inertia subgroup of G F .

We fix once and for all an algebraic closure Q of Q. All number fields are considered as subfield of our fixed Q. Similarly, if ∈ Q is a prime, we fix algebraic closures Q as well as embeddings Q → Q . All finite extensions of Q will thus be considered as subfields in Q . Moreover, the residue field of Q is denoted by F .

Let p > 3 be a prime. For f > 0, we let K be the unramified extension of Q p of degree f . We write k for its residue field (of cardinality q = p f ) and O K = W (k) for its ring of integers. For r 1, we set e r def = p f r -1 and fix a compatible system of roots π r def = (p) 1 er ∈ K . We write e for e 1 and π for π 1 . Define the extension L = K (π) and set ∆ 0 def = Gal(L/K ). The choice of the root π lets us define a character

ω π : ∆ 0 → W (k) × g → g(π) π
whose associated residual character is denoted by ω π . In particular, for f = 1, ω π is the mod p cyclotomic character, which will be simply denoted by ω. If F w /Q p is a finite extension and W F w G F w denotes the Weil group, we normalize Artin's reciprocity map Art F w : F × w → W ab F w in such a way that uniformizers are sent to geometric Frobenius elements.

Let E ⊂ Q p be a finite extension of Q p , which will be our coefficient field. We write O for its ring of integers, fix an uniformizer ∈ O, and let m E = ( ). We write F def = O/m E for its residue field. We will always assume that E is https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press sufficiently large. In particular, we will assume that any embedding σ :

K → Q p factors through E ⊂ Q p .
We fix an embedding σ 0 : K → E. The embedding σ 0 induces maps O K → O and k → F; we will abuse notation and denote all these by σ 0 . We let ϕ denote the pth power Frobenius on k and set σ i def = σ 0 • ϕ -i . The choice of σ 0 gives ω f def = σ 0 • ω π : I K → O × , a fundamental character of niveau f . We fix once and for all a sequence p def = ( p n ) n∈N where p n ∈ Q p satisfies p p n+1 = p n and p 0 = -p. We let

K ∞ def = n∈N K ( p n ) and G K ∞ def = Gal(Q p /K ∞ ).
Let ρ : G K → GL n (E) be a p-adic, de Rham Galois representation. For σ : K → E ⊂ Q p , we define HT σ (ρ) to be the multiset of σ -labeled Hodge-Tate weights of ρ, that is, the set of integers i such that dim E ρ ⊗ σ,K C p (-i)

G K
= 0 (with the usual notation for Tate twists). In particular, the cyclotomic character has Hodge-Tate weights 1 for all embedding σ → E. For µ = (µ j ) j ∈ X * (T ), we say that ρ has Hodge-Tate weighs µ if HT σ j (ρ) = {µ 1, j , µ 2, j , . . . , µ n, j }.

The inertial type of ρ is the isomorphism class of WD(ρ)| I K , where WD(ρ) is the Weil-Deligne representation attached to ρ as in [START_REF] Conrad | Modularity of certain potentially Barsotti-Tate Galois representations[END_REF], Appendix B.1 (in particular, ρ → WD(ρ) is covariant). An inertial type is a morphism τ : I K → GL n (E) with open kernel and which extends to the Weil group W K of G K . We say that ρ has type (µ, τ ) if ρ has Hodge-Tate weights µ and inertial type given by (the isomorphism class of) τ .

Let G def = GL 3/F , denote by T ⊆ G the torus of diagonal matrices, and write W (respectively W a , respectively W ) for the Weyl group (respectively the affine Weyl group, respectively the extended affine Weyl group) of G. We let X * (T ) denote the group of characters of T , which we identify with Z 3 in the usual way. Let R (respectively R ∨ ) denote the set of roots (respectively coroots) of G and Λ R ⊆ X * (T ) the root lattice. We then have

W a = Λ R W (G), W = X * (T ) W (G).
(1.1)

Let ε 1 and ε 2 be (1, 0, 0) and (0, 0, -1), respectively. Let G der be SL 3/F with torus T der . Let Λ W = X * (T der ) denote the weight lattice for G der . Let X 0 (T ) denote the kernel of the restriction map X * (T ) Λ W . We write ε 1 and ε 2 for the images of ε 1 and ε 2 in Λ W , respectively. We define in a similar fashion the various Weyl groups W der , W der a , W der for G der . Note that we have canonical isomorphisms W ∼ = W der and W a ∼ = W der a . Let S be a finite set. For each v ∈ S, let F v be an unramified extension of Q p of degree f v , and let k v be the residue field of F v . Let J be the set of ring homomorphisms v∈S k v → F. If we fix an embedding σ v,0 : k v → F and set σ v,i to be σ v,0 • ϕ -i , then J is naturally identified with the set of pairs ( v, i v ) with v ∈ S and i v ∈ Z/ f v . In applications, S will be a finite set of places dividing p of a number field F. Sometimes, S will have cardinality one, in which case we might drop the subscripts from f v and k v and denote the single unramified extension F v of Q p by K .

Let G 0 be the algebraic group v∈S Res k v /F p GL 3 with T 0 the diagonal torus and center Z 0 . Let G be the base change G 0 × F p F, and similarly define T and Z . There is a natural isomorphism G ∼ = i∈J GL 3/F . One has similar isomorphisms for T , Z , X * (T ), R, R ∨ , where R (respectively R ∨ ) denotes the set of roots (respectively coroots) of G. If µ ∈ X * (T ), then we correspondingly write µ = i∈J µ i = v∈S µ v . We use similar notation for similar decompositions. Again, we identify X * (T ) with (Z 3 ) J in the usual way and let ε 1,i and ε 2,i be (1, 0, 0) and (0, 0, -1), respectively, in the ith coordinate and 0 otherwise. Let R + ⊆ R (respectively R ∨,+ ⊆ R ∨ ) be the subset of positive roots (respectively coroots) of G with respect to the upper triangular Borel in each embedding. We define dominant (co)characters with respect to these choices. Let X * + (T ) be the set of dominant weights. We denote by X 1 (T ) ⊂ X * + (T ) the subset of weights λ ∈ X * + (T ) satisfying 0 λ, α ∨ p -1 for all simple roots α ∈ R + . We call X 1 (T ) the set of p-restricted weights. Let η i ∈ X * (T ) be (1, 0, -1) in the ith coordinate and 0 otherwise, and let η be i∈J η i ∈ X * (T ). Let η i ∈ X * (T ) be (2, 1, 0) in the ith coordinate and 0 otherwise, and let η be i∈J η i ∈ X * (T ). Then η is a lift of the half-sum of the positive roots of G.

Let W be the Weyl group of G with longest element w 0 . Let W a and W be the affine Weyl group and extended affine Weyl group, respectively, of G. Let Λ R ⊂ X * (T ) denote the root lattice of G. As above, we have identifications W ∼ = W J , W a ∼ = W J a , W ∼ = W J and isomorphisms analogous to (1.1). The Weyl groups W , W , W a act naturally on X * (T ). The image of λ ∈ X * (T ) via the injection X * (T ) → W is denoted by t λ . Our convention is that the dot action is always a p-dot action, that is,

t λ w • µ = t pλ w(µ + η) -η. Recall that for (α, n) ∈ R + × Z, we have the root hyperplane H α,n def = {λ : λ+η, α ∨ = np}. An alcove (or sometimes p-alcove) is a connected component of the complement X * (T ) ⊗ Z R \ (α,n) H α,n . We say that an alcove C is p- restricted if 0 < λ + η, α ∨ < p for all simple roots α ∈ R + and λ ∈ C. If C 0 ⊂ X * (T ) ⊗ Z R denotes the dominant base alcove, we let W + def = { w ∈ W : w • C 0 is dominant} and W + 1 def = { w ∈ W + : w • C 0 is p-restricted}.
https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press 2.1. Definition and properties of the extension graph. The surjection X * (T ) → Λ W identifies p-restricted alcoves of GL 3 and SL 3 . Let C 0 and C 1 denote the p-restricted lower and upper alcoves, respectively, of the weight space of GL 3 so that A def = {C 0 , C 1 } J is naturally identified with the set of p-restricted alcoves for G (or G der when convenient). Our alcoves are fundamental domains with respect to the dot action, so the base alcove will have a vertex at -η. For notational convenience, we sometimes write 0 and 1 instead of C 0 and C 1 so that A is identified with {0, 1} J . We recall some notions from Section 1.4. Let X 1 (T ) denote the set of p-restricted weights of G and C 0 ⊆ X (T ) ⊗ R denote the lowest alcove (C 0 ) i∈J . We consider

W der = Λ W W acting via the p-dot action on Λ W ⊗ R. Let W der,+ 1 ⊂ W
der denote the set of elements which take C 0 to an element of A. There are six elements of W der,+ 1 , namely id, (12

)t -(ε 1 -ε 2 ) , (23)t -(ε 2 -ε 1 ) , (123)t -ε 2 , (132)t -ε 1 , and (13)t -(ε 1 +ε 2 ) .
Observe that the inclusion

Λ W → W der (respectively X * (T ) → W ) induces an isomorphism ι der : Λ W /Λ R ∼ → W der /W der a (respectively ι : X * (T )/Λ R ( ∼ = X * (Z )) ∼ → W /W a ). Let P der ⊂ Λ W × W der,+ 1
be the subset of pairs (ω, w) with ι der (-π -1 (ω) + Λ R ) = wW der a . We similarly define P ⊂ X * (T ) × W + 1 . Note that restriction gives a natural surjection P P der .

LEMMA 2.1.1. The map

β : P der → Λ W × A (ω, w) → (ω, π( w) • C 0 ) is a bijection.
Proof. The map β is a bijection because ι der is a bijection and W der a acts simply transitively on the set of alcoves for G der .

Let µ be an element of C 0 /( pπ)X 0 (T ). We will often have some lift of µ in X * (T ) in mind, but what we write will not depend on the choice of this lift. We define a map

P der → X * (T )/( p -π)X 0 (T ) (2.1) (ω, w) → w • (µ -η + ω ),
where (ω , w ) ∈ P is a lift of (ω, w). The map (2.1) does not depend on the choice of lift. Then we define

Tr µ : Λ W × A → X * (T )/( p -π )X 0 (T )
to be the composition of β -1 with (2.1).

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press DEFINITION 2.1.2. We say that a weight λ ∈ X * (T ) is p-regular if λ + η, α ∨ / ∈ pZ for all positive coroots α ∨ ∈ R ∨,+ . Note that a p-regular element belongs to a unique alcove.

Define Λ µ

W to be the set

ω ∈ Λ W : ω + µ -η ∈ C 0
(taking the image of µη in Λ W ). Let Tr µ be the restriction of Tr µ to Λ µ W × A. We establish some basic properties of Tr µ .

PROPOSITION 2.1.3. (1) (Any lift of ) Tr µ (ω, a) in X * (T ) is p-regular and is in alcove π -1 (a).

(2) The map Tr µ is injective.

Proof. For (1), suppose that (ω , w

) ∈ P is a lift of β -1 (ω, a). Then µ-η+ω is p-regular in alcove C 0 by definition of Λ µ W so that Tr µ (ω, a) = w • (µ -η + ω ) is p-regular in alcove π -1 (a) = w • C 0 .
For (2), suppose that Tr µ (ω, a) = Tr µ (ν, b). Let (ω , w ) and (ν , x ) ∈ P be lifts of β -1 (ω, a) and β -1 (ν, b), respectively. Then w •(µ-η+ω ) ≡ x •(µ-η+ν ) (mod ( p-π )X 0 (T )), from which we conclude from the definition of P der that ω | Z ≡ ν | Z (mod 3X * (Z )). Combining this with the fact that a = b from (1) and using ι, we see that w ≡ x (mod X 0 (T )). This implies that ω = ν. PROPOSITION 2.1.4. Let µ ∈ X * (T ) be a character. We have

Tr µ Λ µ W × A = λ ∈ X 1 (T )/( p -π)X 0 (T ) : λ is p-regular and (λ -µ + η)| Z ∈ ( p -π )X * (Z ) (2.2)
Proof. The inclusion of the left-hand side of (2.2) in the right follows from Proposition 2.1.3(1) and the formula for Tr µ . We show now the reverse inclusion. Let λ be an element in the right-hand side of (2.2). Then we let

• a ∈ A denote the unique alcove that contains π(λ);

• ω ∈ X * (T ) be such that (λ -µ + η)| Z = (1 -pπ -1 )ω | Z ;
• ω ∈ Λ W be the image of ω ;

• (ω , w ) ∈ P be a lift of β -1 (ω, a); and https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

• ν be λ -w • (µ -η + ω ) ∈ Λ R . Then (w -1 (ν) + ω , w ) ∈ P is a lift of β -1 (w -1 (ν) + ω, a) so that Tr µ (w -1 (ν) + ω, a) = λ in X * (T )/( p -π )X 0 (T ). PROPOSITION 2.1.5. Let λ -η be a lift of Tr µ (ε, C 0 ) and β -1 (ε, C 0 ) = (ε, w). Then Tr λ (ν, a) = Tr µ (w -1 (ν) + ε, a) for (ν, a) ∈ Λ λ W × A, where w ∈ W is the image of w.
Proof. Let (ν , x ) ∈ P be a lift of β -1 (ν, a). Similarly, let (ε , w ) ∈ P be a lift of (ε, w). Then

Tr λ (ν, a) = x • (λ -η + ν ) = x • ( w • (µ -η + ε ) + ν ) = x w • (µ -η + ε + w -1 (ν )) = Tr µ (w -1 (ν) + ε, a).
Recall that a Serre weight is an irreducible F p -representation of G. Each Serre weight is obtained by restriction to G from an irreducible algebraic representation of G of highest weight λ ∈ X 1 (T ), and this process gives a bijection between from X 1 (T )/( pπ)X 0 (T ) to the set of Serre weights of G (as described in [Her09, Theorem 3.10]; cf. also the beginning of Section 4.2). If λ ∈ X 1 (T ), we write F(λ) for the Serre weight corresponding to λ. We say that a Serre weight DEFINITION 2.1.6. We say that (ω, a) and (ν, b) in Λ µ W × A are adjacent if there exists j ∈ J such that both a i = b i and ω i = ν i for i ∈ J with i = j, a j = b j , and W with all its neighbors in Λ µ W , there are 7 #J adjacent vertices. Definition 2.1.6 endows Λ µ W × A with a graph structure with edges given by adjacency. By the above description, this graph is connected and thus it is endowed with a metric. By Proposition 2.1.4, any µ ∈ C 0 thus endows the set of p-regular Serre weights with the same central character as F(µη) with a metric. By Proposition 2.1.5, the metric on a fixed set is independent of the choice of µ. DEFINITION 2.1.8. Given p-regular Serre weights F, F with the same central character, we denote their distance by d gph (F, F ). In particular, F and F are adjacent if and only if d gph (F, F ) = 1.

F is p-regular if F ∼ = F(λ) where λ ∈ X 1 (T ) is p-regular (cf. Definition 2.1.2). Given µ ∈ C 0 and (ω, a) ∈ Λ µ W × A,
ω j -ν j ∈ {0, ±(ε 1, j -ε 2, j ), ±ε 1, j , ±ε 2, j }. ( 2 
We conclude this section by showing the relation between p-regular Serre weights and G-extensions. We start by recalling the following definition. DEFINITION 2.1.9. Let λ ∈ X * (T ) be a weight. We say that λ lies n-deep in its alcove if, for all α ∨ ∈ R ∨,+ , there exist integers m α ∈ Z such that pm α + n < λ + η, α ∨ < p(m α + 1) -n. We have the analogous definition for weights in X * (T ).

For instance, a dominant weight λ ∈ X * (T ) lies n-deep in alcove C 0 if n < λ + η, α ∨ < pn for all i = 0, . . . , f -1 and all positive coroots α ∨ ∈ R ∨,+ . A Serre weight F is said to be n-deep if we can write F ∼ = F(µ) for some µ ∈ X 1 (T ) which is n-deep. We call the graph on the p-regular Serre weights defined by adjacency the extension graph. The terminology is justified by the following theorem. THEOREM 2.1.10. Let F, F be Serre weights which are both 6-deep. Then Ext 1 G (F, F ) = 0 if and only if F and F are adjacent.

Proof. This is Lemma 4.2.6, whose proof only uses modular representation theory and does not rely on any results from other sections.

REMARK 2.1.11. We partition the set of vertices (ω, a) into two sets, according to the class Σ i a i mod 2 (by interpreting a i ∈ {0, 1}). This makes the extension graph into a bipartite graph.

2.2. Types and Serre weights. Now suppose that S contains exactly one element v, and let K be F v . An inertial type is a representation τ :

I K → GL 3 (E)
with open kernel which extends to the Weil group of K . An inertial type is tame if it factors through the tame inertial quotient. All our tame inertial types are defined over O and we use τ : I K → GL 3 (F) to denote the reduction to the residue field.

Tame inertial types have a combinatorial description which we will now recall (cf. [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF](6.15)] or [GHS18, Definition 8.2.2]). Let (w, µ) ∈ W × X * (T ). As in [Her09, (4.1)] or the paragraph preceding [GHS18, Definition 10.1.12], for any (ν, σ ) ∈ X * (T ) W , define

(ν,σ ) (w, µ) = (σ wπ(σ ) -1 , σ (µ) + pν -σ wπ(σ ) -1 π(ν))
(2.4) and we write (w, µ) ∼ (w , µ ) if there exists (ν, σ ) such that (ν,σ ) (w, µ) = (w , µ ). The following describes all isomorphism classes of tame inertial types for K .

DEFINITION 2.2.1. Define an inertial type τ (w, µ) :

I K → GL 3 (O) as follows: If w = (s 0 , . . . , s f -1 ), then set s τ = s 0 s f -1 s f -2 • • • s 1 ∈ W and α ∈ X * (T ) such that α 0 = µ 0 and α j = s -1 1 s -1 2 . . . s -1 j (µ j ) for 1 j f -1. Let r denote the order of s τ , and set f = f r . Then, τ (w, µ) def = 1 i 3 ω 0 k r -1 a (0) s k τ (i) p f k f (2.5)
where a (0) := f -1 j=0 α j p j ∈ Z 3 . Note that (w, µ) ∼ ((s τ , 1, . . . , 1), α) and τ (w, µ) ∼ = τ ((s τ , 1, . . . , 1), α) by construction. DEFINITION 2.2.2. Let τ be a tame inertial type.

(1) We say that τ is regular if the characters appearing in the right-hand side of (2.5) are pairwise distinct. (2) We say that τ is n-generic if there is an isomorphism τ ∼ = τ (s, λ + η) for some s ∈ W and λ ∈ X * + (T ) which is n-deep in alcove C 0 .

(3) We say that ρ :

G K → GL 3 (F) is n-generic if ρ ss | I K ∼ = τ for a tame inertial type τ which is n-generic.
(4) A lowest alcove presentation of τ is a pair (s, µ) ∈ W × X * (T ) where µ ∈ C 0 such that τ ∼ = τ (s, µ + η) (which by definition exists exactly when τ is 0-generic Now let S have arbitrary (finite) cardinality rather than one. For s ∈ W and µ ∈ X * (T ), we can define s v and µ v in the evident way. Then we set τ S (s, µ) to be the collection (τ v (s v , µ v )) v∈S .

The notions of regular and n-generic are extended in the evident way to a collection τ S (s, µ) of tame inertial types. Similarly, there is an evident notion of n-generic for a collection ρ S of Galois representations ρ v :

G F v → GL 3 (F) for v ∈ S.
We now introduce the Deligne-Lusztig representations which are relevant for this paper. See also [GHS18, Section 9.2] and [LLHL19, Section 2.2], though we note that our context is slightly more general than [LLHL19, Section 2.2] since S may have size greater than one. Let (s, µ) ∈ W × X * (T ) be a good pair [LLHL19, Section 2.2]. Following [GHS18, Propositions 9.2.1 and 9.2.2], we can attach to (s, µ)

a genuine Deligne-Lusztig representation R s (µ) of G def = G 0 (F p ) defined over E (taking E to be sufficiently large). Note that R s (µ) is denoted as R(s, µ) in [GHS18].
DEFINITION 2.2.5. Let (s, µ) ∈ W × X * (T ) be a good pair and let n 0. We say that R s (µ) is n-generic if there exists an isomorphism R s (µ) ∼ = R s (µ ) where µη is n-deep in alcove C 0 (note that the evident generalization of [ By inflation, we consider R s (µ) as a smooth v∈S GL 3 (O F v )-representation. We recall some basic results on R s (µ). Let σ (τ v ) be a smooth GL 3 (O F v )representation associated with τ v as in [CEG+16, Theorem 3.7], and let σ (τ S ) be the v∈S GL 3 (O F v )-representation v∈S σ (τ v ). PROPOSITION 2.2.6. Let µη ∈ X * (T ) be 1-deep in alcove C 0 . Then:

(1) [DL76, Theorem 6.8] R s (µ) is irreducible.

(2) [LLHL19, Corollary 2.3.5] σ (τ S ) can be taken to be R s (µ).

We conclude this section with some background on Serre weights associated with semisimple Galois representations. Let τ S be a collection of tame representations τ v :

I F v → GL 3 (F) which extend to G F v . By [GHS18, Proposition 9.2.1], one attaches to τ v an E-valued representation V (τ v ) of GL 3 (k v ). Let V (τ S ) be the G-representation v∈S V (τ v ). When τ S is τ S (s, µ) for a good pair (s, µ), V (τ S ) is isomorphic to R s (µ) [GHS18, Proposition 9.2.3]. We write ρ S | I F S for the restriction to inertia of the collection ρ S . Let w h def = w 0 t -η ∈ W . Recall the self-bijection R on p-regular Serre weights defined in [GHS18, Section 9.2]: R(F(λ)) def = F( w h • λ).
DEFINITION 2.2.7 [GHS18, Definition 9.2.5]. Let ρ S be a collection of 2generic semisimple Galois representations ρ v : G F v → GL 3 (F). The set of predicted weights for ρ S is defined to be

W ? (ρ S ) def = R(F) : F ∈ JH(V (ρ S | I F S )) . If τ S is a collection of tame inertial types τ v : I F v → GL 3 (O), we furthermore define W ? (ρ S , τ S ) def = W ? (ρ S ) ∩ JH(σ (τ S )).
REMARK 2.2.8. The condition that ρ S | I F S is 2-generic is to ensure that the elements of JH(V (ρ S | I F S )) are all 0-deep so that R is defined (cf. Lemma 4.2.13).

Recall from [GHS18, Definition 7.1.3] that there is a subset W obv (ρ) ⊆ W ? (ρ) of obvious Serre weights of ρ. The set W obv (ρ S ) is defined in the evident way. 

| I F S ∼ = τ S (s, λ), where λ -η is 3-deep in C 0 . Then W obv (ρ S ) is the set F Tr λ (s(ω), π( w) • C 0 ) : w = wt -π -1 ω ∈ W +,der 1 . Proof.
Σ 0 def =    (ε 1 + ε 2 , 0), (ε 1 -ε 2 , 0), (ε 2 -ε 1 , 0) (0, 1), (ε 1 , 1), (ε 2 , 1) (0, 0), (ε 1 , 0), (ε 2 , 0)    . Define Σ def = Σ J 0 ⊂ Λ W × A.
The set of predicted weights W ? (ρ S ) and the Jordan-Hölder factors of a Deligne-Lusztig representation R s (µ) will be described in terms of the 'triangle' Σ 0 inside Λ W × {C 0 , C 1 } (see Figure 1). DEFINITION 2.3.3. Define the following subsets of Σ 0 :

Σ obv 0 def = (ε 1 + ε 2 , 0), (ε 1 -ε 2 , 0), (ε 2 -ε 1 , 0) (0, 1), (ε 1 , 1), (ε 2 , 1) , Σ inn 0 def = Σ 0 \ Σ obv 0 .
We say that (ω, a) ∈ Σ is obvious (respectively inner)

in component i if (ω i , a i ) ∈ Σ obv 0 (respectively (ω i , a i ) ∈ Σ inn 0 ).
We define an involution r of 

Λ µ W × A by r (ω, a) = (ω, a ) with a i = a i for all i ∈ J . PROPOSITION 2.3.4. Let µ ∈ X * (T ). Suppose that V (ρ S | I F S ) = R s (µ + ν) where ν ∈ Λ R and µ + ν -η is 3-deep in alcove C 0 . Then W ? (ρ S ) is F(Tr µ (t ν sr (Σ))
F Tr µ+ν (s(ω), π( w) • C 0 ) : w = wt -π -1 ω ∈ W +,der 1 . Since ν ∈ Λ R , we have Tr µ+ν (s(ω), π( w) • C 0 ) = Tr µ (s(ω) + ν, π( w) • C 0 )
. By the generalization of Jantzen's formula in [Her09, Appendix, Theorem 3.4], the reduction of R s (µ + ν) is given in terms of reductions of Weyl modules. The fact that µ + νη is 3-deep implies that these Weyl modules decompose in a generic pattern. Hence, W ? (ρ S ) is given by [GHS18, Proposition 10.1.8], which is

F({Tr µ (t ν s(ω), a) | w = wt -π -1 ω ∈ W +,der 1 , π( w) • C 0 ↑ a}).
This set is precisely F(Tr µ (t ν sr (Σ))). There is an action of W on Λ W × A where it acts through W der on just the first factor (via the usual action, not the dot action). By Propositions 2.3.4 and 2.3.5, we have the following.

PROPOSITION 2.3.5. If ν ∈ X * (T ) such that ν +η ∈ Λ R and µ+ν -η is 3-deep in alcove C 0 , then JH(R s (µ + ν)) = F(Tr µ (t ν s(Σ))). Proof. Since t 1 • R • Tr µ = Tr µ • r , F(Tr µ (ω, a)) ∈ JH(R s (λ -1)) if and only if F(Tr µ (r (ω, a))) ∈ R(JH(R s (λ))) = W ? (ρ S ) where V (ρ| I F S ) = R s (λ).
PROPOSITION 2.3.7. Let w ∈ W a t η and assume that µ+ w -1 (0

)-η is 3-deep in C 0 . Then the set JH(R w -1 (µ)) is F(Tr µ ( w -1 (Σ))). If w ∈ W a and V (ρ S | I F S ) = R w (µ), then the set W ? (ρ S ) is F(Tr µ ( w(r (Σ)))).
For the rest of this section, fix a character µ such that µη is 3-deep in C 0 and an element s ∈ W .

For (sω, a) ∈ Λ µ W × A, we let σ (s,µ) (ω,a) = F(Tr µ (sω, a)). When the pair (s, µ) is clear from the context, we will simply write σ (ω,a) instead of σ (s,µ) (ω,a) to lighten notation. Let w ∈ W a t η such that s w -1 (Σ) ⊂ Λ µ W ×A and µ+s w -1 (0)η is 3-deep. Then the map

w -1 (Σ) → JH(R s w -1 (µ))
(2.6)

w -1 (ω, a) → σ (s,µ) ( w -1 (ω),a)
is a bijection by Proposition 2.3.7. Similarly, if V (ρ S | I F S ) = R s (µ), then the map

r (Σ) → W ? (ρ S ) (2.7) r (ω, a) → σ (s,µ) r (ω,a)
is a bijection.

DEFINITION 2.3.8. We say that σ ∈ JH(R s w -1 (µ)) is an outer (respectively inner) weight for σ (ε1-ε2,0) σ (ε1,0) σ (0,0) σ (ε2,0) σ (ε2-ε1,0) σ (0,1)

R def = R s w -1 (µ) in component i ∈ J if σ = σ ( w -1 (ω),a) with (ω i , a i ) ∈ Σ obv 0 (respectively (ω i , a i ) ∈ Σ inn 0 ). We define the defect of σ with respect to R as Def R (σ ) def = # i ∈ J such that σ is an inner weight of R in component i . (2.8) Similarly, if V (ρ S | I F S ) = R s (µ), we say that σ ∈ W ? (ρ S ) is an obvious (respectively shadow) weight for ρ S in component i ∈ J if σ = σ r (ω,a) with (ω i , a i ) ∈ Σ obv 0 (respectively (ω i , a i ) ∈ Σ inn 0 ).
respect to ρ S as Def ρ S (σ ) def = # i ∈ J such that σ is a shadow weight of ρ S in component i . (2.9)
We give the set Σ 0 the structure of a graph in Table 1. We write Σ J 0 for the corresponding product graph. The above bijections respect the notion of adjacency for JH(R s w -1 (µ)), W ? (ρ S ), and Σ J 0 . We now describe the intersections of JH(R s w -1 (µ)) and W ? (ρ S ) for ρ S | G F S ∼ = τ S (s, µ) in terms of the action of W on Λ W using Proposition 2.3.7. We first introduce a subset of W , the admissible set, which appears in Corollary 2.3.11 and again in Section 3.

Recall from Section 1.4 that W denotes the extended affine Weyl group of G def = GL 3/F . The choice of the dominant base alcove endows W with a Bruhat order which is denoted by . We also have the natural generalization of the Bruhat order on W associated with the choice of the dominant base alcove. DEFINITION 2.3.9. Let λ ∈ X * (T ). We define

Adm(λ) = { w ∈ W | w t s(λ) for some s ∈ W }.
Similarly, for a weight µ = (µ j ) j ∈ X * (T ), define

Adm(µ) = j Adm(µ j ) ⊂ W .
REMARK 2.3.10. For combinatorics of weights as in this section, we use the dominant base alcove and the corresponding affine reflection γ + = t (1,0,-1) (13) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press as a generator for W der a . When working on the Galois side, as in Section 3, the antidominant base alcove appears naturally, and the analogous set Adm ∨ (η) for the antidominant base alcove plays an important role (see Definition 3.1.1 and the discussion before). The affine generator for the antidominant choice of base alcove is γ = (13)t (1,0,-1) . Note that in [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], everything is in terms of antidominant and so what we call Adm(η) there, we denote by Adm ∨ (η) here.

For w ∈ W , define Σ w def = Σ 0 ∩ w r (Σ 0 ) . Similarly, for w ∈ W , let Σ w def = Σ ∩ w r (Σ) . One can directly compute these sets using Figure 1. For example, using Figure 2, one can check that Σ w is empty if and only if w is not in Adm(η)X 0 (T ) (in essence, [LLHL19, Proposition 4.4.2] is a generalization of this fact). Otherwise, see Table 2 for a description of Σ w . COROLLARY 2.3.11. Let w ∈ W a t η . Assume that both µη and µ + s w -1 (0) -η are 3-deep in C 0 . The set R(JH(R s (µ))) ∩ JH(R s w -1 (µ)) is the set of weights σ (s,µ) r (ω,a) where (ω, a) ∈ Σ w -1 . Similarly, the set JH(R s (µ -1)) ∩ R(JH(R s w (µ -1))) is the set of weights σ (s,µ) (ω,a) where (ω, a) ∈ Σ w .

Proof. By Proposition 2.3.7, one can reduce the case where s = id. In that case, (2.6) and (2.7) imply that the set of Serre weights in the intersection R(JH(R s (µ))) ∩ JH(R s w -1 (µ)) is Tr µ ( w -1 (Σ) ∩ r (Σ)). We conclude by noting that w -1 (Σ) ∩ r (Σ) = r (Σ w -1 ). The statement for JH(R s (µ -1)) ∩ R(JH(R s w (µ -1))) is proved similarly.

LEMMA 2.3.12. If (ω, a) ∈ Λ W × A \ r (Σ), there exists w ∈ W a t η such that (ω, a) ∈ w -1 (Σ) and w ∈ Adm(η).

Proof. We can work one component at a time and, thus, reduce to the case where #J = 1. This can then be checked directly using Figure 2.

COROLLARY 2.3.13. Let λ ∈ X 1 (T ) be 5-deep and µ -η ∈ C 0 be 3- deep. If F(λ) / ∈ R(JH(R s (µ))), then there exists a 3-generic Deligne-Lusztig representation R s (µ ) such that F(λ) ∈ JH(R s (µ )) but R(JH(R s (µ))) ∩ JH(R s (µ )) = ∅.
Proof. If the central characters do not match, that is, Not all elements of Adm(η)t -1 appear in the table. There is an order-three symmetry of Adm(η)t -1 induced by the outer automorphism of W der , and we include at least one representative for each orbit.

(λ -µ + η)| Z / ∈ ( p - π )X * (Z ),
σ (s,µ) (ω,a) ∼ = F(λ). Moreover, since F(λ) / ∈ R(JH(R s (µ)
)), we have (ω, a) / ∈ r (Σ). By Lemma 2.3.12, there exists w ∈ W a t η \ Adm(η) such that (ω, a) ∈ w -1 (Σ). We take s = sw -1 and µ

= µ + s w -1 (0) so that R s (µ ) = R s w -1 (µ). Since (ω, a) ∈ w -1 (Σ), ω -w -1 (0) is in W (Σ)
, where Σ denotes the image of Σ in Λ W . A direct computation shows that since λ is 5-deep, µ + s w -1 (0) -η is 3-deep in C 0 . By Proposition 2.3.7, we have that F(λ) ∈ JH(R s (µ )). By Corollary 2.3.11 and the remark before it, we have that R(JH(R s (µ))) ∩ JH(R s (µ )) = ∅.

Serre weight conjectures

In Sections 3.1-3.3, we improve results of [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] to GL n in [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF]. In Section 3.2, we prove a key structure result relating the Frobenius of a Kisin module with tame descent data to the Frobenius of the corresponding étale φ-module (Proposition 3.2.1). This plays an important role in computing the Galois representation associated with semisimple Kisin modules (Proposition 3.3.8) and later establishing an explicit geometric Breuil-Mézard conjecture (see Section 3.6). The remainder of Section 3.3 is devoted to bounding reductions of potentially crystalline representations of type (η, τ ) for the purpose of weight elimination (Theorem 3.3.12). https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

In Section 3.4, we connect the results of Sections 3.1-3.3 with the combinatorics of Serre weights from Section 2.3. In particular, Proposition 3.4.2 describes the intersection of the set of predicted weights of a semisimple ρ with the set of Jordan-Hölder constituents of a Deligne-Lusztig representation, as a function of its shape. In Section 3.5, we prove the Serre weight conjectures for semisimple ρ by matching the number of predicted Serre weights to the number of irreducible components of the Galois deformation rings which were computed in [LLHLM18, Theorem 3.5.3]. In Section 3.6, we prove a geometric Breuil-Mézard conjecture which assigns to each (predicted) Serre weight a prime ideal of the universal framed deformation ring (Proposition 3.6.1). In Section 3.6.1, we make this assignment explicit for certain tamely potentially crystalline deformation rings. The explicit ideals play an important role in the proof of Breuil's lattice conjecture in Section 5.

Throughout this section, we assume that S = { v} unless otherwise stated and write K def = F v . We drop the subscript v from notation in this situation. The set J is identified with the set of embeddings K → E and also with Z/ f Z using our chosen embedding σ 0 (cf. Section 1.4). For i ∈ J , we will use the word component i and embedding i interchangeably.

3.1. Background. In this subsection, we recall some basic facts on Kisin modules with tame descent data. We start with the following involution on W , which naturally appears when passing from Kisin modules to G K ∞representations. We let W ∨ (respectively W ∨ ) be the partially ordered group which is identified with W (respectively W ) as a group, and whose Bruhat order is defined by the antidominant base alcove (and still denoted as ).

DEFINITION 3.1.1. Define a bijection w → w * between W ∨ and W as follows:

(1) For w = (w j ) ∈ W , define

w * = (w * j ) ∈ W by w * j = w -1 f -1-j . (2) For ν = (ν j ) ∈ X * (T ), define ν * = (ν * j ) ∈ X * (T ) by ν * j = ν f -1-j .
(3) For w = wt ν ∈ W ∨ , define w * ∈ W by w * = t ν * w * . Note that w → w * is an antihomomorphism of groups. For j ∈ J , we write w * j for the jth component of w * .

Let τ be a tame inertial type which we always assume to be 1-generic. Fix a lowest alcove presentation (s, µ) for τ (Definition 2.2.1).

If s = (s 0 , . . . , s f -1 ) and µ = (µ j ) 0 j f -1 ∈ X * (T ), we take and α (s,µ) ∈ X * (T ) such that α (s,µ), j = s -1 1 s -1 2 . . . s -1 j (µ j +η j ) for 1 j f -1 and α (s,µ),0 = µ 0 + η 0 . Let r ∈ {1, 2, 3} be the order of s τ , and write K for the unramified extension of Q p of degree f def = f r . REMARK 3.1.2. In [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], the notion of lowest alcove presentation does not appear. Everything is written for presentations of the form τ ((s τ , 1, . . . , 1), α (s,µ) ) (see, for example, the beginning of [LLHLM18, Sections 2.1, 6.1]). In the notation of loc. cit., α (s,µ), j = (a 1, j , a 2, j , a 3, j ). The element

s τ def = s 0 s f -1 s f -2 • • • s 1 ∈ W https://doi.
s or def = (s -1 1 s -1 2 . . . s -1 f -1 , s -1 1 s -1 2 . . . s -1 f -2 , . . . , s -1 1 , 1) ∈ W has the property that s *
or (α (s,µ) ) = µ + η, and, hence, (0,s * or ) (((s τ , 1, . . . , 1), α (s,µ) )) = (s, µ + η). The element s or is called the orientation of α (s,µ) [LLHLM18, Definition 2.6 and equation (2.2)].

If r = 1, we say that τ is a principal series type. Otherwise, we write τ for the base change of τ to K /K (which is just τ considered as a principal series type for G K ). We record the relevant data for τ . Define α (s,µ) ∈ X * (T ) Hom(k ,F) ∼ = X * (T ) r (using a choice of embedding σ 0 : k → F extending σ 0 ) by

α (s,µ), j+k f def = s -k τ (α (s,µ), j ) for 0 j f -1, 0 k r -1.
If τ K (w , µ ) is the analogous construction of tame types over K for (w , µ ) ∈ (W × X * (T )) r as in Definition 2.2.1, then τ ∼ = τ K (1, α (s,µ) ) by direct comparison using equation (2.5). The orientation s or ∈ W r of α (s,µ) in the sense of [LLHLM18, Definition 2.6] is given by

s or, j+k f def = s k+1 τ s or, j for 0 j f -1, 0 k r -1 (3.1) (compare with [LLHLM18, Proposition 6.1]). Let L = K (π r ) = K ((-p) 1 p r f -1 ) and ∆ def = Gal(L /K ) ⊆ ∆ def = Gal(L /K ). Note that τ defines a O-valued representation of ∆ . For any complete local Noetherian O-algebra R with residue field F finite over F, let S L ,R def = (W (k ) ⊗ Z p R)[[u ]].
We endow S L ,R with an action of ∆ as follows: for any g in ∆ , g(u ) = g(π r ) π r u and g acts trivially on the coefficients; if σ ∈ Gal(L /Q p ) is the lift of Frobenius on W (k ) which fixes π r , then σ f generates Gal(K /K ) acting in natural way on W (k ) and trivially on both u and R. Set v = (u ) p r f -1 , and note that If τ is a principal series types, let Y [0,h],τ (R) be the category of Kisin modules over L with tame descent of type τ and height in [0, h] as defined in [CL18, Section 3]. More generally, we have the following. DEFINITION 3.1.3. An element (M, φ M , { g}) ∈ Y [0,h],τ (R) is a Kisin module (M, φ M ) over S L ,R [LLHLM18, Definition 2.3] with height less than h together with a semilinear action of ∆ which commutes with φ M such that for each 0 j f -1

(S L ,R ) ∆=1 = (W (k) ⊗ Z p R)[[v]]. As usual, ϕ : S L ,R → S L ,
M ( j) mod u ∼ = τ ∨ ⊗ O R
as ∆ -representations. In particular, the semilinear action induces an isomorphism ι M :

(σ f ) * (M) ∼ = M (see [LLHLM18, Section 6.1]) as elements of Y [0,h],τ (R).
REMARK 3.1.4. As explained in [LLHLM18, Section 6.1], the data of an extension of the action of ∆ to an action of ∆ is equivalent to the choice of an isomorphism ι M : (σ f ) * (M) ∼ = M satisfying an appropriate cocycle condition. We will use both points of view interchangeably.

REMARK 3.1.5. The appearance of τ ∨ in the definition is due to the fact that we are using the contravariant functors to Galois representations to be consistent with [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] as opposed to the covariants versions which appear in [START_REF] Caraiani | Kisin modules with descent data and parahoric local models[END_REF][START_REF] Emerton | Weight cycling and Serre-type conjectures for unitary groups[END_REF]. In [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], we did not use the notation τ ∨ . Instead, we included it in our description of descent data by having a minus sign in the equation before Definition 2.1 of loc. cit. The notion of Kisin module with tame descent data of type τ here is consistent with what appears in loc. cit.

DEFINITION 3.1.6. An eigenbasis of M ∈ Y [0,h],τ (R) is an eigenbasis β = (β ( j ) ) j for M considered as a Kisin module with descent data of type τ in the sense of [LLHLM18, Definition 2.8], which is compatible with the isomorphism ι M : by letting

β ( j ) = ( f 1 ( j ) , f 2 ( j ) , f 3 ( j ) ) then M ( j ) (σ f ) * (M) ( j + f ) ∼ o o ι M / / M ( j + f ) { f 1 ( j ) , f 2 ( j ) , f 3 ( j ) } / / { f 1 ( j + f ) , f 2 ( j + f ) , f 3 ( j + f )
} for all 0 j f -1, where the isomorphism on the left-hand side is obtained from [LLHLM18, Lemma 6.2]. For short, the compatibility above will be written as ι M (β ( j ) ) = β ( j + f ) . (See also [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF] Let O E,K (respectively O E,L ) be the p-adic completion of (W

(k )[[v]])[1/v] (respectively of (W (k )[[u ]])[1/u ]). Recall from [LLHLM18, Section 2.3] that for a complete local Noetherian O-algebra R, we have the category Φ-Mod ét K (R) (respectively Φ-Mod ét dd,L (R)) of étale (ϕ, O E,K ⊗ Z p R)-modules (respectively étale (ϕ, O E,L ⊗ Z p R)-modules with descent data from L to K ).
There is an analogous definition of Φ-

Mod ét K (R) and Φ-Mod ét dd,L (R). Given (M, ι M ) ∈ Y [0,h],τ (R), the element M ⊗ O E,L is naturally an object Φ-Mod ét dd,L (R). We define an étale ϕ-module M ∈ Φ-Mod ét K (R) by M def = (M ⊗ O E,L ) ∆=1
with the induced Frobenius. This defines a functor from

Y [0,h],τ (R) to Φ-Mod ét K (R). Finally, recall the functor ε 0 : Φ-Mod ét K (R) → Φ f -Mod ét W (k) (R) from [LLHLM18, Section 2.3].
It is obtained by considering the f -fold composite of the partial Frobenii which act on M (0) .

Let R be a local, Artinian O-algebra with finite residue field F. We have the usual functor

V * K from Φ-Mod ét K (R) to representations of G K ∞ over R.
Recall from [LLHLM18, Section 6.1] the functor

T * dd : Y [0,h],τ (R) → Rep R (G K ∞ )
which is defined as (M, ι M ) → V * K (M). From now onward, we write T * dd for the functor which was written as T * dd in [LLHLM18, Section 6.1]. We can now state the main result of this section, which is a sharpening of [LLHLM18, Proposition 2.26]. PROPOSITION 3.2.1. Let τ be a 1-generic type with lowest alcove presentation (s, µ). Let M ∈ Y [0,h],τ (R) and β be an eigenbasis of M. Let s or = (s or, j ) j be the orientation for τ and write A ( j) = Mat β φ ( j) M,s or, j+1 (3) for j ∈ {0, . . . ,

f -1}. Let M = (M ⊗ O E,L ) ∆=1 ∈ Φ-Mod ét K (R). Then there is a basis f = (f ( j) ) j for M such that Mat f (φ ( j) M ) = A ( j) s * j v µ * j +η * j .
Proof. The proof is a direct computation using [LLHLM18, Propositions 2.26 and 6.1].

Let α (s,µ) and (s or, j ) be as in the discussion after Remark 3.1.2. Let β ( j ) = ( f 1 ( j ) , f 2 ( j ) , f 3 ( j ) ) be an eigenbasis for M and write A ( j ) def = Mat β φ ( j ) M ,s or, j +1 (3) for 0 j < f -1. For any 0 j f -1, set

a ( j ) (s,µ) = f -1 i=0 α (s,µ),-j +i p i ∈ Z 3 ,
wherej + i is taken modulo f (compare with [LLHLM18, Section 2.1]). Then

f ( j ) def = {(u ) a ( j ) (s,µ),1 f 1 ( j ) , (u ) a ( j ) (s,µ),2 f 2 ( j ) , (u ) a ( j ) (s,µ),3 f 3 ( j ) } is a basis for M ( j ) def = (M ( j ) [1/u ]) ∆ =1 for 0 j < f -1.
For any 0 j f -1, a direct computation (using [LLHLM18, Proposition 2.13]) shows that the matrix for φ ( j ) M : M ( j ) → M ( j +1) with respect to the bases above is

s or, j +1 A ( j ) (s or, j +1 ) -1 (u ) pa ( j ) (s,µ) -a ( j +1) (s,µ) .
Since pa ( j ) (s,µ) -a ( j +1) (s,µ)

= ( p f -1)α (s,µ), f -1-j , this is same as

s or, j +1 A ( j ) (s or, j +1 ) -1 v α (s,µ), f -1-j . (3.2)
Define β by β ( j ) = f ( j ) s or, j (reordering the basis vectors). Let j = j + i f for 0 j f -1. Then the matrix for φ ( j ) M with respect to β is given by

A ( j ) (s or, j +1 ) -1 s or, j v (s or, j ) -1 (α (s,µ), f -1-j ) = A ( j) s * j v µ * j +η * j (3.3)
using equation (3.1), Remark 3.1.2, and the fact that A ( j ) only depends on j mod f (cf. [LLHLM18, Proposition 6.9]). Finally, recall that the eigenbasis β is required to be compatible with ι M : (σ f ) * (M) ∼ = M as in Definition 3.1.6, which gives ι ( j) such that the matrix for the partial Frobenius map If f is a basis of M and B ( j) def = Mat f (φ ( j) M ) are the matrices of the partial Frobenii, then the étale ϕ f -module ε 0 (M) is described by

( j ) M (β ( j ) ) = β ( j + f ) s -1 τ . Hence, β descends to a collection of ordered bases (f ( j) ) 0 j f -1 of the M ( j) = ((M[1/u ]) ∆=1 )
M ( j) → M ( j+1) is given by equation (3.3). PROPOSITION 3.2.2. Let M ∈ Y [0,h],τ (R) and let M = (M ⊗ O E,L ) ∆=1 ∈ Φ-Mod ét K (R)
Mat f (0) (φ f M (0) ) = f -1 j=0 ϕ j (B ( f -j-1) ). LEMMA 3.2.3. Let ρ : G K → GL 3 (F) be semisimple and 0-generic. Let M ∈ Φ f -Mod ét W (k) (F) such that V * K (M) ∼ = ρ| G K∞ . Assume that there exists s 0 ∈ W , λ = (λ j ) ∈ X * 1 (T )
, and a basis for M such that the φ f -action on M is given by Ds -1 0 v µ where D ∈ T (F) and

µ def = f -1 j=0 p j λ j ∈ X * (T ). Then by letting s = (s 0 , 1, . . . , 1) ∈ W , V (ρ| I K ) = R s (λ).
Proof. Let k be the order of s 0 and write µ = (µ 1 , µ 2 , µ 3 ) ∈ X * (T ). Then

φ f k (e i ) = k-1 m=0 D s -m 0 (i) v k-1 m=0 p f (k-1-m) µ s -m 0 (i) e i = k-1 m=0 D s m+1 0 (i) v k-1 m=0 p f m µ s m+1 0 (i) e i .
Hence, ρ| I K is isomorphic to

3 i=1 ω k-1 m=0 p f m µ s m+1 0 (i) k f
. The lemma now follows from (2.5).

Semisimple Kisin modules. The statement of [LLHLM18, Theorem 2.21] gives a classification of Kisin modules with descent datum which can arise as reductions of potentially crystalline representations with Hodge-Tate weights

(2, 1, 0) f . In this subsection, we identify Kisin modules which correspond to semisimple Galois representations in an explicit way (Theorem 3.3.12).

For

F /F finite, let I(F ) ⊂ GL 3 (F [[v]]
) be the Iwahori subgroup of elements which are upper triangular modulo v. Recall from Section 3.1 the partially ordered group W ∨ (respectively W ∨ ) which is identified with W (respectively W ) as a group but whose Bruhat order is defined by the antidominant base alcove (and still denoted as ). For any character µ ∈ X * (T ), we define Adm ∨ (µ) as in Definition 2.3.9 but for antidominant base alcove.

Let h be a positive integer. As before, let τ be a 1-generic tame type with fixed lowest alcove presentation (s, µ). Recall from [LLHLM18, Definition 2.17] the notion of shape.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press DEFINITION 3.3.1. Let τ be a principal series type, and let w = ( w 0 , w 1 , . . . , w f -1 ) ∈ W ∨ . A Kisin module M ∈ Y [0,h],τ (F ) has shape w if for any eigenbasis β, the matrices A ( j) j = Mat β φ ( j) M,s or, j+1 (3) j have the property that A ( j) ∈ I(F ) w j I(F ).

For a nonprincipal series type, we define the shape of a Kisin module M ∈ Y [0,h],τ (F ) in terms of its base change BC(M); see [LLHL19, Definition 3.2.11] or [LLHLM18, Definition 6.10] for details.

For any λ ∈ X * (T ) effective (that is, λ j = (a i, j ) i with a i, j 0 for all i, j) and h 0, let Y λ,τ ⊂ Y [0,h],τ denote the closed substack defined in [CL18, Section 5] (cf. also [LLHLM18, Section 2.2]). Then for any finite extension

F /F, Y λ,τ (F ) ⊂ Y [0,h],τ (F )
is the subgroupoid consisting of Kisin modules with shape in Adm ∨ (λ). DEFINITION 3.3.2. Let τ be a 3-generic type with lowest alcove presentation (s, µ) and let ρ :

G K → GL 3 (F). Assume that there exists M ρ ∈ Y η,τ (F) such that T * dd (M ρ ) ∼ = ρ| G K∞ .
We define w(ρ, τ ) ∈ Adm ∨ (η) to be the shape of M ρ . This is well defined because there exists at most one Kisin module

M ρ with height in [0, 2] such that T * dd (M ρ ) ∼ = ρ| G K∞ (see [LLHLM18, Theorem 3.2]
for a principal series type and Section 6.2 and the discussion before Lemma 6.13 in loc. cit. for the general case). REMARK 3.3.3. More generally, if #S > 1, for w = ( w v ) v∈S , we define w * as the collection ( w * v ) v∈S , where each w * v ∈ W v is as in Definition 3.1.1. Similarly, if τ S is a collection of 3-generic tame inertial type and ρ S is a collection of Galois representations, we let w(ρ S , τ S ) def = ( w(ρ v , τ v )) v∈S .

We now introduce the notion of semisimple Kisin module of shape w.

DEFINITION 3.3.4. Let M ∈ Y [0,h],τ (F ), where F /F is a finite extension. We say that M is semisimple of shape w = ( w j ) if there exists an eigenbasis β of M such that A ( j) ∈ T (F [[v]]) w j for 0 j f -1. PROPOSITION 3.3.5. If M is semisimple of shape w, then T * dd (M) is semisimple.
Proof. If M is semisimple, we can choose a basis such that

A ( j) ∈ T (F [[v]]
) w j where F /F is a finite extension. Using this basis, we see by Propositions 3.2.1 https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press and 3.2.2 that the matrix for the étale ϕ f -module ε 0 (M[1/u ] ∆=1 ) lies in T (F ((v)))s for some s ∈ W . If s has order d, then T * dd (M) restricted to the unramified extension of K ∞ of degree d is a direct sum of characters (as p d) and so T * dd (M) is semisimple.

PROPOSITION 3.3.6. If M is semisimple of shape w = ( w j ), then there exists an eigenbasis β such that

A ( j) = w j for 0 j f -2, A ( f -1) ∈ T (F ) w f -1 . Proof. See [LLHL19, Proposition 3.2.16].
DEFINITION 3.3.7. For any w = (w j t λ j ) ∈ W ∨ , define M( w) ∈ Φ-Mod ét K (F) to be the free étale ϕ-module over O E,K ⊗ F of rank three such that the matrix of

φ ( j) M : M( w) ( j) → M( w) ( j+1)
is given by w j v λ j (with respect to the standard basis).

PROPOSITION 3.3.8. Let (s, µ) be a lowest alcove presentation of τ . If M ∈ Y [0,h],τ (F ) is semisimple of shape w ∈ W ∨ , then T * dd (M)| I K ∼ = V * K (M( ws * t µ * +η * ))| I K ∼ = τ (w, ν + η)
where ws * t µ * = w * t ν * . (Note that since both T * dd (M) and V * K (M( ws * t µ * +η * )) are tame, they canonically extend to G K .) Proof. This is the special case when n = 3 of [LLHL19, Corollary 3.2.17]. For the sake of completeness, we include an argument here.

The first isomorphism follows from Proposition 3.3.6 combined with Proposition 3.2.1.

Let w, ν satisfy ws * t µ * = w * t ν * . One easily checks that the φ f -action

on ε 0 (M(w * t ν * +η * )) ∈ Φ f -Mod ét W (k) (F) is given by f -1 j=0 w -1 j v p j (ν j +η j ) using Proposition 3.2.2. Let s ∈ W . The φ f -action of ε 0 (M((st ν+η wπ(s) -1 ) * )) ∈ Φ f -Mod ét W (k) (F) is given by f -1 j=0 s j-1 w -1 j s -1 j v p j s j (ν j +η j ) = s f -1 f -1 j=0 w -1 j v p j (ν j +η j ) s -1 f -1 .
We conclude that ε 0 (M(w * t ν * +η * )) ∼ = ε 0 (M((st ν+η wπ(s) -1 ) * )). Therefore,

V * K (M(w * t ν * +η * )) ∼ = V * K (M((st ν+η wπ(s) -1 ) * )).
As (w, ν + η) ∼ (swπ(s) -1 , s(ν + η)), by [LLHL19, Proposition 2.2.4] and [Her09, Lemma 4.2], we reduce to the case where w i = 1 for i = f -1. The second isomorphism then follows from Lemma 3.2.3. PROPOSITION 3.3.9. Let ρ, ρ be semisimple representations of G K . Assume that there exists M semisimple of shape w such that T * dd (M) ∼ = ρ| G K∞ . Then ρ | I K ∼ = ρ| I K if and only if there exists a semisimple M of shape w such that

T * dd (M ) ∼ = ρ| G K∞ .
Proof. This follows from counting unramified twists using Proposition 3.3.6.

The remainder of the subsection is devoted to results used for weight elimination.

LEMMA 3.3.10. If ρ : G K → GL 3 (F) admits a potentially crystalline lift of type (λ, τ ), then so does ρ ss (after possibly replacing E with a ramified extension).

Proof. Fix a characteristic 0 lift ρ of ρ which is potentially crystalline of type (λ, τ ). Then by enlarging the coefficient ring of ρ, we can always find a lattice whose reduction is semisimple by [START_REF] Enns | On weight elimination for GL n (Q p f )[END_REF]Lemma 5(2)].

The following two theorems are key inputs in weight elimination by giving an upper bound on the semisimple representations which are reductions of potentially crystalline representations of type (λ, τ ). THEOREM 3.3.11. Let ρ : G K → GL 3 (F). Assume that ρ has a potentially crystalline lift of type (λ, τ ) where λ ∈ X * (T ) is effective. Assume that either (1) τ is a regular principal series type or (2) λ = η and τ is 3-generic. Then, for a sufficiently large h, there is a Kisin module

M ∈ Y [0,h],τ (F) of shape w = ( w 0 , w 1 , . . . , w f -1 ) ∈ Adm ∨ (λ) such that T * dd (M) ∼ = ρ| G K∞ . In particular, M ∈ Y λ,τ (F). Proof. See [LLHL19, Theorem 3.2.20].
THEOREM 3.3.12. Let ρ be a semisimple representation of G K and assume τ is a 1-generic tame type. Assume that either (1) ρ is a direct sum of characters or (2) λ = η and τ is 3-generic.

If there exists a Kisin module M ∈ Y λ,τ (F) such that T * dd (M) ∼ = ρ| G K∞ , then there exists a finite extension F /F and a semisimple Kisin module M ∈ Y λ,τ (F ) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press such that (after extending scalars) T * dd (M ) ∼ = ρ| G K∞ . Furthermore, we can take F = F in case (2). REMARK 3.3.13. Theorems 3.3.11 and 3.3.12 together say that for a fixed 3generic type τ the set of semisimple ρ| I K which arise as reductions of potentially crystalline representations of type (η, τ ) are in bijection with a subset of Adm ∨ ((2, 1, 0)) f . In fact, it turns out that this admissibility condition exactly captures those semisimple ρ which are reductions of crystalline representations of type (η, τ ). Checking this is equivalent to checking that the potentially crystalline deformation ring of type (η, τ ) of the semisimple ρ corresponding to

w ∈ Adm ∨ ((2, 1, 0)) f is nonzero. When w is such that ( w i ) > 1 for all i, this nontriviality follows from [LLHLM18, Table 7]. When K = Q p , [LLHLM18,
Section 8] shows the nontriviality for all admissible w. For general unramified K and admissible w, the nontriviality of the deformation ring will follow from Theorem 3.5.3.

Proof of Theorem 3.3.12. We first treat the case where ρ is a direct sum of characters. Let M dd = M[1/u ] be an étale ϕ-module with descent datum for L /K (that is, a semilinear action of ∆). Since there is an equivalence of categories between étale ϕ-modules over L with descent datum to K and G K ∞ -representations (cf. [LLHLM18, page 24] for principal series case and Section 6.1 in general), if ρ is a direct sum of characters, then M dd = M 1 ⊕ M 2 ⊕ M 3 , where each M i is stable under φ M dd and the descent datum.

Let Y λ,τ M dd be the Kisin variety parametrizing lattices in M dd which lie in Y λ,τ . [LLHLM18, Definition 3.1] defines Y λ,τ M dd in the principal series case. In general, Y λ,τ M dd is the closed subscheme of fixed points of Y λ,τ M dd under the natural action of σ f . The torus T = G 3 m acts on M dd by scaling individually in each factor. As a consequence, we get an algebraic action of T on the projective variety Y λ,τ M dd . Any such action has a fixed point over some finite extension

F /F. Let M ⊂ Y λ,τ M dd (F ) be a T -fixed point. Let χ i : T → G m denote the projection onto each coordinate and set M i def = (M ) χ i . Then M = M 1 ⊕ M 2 ⊕ M 3 . (3.4)
Since the T -action commutes with φ M dd and ∆, each M i is stable under both; hence, M i is a rank-one Kisin module with descent datum. Any choice of eigenbasis which respects this decomposition shows that M is semisimple.

Because M is in Y λ,τ (F ), it is semisimple with an admissible shape w ∈ Adm ∨ (λ).

Now suppose that τ is 3-generic, but ρ is not necessarily a direct sum of characters. In this case, the Kisin module M of type (η, τ ) is unique by [LLHLM18, Theorem 3.2]. We make a base change to the unramified extension K /K of degree 6. Let τ be the base change of τ to K , and let M = BC(M) be the base change of the Kisin module M. Since M is the unique Kisin module of type (η, τ ), by the above argument, it must be semisimple.

Recall the notion of gauge basis [LLHLM18, Definition 2.22]. Fix a gauge basis β of M and let β be the induced gauge basis on M. The eigenbasis β2 for M which puts the partial Frobenii in the form as in Proposition 3.3.6 is also a gauge basis. By [LLHLM18, Theorem 4.16], β and β2 differ by embeddingwise scaling by torus elements. We conclude that the matrices for the partial Frobenii with respect to β and hence β are monomial. Since the only monomial matrices

I(F) wI(F) are T (F[[v]]) w, we see that M is semisimple.
3.4. Shapes and Serre weights. We continue to assume S = { v}. We compute V (ρ| I K ) in terms of shape for a semisimple ρ. This will effectively allow us to determine W ? (ρ)∩JH(σ (τ )) for a 3-generic tame type τ (Proposition 3.4.2) via the combinatorics of Section 2 (especially Corollary 2.3.11). PROPOSITION 3.4.1. Let (s, µ) be a lowest alcove presentation of τ . Let M ∈ Y [0,h],τ (F ) be semisimple of shape w = ( w j ) ∈ W ∨ . Then

V (T * dd (M)| I K ) = R s w * (µ + η). Proof. By Proposition 3.3.8, T * dd (M)| I K ∼ = τ (w, ν + η) where ws * t µ * = w * t ν * . By [GHS18, Proposition 9.2.3], V (T * dd (M)| I K ) = R w (ν + η).
Finally, an easy calculation shows that R s w * (µ + η) = R w (ν + η) using Definition 2.3.6.

PROPOSITION 3.4.2. Let τ be a 3-generic type with lowest alcove presentation (s, µ) and let M ∈ Y [0,h],τ (F ) be semisimple of shape w = ( w j ) ∈ W ∨ . Let ρ : G K → GL 3 (F) be semisimple and 3-generic and assume that ρ|

G K∞ ∼ = T * dd (M). Then W ? (ρ, τ ) def = W ? (ρ) ∩ JH(σ (τ )) = {σ (s,µ+η) (ω,a) : (ω, a) ∈ Σ w * } ⊂ JH(R s (µ + η)).
Proof. This follows from Corollary 2.3.11 and Proposition 3.4.1.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press REMARK 3.4.3. There is an explicit list of elements of Adm ∨ (2, 1, 0) given in [LLHLM18, Table 1]. The effect of the involution w → w * is, in addition, to reverse the order of components, to reverse the order of the word, and to turn γ = (13)v (1,0,-1) into γ + . In particular, (•) * defines a bijection between Adm ∨ (2, 1, 0) and Adm(2, 1, 0).

3.4.1. Type elimination results. We assume throughout that ρ : G K → GL 3 (F) is 6-generic. PROPOSITION 3.4.4. Let τ be a 1-generic tame inertial type. If ρ is 6-generic and arises as the reduction of a potentially crystalline representation of type (η, τ ), then W ? (ρ ss , τ ) = ∅.

Proof. First, assume that τ is 3-generic. By Theorem 3.3.11 combined with Lemma 3.3.10, there exists

M ∈ Y η,τ (F) such that T * dd (M) ∼ = ρ ss | G K∞ .
In fact, by Theorem 3.3.12, we can take M to be semisimple of shape w = ( w j ) ∈ Adm ∨ (η). By Proposition 3.4.2 and Table 2, we conclude that

W ? (ρ ss , τ ) = ∅.
If τ is not 3-generic, then Proposition 3.4.5 shows that ρ does not arise as the reduction of potentially crystalline representation of type (η, τ ) for any such τ . PROPOSITION 3.4.5. Let n 4 and assume that ρ : G K → GL 3 (F) is n-generic. Assume that ρ arises as the reduction of a potentially crystalline representation of type (η, τ ) where τ is a 1-generic tame inertial type. Then τ is (n -3)-generic.

Proof. By Lemma 3.3.10, we can assume that ρ is semisimple. The result follows now from [LLHL19, Proposition 3.3.2].

3.5. Serre weight conjectures. We are now ready to prove an abstract version of the Serre weight conjecture as well as a numerical Breuil-Mézard statement. In this section, we allow S to have arbitrary (finite) cardinality.

3.5.1. Setup and summary of results. Recall from Section 1.4 that S is a finite set and F v is a finite extension of Q p for each v ∈ S, and k v is the residue field of F v . For Definition 3.5.1, we will not require that F v be an unramified extension of Q p . In applications, F will be a fixed global field, S will be a set of places in F, and F v will be the completion at v of F. Let ρ S be a collection (ρ v ) v∈S where

ρ v : G F v → GL 3 (F) is a continuous Galois representation. Let R v = R ρ v denote the unrestricted universal framed deformation ring of ρ v . Fix a natural number h and let R ∞ = v∈S R v [[x 1 , x 2 , . . . , x h ]] and X ∞ = SpfR ∞ . If τ v is an inertial type for G F v , then let R τ v v = R τ v ρ v be the universal framed deformation ring of ρ v of inertial type τ v and (parallel) Hodge-Tate weights (2, 1, 0). If τ S = (τ v ) v∈S , then let R ∞ (τ S ) = v∈S R τ v v ⊗ v∈S R v R ∞ and X ∞ (τ S ) = SpfR ∞ (τ S ). Let d + 1 be the dimension of X ∞ (τ S ) (the dimension is independent of τ S by [Kis08, Theorem 3.3.4]).
We denote by R v , R ∞ , and so on, the reduction of these objects modulo . Let K v be the group GL 3 (O F v ) and K be the product v∈S K v . Results toward the inertial local Langlands correspondence (cf. Proposition 2.2.6(2)) associate a Q p -valued K v -representation σ (τ v ) to a 1-generic tame inertial type τ v (and σ (τ v ) can be realized over O). DEFINITION 3.5.1. Let Rep K (O) denote the category of continuous Krepresentations over finitely generated O-modules and Mod(X ∞ ) the category of coherent sheaves over X ∞ .

A weak minimal patching functor for ρ S = (ρ v ) v∈S is defined to be a nonzero covariant exact functor M ∞ : Rep K (O) → Mod(X ∞ ) satisfying the following axioms:

(1) For each v ∈ S, let τ v be an inertial type for

G F v . Let σ (τ S ) be the K -representation v∈S σ (τ v ). If σ (τ S ) • is an O-lattice in σ (τ S ), then M ∞ (σ (τ S ) • ) is p-torsion-free and is maximally Cohen-Macaulay over R ∞ (τ S ). (2) If M ∞ (R 1 (µ)) is nonzero, then ρ v has a semistable lift of type τ v (1, µ v )
for all v ∈ S.

(3) If σ is an irreducible v∈S GL 3 (k v )-representation over F, the module M ∞ (σ ) is either 0 or maximal Cohen-Macaulay over its support, which is equidimensional of dimension d.

(4) The locally free sheaf M ∞ (σ (τ S ) Assume that a weak minimal patching functor M ∞ for ρ S exists. Following [GHS18, Definition 3.2.6], let W BM (ρ S ) be the set of irreducible Grepresentations (recall that G def

= v∈S GL 3 (k v )) σ over F such that M ∞ (σ )
is nonzero (note that a priori this set depends on the choice of M ∞ ). For a finitely generated R ∞ -module M with scheme-theoretic support Spec A of dimension at most d, define e(M) to be d! times the coefficient of the degree dterm of the Hilbert polynomial of M (considered as an A-module). In particular, e(M) is the Hilbert-Samuel multiplicity of M as an A module when dim A = d and is 0 otherwise.

We now assume that for all v ∈ S, F v is an unramified extension of Q p . Recall Definition 2.2.7 of W ? (ρ S ). THEOREM 3.5.2. Suppose that ρ S is semisimple and 10-generic and that M ∞ is a weak patching functor for ρ S . Then for all Serre weights σ , e(M ∞ (σ )) = 1 if σ ∈ W ? (ρ S ) and e(M ∞ (σ )) = 0 otherwise. In particular, W BM (ρ S ) = W ? (ρ S ).

THEOREM 3.5.3. Let K /Q p be a finite unramified extension of degree f . Let ρ : G K → GL 3 (F) be a continuous, 10-generic, and semisimple Galois representation, and let τ be a tame inertial type. If

τ is not 1-generic, R τ ρ is 0. If τ is 1-generic, then the number of irreducible components of R τ ρ def = R τ
ρ / is equal to the number of elements in W ? (ρ, τ ). The ring R τ ρ is a normal domain and is Cohen-Macaulay. Moreover, R τ ρ is reduced and its components are formally smooth of the same dimension.

The proofs of Theorems 3.5.2 and 3.5.3 appear in Section 3.5.3.

3.5.2. Types, weights, and the Breuil-Mézard philosophy. In this subsection, we describe the basic inductive argument toward the proofs of Theorems 3.5.2 and 3.5.3.

Recall that we have a length function : W ∨ → Z.

LEMMA 3.5.4. Let K /Q p be a finite unramified extension of degree f . Let ρ : G K → GL 3 (F) be a semisimple Galois representation. Let τ be 5-generic with lowest alcove presentation (s, µ). Assume that V (ρ|

I K ) = R s w * (µ + η)
where w = w(ρ, τ ) = ( w 0 , . . . , w f -1 ) ∈ Adm ∨ (η) with ( w j ) > 1 for every j. Then R τ ρ = 0 and the number of irreducible components of R τ ρ is equal to the number of elements in W ? (ρ, τ ). The ring R τ ρ is a normal domain and is Cohen-Macaulay. Moreover, R τ ρ is reduced and its components are formally smooth of the same dimension.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press Proof. By Proposition 3.4.1, our hypotheses imply that there exists a Kisin module M ρ ∈ Y η,τ (F) such that T * dd (M ρ ) ∼ = ρ| G K∞ and that w = w(ρ, τ ). In [LLHLM18, Sections 5.3, 6], we gave an explicit presentation for R τ ρ whenever the length of w j is at least 2 and the type τ is 5-generic. For each shape, there were at most two cases depending on M ρ . By Propositions 3.3.9 and 3.3.12, whenever ρ is semisimple, M ρ is semisimple in the sense of Definition 3.3.1, and so M ρ lies in the special locus for the given shape.

We claim that #Irr Spec (R

τ ρ ) = j 2 4-( w j )
and that R τ ρ is reduced and Cohen-Macaulay. Indeed, from Table 7 in loc. cit., we see that R τ ρ is the completion of a tensor product over F of rings of the form F[X ], F[X, Y ]/ X Y at the maximal ideal generated by the variables X, Y . Since such a tensor product is Cohen-Macaulay, so is its completion by [Sta19, Tag 07NX]. Since such a tensor product is reduced and excellent (being a finite type F-algebra), its completion is reduced by [Sta19, Tag 07NZ]. Finally, we also note that since each irreducible components of such a tensor product is smooth, the completion of the irreducible components stay irreducible and are formally smooth.

This implies the remaining properties (see the proof of [LLHLM18, Corollary 8.9]. Note that the reducedness of R τ ρ implies that R τ ρ is a normal domain). Finally, we compare this with the size of W ? (ρ, τ ), which is j∈J #Σ ( w * j ) by Proposition 3.4.2 using Table 2. COROLLARY 3.5.5. Suppose that for each v ∈ S, ρ v : G F v → GL 3 (F) is a semisimple Galois representation and τ v is a 5-generic tame inertial type satisfying the hypotheses of Lemma 3.5.4. Let τ S be (τ v ) v∈S . Then e(R ∞ (τ S )) is equal to #W ? (ρ S , τ S ).

Proof. This follows immediately from Lemma 3.5.4 and [EG14, Lemma 2.2.14] and properties of tensor products of representations. PROPOSITION 3.5.6 (Weight elimination). Suppose that for each v, ρ v :

G F v → GL 3 (F) is a 10-generic Galois representation. Then W BM (ρ S ) ⊂ W ? (ρ ss S ).
Proof. Suppose that σ is a Serre weight such that σ ∈ W BM (ρ S ) \ W ? (ρ ss S ). Note that W BM (ρ S ) satisfies the (evident generalization of) [Enn, Axiom (WE)] by 3.5.1(2). By [START_REF] Enns | On weight elimination for GL n (Q p f )[END_REF]Theorem 8] and [LLHL19, Remark 2.2.8], ρ S is 10generic implies that σ is 3-generic. Then σ ∈ JH(σ (τ S )) for some collection τ S def = (τ v ) v∈S of 1-generic tame types (for example, taking a tame principal series type containing σ ). Since ρ S is 10-generic, we see by Proposition 3.4.5 and Definition 3.5.1(1) that M ∞ (σ (τ S )) = 0 implies that τ S is 7-generic. By Lemma 4.2.13 (whose proof only uses modular representation theory and is independent of the results in Section 3), σ is 5-deep.

By Corollary 2.3.13, τ S above can be taken so that W ? (ρ ss S , τ S ) = ∅ and σ ∈ JH(σ (τ S )). By Proposition 3.4.4, ρ ss v is not the reduction of a potentially crystalline representation of type (η v , τ v ) for some v ∈ S. By Proposition 3.3.10, ρ v is also not the reduction of a potentially crystalline representation of type

(η v , τ v ) for some v ∈ S. Then X ∞ (τ S ) = ∅ and M ∞ (σ (τ S ) • ) = 0 for any O-lattice σ (τ S ) • in σ (τ S ). By exactness of M ∞ , M ∞ (σ ) = 0 which is a contradiction.
REMARK 3.5.7. Instead of appealing to [Enn], one can show that provided that ρ S is generic enough, every element of W BM (ρ S ) appears as a Jordan-Hölder factor of the reduction of some 1-generic tame type as follows. Even though not all Serre weights come from the reduction σ (τ S ) for a collection τ S of 1generic tame types, they do occur in the reduction of V λ ⊗ σ (τ S ) where λ is sufficiently large (independent of p). The results of Section 3.3 hold also for potentially crystalline representations of type (λ v + η v , τ v ) v∈S (possibly with a stronger genericity hypothesis), and then the same argument as in the proof of Proposition 3.5.6 gives the result.

Given a collection τ S of tame inertial types and a O-lattice σ (τ S ) • in σ (τ S ), we write σ (τ S ) • to denote the reduction of σ (τ S ) • modulo . LEMMA 3.5.8. Suppose that for each v ∈ S, ρ v : G F v → GL 3 (F) is a semisimple Galois representation and τ v is a 5-generic tame inertial type satisfying the hypotheses of Lemma 3.5.4. Let

τ S = (τ v ) v∈S . Let σ (τ S ) • be an O-lattice in σ (τ S ). Then either M ∞ (σ (τ S ) • ) = 0 or e(M ∞ (σ (τ S ) • )) is equal to e(R ∞ (τ S )),
and the alternative does not depend on the lattice.

Proof. The generic fiber of X ∞ (τ S ) is irreducible since its special fiber is reduced (see Lemma 3.5.4). Then since

M ∞ (σ (τ S ) • ) is maximal Cohen- Macaulay over X ∞ (τ S ), either M ∞ (σ (τ S ) • ) has full support on X ∞ (τ S ) or M ∞ (σ (τ S ) • ) is 0.
The lemma now follows from the proof of [LLHLM18, Proposition 7.14]. LEMMA 3.5.9. Suppose that ρ v : G F v → GL 3 (F) is semisimple and 7-generic for all v ∈ S. If σ ∈ W ? (ρ S ) has defect δ, then there are tame inertial types τ v and τ v satisfying the hypotheses of Corollary 3.5.5 such that if τ S = (τ v ) v∈S and τ S = (τ v ) v∈S , we have

(1) σ ∈ W ? (ρ S , τ S ) ⊂ W ? (ρ S , τ S );
(2) #W ? (ρ S , τ S ) = 2 δ and #W ? (ρ S , τ S ) = 2 δ+1 ;

(3) all Serre weights in W ? (ρ S , τ S ) and W ? (ρ S , τ S ) have defect at most δ and if δ > 0, σ is the unique Serre weight in W ? (ρ S , τ S ) with defect δ;

(4) if δ = 0, for any σ ∈ W ? (ρ S ) of defect 0 which is adjacent to σ , one can choose the τ S above so that W ? (ρ S , τ S ) = {σ, σ }.

Proof. This is essentially a consequence of results in Section 2.3. Suppose that

V (ρ S | I F S ) = R s (µ)
with µη 7-deep in alcove C 0 , and label W ? (ρ S ) by r (Σ) as in Proposition 2.3.4. Let w = ( w v ) v∈S = ( w i ) i∈J ∈ Adm(η) and τ S be the tame inertial type with lowest alcove presentation (sw

-1 , µ + s w -1 (0) -η),
where w ∈ W is the image of w. Then µ + s w -1 (0) -η is 5-deep in alcove C 0 so that τ S is 5-generic. Corollary 2.3.11 says that

W ? (ρ S , τ S ) = σ (s,µ) r (ω,a) : r (ω, a) ∈ i∈J r (Σ w -1 i ) , where Σ w -1 i = Σ 0 ∩ w i -1 r (Σ 0 ) . If ( w i ) >
1 for all i, then τ S satisfies the hypotheses of Corollary 3.5.5 (noting that ( w) = ( w * ) by the proof of [LLHL19, Lemma 2.1.3], where the lengths are as elements of W ∨ and W , respectively).

Let (ω, a) = ((ω i , a i )) i be such that σ = σ (s,µ) r (ω,a) . We will construct the required types by appropriately choosing

( w i ) i . If (ω i , a i ) ∈ Σ obv 0 , we can find an element w i ∈ Adm((2, 1, 0)) such that ( w i ) = 4 and Σ w -1 i = {(ω i , a i )}. If (ω i , a i ) ∈ Σ inn 0 , we can find an element w i t -1 ∈ {αβα, βγβ, αγ α} such that Σ w -1 i contains exactly {(ω i , a i ), r (ω i , a i )}.
This choice of ( w i ) i∈J gives a type τ S = (τ v ) v∈S such that σ ∈ W ? (ρ S , τ S ), #W ? (ρ S , τ S ) = 2 δ , and all weights in W ? (ρ S , τ S ) have defect at most δ.

To construct τ S satisfying (2) and (3), we proceed similarly. We first deal with the case δ > 0. In this case, we can find a j 0 ∈ J such that ( w j 0 ) = 3, and consider any w j 0 w j 0 of length 2. Then

Σ w -1 j 0 ⊂ Σ w -1 j 0
https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press and has size 4 (see Table 2). Furthermore, Σ w -1

j 0 \Σ w -1 j 0 ⊂ Σ obv 0 .
Let w be such that w i = w i if i = j 0 and w j 0 is the element chosen above. Then the type τ S such that σ (τ S ) = R s( w ) -1 (µ) satisfies items (2) and (3).

Finally, assume that δ = 0. Let σ ∈ W ? (ρ S ) be a defect 0 weight adjacent to σ , and write σ = σ (s,µ) r (ω ,a ) . Then there is a unique j 0 ∈ J such that (ω j 0 , a j 0 ) = (ω j 0 , a j 0 ). There are six possible pairs {(ω j , a j ), (ω j , a j )} ∈ Σ obv 0 which are adjacent in Table 1, each of which is Σ w -1 j for some length 3 nonshadow element w j (see [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] Table 1]). We let τ S be the inertial type corresponding to w such that w i = w i for i = j 0 and w j 0 chosen as in the previous sentence. This gives the type satisfying items (2), (3), and (4). REMARK 3.5.10. From Table 2, we see that the type τ S constructed in Lemma 3.5.9 is uniquely characterized by requiring that σ ∈ W ? (ρ S , τ S ) and #W ? (ρ S , τ S ) = 2 δ . We call it the minimal type of σ with respect to ρ.

In what follows, our ρ S = (ρ v ) v∈S will be assumed to be 10-generic so that Proposition 3.5.6 applies. We observe that if τ S is a 3-generic tame type, then σ (τ S ) • is multiplicity free for any choice of lattice σ (τ S ) • . Then

e(M ∞ (σ (τ S ) • )) = σ ∈JH(σ (τ S )) e(M ∞ (σ ))
by Definition 3.5.1, and, in fact,

e(M ∞ (σ (τ S ) • )) = σ ∈W ? (ρ ss S ,τ S )
e(M ∞ (σ )).

Finally, observe that if ρ S is 10-generic and W ? (ρ S , τ S ) is nonempty, then τ S is 7-generic by Proposition 3.4.5.

LEMMA 3.5.11. Suppose that ρ v : G F v → GL 3 (F) is semisimple and 10-generic for all v ∈ S. If there exists σ ∈ W BM (ρ S ) with defect 0, then for all σ ∈ W ? (ρ S ), e(M ∞ (σ )) = 1. In particular, W BM (ρ S ) = W ? (ρ S ).

Proof. We first prove the lemma assuming σ has defect 0 by induction on d def = d gph (σ, σ ). By Lemma 3.5.9, one can choose a 1-generic tame type τ S such that W ? (ρ S , τ S ) = {σ }. Note that τ S is then 7-generic under our assumptions. Then e(M ∞ (σ )) = 1 by Corollary 3.5.5 and Lemma 3.5.8. This establishes the case d = 0.

Suppose that σ ∈ W ? (ρ S ) has defect 0 and that d > 0. Then there is a σ ∈ W ? (ρ S ) adjacent to σ , with defect 0, and such that d gph (σ, σ ) = d -1. We choose a type τ S as in Lemma 3.5.9(4) for the adjacent weights σ and σ and an O-lattice σ (τ S ) • in σ (τ S ). Then by inductive hypothesis, M ∞ (σ ), and hence M ∞ (σ (τ S ) • ), is nonzero. By Corollary 3.5.5 and Lemma 3.5.8, e(M ∞ (σ (τ S ) • ) = 2. We deduce from the inductive hypothesis that e(M ∞ (σ )) = 1.

We now prove the general case of the lemma by induction on the defect. Suppose that σ ∈ W ? (ρ S ) has defect δ > 0. We choose τ S as in Lemma 3.5.9 (and an O-lattice σ (τ S ) 0 in σ (τ S )) taking σ to be σ . By Lemma 3.5.9(2) and (3), W ? (ρ S , τ S ) contains a weight of lower defect. The inductive hypothesis implies that M ∞ (σ (τ S ) • ) is nonzero. By Lemma 3.5.8 and Corollary 3.5.5, e(M ∞ (σ (τ S ) • )) = 2 δ . By Lemma 3.5.9(3) and induction, e(M ∞ (σ (τ

S ) • )) - e(M ∞ (σ )) is the number of weights in W ? (ρ S , τ S ) \ {σ }, which is 2 δ -1. We conclude that e(M ∞ (σ )) = 1.
LEMMA 3.5.12. Suppose that ρ v : G F v → GL 3 (F) is semisimple and 10-generic for all v ∈ S. If σ ∈ W BM (ρ S ) has defect δ > 0, then there exists σ ∈ W BM (ρ S ) with defect less than δ.

Proof. Choose τ S and τ S as in Lemma 3.5.9 and fix lattices σ (τ S ) • and σ (τ S ) • . Then M ∞ (σ (τ S ) • ) and M ∞ (σ (τ S ) • ) are nonzero. Hence, by Lemmas 3.5.8 and 3.5.9(2) and Corollary 3.5.5, e(M ∞ (σ (τ S ) • )) -e(M ∞ (σ (τ S ) • )) = 2 δ . By Proposition 3.5.9(1), e(M ∞ (σ (τ S ) • ))-e(M ∞ (σ (τ S ) • )) is the sum of e(M ∞ (σ )) as σ runs over the Serre weights in W ? (ρ S , τ S ) \ W ? (ρ S , τ S ). By Lemma 3.5.9(3), the Serre weights in W ? (ρ S , τ S ) \ W ? (ρ S , τ S ) have defect less than δ. We conclude that there must be a Serre weight σ ∈ W BM (ρ S ) of defect less than δ.

Proofs

Proof of Theorem 3.5.2. Since M ∞ is nonzero, there is a Serre weight σ ∈ W BM (ρ S ) ⊂ W ? (ρ S ) by Proposition 3.5.6. By induction on the defect using Lemma 3.5.12, we can assume, without loss of generality, that the defect of σ is 0. The theorem now follows from Lemma 3.5.11. REMARK 3.5.13. Our axioms for inside Spec R ∞ , we have shown that if σ ∈ W BM (ρ S ), then the scheme-theoretic support of M ∞ (σ ) is irreducible with generic point given by the preimage in R ∞ of a prime ideal in v∈S R 2 v .

M ∞ imply that if σ ∈ JH(σ (τ S )), then the support of M ∞ (σ ) is a (possibly empty) union of irreducible components of Spec R ∞ (τ S ). As Spec R ∞ (τ S ) is the preimage of Spec v∈S R τ v v ⊂ Spec v∈S R 2 v https://doi.
We now give two examples of weak minimal patching functors using the setup from [LLHLM18, Section 7.1]. Recall the definitions from loc. cit. of F/F + , Σ + p , G /F + , and ι w (see also Section 5.3). Suppose that r :

G F → GL 3 (F) is
• automorphic (of some weight) in the sense of [LLHLM18, Definition 7.1];

• satisfies the Taylor-Wiles hypotheses in the sense of [LLHLM18, Definition 7.3]; and

• if r is ramified at a finite place w / ∈ Σ p of F, then w| F + splits in F (we say that r has split ramification outside of p).

Then [LLHLM18, Proposition 7.15] constructs a weak minimal patching functor for r in the sense of [LLHLM18, Definition 7.11], which we will denote by M ∞ . Let h be the corresponding integer.

For each v ∈ Σ + p , choose a place v of F lying above v. Let S p be the set

{ v : v ∈ Σ + p }. Let ρ S p be (ρ v ) v∈S p where we define ρ v def = r | G F v : G F v → GL 3 (F). Define R ∞ , R ∞ (τ S p )
, and so on, as before with respect to h above. Let K be S p K v as before. From the proof of [LLHL19, Proposition 4.2.6] we have the following. PROPOSITION 3.5.14. Let M ∞ : Now suppose that p > 3 and K /Q p is a finite extension. Let ρ : G K → GL 3 (F) be a continuous Galois representation with a potentially diagonalizable lift of type (η, τ ) such that R τ ρ is formally smooth. For example, if ρ is 6-generic and semisimple, we can take τ so that if w(ρ, τ ) = ( w j ) j , then ( w j ) = 4 for all j. We now construct a weak minimal patching functor for ρ (here #S = 1 in the notation of Definition 3.5.1).

Rep K (O) → Mod(X ∞ ) be the functor M ∞ • v∈S p ι v . Then M ∞ is
[EG14, Corollary A.7] constructs a CM extension F/F + , a choice of places S p above Σ + p as before, and an automorphic Galois representation r : G F → GL 3 (F) satisfying the above itemized properties such that there is an isomorphism

K ∼ = F v and r | G F v ∼ = ρ for all v ∈ S p . Fix a place v ∈ S p and let R ∞ be R ρ ⊗ v ∈Σ + p ,v =v R τ ρ v [[x 1 , . . . , x h ]].
Note that R ∞ is as defined in Section 3.5.1 (by increasing h, and the assumption of formal smoothness of R τ ρ ) and we identify

R ∞ with R r | G F v ⊗ v ∈Σ + p ,v =v R τ r | G F v [[x 1 , . . . , x h ]]
. Let X ∞ = SpfR ∞ as usual. We abusively let K be the group GL 3 (O K ) (the meaning of each K will be clear from the context). Fix a lattice σ (τ ) • in the K -module σ (τ ).

Let M ∞ be the weak minimal patching functor for r constructed above. The following proposition follows from the construction of r and Proposition 3.5.14. PROPOSITION 3.5.15. Assume the above setup. Let M ∞ :

Rep K (O) → Mod(X ∞ ) be the functor M ∞ • v∈Σ + p ι v •   -⊗ v∈Σ + p ,v =v σ (τ ) •   .
Then M ∞ is a patching functor for ρ.

COROLLARY 3.5.16. Suppose that ρ S is a collection of continuous Galois representations satisfying the properties of ρ in Proposition 3.5.15. Then there exists a patching functor for ρ S .

Proof. We can take the completed tensor product of the patching functors constructed in Proposition 3.5.15 for each ρ v .

Proof of Theorem 3.5.3. Suppose that τ is not 1-generic. We claim that R τ ρ = 0. It suffices to show that after restriction to G K for any unramified extension K /K , ρ does not have a potentially crystalline lift of type τ and Hodge-Tate weights (2, 1, 0). Moreover, after such a restriction, τ is still not 1-generic and ρ is 10-generic. We can then assume, without loss of generality, that τ is a principal series. By [LLHL19, Remark 2.2.8], τ is not 2-generic and ρ is 10-generic in the sense of [Enn, Definition 2.2]. Then ρ does not have a potentially crystalline lift of type τ and Hodge-Tate weights (2, 1, 0) by [START_REF] Enns | On weight elimination for GL n (Q p f )[END_REF]Proposition 7].

If τ is 1-generic and R τ ρ = 0, then Proposition 3.4.5 implies that τ is 7-generic. Proposition 3.4.2 implies that W ? (ρ, τ ) = ∅. Suppose that τ is 1-generic and W ? (ρ, τ ) = ∅. By Proposition 3.5.15, a patching functor M ∞ for ρ exists. For any O E -lattice σ (τ ) • ⊂ σ (τ ), M ∞ (σ (τ ) • ) = 0 by Theorem 3.5.2. This implies that R τ ρ is nonzero. We now show that if τ is 1-generic and R τ ρ = 0, then As R τ ρ = 0, we deduce from Proposition 3.4.5 that τ is 7-generic. The proof of (3.5) is now obtained by a direct generalization of the arguments of [LLHLM18, Section 8]; so we only explain the key details. There is a ring R τ ρ of the same dimension as R τ ρ [[X 1 , . . . X 3 f ]] which is a power series ring over the completed tensor product over F of rings R in [LLHLM18, Section 8] and R expl,∇ M, w for some M and w from [LLHLM18, Table 7], and which admits a surjection to R

e(R τ ρ ) = e(M ∞ (σ (τ ) • )). ( 3 
τ ρ [[X 1 , . . . , X 3 f ]]. Then we have e( R τ ρ ) = e(M ∞ (σ (τ ) • )) for any O-lattice σ (τ ) •
⊂ σ (τ ) by computing both sides using [LLHLM18, Table 7, Propositions 8.5 and 8.12] and Theorem 3.5.2 (using that ρ is 10generic). The proof of [LLHLM18, Proposition 7.14] implies

e(M ∞ (σ (τ ) • )) e(R τ ρ ). Then we must have that e( R τ ρ ) = e(R τ ρ [[X 1 , . . . , X 3 f ]]) = e(R τ ρ )
by the above surjection. Furthermore, R τ ρ is reduced and Cohen-Macaulay by the same argument as in the proof of Lemma 3.5.4. Then R

τ ρ [[X 1 , . . . , X 3 f ]] is isomorphic to R τ
ρ by [LLHLM18, Lemma 8.8] and the desired properties of R τ ρ hold because they do for R τ ρ . The desired ring-theoretic properties of R τ ρ follow from the proof of [LLHLM18, Corollary 8.9]. REMARK 3.5.17. Since the number of irreducible components of R τ ρ is equal to #W ? (ρ, τ ), R τ ρ is reduced, and M ∞ (σ (τ ) • ) has full support over R ∞ (τ ), the proof of Theorem 3.5.3 shows that the irreducible support of M ∞ (σ ) must be different for each σ ∈ W ? (ρ, τ ).

3.6. The geometric Breuil-Mézard conjecture. We now show that weak minimal patching functors can be used to assign components in deformation rings to Serre weights. PROPOSITION 3.6.1. (1) Let ρ be as in Theorem 3.5.3. There is a unique assignment σ → p(σ ) for σ ∈ W ? (ρ) such that p(σ ) ⊂ R 2 ρ is a prime ideal and

Spec (R τ ρ ) = σ ∈W ? (ρ,τ ) Spec (R 2 ρ /p(σ )) (3.6)
for any tame type τ where the right-hand side is given the reduced scheme structure. Moreover, the image of p(σ ) in R (2) If M ∞ is a weak minimal patching functor for ρ S = (ρ v ) v∈S , then the scheme-theoretic support of M

∞ ( v∈S σ v ) is Spec (R ∞ / v∈S p(σ v )R ∞ ).
Proof. We first prove uniqueness. Suppose there is such an assignment. This closely follows the procedure of induction on the defect with respect to W ? (ρ) in the proof of Theorem 3.5.2. If the defect of σ ∈ W ? (ρ) is 0, then by letting τ be the minimal type of σ with respect to ρ, we have #W ? (ρ, τ ) = 1 by Lemma 3.5.9. Then we must have p(σ

) = Ann R 2 ρ R τ ρ .
If the defect of σ is δ > 0, then choose τ to be the minimal type of σ with respect to ρ as in Lemma 3.5.9. Then by induction and Lemma 3.5.9(3), there is a unique component of Spec (R τ ρ ) whose defining ideal is not p(σ ) for some σ ∈ W ? (ρ, τ ) of lower defect. Then p(σ ) must be this defining ideal.

We now show existence of an assignment. By Proposition 3.5.15, there is a weak minimal patching functor M ∞ for ρ, which we fix. By Remark 3.5.13, the generic point of the scheme-theoretic support of M ∞ (σ ) is of the form p (σ )R ∞ for some prime ideal p (σ ) ⊂ R 2 ρ . We claim that σ → p (σ ) is an assignment satisfying (3.6). Indeed, since the generic fiber of R τ ρ is connected by 3

.5.3, Spec R ∞ (τ ) is the scheme-theoretic support of M ∞ (σ (τ ) • ). On the other hand, M ∞ (σ (τ ) • ) is filtered by M ∞ (σ ) for σ ∈ W ? (ρ, τ ) so that the support of M ∞ (σ (τ ) • ) is σ ∈W ? (ρ,τ ) Spec (R ∞ /p (σ )R ∞ ).
(3.7) Equation (3.7) is a decomposition of R ∞ (τ ) into irreducible components by Remark 3.5.17. Finally, we observe that this statement descends to R τ ρ . We now show part (2). Suppose that M ∞ is a weak minimal patching functor for ρ S . Let σ = v∈Σ σ v ∈ W ? (ρ S ). Again by the proof of Theorem 3.5.2, the scheme

-theoretic support of M ∞ (σ ) is Spec R ∞ /( v∈S p(σ ) v R ∞ ) for some prime ideals p(σ ) v ⊂ R 2 ρ v . We will show that p(σ ) v = p(σ v )
, where p is the assignment in part (1). We induct on δ = Def ρ S (σ ). If δ = 0, then one can choose τ S as in Lemma 3.5.9 so that R ∞ (τ S ) = R ∞ /p(σ ). We conclude that p(σ ) v = p(σ v ) for all v ∈ S in this case. Suppose that δ > 0. Again choose τ S as in Lemma 3.5.9. Then by the inductive hypothesis, for any weight σ =

v∈S σ v ∈ W ? (ρ S , τ S ) with σ ∼ = σ , the scheme-theoretic support of M ∞ (σ ) is R ∞ /( v∈S p(σ v )R ∞ ). Since the generic fiber of Spec ( v∈S R τ v ρ v ) is connected by 3.5.3, by item (1), the scheme-theoretic support of M ∞ (σ (τ S ) • ) is σ ∈W ? (ρ S ,τ S ) Spec R ∞ / v∈S p(σ v )R ∞ .
(3.8) From this, we see that since e(M ∞ (σ )) = 1, the scheme-theoretic support of M ∞ (σ ) is forced to be Spec R ∞ /( v∈S p(σ v )R ∞ ).

We have the following refinement of Proposition 3.6.1(2).

LEMMA 3.6.2. Assume that ρ is 10-generic. Let τ S = (τ v ) v∈S be a collection of tame inertial types and let V be a subquotient of σ (τ S ) • for some O-lattice σ (τ S ) • in σ (τ S ). Define the closed subscheme X ∞ (V ) → Spec R ∞ to be the reduced subscheme underlying σ ∈JH(V ) Supp(M ∞ (σ )). Then the scheme-

theoretic support of M ∞ (V ) is X ∞ (V ). In particular, if M ∞ (V ) is a cyclic R ∞ - module, then M ∞ (V ) ∼ = R ∞ /I (V )
, where

I (V ) def = σ ∈JH(V ) Ann R ∞ (M ∞ (σ )).
Proof. Since ρ is 10-generic, there is nothing to prove unless τ S is 7-generic. The proof now follows exactly as in the second paragraph of the proof of [EGS15, Proposition 8.1.1]. We recall the argument. The support of

M ∞ (V ) is (the topological space) X ∞ (V ) since M ∞ (V ) is filtered by M ∞ (σ ) for σ ∈ JH(V ).
It suffices to show that the scheme-theoretic support of M ∞ (V ) is reduced. The scheme-theoretic support of M ∞ (V ) is generically reduced (since the same is true for M ∞ (σ (τ S ) • )). Now since each M ∞ (σ ) is maximal Cohen-Macaulay over R ∞ (τ S ) (by Definition 3.5.1(3) and the fact that dim R ∞ (τ S ) = d) and the maximal Cohen-Macaulay property is preserved under extension (by the characterization of depth in terms of Ext groups), M ∞ (V ) is maximal Cohen-Macaulay over R ∞ (τ S ). This guarantees that the scheme-theoretic support of M ∞ (V ) has no embedded associated primes and, hence, is reduced.

3.6.1. Matching components. Recall that Proposition 3.6.1 gives a canonical parametrization of the irreducible components of the special fiber of the potentially crystalline deformation ring R τ ρ in terms of W ? (ρ, τ ). Given a lowest alcove presentation (s, µη) of τ = τ (s, µ), we will define in item (4) below explicit rings R M, w will be formally smooth modifications of R τ ρ . Thus, Proposition 3.6.1 gives a bijection between minimal primes of R expl,∇ M, w and W ? (ρ, τ ). On the other hand, by Corollary 2.3.11, the data (s, µ) gives a description of W ? (ρ, τ ) as σ (s,µ) (ω,a) , for (ω, a) ∈ Σ w . In this subsection, we will make the bijection between minimal primes of R expl,∇ M, w and Σ w explicit. This will be needed in Section 5, where we need to check relations between ideals corresponding to various subquotients of σ (τ ) 0 for certain lattices σ (τ ) 0 .
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We begin by recalling the relationship between R expl,∇ M, w and R τ ρ . For the rest of this section, we assume that ρ is 10-generic. Recall that we have chosen a lowest alcove presentation (s, µη) of τ = τ (s, µ). We assume that R τ ρ = 0, and, thus, τ is 7-generic and there exists a unique M ∈ Y η,τ (F) such that T * dd (M) ∼ = ρ| G K∞ . Let w = w(ρ, τ ) be the shape of M and let M def = (M[1/u ]) ∆=1 . We also recall the notion of gauge basis [LLHLM18, Definitions 4.15, 6.11], and we fix a gauge basis β for M. We also fix a framing (that is, a basis) for ρ.

Recall from [LLHLM18, Definition 2.11 and Section 6] (see also the discussion after [LLHL19, Definition 3.2.8], which is more aligned with the notation of this paper) the notation

A (i) def = Mat β (φ (i) M,s or,i+1 (3) 
), for an eigenbasis β of a Kisin module M with descent data of type τ and s or ∈ W the orientation of τ = τ (s, µ). We say that A (i) is the matrix of the ith partial Frobenius φ (i) M,s or,i+1 (3) with respect to the eigenbasis β.

We have the following canonical diagram (cf. [LLHLM18, Diagram (5.9)]:

Spf(R τ,β,2 M,ρ ) f.s. / / f.s. Spf(R expl,∇ M, w ) f.s. / / D τ,β M f.s. Spf(R τ ρ ) = Spf(R τ,2 M,ρ ) f.s. / / _ Spf(R expl,∇ M, w )/ G 3 f m _ ı τ / / Y η,τ M k K ı τ x x Φ-Mod ét,2 M f.s. / / Φ-Mod ét M (3.9)
where f.s. stands for a formally smooth morphism. We explain the diagram as follows:

(

1) R τ,β,2 M,ρ , R τ,2
M,ρ , are defined in [LLHLM18, Sections 4.3, 5.2, 6.2]. They parametrize various deformation problems of ρ and M with extra data such as framings on Galois representations and gauge bases on M. We note that in loc. cit., we used the symbol µ for what we call η in this paper.

(2) Φ-Mod ét M (respectively Φ-Mod ét,2 M ) denotes the groupoid of étale ϕmodules deforming M (respectively deformations with a basis on the associated G K ∞ -representation).

(3) Y η,τ M is the groupoid whose values on a local Artinian F-algebra A is given by the groupoid of pairs (M A ,  A ) where M A ∈ Y η,τ (A) and  A : 

M A ⊗ A F ∼ → M is an isomorphism in Y η,τ (F).
M = i (R expl w i ) p-flat, red / . Over R τ,β
M , we have a universal pair (M univ , β univ ) and, hence, the universal matrices of partial Frobenii A (i),univ . By construction, (R expl w i ) p-flat, red / is a quotient of the power series ring over F generated by (suitable modifications of) the coefficients of the entries of A (i),univ subject to certain 'finite height' equations. The map ı τ is the map sending M univ to

(M univ [ 1 u ]) ∆=1 . (4) The ring R expl,∇ M, w = i R expl,∇
M, w i . We recall the description of each component ring from [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] (see also Table 3). We let (a, b, c) ∈ F 3 p be the mod

p reduction of s -1 f -1-i (µ f -1-i ) ∈ X * (T ) ∼ = Z 3 .
(1) When ( w i ) > 1: R expl,∇ M, w i is the quotient of the power series ring over F generated by (suitable modifications of) the coefficients of the entries of A (i),univ by an explicit list of relations given by [LLHLM18, Section 5.3 and Table 7]. In this case, we even have the rings R 7] only has entries for w i belonging to a certain set of representatives under the action of the outer automorphisms of W a .

(2) When ( w i ) = 1: By symmetry, we may assume w i = αt 1 . The matrix A (i),univ has the form Data relevant to Theorem 3.6.4. The first column records the components of the shape w = w(ρ, τ ). The second column records the form of the matrix of partial Frobenius A ( f -1-i) and the presentation of the ring R expl,∇ M, w f -1-i in terms of the entries of A ( f -1-i) . The fourth column records the prime ideal c (ωi ,ai ) in the statement of Theorem 3.6.4. The last column records the element z * ∈ W a that occurs in Proposition 3.6.9, which controls the minimal type τ of the weight given by the third column with respect to ρ. Thus, τ = τ (sz * , µ + s z * (0)). Note that w(ρ, τ ) = w(ρ, τ ) z -1 . Finally, the structure constants that feature in the presentation of R expl,∇ M, w f -1-i are given by (a, b, c) ∈ F 3 p with (a, b, c) ≡ s -1 i (µ i ) mod p. Further data relevant to Theorem 3.6.4. The description of the columns is the same as that in Table 3. (3) When ( w i ) = 0, the matrix A (i),univ has the form Note that each object with a superscript 2 receives a GL 3 -action, corresponding to changing the framing on the Galois representation.

A (i),
A (i),
We now justify the diagram:
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• We claim that there is a canonical isomorphism Spf(R

τ,β,2 M,ρ )/ GL 3 ∼ = Spf(R expl,∇
M, w ). When ( w i ) > 1 for all i, this is [LLHLM18, Theorem 5.12, Theorem 6.14 and Table 7]. When ( w i ) 1 for some i, this follows from the same arguments as [LLHLM18, Section 8] together with Theorem 3.5.2, as explained in the proof of Theorem 3.5.3. This justifies the existence and the properties of the first row of Diagram (3.9). It is clear from the construction that the G

3 f m -action on D τ,β M preserves Spf(R expl,∇ M, w ). Let (M w,τ , β w,τ ) be the restriction of (M univ , β univ ) to Spf(R expl,∇ M, w ). Thus, the map ı τ sends M w,τ to M w,τ def = (M w,τ [ 1 u ]) ∆=1 .
• The second row is obtained from the first row by quotienting by the G 3 f m -action coming from scaling the gauge basis and, hence, inherits all properties from the first row. The top squares are Cartesian.

• The second column is obtained from the first column by quotienting by the GL 3 -action coming from changing the framing of the Galois representation; hence, the bottom square is Cartesian.

The following proposition finishes our justification of the diagram.

PROPOSITION 3.6.3. Assume that τ is 3-generic and that M ∈ Y η,τ (F) is semisimple of shape w = ( w j ). Let β be a gauge basis for M. Then the map

ı τ : Y η,τ M → Φ-Mod ét M is a monomorphism.
Proof. We need to prove that the map on the groupoids of (ω, a) → σ (s,µ) (ω,a) . The following theorem is the main result of this subsection, which computes the above bijections in terms of the explicit rings. THEOREM 3.6.4. Assume ρ is 10-generic. Via the above bijections, we have

F[ε]/(ε 2 )-points Y η,τ M (F[ε]/(ε 2 )) → Φ-Mod ét M (F[ε]/(ε 2 )) induced by ı τ is fully faithful. But this follows from [LLHL19, Proposition 3.2.18], noting that the right-hand side is equivalent to Rep F[ε]/ε 2 (G K ∞ ) ρ in loc. cit.
f -1 i=0 Σ w * i ∼ -→ i Irr Spec (R expl,∇ M, w i ) ∼ -→ Irr Spec (R τ ρ ) (ω i , a i ) i -→ (c (ω f -1-i ,a f -1-i ) R expl,∇ M, w i i -→ p(σ (s,µ) (ω,a) ),
where c (ω i ,a i ) is the minimal prime of R expl,∇ M, w f -1-i given by Table 3.

REMARK 3.6.5. Note that Table 3 only gives the ideals c

(ω i ,a i ) ⊆ R expl,∇ M, w f -1-i
for a set of representatives for w f -1-i ∈ Adm ∨ ((2, 1, 0)) for the action of the outer automorphisms of W ∨ . This is sufficient because this action corresponds to changing the lowest alcove presentation of τ .

We now describe the strategy of proof. The main idea is that by the proof of Proposition 3.6.1, the prime p(σ ) can be characterized by the relation (3.6) for a specific type τ (inducting on defect of σ ). Namely, one can use the minimal type τ of σ with respect to ρ. For this type, each component of w = w(ρ, τ ) has length 3. Furthermore, the minimal type τ has the property that SpfR The precise formulation of this matching mechanism is given by the following. LEMMA 3.6.6. Let τ = τ (s, µ) and τ = τ (s , µ ). Assume that R τ ρ , R τ ρ = 0, and the running hypothesis that ρ is 10-generic. Consider diagram (3.9) for R τ ρ , R τ ρ , constructed using the above presentations. We decorate the objects that occur in the diagram for τ with the same symbol as those in the diagram for τ but with a superscript added (so we have, for example, w , M w ,τ , and so on). Assume that there are ideals I (respectively I ) of R Proof. Our hypotheses imply that there is an isomorphism

Spf(R expl,∇ M, w /I ) & & ∼ / / Spf(R expl,∇ M , w /I ) x x Φ-Mod ét M (3.10) Pulling this back along the map Φ-Mod ét,2 M → Φ-Mod ét M gives a commutative diagram Spf(R τ,β,2 M,ρ )/I 2 ) f.s ∼ / / Spf(R τ ,β ,2 M ,ρ /I 2 ) f.s Spf(R τ ρ /J ) _ o Spf(R τ ρ /J ) _ O o Spf(R 2 ρ ) t ' ' Spf(R 2 ρ ) J j w w Φ-Mod ét,2 M (3.11)
where we use [LLHLM18, Proposition 3.12] to see that the natural map Spf(R

2 ρ ) → Φ-Mod ét,2
M is a monomorphism (as ρ 10-generic implies ad(ρ) is cyclotomic free). But this implies that Spf(R τ ρ /J ) and Spf(R τ ρ /J ) define the same subfunctor of Φ-Mod ét,2 M and, hence, also the same subfunctor of Spf(R 2 ρ ).

In practice, we will apply the lemma by matching matrices of partial Frobenii.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press COROLLARY 3.6.7. Keep the notations and setting of Lemma 3.6.6. Assume that there exists z = ( z i ) i ∈ W ∨ a with corresponding z * = ( z * i ) i ∈ W a and z is the image of z in W ∨ such that s = sz * and µ = µ + s z * (0). Write (I i ) i for the collection of ideals in R expl,∇ M, w i giving rise to I , write A (i) for the matrix of the ith partial Frobenius of M w,τ with respect to β w,τ , and let (I i ) i and A (i) be the analogous objects for τ . Assume the following:

• The isomorphism R expl,∇ M, w /I ∼ = R expl,∇ M , w /I is induced by a collection of isomorphisms R expl,∇ M, w i /I i ∼ = R expl,∇ M , w i /I i . • For each i, A ( f -1-i) mod I f -1-i = A ( f -1-i) z f -1-i mod I f -1-i
via the above isomorphisms.

Then the same conclusion as Lemma 3.6.6 holds.

Proof. This follows from Lemma 3.6.6, Proposition 3.2.1, and the fact that zs * t µ * = s * t µ * . REMARK 3.6.8. Note that the second condition in Corollary 3.6.7 implies in particular that

A (i) i = A (i) z i i , (3.12) 
where A (i) , A (i) denote the reductions modulo the maximal ideal. We now explain how, in the situations where we apply Corollary 3.6.7, we can always arrange this. If we have ρ semisimple and τ , τ , z as in Proposition 3.6.9, then w = w z.

(3.13) Furthermore, for any choices of gauge bases β, β , for M w,τ and M w ,τ , respectively, one has

A (i) ∈ T (F) w i and A (i)
∈ T (F) w i by Proposition 3.3.6. Let M w,τ denote the element of Y η,τ (F) with eigenbasis β M such that the partial Frobenii is given by (A (i) z i ) i . (Note that M w,τ ∈ Y η,τ (F) because it has shape w ∈ Adm ∨ (η).) Since zs * t µ * = s * t µ * , (M w,τ ) ∆=1 ∼ = (M w ,τ ) ∆=1 by Proposition 3.2.1. Thus, T * dd (M w,τ ) ∼ = ρ. By the triviality of Kisin variety (see [LLHLM18, Theorem 3.2]), M w,τ ∼ = M w,τ and β M defines a gauge basis of M w,τ . Thus, by replacing β M by β M (this can be done by scaling by an element of T (F) by [LLHL19, Proposition 3.2.22]), we can then ensure that condition (3.12) holds. In all the matching that we perform below, we will always assume that the gauge bases have been chosen so that condition (3.12) holds.

The following proposition describes all the types τ for which we need to perform some matching with τ . PROPOSITION 3.6.9. Assume that ρ is 10-generic. Let τ = τ (s, µ) be a tame inertial type such that R τ ρ = 0, and let w = w(ρ, τ ) = ( w i ) i . Let (ω, a) = (ω i , a i ) i ∈ i Σ w * i and σ = σ (s,µ) (ω,a) ∈ W ? (ρ, τ ). Let τ be the minimal type of σ with respect to ρ; cf. Remark 3.5.10. Then we have the following:

• For z * = ( z * i ) i ∈ W a
as given by Table 3, we have τ = τ (s , µ ) where s = sz * , µ = µ + s z * (0)

• w(ρ, τ ) z = w; and

• W ? (ρ, τ ) ⊂ W ? (ρ, τ ).
Proof. This is immediate by computing the pairwise intersections among Σ 0 , w * i (r (Σ 0 )), and z * i (Σ 0 ).

Proof of Theorem 3.6.4. By Proposition 3.6.9 and the proof of Proposition 3.6.1, for each σ ∈ W ? (ρ, τ ) with minimal type τ with respect to ρ, we need to show that the intersection of minimal primes

(ω,a)∈Σ∩ z * (Σ) f -1 i=0 c (ω i ,a i ) R expl,∇ M, w = f -1 i=0 (ω i ,a i )∈Σ 0 ∩ z * i (Σ 0 ) c (ω i ,a i ) R expl,∇ M, w of R expl,∇
M, w corresponds to the intersection of primes σ ∈W ? (ρ,τ ) p(σ ) of R 2 ρ . But this follows from Corollary 3.6.7 (which allows us to work for each i separately) and the explicit computations in Section 3.6.2.

We record the following lemma, which follows from Theorem 3.6.4, for future use. Let w = w(ρ, τ ). Suppose that ( w i ) 2 for all 0

i f -1. Let N def = i (4 -( w i )), and R N def = N j=1 O[[x j , y j
]]/(x j y j -p). In this case, there exists a formally smooth map R N → R expl,∇ M, w , which we fix. We think of R N as a subalgebra of R M, w where z j ∈ {x j , y j } for all 1 j N . Define z j (σ ) so that p expl (σ ) = ((z j (σ )

) N j=1 + ( ))R expl,∇ M, w .
https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press LEMMA 3.6.10. Assume that ρ is 10-generic and that ( w i ) 2 for all 0 i f -1. For σ 1 and σ 2 ∈ W ? (ρ, τ ),

# {z j (σ 1 )} N j=1 ∆{z j (σ 2 )} N j=1 = 2d gph (σ 1 , σ 2 ),
where ∆ denotes the symmetric difference.

Proof. From the αβα, αβ, and βα rows of Table 3, we check that if σ 1 , σ 2 ∈ W ? (ρ, τ ), then p expl (σ 1 )

+ p expl (σ 2 ) is a prime ideal of R expl,∇ M, w of height d gph (σ 1 , σ 2 ) + 1.
On the other hand, the height of the intersection of (z j ) j +( ) + (z j ) j +( ) is easily seen to be

1 2 # {z j } N j=1 ∆{z j } N j=1 + 1.
For convenience, we list in Table 4 the length 4 shapes and their universal families over R expl,∇ M, w j .

Explicit computations.

In this section, we record the matching of matrices of partial Frobenii needed in the proof of Theorem 3.6.4. We are always in the setting of the theorem. In particular, we have two types τ , τ with chosen presentations related by the element z * together with matrices of partial Frobenii A ( f -1-i) , A ( f -1-i) . We will fix i throughout.

We will frequently recall presentations of rings from [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], and since we work in characteristic p, all occurrences of the symbol e in loc. cit. will become -1 here. We let (a, b, c) and (a , b , c ) ∈ F 3 p be such that b,c). These are the structure constants that feature in the presentation of our explicit rings. We will also replace occurrences of the symbols c i j in loc. cit. by d i j as we wish to decorate objects associated with τ with a prime superscript. The relevant data for the type τ occurring in the proof of Theorem 3.6.4. The first column records the components of the shape w = w(ρ, τ ). The second column records the form of the matrix of partial Frobenius A ( f -1-i) and the presentation of the ring R M, w f -1-i . A direct check on the relations (3.14) shows that R is reduced, equidimensional of the same dimension as R expl,∇ M, w f -1-i , and with the same Hilbert-Samuel multiplicity. Therefore, the surjection is an isomorphism; see Lemma 3.6.11.) We need to perform matching for the ideals c (0,0) , c (ε 1 ,1) , c (ε 1 -ε 2 ,0) , w (0) def = c (0,1) ∩ c (0,0) . We provide details for the matching of the ideal c (0,0) in Table 3. We have

(a, b, c) = s -1 i (µ i ) mod p, (a , b , c ) = (s i ) -1 (µ i ) mod p. Note that (a , b , c ) = z f -1-i (a,
Case w f -1-i = αβt 1 . From [LLHLM18,
expl,∇ M , w f -1-i in terms of the entries of A ( f -1-i) . The structure constants that feature in the presentation of R expl,∇ M , w f -1-i are given by (a , b , c ) ∈ F 3 p where (a , b , c ) ≡ (s i ) -1 (µ i ) mod p. Note that (s i ) -1 (µ i ) ≡ z f -1-i (a, b, c) mod p.
R expl,∇ M, w f -1 c (0,0) = F[[d 23 , c 31 , d 33 , c * 13 -[c * 13 ], c * 21 -[c * 21 ], c * 32 -[c * 32 ]]]
and 

A ( f -1-i) mod c (0,0) =   0 
vd 33   =   v 2 c * 11 0 0 v 2 c 21 vc * 22 0 v 2 d 31 vc 32 c * 33     0 0 v -1 1 0 0 0 v 0   under the isomorphism R expl,∇ M, w f -1-i c (0,0) ∼ = R expl,∇ M , w f -1-i
given by the change of variable

c * 21 = c * 22 , c * 13 = c * 11 , d 23 = c 21 , c 31 = c 32 , c * 32 = c * 33 , d 33 = d 31 .
Such a change of variable is allowed, provided the units that are matched with each other agree modulo the maximal ideal because c * 22 = c * 21 , c * 11 = c * 13 , and c * 33 = c * 32 as elements of F (see Remark 3.6.8). Thus, 3.6.7 applies and we are done with this case. The matching for c (ε 1 -ε 2 ,0) can be performed in a similar fashion.

Next we provide details for the matching of c (ε 1 ,1) . We have

R expl,∇ M, w f -1-i c (ε 1 ,1) = F[[c 22 , c 23 , d 23 , d 33 , c * 13 -[c * 13 ], c * 21 -[c * 21 ], c * 32 -[c * 32 ]]] (-1 -a + c)c 23 c * 32 -(-1 -a + b)c 22 d 33 .
Moreover,

A ( f -1-i) mod c (ε 1 ,1) =   0 0 vc * 13 vc * 21 c 22 c 23 + vd 23 0 vc * 32 vd 33   .
On the other hand, 

w f -1-i = αβγβt 1 , z * i = γ + β, (a , b , c ) = (c -1, a + 1, b) and A ( f -1-i) has the form A ( f -1-i) =   v 2 c *
0 v -1 v 0 0 0 1 0   under the isomorphism R expl,∇ M, w f -1-i c (ε 1 ,1) ∼ = R expl,∇ M , w f -1-i
given by the change of variable .

Moreover,

A ( f -1-i) mod w 0 =   c 31 c 12 (c * 32 ) -1 c 12 d 33 c 12 (c * 32 ) -1 + vc * 13 vc * 21 0 vd 23 vc 31 vc * 32 vd 33   .
On the other hand, 

w f -1-i = αβαt 1 , z * i = α, (a , b , c ) = (b, a, c) and A ( f -1-i) has the form A ( f -1-i) =   c 11 c 11 c 32 (c * 31 ) -1 d 33 c 11 (c * 31 ) -1 + vc *
R expl,∇ M, w f -1-i w 0 ∼ = R expl,∇ M , w f -1-i
given by the change of variable

c 12 = c 11 , c 31 = c 32 , d 23 = d 23 , d 33 = d 33 , c * 32 = c * 31 , c * 21 = c * 22 , c * 13 = c * 13 .
Case w f -1-i = αt 1 . From [LLHLM18, Table 5], the matrix of the partial Frobenius A ( f -1-i) has the following form: We provide details for the matching of the ideal c (ε 1 ,1) . We have

R expl,∇ M, w f -1-i c (ε 1 ,1) = F[[c 22 , c 23 , c 32 , d 22 , c * 21 -[c * 21 ], c * 12 -[c * 12 ], c * 33 -[c * 33 ]]] (-1 -a + b)c 22 c * 33 -(-1 -a + c)c 23 c 32
and

A ( f -1-i) mod c (ε 1 ,1) =   0 vc * 12 0 vc * 21 c 22 + vd 22 c 23 0 vc 32 vc * 33   .
On the other hand, 

w f -1-i = αβγβ, z * i = βγ + β, (a , b , c ) = (b -1, a + 1, c) and A ( f -1-i) has the form   v 2 c *
  =   v 2 c * 11 0 0 v(c 21 + vd 21 ) c * 22 c 23 v 2 c 31 0 vc * 33     0 v -1 0 v 0 0 0 0 1   under the isomorphism R expl,∇ M, w f -1-i c (ε 1 ,1) ∼ = R expl,∇ M , w f -1-i
given by the change of variables We now explain the matching of the ideal

w ε 2 def = c (ε 2 ,0) ∩ c (ε 2 ,1) = (c 11 , c 32 ). We have R expl,∇ M, w f -1-i w ε 2 = F[[c 13 , c 23 , c 31 , d 22 , c * 12 -[c * 12 ], c * 21 -[c * 21 ], c * 33 -[c * 33 ]] c 31 ((a -b)c 13 d 22 + (-1 -a + c)c * 12 c 23 )
.

Moreover, 

A ( f -1-i) mod w ε 2 =   0 
vc 33 c 21 (c * 23 ) -1 v(c 33 d 22 (c * 23 ) -1 + vc * 32 ) c 33     0 1 0 0 0 v -1 v 0 0   under the isomorphism R expl,∇ M, w f -1-i w ε 2 ∼ = R expl,∇ M , w f -1-i
given by the change of variables Case w f -1-i = t 1 . From [LLHLM18, Table 5], the matrix of the partial Frobenius A ( f -1-i) has the following form: We provide details for the matching of c (0,0) = (c 11 , c 22 , c 33 , c 13 , c 23 , c 12 ). We have

R expl,∇ M, w f -1-i c (0,0) = F[[c i j , c * kk -[c * kk ], 1 j < i 3, 1 k 3]]
and 

A ( f -1-i) mod c (0,0) =  
  =   v 2 c * 11 0 0 v 2 c 21 vc , * 22 0 v 2 c 31 vc 32 c * 33     v -1 0 0 0 1 0 0 0 v   under the isomorphism R expl,∇ M, w f -1-i c (0,0) ∼ = R expl,∇ M , w f -1-i
given by the change of variables

c i j = c i j for 1 j < i 3, c * kk = c * kk for 1 k 3.
We now explain the matching for the ideal w 

0 def = c (0,0) ∩ c (0,1) = (c 22 , c 33 , c 23 , c * 33 c 12 -c 13 c 32 ). We have R expl,∇ M, w f -1-i w 0 = F[[c 13 , c 21 , c 31 , c 32 , c * 11 -[c * 11 ], c * 22 -[c * 22 ], c * 33 -[c * 33 ]]] (c 13 ((a -c)c * 22 c 31 -(b -c)c 32
R expl,∇ M, w f -1-i w 0 ∼ = R expl,∇ M , w f -1-i
given by the change of variables

c 13 = c 11 , c 21 = c 23 , c 31 = d 33 , c 32 = c 32 , c * 11 = c * 13 , c * 22 = c * 22 , c * 33 = c * 31 .
Case w f -1-i = βαt 1 and αβαt 1 : The computations of these two cases are very similar to those we already performed and are left to the reader.

3.6.3. Ideal relations in deformation rings. In this subsection, we collect some results about sums of intersections of minimal primes in the potentially crystalline deformation rings R τ ρ . These computations play a crucial role in Section 5.1, where they are used to compute the value of a patching functor on certain representations as the limit of the value of the patching functor on simpler pieces of the representation.

Thanks to Theorem 3.6.4, all computations that we need to perform can be done on the rings R expl,∇ M, w f -1-i given in Table 3. We continue to adopt the notation and setting of Theorem 3.6.4.

We will frequently make use of the following.

LEMMA 3.6.11. Suppose we have a surjection of rings g : S R. Assume that R and S are equidimensional of dimension d, have the same number of minimal primes, and S is reduced. Then g is an isomorphism.

Proof. The first two hypotheses imply that the kernel of g is nilpotent since g induces an isomorphism between the underlying topological spaces of Spec (R) and Spec (S). But since S is reduced, this kernel must in fact be 0.

Ideal relations in R

expl,∇ M,id LEMMA 3.6.12. In the ring R expl,∇ M,id , we have

(w 0 ∩ c (ε 1 ,0) ) + (w 0 ∩ c (ε 2 ,0) ) = w 0 .
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Proof. An elementary check on the list of generators of the ideals w 0 , c (ε 1 ,0) and c (ε 2 ,0) (cf. Table 3) shows that

w 0 ∩ c (ε 1 ,0) ⊇ (c 33 , c 23 , c 22 ), w 0 ∩ c (ε 2 ,0) ⊇ (c 33 , c 22 , c 13 c 32 -c 12 c * 33 ).
In particular (again by looking at the list of generators of w 0 ), we have

(w 0 ∩ c (ε 1 ,0) ) + (w 0 ∩ c (ε 2 ,0) ) ⊇ w 0 .
The reverse inclusion is obvious.

LEMMA 3.6.13. In the ring R expl,∇ M,id , we have

w 0 ∩ c (ε 1 ,0) ∩ c (ε 2 ,0) = (c 22 , c 33 ).
Proof. We let R be the ring with the same presentation as R expl,∇ M,id except that all c * i j are set to 1. As explained in [LLHLM18, Corollary 8.4], there is a natural identification of R expl,∇ M,id with the power series over R with three variables, and we can work with the ring R instead of R expl,∇ M,id . All the ideals that we consider come from R and are given by generators with the same name.

From Table 3, we immediately obtain This latter ring is easily seen to be equidimensional of dimension three and has four minimal primes. It is furthermore reduced since it is the quotient of a power series ring by an ideal generated by square-free monomials.

(c 22 , c 33 ) ⊆ w 0 ∩ c (ε 1 ,0) ∩ c (ε 2 ,0) ,
From Lemma 3.6.13, the same argument used in the proof of Lemma 3.6.12 gives the following. LEMMA 3.6.14. In the ring R expl,∇ M,id , we have

(w 0 ∩ w ε 1 ∩ c (ε 2 ,0) ) + (w 0 ∩ w ε 2 ∩ c (ε 1 ,0) ) = w 0 ∩ c (ε 1 ,0) ∩ c (ε 2 ,0) .
Proof. From Table 3, we immediately deduce that (w

0 ∩ w ε 1 ∩ c (ε 2 ,0) ) ⊇ (c 33 ) and (w 0 ∩ w ε 2 ∩ c (ε 1 ,0) ) ⊇ (c 22 ).
The conclusion now follows as in Lemma 3.6.12 by noting that and the latter ring is equidimensional of dimension three and has three irreducible components. It is, moreover, reduced since the ideal of relations is generated by square-free monomials. The argument to prove (2) is completely analogous and we only sketch it. It is immediate to obtain from Table 3 the inclusion c (ε 1 ,1) ∩c (0,0) ∩c (ε 2 ,0) ⊇ (c 11 , c 13 c 31 ). 

(c 22 , c 33 ) = w 0 ∩ c (ε 1 ,0) ∩ c (ε 2 ,0) .

Ideal relations in R

(I Λ 0 ∩ c (ε 1 ,1) ) + (I Λ 0 ∩ c (ε 2 ,1) ∩ c (ε 2 -ε 1 ,0) ) = I Λ 0 , (3.17) (c (ε 1 ,1) ∩ c (0,0) ∩ c (ε 2 ,0) ∩ c (0,1) ) + (c (ε 1 ,1) ∩ c (0,0) ∩ c (ε 2 ,0) ∩ c (ε 2 ,1) ) = c (ε 1 ,1) ∩ c (0,0) ∩ c (ε 2 ,0) , (3.18) (c (0,1) ∩ c (0,0) ∩ c (ε 2 ,0) ) + (c (0,1) ∩ c (0,0) ∩ c (ε 2 -ε 1 ,0) ) = c (0,1) ∩ c (0,0) . (3.19)
Proof. We work in R and set c 32 def = c 32 -d 22 c 31 . An elementary check on the list of generators of the ideals I Λ 0 , c (ε 2 ,1) , c (ε 2 -ε 1 ,0) , and c (ε 1 ,1) shows that

(I Λ 0 ∩ c (ε 1 ,1) ) ⊇ (c 11 -c 13 c 31 , c 23 c 31 ), (I Λ 0 ∩ c (ε 2 ,1) ∩ c (ε 2 -ε 1 ,0) ) ⊇ (c 23 c 32 ),
and we deduce (again by looking at the list of generators of I Λ 0 ) that

(I Λ 0 ∩ c (ε 1 ,1) ) + (I Λ 0 ∩ c (ε 2 ,1) ∩ c (ε 2 -ε 1 ,0) ) ⊇ I Λ 0 .
The reverse inclusion is obvious.

Similarly,

(c 11 ) ⊆ c (ε 1 ,1) ∩c (0,0) ∩c (ε 2 ,0) ∩c (ε 2 ,1) and (c 11 -c 13 c 31 ) ⊆ c (ε 1 ,1) ∩c (0,0) ∩ c (ε 2 ,0) ∩c (0,1) . Hence, (c (ε 1 ,1) ∩c (0,0) ∩c (ε 2 ,0) ∩c (0,1) )+(c (ε 1 ,1) ∩c (0,0) ∩c (ε 2 ,0) ∩c (ε 2 ,1) ) ⊇ c (ε 1 ,1) ∩ c (0,0) ∩ c (ε 2 ,0) .
The proof of item (3.19) is similar and left to the reader (note that c 11 -c 13 c 31 ∈ (c (0,1) ∩ c (0,0) ∩ c (ε 2 ,0) ) and c 23 ∈ (c (0,1) ∩ c (0,0) ∩ c (ε 2 -ε 1 ,0) )).

REMARK 3.6.17. The ideal relation appearing in Lemmas 3.6.15 and 3.6.16 are compatible with the outer automorphism of W ∨ . Explicitly, define δ def = (123)t (0,0,-1) and let w → δ w δ -1 be the corresponding outer automorphism on W ∨ . Then δ acts on Σ 0 and the ideal relations of Lemmas 3.6.15 and 3.6.16 hold for shape β with c (ω i ,a i ) replaced by c (( δ * ) -1 (ω i ),a i ) . As an example, for shape β, the relation

(3.19) becomes (c (ε 1 ,1) ∩ c (ε 1 ,0) ∩ c (0,0) ) + (c (ε 1 ,1) ∩ c (ε 1 ,0) ∩ c (ε 1 -ε 2 ,0) ) = c (ε 1 ,1) ∩ c (ε 1 ,0) .

Lattices in generic Deligne-Lusztig representations

The aim of this section is to classify lattices with irreducible cosocle in generic GL 3 (F q ) Deligne-Lusztig representations, providing the crucial representationtheoretic input to deduce Breuil's lattice conjecture from the weight part of Serre conjecture. The main result (Theorem 4.1.9) states that the submodule structure of lattices with irreducible cosocle can be predicted using the extension graph introduced in Section 2.

Outline of the proof. Let R be a generic Deligne-Lusztig representation. We have two main steps in the proof of the classification theorem: first, by local algebraic methods, we describe the reduction of lattices with irreducible cosocles isomorphic to a lower alcove weight with defect zero (Theorem 4.2.16). Second, in Section 4.3, we introduce another notion of distance related to the second part of Theorem 4.1.9, which we call saturation distance. It turns out that this notion is closely related to the submodule structure of the reduction of lattices.

Using a crucial global input coming from the geometry of Galois deformation rings, we show that (1) if measured from σ the graph and saturation distances coincide, then the reduction of the lattice with cosocle isomorphic to σ is as predicted in Theorem 4.1.9 (Proposition 4.3.16);

(2) measured from a lower alcove weight of defect zero, the saturation distance and the graph distance coincide (Proposition 4.3.17, which uses Theorem 4.2.16).

In contrast to the other notions of distance that we introduce, the saturation distance involves lattices in characteristic zero, making it far more flexible. Taking advantage of this flexibility, we finally show by an induction on defect that the saturation distance and the graph distance coincide, completing the proof of Theorem 4.1.9.

Structure of Section 4. For R as above and σ ∈ JH(R), let R σ denote the unique (up to homothety) O-lattice in R with irreducible cosocle σ and write R σ to denote its reduction modulo . The first main step is in Section 4.2.

The argument uses the modular representation theory of algebraic groups to embed R σ into the G def = G 0 (F p )-restriction of a tensor product V µ of algebraic Weyl modules with non-p-restricted highest weight (see Section 4.2.2 for the definition of V µ ). The content of Section 4.2.3 is the description of V µ | G provided by Theorem 4.2.7. This theorem describes the Jordan-Hölder constituents of V µ | G and the existence of nontrivial extensions between constituents at graph distance one (cf. the key technical result Proposition 4.2.10). The embedding of R σ in V µ is constructed in Section 4.2.4. One first proves the existence of a nonzero (and unique up to scalar) morphism R σ → V µ (Proposition 4.2.15); an inductive argument, using the description of the submodule structure of V µ | G , then shows that the image of this morphism contains all the constituents of R σ .

The submodule structure of R σ is then obtained from that of V µ .

The second part of the proof of Theorem 4.1.9 is the content of Section 4.3. The key insight is the introduction of the auxiliary notion of saturation distance on JH(R) in Section 4.3.1 which relates the position of saturated lattices in R σ .

Using a global input, we give in Section 4.3.1 a first coarse relation between the saturation and the graph distance (cf. Corollary 4.3.8). Subsequently, we prove in Section 4.3.2 that the three distances are actually equal provided that σ verifies an appropriate condition relating its defect, its graph distance, and its saturated distance (we say that σ is maximally saturated in R). In particular, if σ is maximally saturated in R, the structure of R σ is predicted by the extension graph (Proposition 4.3.16).

We are hence left to prove that all constituents of R are maximally saturated. This is shown by an induction argument in Section 4.3.3. The proof of Theorem 4.1.9 concludes this section.

The classification statement.

4.1.1. Some generalities. Let C be a nonzero finite abelian category over F. Let M be a nonzero object of C. A decreasing (respectively increasing) filtration F on M is a collection of subobjects

F n (M) ⊂ M (respectively F n (M) ⊂ M) for n ∈ Z such that F n+1 (M) ⊂ F n (M) (respectively F n (M) ⊂ F n+1 (M))
for all i. A filtration F is exhaustive and separated if F n (M) = 0 for i sufficiently large (respectively small) and F n (M) = M for n sufficiently small (respectively large), and this property will always be assumed to hold. We write gr n F (M)

def = F n (M) F n+1 (M) (respectively gr F n (M) def = F n (M) F n-1 (M)
) and omit F from the notation if it is clear from context. A filtration is semisimple if gr n F (M) (respectively gr F n (M)) is semisimple for all n ∈ Z. By shifting the filtration, we will assume that gr n F (M) = 0 (respectively gr F n (M) = 0) for n < 0 and that gr 0 F (M) = 0 (respectively gr F 0 (M) = 0). The length of a filtration is the maximal ∈ Z such that gr -1 F (M) = 0 (respectively gr F -1 (M) = 0). The socle of M, denoted as soc(M), is defined to be the maximal (with respect to inclusion) semisimple subobject of M. The radical of M, denoted as rad(M), is the minimal (with respect to inclusion) subobject of M whose corresponding quotient is semisimple. The cosocle of M is cosoc(M) def = M/rad(M). We inductively define the radical and socle filtration on M: we set rad 0 (M) = M and let rad n (M) def = rad rad n-1 (M) , and set soc -1 (M) = 0 and let soc n (M) be the inverse image, via the canonical projection M M/soc n-1 (M), of soc (M/soc n-1 (M)) ⊆ M/soc n-1 (M). Then the radical (respectively socle) filtration is a decreasing (respectively increasing) semisimple filtration. Moreover, gr 0 rad (M) = cosoc(M) and gr soc 0 (M) = soc(M). Since formation of cosocle (respectively socle) is right (respectively left) exact, the filtration induced from the radical (respectively socle) filtration on a quotient object (respectively subobject) is the radical (respectively socle) filtration. The lengths https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press of the radical and socle filtrations coincide, and we call this value the Loewy length of M and denote it by (M). Any semisimple filtration has length at least (M), and we say that it is a Loewy series if its length equals (M). If F is a decreasing Loewy series, then we necessarily have

rad n (M) ⊆ F n (M) ⊆ soc (M)-n-1 (M) (4.1)
for all n ∈ {0, . . . , (M)}. We say that M is rigid if rad n (M) = soc (M)-n-1 (M) for all n.

We say that M is multiplicity free if every Jordan-Hölder factor of M appears with multiplicity one. We now suppose that M is multiplicity free. We say that σ ∈ JH(M) points to σ ∈ JH(M) if there exists a subquotient of M which is isomorphic to a nontrivial extension of σ by σ . We say that a subset S ⊂ JH(M) is closed if σ ∈ S and σ points to σ imply that σ ∈ S. Proof. It is easy to see that JH(N ) is a closed subset of JH(M). Suppose that S ⊂ JH(M) is a closed subset. Let N be the minimal subobject of M with S ⊂ JH(N ). Suppose that JH(N ) \ S is nonempty and contains σ . If σ ∈ JH(N ) points to σ , then σ is not in S since S is closed. By replacing σ by σ repeatedly, we can assume, without loss of generality, that σ does not point to σ for all σ ∈ JH(N ).

Let N be the maximal subobject of N such that σ / ∈ JH(N ). This maximality implies that the socle of N /N must be isomorphic to σ . By the assumption above, there is no subobject of N /N which is an extension by σ , and, therefore, N /N is isomorphic to σ . Then the existence of N contradicts the minimality of N . Suppose that M is multiplicity free and that F is a decreasing (respectively increasing) filtration on M. For σ ∈ JH(M), we define d M F (σ ) (respectively d F M (σ )) to be the unique value n such that Hom C (σ, gr n F (M)) (respectively Hom C (σ, gr F Γ (M) and an extension path in F is a directed path in Γ F (M) (respectively Γ F (M)). The following proposition is immediate from the definitions. PROPOSITION 4.1.2. Let N be a subquotient of M. If F is a semisimple filtration on M, then it naturally induces a semisimple filtration on N . Moreover, Γ (N ) (respectively Γ F (N ) and Γ F (N )) is the maximal subgraph of Γ (M) (respectively Γ F (M) and Γ F (M)) with vertices corresponding to JH(N ).

LEMMA 4.1.3. Suppose that M is multiplicity free and σ ∈ JH(M).

If d M rad (σ ) > 0 (respectively d soc M (σ ) > 0), there is a σ such that d M rad (σ ) = d M rad (σ ) -1 (respectively d soc M (σ ) = d soc M (σ ) -1
) and σ rad-points to σ (respectively σ socpoints to σ ).

Proof. We consider the radical filtration; the socle filtration is analyzed similarly. Let d = d M rad (σ ). Then the radical filtration on rad d-1 (M) is a shift of the radical filtration on M by definition and induces the radical filtration on rad d-1 (M)/rad d+1 (M). Then there is a σ ∈ JH(gr d-1 rad (M)) which rad-points to σ , otherwise σ would not be in the radical of rad d-1 (M)/rad d+1 (M) which is gr d rad (M).

COROLLARY 4.1.4. Suppose that M is multiplicity free and σ ∈ JH(M). Then there is an extension path in the radical (respectively socle) filtration of length d M rad (σ ) (respectively d soc M (σ )) ending (respectively beginning) with σ .

Proof. The case d M rad (σ ) = 0 (respectively d soc M (σ ) = 0) is trivial. The induction step follows from Lemma 4.1.3. LEMMA 4.1.5. Suppose that M is multiplicity free and F is an increasing semisimple filtration on M. If

σ points to σ , then d F M (σ ) > d F M (σ ). Proof. Let d be d F M (σ ). By Proposition 4.1.1, F d (M) contains σ as a Jordan- Hölder factor. Thus, d F M (σ ) d F M (σ ). If d F M (σ ) = d F M (σ )
, then there is a subquotient of M which is isomorphic to a direct sum of σ and σ . This contradicts the fact that σ points to σ . PROPOSITION 4.1.6. Suppose that M ∈ C is multiplicity free. Then M is rigid if and only if for every σ ∈ JH(M), there is an extension path in the radical (respectively socle) filtration of length (M)-1-d M rad (σ ) (respectively (M)-1 -d soc M (σ )) beginning (respectively ending) with σ .
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Proof. First, suppose that M is rigid. There is an extension path P rad in the radical filtration of length d M rad (σ ) ending at σ by Corollary 4.1.4. By rigidity, this is an extension path in the socle filtration of length d M rad (σ ) = (M) -1 -d soc M (σ ). Now suppose that there is an extension path in the radical filtration of length (M) -1 -d M rad (σ ) starting with σ . Then

d soc M (σ ) (M) -1 -d M rad (σ )
by Lemma 4.1.5. The reverse inequality is implied by (4.1), and we conclude that gr n rad (M) and gr soc (M)-1-n (M) are isomorphic and, thus, that M is rigid.

The following is self-evident.

PROPOSITION 4.1.7. Let M ∈ C be multiplicity free. Then the dual object M * in the dual abelian category C * is also multiplicity free. A decreasing filtration F on M gives rise to an increasing filtration F * on M * . Then the map sending σ ∈ JH(M) to σ * ∈ JH(M * ) extends to isomorphisms of directed graphs Γ (M)

∼ → Γ (M * ) and Γ F (M) ∼ → Γ F * (M) * where - * denotes the transpose of a directed graph. In particular, if σ 0 → σ 1 → • • • → σ n is an extension path in F , then σ * n → σ * n-1 → • • • → σ * 0 is an extension path in F * .
4.1.2. The main result. We now use the notation from Section 4.1.1 with C the category of finite F[G]-modules. Let R be a 2-generic Deligne-Lusztig representation of G over E. By [Her09, Appendix, Theorem 3.4] (see the proof of Proposition 2.3.5), R is residually multiplicity free. We will show that the elements in JH(R) are p-regular in Lemma 4.2.13. If σ ∈ JH(R), then there exists a unique (up to homothety) O-lattice R σ ⊆ R with irreducible cosocle isomorphic to σ by [EGS15, Lemma 4.1.1], and we write R σ to denote its reduction modulo . In Section 2, we defined a distance function d gph on pregular Serre weights. We now want to relate the graph distance to the submodule structure of R σ . To simplify notation, we fix R and write d σ rad (σ ) for d R σ rad (σ ).

DEFINITION 4.1.8. Let V be a set of (isomorphism classes of) weights σ = F(µ) with µ p-regular. Let σ ∈ V . Let Γ be a directed graph with vertex set V . Then we say that Γ is predicted by the extension graph with respect to σ if there is an edge from κ 1 to κ 2 if and only if d gph (κ 1 , κ 2 ) = 1 and d gph (σ, κ 1 ) d gph (σ, κ 2 ) (see Definition 2.1.8).

Our main result on the representation theory side is the following.

THEOREM 4.1.9. Let R be as above and 13-generic. Let σ ∈ JH(R). Then https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

(1) d gph (σ, κ) = d σ rad (κ) for all κ ∈ JH(R), in particular,

(R σ ) = 2Def R (σ ) + 3( f -Def R (σ )) + 1;
(2) Γ rad (R σ ) is predicted by the extension graph with respect to σ ;

(3) Γ (R σ ) is predicted by the extension graph with respect to σ ;

(4) R σ is rigid; and

(5

) if κ ∈ JH(R) and R κ → R σ is a saturated inclusion, then p d gph (κ, σ ) R σ → R κ is a saturated inclusion.
REMARK 4.1.10. By Proposition 2.3.5, every maximal geodesic in JH(R) starting from σ has the same length. Then item (4) follows from items (1) and (2) and Proposition 4.1.6. Furthermore, (3) and Proposition 4.1.1 give a classification of submodules of R σ , from which one can easily deduce items

(1) and (2).

The proof of Theorem 4.1.9 will be carried out in the following subsections.

Injective envelopes.

We now relax our hypotheses on G 0 but keep much of the related notation. Let G 0 be a connected reductive group over F p and let G be the base change G 0 × F p F. Assume that G is split and isomorphic to G s × F p F, where G s is a connected split reductive group over F p . Let G der 0 be the derived subgroup of G 0 and let G der be the base change G der 0 × F p F. Assume that G der 0 is simply connected. Let G (respectively G der ) be the finite group G 0 (F p ) (respectively G der 0 (F p )). Let F : G → G denote the relative Frobenius with respect to G s . There is an automorphism π of G s , and hence its based root datum, so that F • π : G → G is the relative Frobenius with respect to G 0 . This definition of π is consistent with the special case introduced in Section 1.4. Let h be the Coxeter number of G. We will eventually specialize to the case where G is a product of copies of GL 3 so that h = 3.

We define Proj(σ ) to be the projective hull of σ in the category of F[G]modules. As F[G] is a Frobenius algebra, we have an isomorphism Proj(σ ) ∼ = Inj(σ ) where Inj(σ ) denotes the injective envelope of σ (again in the category of F[G]-modules; cf. [Alp86, Section 6, Theorems 4 and 6]). 4.2.1. Algebraic groups, Frobenius kernels, and finite groups. In this section, we compare injective envelopes of weights for representations of Frobenius kernel and of finite groups. One goal is to prove that, under genericity conditions, https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press the graph distance introduced in Section 2.1 can be characterized in terms of nonvanishing of Ext 1 G -groups (Lemma 4.2.6). We, moreover, introduce and describe a non-p-restricted Weyl module V µ which will play a key role in the proof of a particular case of Theorem 4.1.9.

Let G 1 denote the Frobenius kernel of G and G 1 T denote the product of T and G 1 in G. We similarly define G der 1 and G der 1 T der . The G-representation L(µ) remains irreducible when restricted to G 1 T and G 1 (cf. [Jan03, II.3.10 and II.9.6]) and we will use the standard notations

L 1 (µ) = L(µ)| G 1 , L 1 (µ) = L(µ)| G 1 T (cf. loc. cit.
). We write Q 1 (µ) to denote the injective envelope of the irreducible representation L 1 (µ) in the category of G 1 T -modules. It restricts to an injective envelope of L 1 (µ) in the category of G 1 -modules. As in the case of the finite group G, it is isomorphic to a projective cover of L 1 (µ) as well. We recall the following important result. THEOREM 4.2.1. Assume that p > 2(h -1) and that G has no factors of type A 1 . Then Q 1 (µ) has a unique G-module structure which will be denoted by Q

1 (µ) in what follows. In particular, soc G Q 1 (µ) is isomorphic to L(µ) since L(µ) is the unique extension of L 1 (µ). Assume that µ ∈ X 1 (T ) is h -2-deep. Then Q 1 (µ)| G ∼ = Proj(F(µ)) ∼ = Inj(F(µ)). (4.2) 
Proof. The first part of the theorem is well known; cf. [START_REF] Jantzen | Representations of Algebraic Groups[END_REF]II.11.11]. In what follows, we deduce the isomorphism (4.2) from [Pil93, Lemma 6.1] (where it is stated when G is semisimple). It suffices to show that Q 1 (µ)| G is injective and its socle is F(µ).

Claim 1. Let M be a G-module. Then soc G der (M| G der ) = soc G (M)| G der . The analogous statement holds true for G 1 T and G der 1 T der and for the finite groups G and G der .

Proof of Claim 1. Let Z def = G/G der (respectively Z 1 def = G 1 /G der 1 )
. For • ∈ {∅, 1}, the group Z

• is diagonalizable, and, hence, by the Hochschild-Serre spectral sequence [Jan03, I.6.9(3)], the restriction functor Res

G • G der • (which is exact) induces a canonical isomorphism Ext i G • (M, N ) ∼ -→ H 0 Z • , Ext i G der • (M| G der • , N | G der • (4.3)
for all i ∈ N and all G • -modules M, N . Since the G der • -restriction of an irreducible G

• -module remains irreducible, we conclude that Res

G • G der
• commutes with the formation of socles and cosocles. By [Jan03, II.9.6 (11)], this implies the required statement for the groups G 1 T , G der 1 T der .
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Since Z def = G/G der has order prime to p, we also have a canonical isomorphism

Ext i G (M, N ) ∼ -→ H 0 Z, Ext i G der (M| G der , N | G der (4.4)
for all i ∈ N and all G-modules M, N which implies the statement in the case of finite groups.

Claim 2. Let ν be a p-restricted weight. Then Q 1 (ν)| G der 1 T der is the injective envelope of L 1 (ν)| G der 1 T der as a G der 1 T der -module.

Proof of Claim 2. By Claim 1, the socle of

Q 1 (ν)| G der 1 T der is isomorphic to L 1 (ν)| G der 1 T der .
It suffices to prove injectivity. By [Jan03, II.9.4], it is enough to prove injectivity for the restriction to G der 1 . As G der 1 and G 1 are both finite and

G der 1 is closed in G 1 , we deduce that Res G 1 G der 1
maps injectives to injectives (since it has an exact left adjoint, cf. [Jan03, I.3.5, I.8.16]).

We are now ready to prove (4.2). We show that Q 1 (µ)| G is an injective Gmodule with socle isomorphic to F(µ). By [Pil93, Lemma 6.1] (which also holds in the nonsplit case; cf. the final remark of [Pil93, Section 11]) and Claim 2, we have

Q 1 (µ)| G der ∼ = Inj(F(µ)| G der ) (4.5) so that Q 1 (µ)| G der is an injective G der -module with socle isomorphic to F(µ)| G der .
We first show injectivity. The functor of G/G der -invariants is exact on the category of G/G der -representations. We hence obtain a canonical isomorphism

Hom G (•, Q 1 (µ)| G ) ∼ = Hom G (•, Q 1 (µ)| G der ) G/G der , and Hom G (•, Q 1 (µ)| G )
, being the composite of two exact functors, is therefore exact.

The socle of Q 1 (µ)| G contains a submodule isomorphic to F(µ) and its restriction to G der is isomorphic to F(µ)| G der . Thus, the socle of Q 1 (µ)| G is isomorphic to F(µ). (We are grateful to the referee for simplifying the argument in our first version.)

Recall that an irreducible G-module L(κ), with κ ∈ X * + (T ), is said to be pbounded if κ, α ∨ < 2(h-1) p for all coroots α ∈ R ∨ ; a G-module is p-bounded if all its Jordan-Hölder factors are p-bounded. Similarly, a G-module is defined to be m-deep if the highest weights of all its Jordan-Hölder factors are m-deep.

The following lemmas will be used several times in the rest of this section.

By item (1) and the isomorphism soc

G (Q 1 (λ)) ∼ = L(λ) from Theorem 4.2.1, we have a G-equivariant injection soc G ν∈L(ξ ) Q 1 (λ + ν) ⊕m ξ (ν) = ν∈L(ξ ) L(λ + ν) ⊕m ξ (ν) = L(λ) ⊗ F L(ξ ) → Q 1 (λ) ⊗ F L(ξ ). (4.7)
We claim that in the full subcategory of p-bounded G-modules, the functor

Hom G (•, Q 1 (λ) ⊗ F L(ξ )) is exact. Granting the claim we deduce from (4.7) a G-equivariant morphism ν∈L(ξ ) Q 1 (λ + ν) ⊕m ξ (ν) → Q 1 (λ) ⊗ F L(ξ )
which is injective since it is injective on socles. The morphism is hence an isomorphism by (4.6) (note that L 1 (ξ ) ν = L(ξ ) ν for all ν ∈ X 1 (T ) since ξ ∈ X 1 (T )) and item (2) follows.

We prove the claim. It will be enough to prove that for any irreducible, pbounded G-module L(κ), one has

Ext 1 G (L(κ), Q 1 (λ) ⊗ F L(ξ )) = 0. (4.8)
As L(κ) is p-bounded, we can write κ = κ (0) + pω κ where κ (0) ∈ X 1 (T ) and

ω κ ∈ X * + (T ) satisfies ω κ , α ∨ < 2(h -1) for all coroots α ∨ ∈ R ∨ . Recall that Q 1 (λ)| G 1 T ∼ = Q 1 (λ). As Q 1 (λ)
is injective as a G 1 -module, the Lyndon-Hochschild-Serre spectral sequence [Jan03, I.6.6(3), I.6.5(2)], together with (4.6), provides us with an isomorphism

Ext 1 G (L(κ), Q 1 (λ) ⊗ F L(ξ )) ∼ = Ext 1 G/G 1 L( pω κ ), Hom G 1 L 1 (κ (0) ), Q 1 (λ) ⊗ F L 1 (ξ ) ∼ = Ext 1 G/G 1 L( pω κ ), Hom G 1 L 1 (κ (0) ), ν∈ L 1 (ξ ) Q 1 (λ + ν) ⊕m ξ (ν) ∼ =    Ext 1 G L(ω κ ), L λ + ν -κ (0) p ⊕m ξ (ν) if λ + ν -κ (0) ∈ p X 0 (T ) 0 else.
As ω κ , α ∨ < 2(h -1) p -2 for all coroots α ∨ ∈ R ∨ , it follows that ω κ lies in the lower p-restricted alcove; in particular, there are no algebraic extensions between L(ω κ ) and L(ω) for any ω ∈ X 0 (T ). This establishes (4.8).

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press 4.2.2. The case of GL 3 . We now describe the modules Q 1 (µ)| G in more detail in the case G 0 is v∈S Res k v /F p GL 3 as in Section 1.4 and µ ∈ X 1 (T ). We recall the alcove labeling for SL 3 in [Hum06, Section 13.9] and write

A def = {A, B, C, D, E, F, G, H, I, J }.
If X ∈ A , let w X ∈ W a be the unique element such that w X • C 0 = X . For i ∈ J , we define w X,i ∈ W a in the evident way. For X ∈ A J , we also define w X ∈ W a in the evident way. In what follows, we let f def = #J . Assume from now on that p 5 and µ is 2-deep. Let µ op be w B • µ and write µ op as the sum i µ op i . Let Q 1 (µ i ) be the GL 3/F -module defined in Theorem 4.2.1. It is rigid with Loewy length (Q 1 (µ)) = 6 + 1 and is endowed with a Weyl filtration (see [Jan03, II.11.13, II.11.5(5), II.4.19] and also [Hum06, Section 13.9]) with submodule V µ i def = V (µ op i + pη i ) and the GL 3/F -module obtained by extension of scalars from the Weyl module for GL 3/F p with the highest weight µ op i + pη i . Moreover, the socle filtration of Q 1 (µ i ) (see [Hum06, Section 13.9] for a concise reference, [AM01, Proposition 8.4] and its proof and [Jan03, Section II.D.4]) and V µ i (cf. [BDM15, Section 4], and Table 6) is known. (The condition that µ is 2-deep is to guarantee that all V µ i has maximal length; their Loewy length in this case is 3 + 1.) In particular, one sees that V µ i is a multiplicity-free submodule of Q 1 (µ i ). Then the G-modules Q 1 (µ) and V µ are defined to be the tensor products i Q 1 (µ i ) and i V µ i , respectively.

The module Q 1 (µ) is rigid with Loewy length (Q 1 (µ)) = 6 f +1. The socle filtration on Q 1 (µ) is the tensor product of the socle filtrations Fil on Q 1 (µ i ) for i ∈ J , and the graph Γ (V µ ) is the product i Γ (V µ i ). In particular, V µ is rigid. Let Fil be the unique increasing Loewy series for Q 1 (µ); its restriction to V µ is the unique Loewy series for V µ .

Recall that an irreducible

F[G]-module F is said to be n-deep if we can write F ∼ = L(µ)| G(F p ) for some µ ∈ X 1 (T ) which is n-deep. A F[G]-module is defined to be n-deep if all its Jordan-Hölder constituents are n-deep. LEMMA 4.2.5. Let µ ∈ X * (T ), n ∈ N, and w ∈ W . If µ is n-deep in alcove a, then w • µ is n-deep in alcove w • a. In particular, if µ ∈ X 1 (T ) is n-deep, then Q 1 (µ) and V µ are n-deep. If µ ∈ X 1 (T ) is n + 2-deep, then Q 1 (µ)| G and V µ | G are all n-deep.
Proof. The first two claims are easy. To prove the final claim, first note that the Jordan-Hölder factors of Q 1 (µ)| G and V µ | G are the same, and so it suffices to prove the claim for L| G where L ∈ JH(V µ ). Suppose that L is isomorphic to https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press L(λ) and λ = λ 0 + pω λ . Then

L| G ∼ = L(λ 0 + πω λ ) ∼ = ε∈L(πω λ ) L(λ + ε) m πω λ (ε)
by Lemma 4.2.4(1). The result now follows from the fact that | ε, α ∨ | 2 for any ε ∈ L(π ω λ ) and any positive root α ∈ R + of a simple factor of G.

Assume that µ is 6-deep. By Corollary 4.2.3, the socle filtration on Inj(F(µ)) is given by

(Fil n Q 1 (µ))| G . Since Inj(F(µ)) is rigid (it is isomorphic to Proj(F(µ)))
, this is the unique increasing Loewy series. One can use Lemma 4.2.4 to compute gr n Inj(F(µ)). We do this in the case n = 1 to compute G-extensions, justifying the name 'extension graph' introduced in Section 2. LEMMA 4.2.6. Assume that µ i is 6-deep for all i and let

σ def = F(µ). Then d gph (σ, κ) = 1 if and only if Ext 1 G (κ, σ ) = 0, in which case the dimension of the Ext 1 group is 1. Proof. Since µ is 6-deep, Q 1 (µ) is 6-deep by Lemma 4.2.5 so that Q 1 (µ)| G ∼ = Inj(F(µ)) by Corollary 4.2.3. It suffices to show that [gr 1 Q 1 (µ)| G : κ] 1 and that d gph (σ, κ) = 1 if and only if [gr 1 Q 1 (µ)| G : κ] = 1. Note that gr 1 Q 1 (µ) = i (gr 1 Q 1 (µ i ))⊗ j =i L(µ j ). Let w µ be the element of W a so that λ def = w -1 µ •µ is in A.
The length of gr 1 Q 1 (µ) is 3 f with Jordan-Hölder factors of the form L( w • µ) for 3 f choices of w. Writing w as t ω -w + with w + ∈ W + 1 , the 3 f choices of w correspond to ω -= 0, ε 1,i , or ε 2,i for some i ∈ J , with w + the unique element in W + 1 so that t ω -w + is in W a and w + w µ

• A = w B,i w µ • A. It suffices to show that L( w • µ)| G
is multiplicity free and contains exactly the weights of the form F(Tr λ+η (ω, π( w B,i w µ • A))) with ω a permutation of πω -. (Here, ω as the first argument of Tr λ+η is understood to be the image of ω in Λ W .)

We have isomorphisms

L( w • µ)| G ∼ = L( w + • µ) ⊗ L(πω -,i )| G ∼ = ω∈L(πω -,i ) F( w + • µ + ω) ⊕m πω -,i (ω) , (4.9) 
where the second isomorphism follows from Lemma 4.2.4. On the other hand, the pair (ω, π( w +,i w µ 

G def = G 0 × F p F.
Recall that T ⊂ G is the diagonal torus, and Λ W is the weight lattice of G der . Let Λ η ⊆ Λ W be the convex hull of the W -orbit of η . Explicitly, we have

Λ η = (ν i ) i ∈ Λ W , ν i ∈ {0, ±ε 1,i , ±ε 2,i , ±η i , ±(ε 1,i -ε 2,i ), ±(2ε 1,i -ε 2,i ), ±(ε 1,i -2ε 2,i )} .
We define the subgraph Λ (η ,0) ⊆ Λ η × A as follows:

Λ η ,0 def = (ω, a) ∈ Λ η × A : a i = 0 if ω i = wη i for some w ∈ W .
The main result concerning V µ is the following. THEOREM 4.2.7. Let µ ∈ X 1 (T ) be a p-restricted weight such that µ is 2-deep in alcove B.

(1) The translation map Tr µ op +η : Λ (µ op +η) W × A → X 1 (T )/ ( p -π )X 0 (T ) induces a bijection:

Tr V µ : Λ (η ,0) → JH(V µ | G ) (ω, a) → σ (ω,a) .
(2) We have

[gr d (V µ )| G : σ (ω,a) ] = 1 if d = d gph (σ (0,1) , σ (ω,a) ) 0 if d < d gph (σ (0,1) , σ (ω,a) )
for all (ω, a) ∈ Λ (η ,0) .

(3) Assume that µ is 6-deep. Then there exists a G-submodule U ⊂ V µ | G such that:

(a) U is multiplicity free; For each element w * in the first column, we consider the decomposition w i = ω i,-• w i,+ with ( w i,+ ) i ∈ W + . In the fourth column, we write the alcove containing w i • A. In the fifth column, we write the πith coordinate of the points in the graph (with origin µ + η ) corresponding to an irreducible constituent of ( i L( w i • µ i ))| G . Similar comments apply to the second half of the table. Note that in this case, we consider the decomposition w i = ω -,i • w +,i with w +,i ∈ W + 1 w B and the graph has origin in µ op + η. Finally, we have set α 1 and α 2 ∈ X * (T ) to be (1, -1, 0) and (0, 1, -1), respectively. LEMMA 4.2.8. Let µ ∈ X 1 (T ) be a p-restricted weight which is 2-deep in alcove B. There exists a G-submodule

(b) JH(U ) = JH(V µ | G ); ( 
U ⊂ V µ | G such that JH(U ) = JH(V µ | G ) and [gr d (U )| G : σ (ω,a) ] = 1 if d = d gph (σ (0,1) , σ (ω,a) ) 0 if d = d gph (σ (0,1) , σ (ω,a) ), (4.13)
where gr is with respect to Fil def = Fil | U . In particular, U is multiplicity free.

Proof. The notation in this proof is complicated by necessity. To illustrate the simple underlying idea, we first present the proof in the case that f = #J = 1. We have the following:

gr 3 (V µ ) ∼ = L( w G w B • µ) gr 2 (V µ ) ∼ = L( w E w B • µ) ⊕ L( w F w B • µ) Table 6. Graph of V (µ op + pη ).
The graphs of V (µ op + pη ) when f = 1 (and µ is 2-deep). In the first (respectively second) diagram, µ ∈ X 1 (T ) is upper alcove (respectively lower alcove). For each alcove, we write below the unique weight L such that L(x, y, z) ↑ L. We remark that gr 1 (V (µ op + pη

) = gr 1 (Q 1 (µ)) if µ = (x, y, z) is upper alcove, while gr 1 (V (µ op + pη ) ⊕ L(µ op ) = gr 1 (Q 1 (µ)) if µ = (x, y, z) is lower alcove. gr 1 (V µ ) ∼ = L( w C w B • µ) ⊕ L( w B • µ) ⊕ L( w D w B • µ) gr 0 (V µ ) ∼ = L(µ).
For the alcove a, there is a decomposition w a as the product t ω a,-w a,+ where w a,+ ∈ W + 1 and ω a,-∈ X * (T ). Let λ be w B • µ. Then

L( w a w B • µ)| G ∼ = L( w a • λ) ∼ = L( w a,+ • λ + pω a,-)| G ∼ = (L( w a,+ • λ) ⊗ L( pω a,-))| G ∼ = (L( w a,+ • λ) ⊗ L(ω a,-))| G ∼ = ω∈L(ω a,-) L( w a,+ • λ + ω)| ⊕m ω a,-(ω) G ∼ = ω∈L(ω a,-) F(Tr λ+η (ω, a)) ⊕m ω a,-(ω) ,
where a is the unique p X * (T )-translate of a lying in {A, B}. The third isomorphism above follows from the Steinberg tensor product theorem, and the fifth isomorphism follows from Lemma 4.2.4(1). We see then that gr 1 (V µ )| G is isomorphic to the multiplicity-free direct sum of F(Tr λ+η (ω, 0)) where ω is a permutation of 0, ε 1 , or ε 2 . Similarly, gr 2 (V µ )| G is isomorphic to the multiplicityfree direct sum of F(Tr λ+η (ω, 1)) where ω is a permutation of ε 1 or ε 2 . Finally, https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press gr 3 (V µ )| G is isomorphic to ω∈L(η ) F(Tr λ+η (ω, 0)) m η (ω) . Then, we can take U to be the preimage of ω∈L(η ) F(Tr λ+η (ω, 0)) in V µ | G . It is then easy to check that U satisfies the required properties. We now proceed to the general case. Let i ∈ J . We have an exact sequence of G-modules

0 → rad(V µ i ) → V µ i p i → L(µ op i + pη i ) → 0, which gives the exact sequence 0 → rad(V µ i ) ⊗ j =i V µ j → V µ → L(µ op i + pη i ) ⊗ j =i V µ j → 0. Then L(µ op i + pη i ) ⊗ j =i V µ j | G is isomorphic to L(µ op i ) ⊗ V µ πi ⊗ L(η πi ) ⊗ j =i, πi V µ j | G .
Then we claim that

V µ πi ⊗ L(η πi ) ∼ = ω∈L(η πi ) V ⊕m η πi (ω) µ πi +ω
as G-representations. We have an embedding

V µ πi ⊗ L(η πi ) → Q 1 (µ πi ) ⊗ L(η πi ) ∼ = ω∈L(η πi ) Q 1 (µ πi + ω)
⊕m η πi (ω) , (4.14)

where the last isomorphism follows from Lemma 4.2.4. Since

(1) V µ πi ⊗ L(η πi ) contains all the Jordan-Hölder factors of the right-hand side of (4.14) with highest weights in alcove G (using Lemma 4.2.4) and

(2)

ω∈L(η πi ) V ⊕m η πi (ω) µ πi +ω
is the minimal submodule of the right-hand side of (4.14) containing all the Jordan-Hölder factors (counted with multiplicities) with highest weights in alcove G (using the cosocle filtration of V µ πi +ω ), there is an injective map ω∈L(η πi ) V ⊕m η πi (ω) µ πi +ω → V µ πi ⊗ L(η πi ) which must be an isomorphism since the domain and codomain have the same length.

Let U i be the preimage of We now suppose that d > d gph (σ (0,1) , σ (ω,a) ) and use the notation of the proof of Theorem 4.2.7(2). Suppose that σ (ω,a) is a Jordan-Hölder factor of L( w • µ)| G ∩ gr d (U ). Then there is some i such that n π -1 i ( w π -1 i ) > d i where d i is the distance from (ω i , a i ) to (0 i , 1 i ). More precisely, n π -1 i ( w π -1 i ) is 3 and (ω i , a i ) is (0 i , 0 i ). However, one can check as in the proof of Theorem 4.2.7(2) that L( w • µ)| G ∩ gr d (U π -1 i ) does not contain any weight of the form σ (ω,a) with (ω i , a i ) = (0 i , 0 i ).

ω∈L(η i ), ω =0 L(µ op i ) ⊗ V µ πi +ω ⊗ j =i, πi V µ j | G https://doi.
PROPOSITION 4.2.9. Let λ, θ be 6-deep in an alcove in {A, B, C, D, E, F, G} J . Then Ext 1 G (L(θ), L(λ)) is at most one-dimensional, and it is onedimensional if and only if λ and θ are linked and lie in adjacent alcoves (that is, there exists i 0 ∈ J such that λ i = θ i for all i = i 0 and λ i 0 and θ i 0 lie in different alcoves sharing a face).

Proof. We immediately reduce to the case of GL 3 . Using (4. G (L(θ), L(λ)) = 0. Note that λ, θ are both 6-deep in their alcove by Lemma 4.2.5.

Let i 0 ∈ J be as in Proposition 4.2.9. Let M be a nonsplit extension of L(θ ) by L(λ), which is unique up to isomorphism by Proposition 4.2.9. PROPOSITION 4.2.10. If F 0 and F 1 are in the socle and cosocle of M| G , respectively, with [M| G : F 0 ] = 1 = [M| G : F 1 ] and d gph (F 0 , F 1 ) = 1, then there is a subquotient of M| G which is a nonsplit extension, unique up to isomorphism by Lemma 4.2.6, of F 1 by F 0 . Proposition 4.2.10 will be proven in several steps. Let λ be λ 0 + pω λ and θ = θ 0 + pω θ so that λ 0 and θ 0 are in X 1 (T ) and ω λ and ω θ belong to {0, ε 1,i , ε 2,i , η i } J . We begin with an algebraization lemma. LEMMA 4.2.11. With M and i 0 defined as above, assume, moreover, that λ i is p-restricted for all i = i 0 . Then there is an injection M → Q 1 (λ 0 ) ⊗ L( pω λ ) ∼ = Proof. The proof follows closely the argument of [Pil97, Lemma 3.1] (which is, in turn, based on [And87, Lemma 2.2]). There is an injection

soc M ∼ = L(λ 0 ) ⊗ L( pω λ ) → Q 1 (λ 0 ) ⊗ L( pω λ ).

This extends to an injection

M → Q 1 (λ 0 ) ⊗ L( pω λ ) since Ext 1 G (L(θ), Q 1 (λ 0 ) ⊗ L( pω λ )) = 0
by the proof of (4.8). Both Q 1 (λ 0 ) ⊗ L( pω λ ) and M are 6-deep by Lemma 4.2.5. By Lemma 4.2.2, the restriction to G of the map M → Q 1 (λ 0 ) ⊗ L( pω λ ) is an isomorphism on socles and is, thus, essential. The restriction Q 1 (λ 0 )⊗ L( pω λ )| G is an injective object by Lemma 4.2.4 and Theorem 4.2.1.

We begin with the following special case of Proposition 4.2.10, from which the general case will follow by the translation principle. PROPOSITION 4.2.12. If λ i is p-restricted for all i = i 0 , the conclusion of Proposition 4.2.10 holds.

Proof. We assume that d gph (F 0 , F 1 ) = 1. Fix nonzero maps Proj(F 1 ) → M| G and M| G → Inj(F 0 ), unique up to scalar. If suffices to show that the composition

Proj(F 1 ) → M| G → Inj(F 0 ) (4.15)
is nonzero. The first map factors through Proj(F 1 )/rad 2 (Proj(F 1 )) since the Loewy length of M| G is 2. The second map factors as M| G → Inj(M| G ) Inj(F 0 ) where the second map is a projection to a direct summand. Applying gr 1 to the composition

Proj(F 1 )/rad 2 (Proj(F 1 )) → M| G → Inj(M| G ) Inj(F 0 ), we obtain F 1 → gr 1 (M| G ) → gr 1 Inj(M| G ) gr 1 Inj(F 0 ), (4.16)
where the grading is with respect to the socle filtration. It suffices to show that the composition (4.16) is nonzero. By Lemma 4.2.4, F 0 (respectively F 1 ) is isomorphic to F(λ ) where λ = λ 0 + ε λ (respectively F(θ 0 + ε θ )) for some ε λ ∈ L(πω λ ) (respectively ε θ ∈ L(π ω θ )). Then using Lemma 4.2.11, (4.16) can be rewritten as

L(θ 0 + ε θ )| G → L(θ)| G → gr 1 Q 1 (λ 0 ) ⊗ L( pω λ ) | G gr 1 Q 1 (λ 0 + ε λ ) | G ,
where the second map is the restriction of a map of G-modules. By Lemma 4.2.2, the socle filtrations of Q 1 (λ 0 ) ⊗ L( pω λ ) and Q 1 (λ 0 ) ⊗ L(π ω λ ) both induce the https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press socle filtration on Q 1 (λ 0 ) ⊗ L( pω λ )| G . Applying Lemma 4.2.4 to Q 1 (λ 0 ) ⊗ L(π ω λ ) and using the description of Q 1 (λ 0 + ν) in [Hum06, Section 13.9], we see that the graded pieces of the socle filtration of Q 1 (λ 0 ) ⊗ L(π ω λ ) are gr k Q 1 (λ 0 ) ⊗ L(πω λ ). We claim that the graded pieces of the socle filtration of Q 1 (λ 0 ) ⊗ L( pω λ ) are gr k Q 1 (λ 0 ) ⊗ L( pω λ ). Taking the tensor product of the socle filtration on Q 1 (λ 0 ) with L( pω λ ) gives a semisimple filtration F (as follows from Steinberg's tensor product theorem). Moreover, since the restrictions Q 1 (λ 0 ) ⊗ L(πω λ )| G and Q 1 (λ 0 ) ⊗ L( pω λ )| G are isomorphic, Lemma 4.2.2 implies that the dimensions of the graded pieces of the socle filtrations of Q 1 (λ 0 ) ⊗ L(π ω λ ) and Q 1 (λ 0 ) ⊗ L( pω λ ) agree. A dimension consideration implies that F is the socle filtration.

In particular, we have

gr 1 Q 1 (λ 0 ) ⊗ L( pω λ ) ∼ = i L( pω λ ) ⊗ (gr 1 Q 1 (λ 0 i )) ⊗ j =i L(λ 0 j ) .
The algebraic map L(θ)

→ gr 1 (Q 1 (λ 0 ) ⊗ L( pω λ )) factors through the direct summand L(λ i 0 ) ⊗ (gr 1 Q 1 (λ 0 i 0 )) ⊗ L( pω λ )
by alcove considerations, where λ i 0 def = i =i 0 λ i . (Note that λ i = λ 0 i and θ i = λ i for all i = i 0 .) Additionally, the map F 1 → gr 1 Inj(F 0 ) ∼ = (gr 1 Q 1 (λ ))| G factors through the direct summand

L(λ ,i 0 ) ⊗ (gr 1 Q 1 (λ i 0 ))| G ,
where λ ,i 0 = i =i 0 λ i since if j = i 0 , then the highest weights of the Jordan-Hölder factors of

i = j L(λ i ) ⊗ (gr 1 Q 1 (λ j )) | G
lie in the same alcove as the highest weight of L(λ 0 ) except exactly at embedding j. Thus, it suffices to show that the composition

L(θ 0 + ε θ )| G → L(θ)| G → L(λ i 0 ) ⊗ (gr 1 Q 1 (λ 0 i 0 )) ⊗ L( pω λ )| G L(λ ,i 0 ) ⊗ (gr 1 Q 1 (λ i 0 ))| G (4.17)
is nonzero. The G-module gr 1 Q 1 (λ 0 i 0 ) is the direct sum of three irreducible modules in alcoves A, C, and D (respectively B, E, and F) if λ 0 i 0 is in alcove B (respectively A). Let w 1 , w 2 , and w 3 be the elements of W a such that w 1 • A, w 2 • A, and w 3 • A are the alcoves A, C, and D (respectively B, E, and F), respectively. Let w B ∈ W a be https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press the element such that B = w B • A. The natural identification X * (T )\ W /Ω ∼ = {A, B} where Ω = Stab W (A) and the fact that θ 0 i 0 is in alcove A (respectively B) if λ 0 i 0 is in alcove B (respectively A) shows that X * (T ) y i 0 w B Ω = X * (T ) w j Ω for any j ∈ {1, 2, 3}. Moreover, it is not difficult to check that

X * (T ) y i 0 w B Ω = 3 j=1 X * (T ) w j .
This implies that there exist unique j ∈ {1, 2, 3} and ω ∈ X * (T ) such that

t -ω θ,i 0 y i 0 w B ( w λ t -ω λ,i 0 w i 0 w B ) -1 = t -ω w j , (4.18) 
where w λ ∈ W a is the unique element such that w λ • λ 0 i 0 ∈ A or, equivalently, that w λ t -ω λ,i 0 w i 0 w B ∈ Ω. Then we have that

θ 0 i 0 + pω = t ω t -ω θ,i 0 y i 0 • µ i 0 = w j w λ t -ω λ,i 0 w i 0 • µ i 0 = w j w λ • λ 0 i 0
so that, by construction, ω ∈ X * (T ) is the unique weight such that L(θ 0 i 0 + pω) is a Jordan-Hölder factor of gr 1 Q 1 (λ 0 i 0 ). We now consider ω as an element of X * (T ) in the i 0 -embedding.

We now proceed casewise. If ω λ (respectively ω θ ) is 0, then gr 0 (M| G ) (respectively gr 1 (M| G )) is irreducible, and so the map M| G → Inj(F 0 ) is injective (respectively the map Proj(F 1 ) → M| G is surjective) and the composition (4.15) is nonzero. Now assume that ω λ and ω θ are both nonzero. At most one of ω λ and ω θ can be η i 0 . By duality, we can and will assume that ω λ = η i 0 . Then ω λ is either ε 1,i 0 or ε 2,i 0 . We assume that ω λ is ε 2,i 0 , the other case being symmetric. So if λ i 0 is in alcove D (respectively F), then θ i 0 is in alcove E or F (respectively C, D, or G) by Proposition 4.2.9. We claim that if ω θ is ε 1,i 0 (respectively ε 2,i 0 or η i 0 ), then the ω defined above is ε 2,i 0 + (1, 1, 1) i 0 (respectively 0 or ε 1,i 0 ). Indeed, since t -ω w j • A ∈ {A, B} by (4.18) and w j • A ∈ {A, B, C, D, E, F} by definition, ω i 0 is in {0, ε 1 , ε 2 } + X 0 (T ). From (4.18), we see that ω ≡ ω θ -ω λ (mod Λ R ). These two facts determine ω.

A morphism

L(θ i 0 ) ∼ = L(θ 0 i 0 + pω θ ) → (gr 1 Q 1 (λ 0 i 0 )) ⊗ L( pω λ )
must factor through L(θ 0 i 0 + pω ) ⊗ L( pω λ ) for some ω . By construction, ω must be ω. We conclude that the map

L(θ) → L(λ i 0 ) ⊗ (gr 1 Q 1 (λ 0 i 0 )) ⊗ L( pω λ )
Proof of Proposition 4.2.10. We write λ and θ as λ 0 + pω λ and θ 0 + pω θ , respectively, where λ 0 and θ 0 are p-restricted weights. Write ω λ as ω λ,i 0 + ω i 0 λ where ω λ,i 0 (respectively ω i 0 λ ) is 0 away from (respectively at) embedding i 0 . Similarly, write ω θ as ω θ,i 0 + ω i 0 θ . Then ω i 0 λ equals ω i 0 θ by assumption, and so we set ω i 0 def = ω i 0 λ = ω i 0 θ . Let M i 0 be the unique up to isomorphism nontrivial extension of L(θ i 0 ) by L(λ i 0 ) and let M i 0 be i =i 0 L(λ i ) so that M is isomorphic to M i 0 ⊗ M i 0 . Then M| G is isomorphic to

M i 0 ⊗ M i 0 | G ∼ = M i 0 ⊗ i =i 0 L(λ 0 i ) ⊗ L( pω i 0 )| G ∼ = M i 0 ⊗ i =i 0 L(λ 0 i ) ⊗ L(π ω i 0 )| G . Let M be M i 0 ⊗ i =i 0 L(λ 0 i ) ⊗ L(πω i 0 ). By Lemma 4.2.2, we have that soc(M )| G ∼ = soc(M | G ) ∼ = soc(M| G ) ∼ = soc(M)| G so that soc(M ) ∼ = L(λ i 0 ) ⊗ i =i 0 L(λ 0 i ) ⊗ L(π ω i 0 ).
Similarly, we have that

cosoc(M ) ∼ = L(θ i 0 ) ⊗ i =i 0 L(λ 0 i ) ⊗ L(π ω i 0 ).
The socle and cosocle of M can be decomposed using Lemma 4.2.4. Fix a direct sum decomposition cosoc(M ) = j M 1, j into simple modules. Using the known dimensions of Ext 1 G groups between simple modules and the fact that M is rigid of Loewy length 2, one sees that the minimal submodule M j of M whose projection to cosoc(M ) contains M 1, j has length exactly 2. Thus, the natural surjection ⊕M j M j = M is an isomorphism by length considerations. More explicitly, if M 1, j is isomorphic to L(λ 0 + pω λ,i 0 + π ε i 0 ) for some ε i 0 ∈ L(ω i 0 ), then M 0, j is isomorphic to L(θ 0 + pω θ,i 0 + wπ ε i 0 ) for the unique element w ∈ W such that these weights are linked.

The alcoves of F 1 and F 0 differ only in embedding i 0 . Then by Lemma 4.2.6, the corresponding elements of Λ ν W under Tr ν for any appropriate ν must be the same for all embeddings except for π(i 0 ). By the above explicit description, we conclude that F 1 is in JH(M 1, j | G ) if and only if F 0 is in JH(M 0, j | G ). So it suffices to prove the proposition for M j in place of M. This now follows from Proposition 4.2.12. unique element σ ∈ JH(R) satisfying d gph (σ, σ op ) = 3 f (that is, having maximal graph distance from σ op ) is

σ def = F(µ op + s(η )) = F(Tr µ op +η (s(η ), 0)).
To ease notation, we write

λ def = µ op + s(η ) (hence, σ = F(λ)).
LEMMA 4.2.14. Let µ ∈ X 1 (T ) be a weight such that µ ∈ B is 6-deep and R def = R s (µ op + η ). Set σ op def = F(µ) and let σ def = F(λ) ∈ JH(R) be the unique constituent at maximal graph distance. We have Note that the map ι is unique up to scalar as there is a unique up to scalar nonzero morphism Proj(σ ) → U by Lemma 4.2.14. ). The agreement of the three distances is equivalent to Theorem 4.1.9, taking into account Lemma 4.3.12. In Section 4.3.3, we show that all weights are maximally saturated, thus concluding the proof of Theorem 4.1.9.

[Inj(σ op ) : σ ] = [V µ | G : σ ] = [U : σ ] = [gr 3 f (V µ | G ) : σ ] = 1. Proof. The equations [V µ | G : σ ] = [U : σ ] = [gr 3 f (V µ | G ) : σ ] =
Proof. Since σ op ∈ JH(R σ ),

Notions of distances.

In what follows, R is a 3-generic Deligne-Lusztig representation. Recall that if σ ∈ JH(R), we write d σ rad as a shorthand for d R σ rad . We establish some properties of d σ rad . We deduce the following from Lemma 4.2.6.

COROLLARY 4.3.1. Assume that R is 6-deep and σ ∈ JH(R). Then d gph (σ, σ ) d σ rad (σ ) for all σ ∈ JH(R).

Proof. The assumption that R is 6-deep implies that all the elements in JH(R) satisfy the hypotheses of Lemma 4.2.6. If κ ∈ JH(R) and k

+ 1 = d σ rad (κ), then Ext 1 G gr k (R σ ), κ = 0. Hence, Ext 1 G κ , κ) = 0 for some κ ∈ JH(R) with d σ rad (κ ) = k. Equivalently, d gph (κ, κ ) = 1 by Lemma 4.2.6. If d = d σ rad ( 
σ ), we conclude that there is a sequence of weights σ i for 0 i d -1 such that σ 0 = σ , σ d = σ and d gph (σ i , σ i+1 ) = 1 for all i. Hence, d gph (σ, σ ) d.

LEMMA 4.3.2. Let σ, σ 1 ∈ JH(R). There is a unique minimal subrepresentation Q σ (σ 1 ) ⊆ R σ containing σ 1 as a Jordan-Hölder factor. Moreover, we have that

(1) cosoc(Q σ (σ 1 )) ∼ = σ 1 ;

(2) Q σ (σ 1 ) is the image of any nonzero map R Proof. Let Q σ (σ 1 ) be the image of any nonzero map R

σ 1 → R σ . It is clear that cosoc(Q σ (σ 1 )) ∼ = σ 1 . Suppose that M ⊂ R σ is a subrepresentation containing σ 1
as a Jordan-Hölder factor. As R σ is multiplicity free, R σ /M does not contain σ 1 as a Jordan-Hölder factor, and, hence, the composition Q

σ (σ 1 ) → R σ R σ /M is 0 or, equivalently, Q σ (σ 1 ) ⊂ M. LEMMA 4.3.3. Let σ and σ 1 ∈ JH(R) and let σ 2 ∈ JH(Q σ (σ 1 )). If n = d σ 1 rad (σ 2 ), then we have Hom G σ 2 , gr n rad (Q σ (σ 1 )) = 0. Moreover, d σ rad (σ 2 ) d σ rad (σ 1 ) + d σ 1 rad (σ 2 ).
Note that, a priori, the inequality may be strict so that what we call the cosocle distance d σ rad (κ) from σ to κ is not a priori necessarily a metric.

Proof. Since formation of cosocle is right exact, we see that the map R

σ 1 Q σ (σ 1
) is strictly compatible with the radical filtrations. This proves the first claim.

Let F = {Fil k (R σ )} k be the decreasing filtration defined by Fil

k (R σ ) = rad k+d σ rad (σ 1 ) (R σ ) (that is, F is the radical filtration of R σ shifted by d σ rad (σ 1 )). Under the inclusion Q σ (σ 1 ) → R σ , F induces a semisimple filtration on Q σ (σ 1
), beginning at 0. So, with the radical filtration on the domain and F on the codomain, this inclusion is compatible with the filtrations. This immediately gives d σ rad (σ 2 ) -d σ rad (σ 1 ) d σ 1 rad (σ 2 ) for any σ 2 ∈ JH(Q σ (σ 1 )). We now introduce a third notion of distance on the set JH(R) and give a comparison result with the graph distance (Corollary 4.3.8). To do this, we make crucial use of a global input (Proposition 4.3.7). We also use these results to deduce some basic results about Γ rad (R σ ) (see, for example, Lemma 4.3.12). DEFINITION 4.3.4. Let σ 1 , σ 2 ∈ JH(R). Let R σ 1 be an O-lattice with irreducible cosocle σ 1 and fix a saturated inclusion of lattices R σ 2 ⊆ R σ 1 . The saturation distance (with respect to R) between σ 1 and σ 2 , noted by d sat (σ 1 , σ 2 ), is defined to be the unique integer d such that 

p d R σ 1 ⊆ R σ 2 is
) = d gph (σ 1 , κ) + d gph (κ, σ 2 ) d sat (σ 1 , κ) + d sat (κ, σ 2 ) d sat (σ 1 , σ 2 ).
We conclude this section showing that, under appropriate genericity conditions on the Deligne-Lusztig representation R, the graph Γ rad (R σ ) is predicted by the extension graph if its Loewy strata are predicted by the extension graph (which is a weaker assumption, a priori).

LEMMA 4.3.9. Assume that R is 13-generic. Let σ 1 , σ 2 ∈ JH(R) be such that

d gph (σ 1 , σ 2 ) = 1. Let us fix σ ∈ JH(R) as well as two saturated inclusions of lattices R σ 2 ⊆ R σ and R σ 1 ⊆ R σ . Then either R σ 2 ⊆ R σ 1 or R σ 1 ⊆ R σ 2 .
Proof. We have d gph (σ 1 , σ 2 ) = d sat (σ 1 , σ 2 ) = 1 by Proposition 4.3.7. Hence, there exists an integer k ∈ Z such that

p k+1 R σ 1 ⊆ R σ 2 ⊆ p k R σ 1
is a chain of saturated inclusions of lattices (see Remark 4.3.5). The first inclusion implies that p k+1 R σ 1 ⊆ R σ so that k + 1 0. The second inclusion implies that p -k R σ 2 ⊂ R σ so that -k 0. Hence, k = 0 or -1 and the result follows.

LEMMA 4.3.10. Assume that R is 13-generic 

. Let σ, σ 1 , σ 2 ∈ JH(R) and fix saturated inclusions R σ i ⊆ R σ for i = 1, 2. If d σ rad (σ 2 ) d σ rad (σ 1 ) and d gph (σ 1 , σ 2 ) = 1, then R σ 2 ⊆ R σ 1 . Proof. By Lemma 4.3.9, either R σ 1 ⊂ R σ 2 or R σ 2 ⊂ R σ 1 . Suppose that the former holds. Then Q σ (σ 1 ) ⊂ Q σ (σ 2 ),
= 3 f -Def R (σ ).
There are weights σ = σ 0 , σ 1 , . . . , σ D so that κ ∈ {σ 0 , σ 1 , . . . , σ D } ⊂ JH(R), d gph (σ i , σ i+1 ) = 1 for all 0 i D -1 and d gph (σ, σ D ) = D. It is then easy to see that d gph (σ i , σ j ) = j -i if 0 i j D. We have the following chain of a priori inequalities

d sat (σ, σ D ) d sat (σ, κ) + d sat (κ, σ D ) d gph (σ, κ) + d gph (κ, σ D ) = d gph (σ, σ D ) = d sat (σ, σ D ),
using Corollary 4.3.8 where the last equality holds by assumption. We conclude that the above inequalities are in fact equalities and that d sat (σ, κ) = d gph (σ, κ).

The following lemma will be the key in relating the notions of saturation and cosocle distance. 

σ d ← σ d-1 ← • • • ← σ 1 ← σ 0 def = σ
be an extension path in Γ rad (R σ ) (note that d σ rad (σ i ) = i for all i ∈ {0, . . . , d}). For each i ∈ {0, . . . , d}, let us fix a saturated inclusion R σ i ⊆ R σ . Then we have a chain of (saturated) inclusions 

R σ d ⊆ R σ d-1 ⊆ • • • ⊆ R σ 1 ⊆ R σ 0 . Proof. Since d σ rad (σ i+1 ) = i + 1 i = d σ rad (σ i ) for 0 i d -1,
): σ = σ k ← σ k-1 ← • • • ← σ 1 ← σ 0 = σ. Since d gph (σ 0 , σ k ) = d < k and d gph (σ 0 , σ i ) d σ 0 rad (σ i ) = i for all i by Corollary 4.3.1, there exists an index i ∈ {0, . . . , k -1} such that (1) d gph (σ 0 , σ i ) = i and (2) d gph (σ 0 , σ i+1 ) < i + 1.
Moreover, since the extension graph is bipartite, we have that d gph (σ 0 , σ i+1 ) i -1. By Lemma 4.3.15, there is a chain of saturated inclusions:

R σ i+1 ⊆ R σ i ⊆ • • • ⊆ R σ 1 ⊆ R σ ,
where, in particular, R σ i ⊆ R σ is saturated as well. As d gph (σ 0 , σ i+1 ) = d sat (σ 0 , σ i+1 ) by Proposition 4.3.14, we further have p

i-1 R σ ⊆ R σ i+1 . We conclude that p i-1 R σ ⊆ R σ i ⊆ R σ and, hence, that d sat (σ 0 , σ i ) i -1. This contradicts (1) since d gph (σ 0 , σ i ) = d sat (σ 0 , σ i ) by Proposition 4.3.14.
We now use Theorem 4.2.16 to prove that lower alcove weights of defect zero are maximally saturated. PROPOSITION 4.3.17. Let R be a 13-generic Deligne-Lusztig representation and let σ ∈ JH(R) be a constituent with Def R (σ ) = 0. Assume that σ ∼ = F(λ) where λ ∈ X 1 (T ) is in alcove A. Then σ is maximally saturated in R.

Proof. By Theorem 4.2.16, we can and do fix an extension path in Γ rad (R σ ) with

starting point σ 0 def = σ : σ op = σ 3 f ← σ 3 f -1 ← • • • ← σ 1 ← σ 0 .
By Lemma 4.3.15, we have a sequence of saturated inclusions:

R σ ⊇ R σ 1 ⊇ • • • ⊇ R σ 3 f -1 ⊇ R σ op ,
where R σ op ⊆ R σ is itself saturated. For each 0 i 3 f -1, let n i be d sat (σ i , σ op ). It suffices to show that n 0 = d gph (σ 0 , σ op ) = 3 f . By Theorem 4.2.16, the reduction of the lattice in the dual Deligne-Lusztig representation R * with cosocle σ ∨ is rigid and Γ ((R * ) σ ∨

) is predicted by the extension graph with respect to σ ∨ . Noting that the reduction of the dual of a lattice is the dual of the reduction of a lattice and using Proposition 4.1.7, we see that Γ rad (R σ op

) is predicted by the extension graph with respect to σ op . https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

In particular,

σ 0 ← σ 1 ← • • • ← σ 3 f -1 ← σ 3 f = σ op is an extension path in Γ rad (R σ )
, and, hence, from Lemma 4.3.15, we deduce a chain of (saturated

) inclusions R σ op ⊇ p n 3 f -1 R σ 3 f -1 ⊇ • • • ⊇ p n 1 R σ 1 ⊇ p n 0 R σ
where we necessarily have n i-1 > n i for all i (as R σ i+1 ⊆ R σ i is saturated). In particular, n 0 3 f . On the other hand, Corollary 4.3.8 implies that n 0 3 f so that n 0 = 3 f . 4.3.3. Induction on defect. In this subsection, we show inductively that all weights are maximally saturated, starting from lower alcove weights as in Proposition 4.3.17. We conclude the section with the proof of Theorem 4.1.9. We first start with the defect zero case.

LEMMA 4.3.18. Let R be a 13-generic Deligne-Lusztig representation. If σ ∈ JH(R) and Def R (σ ) = 0, then σ is maximally saturated.

Proof. We claim that if

σ def = σ 0 , σ 1 ∈ JH(R) such that Def R (σ 0 ) = 0, Def R (σ 1 ) = 0, d gph (σ 0 , σ 1 ) = 1,
and σ 0 is maximally saturated, then σ 1 is maximally saturated. The result then follows from Proposition 4.3.17 and an easy induction argument.

By Proposition 4.3.16, the graph Γ rad (R σ ) is predicted by the extension graph.

By duality (cf. the proof of Proposition 4.3.17), the graph Γ rad (R σ op

) is also predicted by the extension graph. Hence, we may and do choose two extension paths, of starting point σ , in the graph Γ rad (R σ 0 ) having the form:

σ op 0 ← σ 3 f -1 ← • • • ← σ 2 ← σ 1 ← σ 0 and σ op 0 ← σ op 1 ← σ 3 f -2 ← • • • ← σ 1 ← σ 0 where σ i , σ i ∈ JH(R σ ). As the graph Γ rad (R σ op
) is predicted by the extension graph, the extension paths above induce extensions paths in R σ op by 'reversing the arrows and the endpoints'. Let us fix saturated inclusions of lattices

R σ i , R σ i ⊆ R σ , R σ 1 , R σ op 1 ⊆ R σ op . Since σ and σ op are maximally saturated, we deduce that p 3 f -i R σ i , p 3 f -i R σ i ⊆ R σ op , p 3 f -1 R σ 1 , p R σ op 1 ⊆ R σ op are saturated inclusions as well.
By Lemma 4.3.15, we deduce the following chain of saturated inclusions: Assume for the sake of contradiction that d sat (σ, σ d ) < d, that is, that we have a factorization

p 3 f -1 R σ 1 ⊆ • • • ⊆ p R σ 3 f -1 ⊆ R σ 3 f -1 ⊆ • • • ⊆ R σ 1 ⊆ p 3 f R σ 1 ⊆ p 3 f R σ ⊆ ⊆ R σ op ⊆ ⊆ R σ p 3 f -1 R σ 1 ⊆ • • • ⊆ p R σ op 1 ⊆ R σ op 1 ⊆ • • • ⊆ R σ 1 ⊆ (4.
p d-1 R σ ⊆ r $ $ R σ d-1 ⊆ R σ . R σ d ⊆
Then, we necessarily have that d sat (σ, σ d ) = d -1. We obtain a commutative diagram:

p d-1 R σ / / R σ d / / R σ d-1 ( p d-1 R σ ) O F =0 : : =0 / / R σ d =0 / / R σ d-1
where the lower arrows are all nonzero.

In particular, σ is a constituent of Q σ d-1 (σ d ). By Corollary 4.3.1 and Lemma 4.3.3, we have d

σ d-1 rad (σ ) d σ d-1 rad (σ d ) + d σ d rad (σ ) d gph (σ d-1 , σ d ) + d gph (σ d , σ ) = d + 1. On the other hand, as σ d-1 is maximally saturated, d σ d-1 rad (σ ) = d -1, a contradiction.
Case (2). We now have a commutative diagram

R σ d-1 / / R σ d / / R σ R σ d-1 =0 = = =0 / / R σ d =0 / / R σ
where again the lower arrows are nonzero. Exactly as in the previous case, we deduce that d σ rad (σ d-1 ) d σ rad (σ d ) + 1 d + 1. We therefore may, and do, fix an extension path in the radical filtration of R σ :

σ d-1 = σ k ← σ k-1 ← • • • ← σ 1 ← σ 0 = σ.
For notational convenience, we set κ i def = σ k-i . As k d + 1, and as σ d-1 is maximally saturated, we deduce as in the proof of Proposition 4.3.16, the existence of an index i ∈ {0, . . . , k -1} such that (1) d gph (κ 0 , κ i ) = d sat (κ 0 , κ i ) = i and https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

(2) d gph (κ 0 , κ i+1 ) = d sat (κ 0 , κ i+1 ) < i + 1, and actually d gph (κ 0 , κ i+1 ) i -1. ). This implies (3).

Fix a chain of saturated inclusions

R κ 0 ⊆ R κ 1 ⊆ • • • ⊆ R κ k . Item (2) implies that R κ 0 ⊆ R κ i+1 ⊆ p -i+1 R κ 0 . The induced inclusion R κ i ⊆ R κ i+1 ⊆ p -i+1 R κ 0 contradicts item (1

Breuil's Conjectures

In this section, we deduce generalizations of Breuil's conjectures on mod p multiplicity one and lattices from the results in Sections 3-4. In Sections 5.1-5.2, we prove a version of Breuil's conjectures for abstract patching functors. Finally, we deduce the main results in Section 5.3.

Cyclicity for patching functors.

In this subsection, we show that certain patched modules for tame types are locally free of rank one over the corresponding local deformation space using several inductive steps. The base case is Lemma 5.1.3. Each inductive step uses one of the two arguments in [EGS15, Section 10]. It is here that the results of Section 3.6.3 enter.

Recall from Section 1.4 that S is a finite set so that for each v ∈ S, F v is a finite unramified extension of Q p of degree f v . For each v, let ρ v : G F v → GL 3 (F) be a 10-generic semisimple continuous Galois representation and let ρ S be (ρ v ) v∈S . Recall the weak minimal patching functor setting of Section 3.5. Suppose that ρ S | I S ∼ = τ S (s, µ) for s ∈ W and µ ∈ X * (T ). Let K be v∈S K v . Suppose that M ∞ is a weak minimal patching functor for ρ S (cf. Definition 3.5.1). For each v ∈ S, let τ v be a 13-generic tame inertial type for

F v . Recall R τ v ,β v ,2 M v ,ρ v from [LLHLM18, Definition 5.10]. We let τ S be (τ v ) v so that σ (τ S ) is the K -module v∈S σ (τ v ). Let R ∞ (τ S ) def = R ∞ (τ S ) ⊗ ( ⊗ v∈S R τ v v ) v∈S R τ v ,β v ,2 M v ,ρ v and M ∞ (V ) def = M ∞ (V ) ⊗ ( ⊗ v∈S R τ v v ) v∈S R τ v ,β v ,2 M v ,ρ v
for any subquotient V of a lattice in σ (τ S ). 

V → V 1 ⊕ V 2 . In fact, this injection lands in V 1 × V 3 V 2 . Comparing lengths, we see that the injection V → V 1 × V 3 V 2 is
in fact an isomorphism, which, using the exactness of M ∞ (see Definition 3.5.1), gives the first isomorphism below:

M ∞ (V ) ∼ = M ∞ (V 1 ) × M ∞ (V 3 ) M ∞ (V 2 ) ∼ = R ∞ (τ S )/I 1 × R ∞ (τ S )/I 3 R ∞ (τ S )/I 2 ∼ = R ∞ (τ S )/I 1 × R ∞ (τ S )/(I 1 +I 2 ) R ∞ (τ S )/I 2 ∼ = R ∞ (τ S )/(I 1 ∩ I 2 ).
The second isomorphism follows from Lemma 3.6.2. The third isomorphism follows from the fact that I 1 + I 2 = I 3 by Theorem 3.6.4, Table 3, and Lemmas 3.6.12 and 3.6.16(3.19). We deduce in particular that M ∞ (V ) is cyclic. We remind the reader that our parametrization of Serre weights σ (ω,a) is 'centered at ρ S '. Thus, σ (ω,a) ∈ W ? (ρ S ) exactly when (ω, a) ∈ r (Σ), and σ (ω,a) ∈ JH(σ (τ S )) exactly when (ω, a) ∈ ( w * ) -1 (Σ).

LEMMA 5.1.5. Suppose that for all i ∈ J , either ( w * i ) > 1 or Σ V,i ⊂ ( w * i ) -1 (Σ 0 \ {(ν 1 , 0), (ν 2 , 1), (ν 3 , 0)}),

where (ν 1 , ν 2 , ν 3 ) is (ε 1 -ε 2 , ε 1 , ε 1 + ε 2 ), (ε 2 -ε 1 , ε 2 , ε 1 + ε 2 ), or (ε 1 -ε 2 , 0, ε 2 -ε 1 ). Then M ∞ (V ) is a cyclic R ∞ (τ S )-module.

Proof. We note that #(Σ V,i ∩ r (Σ 0 )) 5 for all i ∈ J . We proceed by induction on n = #{i ∈ J : #(Σ V,i ∩ r (Σ 0 )) = 5}. There is a unique w i ∈ Adm(2, 1, 0) such that ( w * i ) -1 (Σ 0 \ {(ν 1 , 0), (ν 2 , 1), (ν 3 , 0)}) = ( w * i ) -1 (Σ 0 ) ∩ ( w i ) -1 (Σ 0 ). (5.5)

One can check that if #(( w * i ) -1 (Σ 0 \ {(ν 1 , 0), (ν 2 , 1), (ν 3 , 0)}) ∩ r (Σ 0 )) 4, then one of ( w * i ) and ( w i ) is strictly greater than one. If we change the type τ S so that w * i is replaced by w i , but w * i are unchanged for i = i, there is still a surjection σ (τ S ) σ

V by (5.5) and Theorem 4.1.9. We can therefore assume, without loss of generality, that for each i, either ( w * i ) > 1 or #(( w * i ) -1 (Σ 0 \{(ν 1 , 0), (ν 2 , 1), (ν 3 , 0)}) ∩ r (Σ 0 )) = 5.

Suppose that n = 0. If ( w * i ) 1 for some i ∈ J , then #(( w * i ) -1 (Σ 0 \ {(ν 1 , 0), (ν 2 , 1), (ν 3 , 0)}) ∩ r (Σ 0 )) = 5 by assumption. On the other hand, Σ V,i ∩ r (Σ 0 ) < 5, which implies that Σ V,i ∩ r (Σ 0 ) ⊂ {(ω, 1), (0, 0), (ε 1 , 0), (ε 2 , 0)} where ω = 0, ε 1 , or ε 2 by considerations of submodule structure. Hence, there is a quotient V of V such that V is of the form in Lemma 5.1.4 and the induced (mod ))) decomposes as a product over J , an inductive argument using Theorem 3.6.4 and the above filtration on R expl,∇ M, w /I shows that the cycle of R expl,∇ M, w /I is given by the components of R expl,∇ M, w labeled by the Serre weights corresponding to Γ (im(ı (mod ))). In order to prove the claim, we are left to show that I is a radical ideal. To see this, we make the following observation: If R, S are two reduced local Noetherian rings over a perfect field k and J , L are radical ideals of R, S, then J ⊗ k L is a radical ideal of R ⊗ k S. This is because (R ⊗ S)/(J ⊗ L) embeds into ((R/J ) ⊗ S) × (R ⊗ (S/L)) (as can be seen by choosing bases of J, L as k-vector spaces and extending them to bases of R, S), and the latter ring is reduced. Finally, we note that in the situation above, the property of being a radical ideal is preserved by completion so that J ⊗ k L is also radical in R ⊗ k S. The claim is proven. By Nakayama's lemma, the size of a minimal set of generators of I is given by the dimension over F of

I ⊗ ⊗ i∈J R expl,∇ M v , w i F = i (ν i ,c i )∈Σ w * i \Σ V c ,i c (ν i ,c i ) ⊗ R expl,∇ M v , w f v -1-i F
Hence, it suffices to show that for i satisfying (5.6),

(ν i ,c i )∈Σ w * i \Σ V c ,i c (ν i ,c i ) ⊗ R expl,∇ M v , w f v -1-i F
has dimension greater than one, which can be checked from Table 3.

Gauges for patching functors.

In this subsection, we compute the image of maps between patched modules for lattices in Deligne-Lusztig representations. This can be viewed as a calculation of lattice gauges in families.

The main ingredient for this section is Theorem 5.1.1, after which algebrogeometric arguments using the projection formula and the Cohen-Macaulay property prove Theorem 5.2.3. We learned these arguments from M. Emerton. We continue to use the weak minimal patching functor setting of Section 3.5. Let S, ρ S , R ∞ , X ∞ , and M ∞ be as in Section 5.1. Let τ S be (τ v ) v∈S , where τ v is a 13-generic tame type. Let X ∞ (τ S ) def = Spec R ∞ (τ S ). It is a normal and Cohen-Macaulay scheme by (the proof of) Theorem 3.5.3. Let Z ⊂ X ∞ (τ S ) be the locus of points lying on two irreducible components of the special fiber of X ∞ (τ S ). Note that the codimension of Z ⊂ X ∞ (τ S ) is two. Let be the natural open immersion. Note that j and U come from pulling back the open immersion j 0 : U 0 → Spf( v∈S R τ v v ) via the formally smooth map X ∞ (τ S ) → Spf( v∈S R τ v v ), where U 0 is defined in an analogous way as U .

LEMMA 5.2.1. The scheme U is regular.

Proof. The irreducible components of the special fiber of X ∞ (τ S ) are formally smooth over F; hence, the special fiber U of U is regular by the last part of Theorem 3.5.3. The dimension of the tangent space of U at a characteristic p point is at most one more than the dimension of the tangent space of U at that point. By p-flatness, the Krull dimension of U is one more than the Krull dimension of U , and so U is regular at characteristic p points. Since the generic fiber of U , which is isomorphic to the generic fiber of X ∞ (τ S ), is regular, U is regular.

We now use the notation j * and j * which take quasicoherent sheaves on X ∞ (τ S ) to those on U and vice versa, respectively. LEMMA 5.2.2. Let σ, κ ∈ JH(σ (τ S )) and let ι : σ (τ S ) κ → σ (τ S ) σ be a saturated injection. For any θ = v∈S θ v ∈ W ? (ρ S ), let m(θ ) be the multiplicity with which θ appears in the cokernel of ι. Then the induced injection j * M ∞ (ι) : j * M ∞ (σ (τ S ) κ ) → j * M ∞ (σ (τ S ) σ ) has image j * θ ∈W ? (ρ S ) p(θ) m(θ) M ∞ (σ (τ S ) σ ) , where p(θ ) = v∈S p(θ v ).

Proof. Note that j * (M ∞ (σ (τ S ) κ )) and j * (M ∞ (σ (τ S ) σ )) are locally free (of rank one) since they are Cohen-Macaulay of full support over the regular scheme U (see Definition 3.5.1). Then the image of j * M ∞ (ι) is J ⊗ O U j * (M ∞ (σ (τ S ) σ )), where J is the ideal sheaf of the Cartier divisor corresponding to the cokernel of j * M ∞ (ι). It is easily seen that J = j * θ ∈W ? (ρ S ) p(θ ) m(θ) R ∞ (τ S ) . Finally, we have that where the isomorphism follows from the fact that j * (M ∞ (σ (τ S ) σ )) is locally free.

Let σ be as in Theorem 5.1.1 so that M ∞ (σ (τ S ) σ ) is cyclic. p(θ) m(θ) R ∞ (τ S ) M ∞ (σ (τ S ) σ ).

REMARK 5.2.4. As j comes from pulling back j 0 via X ∞ (τ S ) → Spf( v∈S R τ v v ) and p(θ) are ideals of Spf( v∈S R τ v v ), we see that the ideal

j * j * θ∈W ? (ρ S ) p(θ) m(θ) R ∞ (τ S ) = j 0 * j * 0 θ∈W ? (ρ S ) p(θ ) m(θ) v∈S R τ v v R ∞ (τ S )
comes from an ideal in ⊗ v∈S R v .

Global applications.

In this subsection, we deduce generalizations of conjectures of Dembélé and Breuil on mod p multiplicity one and lattices, respectively (see [Bre14, Conjectures B.1 and 1.2]). Theorem 5.3.4 follows immediately from Theorem 5.1.1. While Theorem 5.3.5 also follows from Theorem 5.2.3, it is crucial that the image of the map between two patched modules given in Theorem 5.2.3 is described by an ideal. This is far from formal and relies crucially on Theorem 5.1.1. We use the setup in [LLHLM18, Section 7.1]. Let F/Q be a CM field with maximal totally real subfield F + = Q and let Σ + p (respectively Σ p ) be the set of places of F + (respectively of F) lying above p. Let G /F + be a reductive group which is an outer form for GL 3 , which is quasisplit at all finite places of F + , and which splits over F. Suppose that G /F + is definite, that is, that G(F + For U as above, let P U be the set of finite places w in F whose restriction v def = w| F + is a place that splits in F and at which U is unramified. Let P ⊂ P U be a subset of finite complement. Then the universal Hecke algebra T P = O[T (i) w , w ∈ P, 0 i n] on P acts naturally on S(U, W ). Let r : G F → GL 3 (F) be a continuous Galois representation. We let m ⊆ T P be the maximal ideal which is the kernel of the system of Hecke eigenvalues α : T P → F associated with r , that is, α satisfies det 1 -r ∨ (Frob w )X = 3 j=0 (-1) j (N F/Q (w)) ( j 2 ) α(T ( j) w )X j for all w as above. Then we say that r is automorphic if S(U, W ) m is nonzero for some U and W .

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press REMARK 5.3.6. In the hypotheses of Theorem 5.3.5, assume further that w(ρ v , τ v ) i has length at least 2 for all v ∈ S and i ∈ Z/ f v . Then the lattice σ (τ ) 0 can be described explicitly as in [Le18, Theorem 14].

In the following figures, we give a pictorial realization of the gluing procedure appearing in the proofs of Lemmas 5.1.4-5.1.7. Recall that w * i = w(ρ S , τ S ) * i .

Figure 3. Comparison of Σ V j ,i in Lemma 5.1.4.

From left to right with arrows pointing down, we have Σ V 1 ,i , Σ V 3 ,i , and Σ V 2 ,i . The edges correspond to adjacent pairs. Figure 4. Comparison of Σ V,i and Σ V j ,i in Lemma 5.1.5 when w * i t -1 = id.

Assume (ν 1 , ν 2 , ν 3 ) = (ε 1 -ε 2 , ε 1 , ε 1 + ε 2 ) and w * i t -1 = id. Then ν 4 = ε 2 . From left to right with arrows pointing down, we have Σ V,i , Σ V 1 ,i , and Σ V 2 ,i (a Weyl segment). In red are the elements in r (Σ 0 ). In the notation of Lemma 5.1.6 consider the case where ν = ε 1 + ε 2 and w * i t -1 = α. On the left, we have Σ V 2 ,i , where we write the elements in r (Σ 0 ) in red. Similarly on the right for Σ V 1 ,i . In the notation of Lemma 5.1.6, consider the case where ν = ε 1 +ε 2 and w * i t -1 = γ + . On the left, we have Σ V 2 ,i , where we write the elements in r (Σ 0 ) in red. Similarly on the right for Σ V 1 ,i .

Figure 7. Comparison of Σ V j ,i in Lemma 5.1.7 when w * i t -1 = γ + .

In the notation of Lemma 5.1.7, consider the case where ν = ε 1 +ε 2 and w * i t -1 = γ + . On the left, we have Σ V,i (respectively Σ V 1 ,i removing the dotted lower part), where we write the elements in r (Σ 0 ) in red. On the right, we have one of the possible choices for Σ V 2 ,i .

Addendum to [LLHLM18]

(1) In Theorem 1.1, the statement that 'its special fiber is as predicted by the geometric Breuil-Mézard conjecture' means the following: under the assumptions of Theorem 1.1, the special fiber of R (2,1,0),τ ρ is reduced and the number of irreducible components is less or equal to # W ? (ρ ss ) ∩ JH(σ (τ )) , with equality if ρ is semisimple. This can be checked directly using Theorem 6.14, Tables 3, 7, 8, Propositionsg 8.5, 8.6, and 8.12, and the results of Section 8.2.2.

(2) In Proposition 3.4, the codomain of T tan should be replaced by

(ρ, γ 0 ) | ρ ∈ Rep F [ε]/(ε 2 ) (G K ∞ ), γ 0 : ρ mod ε ∼ → T * dd (M) .
(3) After Equation (3.7), we remark that if (M A , ρ A , δ A ) ∈ D τ,2 M,ρ , then we have a canonical isomorphism M A ⊗ A F ∼ → M. • G(O v ) for v which split in F except for v 1 ,

• the preimage of the upper triangular matrices under the map Proof. If r is automorphic of a reachable weight V , then S(U, V ⊗ W ) m is nonzero for some level U and coefficients W . Let V be v V v where

G(O v ) → G(k v ) ∼ → ι v GL 3 (k v ) if v = v 1 ,
V v = V v • ι v .
Choose tame types τ v such that

• ρ v is admissible with respect to τ v ;

• (w(ρ v , τ v )) 3; and

• V v ∈ JH(σ (τ v )).
Letting σ be an O-lattice in v σ (τ v ) • ι v , we have that S(U, σ ⊗ W ) m is nonzero. By [EGH13, Lemma 7.1.6 and Theorem 7. • L + /F + is Galois and solvable;

• L def = L + F is linearly disjoint from F ker r (ζ p ) over F;

• L/L + is everywhere unramified;

• p is unramified in L + ;

• v 1 splits completely in L;

• if π L is the base change of π F to L and w is a place of L lying above v for v ∈ Σ + 0 , then π L ,w has Iwahori fixed vectors and τ v | I Lw is trivial. One can define analogues of R univ τ and R univ S from [Gee11, Section 5] as follows. Let S be the union of {v 1 } and Σ + . Let S be the union of { v 1 } and { v : v ∈ Σ + }. Let S L be the set of places in L + lying above places in S, and let S L be the set of places in L lying above places in S. Let Σ L , p be the set https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press of places in L lying over a place in Σ + p , Σ L ,0 the set of places in L lying over a place in Σ + 0 , and Σ L ,1 be the set of places in L lying over v 1 . Let Σ L be the union of Σ L , p and Σ L ,0 . If v ∈ Σ L , p , let τ v be τ v| F + | I L . If v ∈ Σ L ,0 , let R ,τ v be the lifting ring for r | G L v parametrizing lifts whose characteristic polynomial is (X -1) 3 . We let R univ That R univ τ is finite over O E implies that there is a conjugate self-dual lift r : G F → GL 3 (Q p ) of r which is minimally ramified outside p and potentially crystalline of type ((0, 1, 2), τ v ) at v for each v ∈ Σ + 0 . Moreover, we have that the restriction r | G L , which corresponds to a point of Spec R univ S , is automorphic. Solvable base change then implies that r is automorphic. Local-global compatibility implies that S(U, σ ⊗ W ) m is nonzero for U and W as in the statement of the proposition. Then S(U, V ⊗ W ) m is nonzero for some reachable V ∈ JH(σ ). 

r

  | G F v such that the special fiber Spec (R τ r | G F v ) of the potentially crystalline framed deformation ring R τ r | G F v of Hodge-Tate weight (2, 1, 0) and tame type τ is the reduced underlying subscheme of σ ∈W ? (r | I F v )∩JH(σ (τ ))

  we get a corresponding p-regular Serre weight F(Tr µ (ω, a)). Propositions 2.1.3(2) and 2.1.4 show that F(Tr µ (-)) induces a bijection between the set Λ µ W × A and the set of p-regular Serre weights of G with the same central character as F(µη).

  .3) If F and F are p-regular Serre weights, we say that they are adjacent if we can write F = F(Tr µ (ω, a)) and F = F(Tr µ (ν, b)) for some p-regular µ ∈ C 0 /( pπ )X 0 (T ) and some (ω, a) and (ν, b) which are adjacent in Λ µ W × A. https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press By Proposition 2.1.5, this definition does not depend on the choice of the lowest alcove weight µ ∈ C 0 . Indeed, if F = F(Tr µ (ω, a)), F = F(Tr µ (ν, b)) are adjacent p-regular Serre weights and λ ∈ C 0 such that F(λη) and F(µη) have the same central character, then F(Tr λ (w(ωε), a)) = F(Tr µ (ω, a)) and F(Tr λ (w(νε), b)) = F(Tr µ (ν, b)) for some w ∈ W and ε ∈ Λ W , and (w(ωε), a), (w(νε), b) are again adjacent since the set in (2.3) is W -invariant. REMARK 2.1.7. Geometrically, Λ µ W is the intersection of Λ W with a translate of a p-alcove, and two pairs (ω, a) and (ν, b) are adjacent if and only if ω and ν are either equal or neighbors (that is, differ by a W -conjugate of a fundamental weight) and either ω = ν and a and b have different labels in the unique component where ω and ν differ or ω = ν and a and b differ in exactly one component. Note that for any (ω, a) ∈ Λ µ

Figure 1 .

 1 Figure 1. The set Σ 0 .

  DEFINITION 2.3.6. For any w ∈ W , we set R w (µ) def = R w (µ + w(0)), where w ∈ W is the projection of w.

Figure 2 .

 2 Figure 2. The standard apartment of SL 3 . Labeled alcoves are alcoves in Adm(η).

  a weak minimal patching functor for ρ S p . Proof. Definition 3.5.1(2) follows from the proof of [LLHL19, Proposition 4.2.6]. The remaining properties follow easily from definitions and [LLHLM18, Proposition 7.15].

τρ

  is a minimal prime ideal and (3.6) is the decomposition of R τ ρ into irreducible components. https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  w , building on [LLHLM18, Sections 5.3.1, 8]. The rings R expl,∇

  The groupoid D τ,β M parametrizes https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Pressthe same data plus the data of a gauge basis lifting β. By [LLHLM18, Theorem 6.12], there is an action of G

  expl,∇ M, w i and diagram (3.9) can be lifted to a diagram over O with the same properties; cf. [LLHLM18, Diagram (5.9)]. Note that, strictly speaking, [LLHLM18, Table

  i to be the quotient of the power series ring F[[c 11 , c 12 , c 13 , c 22 , c 23 , c 31 , c 32 , c 33 , d 22 , c * 12 -[c * 12 ], c * 21 -[c * 21 ], c * 33 -[c * 33 ]]] by the following relations: c 11 c 23 = 0, c * 33 c 11 c 32 = c 13 c 31 c 32 , https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

c

  11 d 22 c * 33 = bc ab c * 21 c 13 c 32 , c 13 c 23 c 32 = 0, c 23 c 31 c 32 = 0, c * 21 c 33 = c 31 c 23 , c 12 c * 33 = ac ab c 13 c 32 , c 22 c * 33 = (-1 -a + c) (-1 -a + b) c 23 c 32 , and (ab)c 13 c 31 d 22 + (cb)c 13 c 32 c * 21 + (-1 -a + c)c 23 c 31 c * 12 = 0. These equations come from [LLHLM18, Proposition 8.11] and its proof, by restoring the units c * 12 , c * 21 , and c * 33 (which were set to be 1 in loc. cit.); the first six equations above are deduced from the equations https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Pressappearing in the statement of loc. cit. (where d 22 above is denoted by c 22 in loc. cit.), the seventh and eighth equations above appear in the proof of loc. cit., and the last equation above is implicit in loc. cit. (where we solved c 33 using the p-saturation of the 2 by 2 minor condition). In particular, R expl,∇ M, w i is a formal power series ring over the ring R appearing in[START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] Proposition 8.11].

  M, w i to be the quotient of F[[c i j , c * kk -[c * kk ], 1 i, j, k 3]] by the relations c ii c j j = 0 for i = j, c 11 c 23 = 0 c 31 c 22 = 0, c 33 c 12 = 0, c 12 c 23 = c 22 c 13 , c 11 c 32 = c 12 c 31 , c 21 c 33 = c 31 c 23 , and (-1 -a + c)c * 22 c 33 + (-1 -a + b)c 22 c * 33 -(-1 -a + c)c 23 c 32 = 0, (ab)c * 33 c 11 + (-1 -b + c)c 33 c * 11 -(ab)c 13 c 31 = 0, (bc)c * 11 c 22 + (ac)c 11 c * 22 -(bc)c 12 c 21 = 0, c 11 c * 22 c * 33 + c 22 c * 11 c * 33 + c 33 c * 11 c * 22 -c * 11 c 23 c 32 -c * 22 c 13 c 31 -c * 33 c 12 c 21 + c 13 c 32 c 21 = 0.These equations come from [LLHLM18, Corollary 8.4] by restoring the units c * kk (which were set to be 1 in loc. cit.) and we added the equation c 12 c 33 = 0, which was missing in loc. cit. and which is obtained by the 2 by 2 minor condition on A (i),univ . In particular, R expl,∇ M, w i is a formal power series ring over the ring R appearing in[START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF] Corollary 8.4].

Diagram (3. 9 )

 9 gives a bijection between the set of minimal primes Irr Spec (R τ ρ ) and Irr(Spec (R expl,∇ M, w )) = i Irr(Spec R expl,∇ M, w i ) . By Proposition 3.6.1, this set is in bijection with the set p(σ ) for σ ∈ W ? (ρ, τ ). On the other hand, by Proposition 3.4.2, we have a bijection i Σ w * i ∼ → W ? (ρ, τ ) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  , it suffices to determine the subset of Irr Spec (R expl,∇ M, w i ) which occurs in R τ ρ . This is achieved by 'matching' the universal étale ϕ-module over a union of irreducible components of R expl,∇ M, w with the universal étale ϕ-module living over R τ ρ (or rather R expl,∇ M , w ).

  expl,∇ M, w (respectively R expl,∇ M , w ) such that • I , I are intersections of minimal primes. • There is an isomorphism R expl,∇ M, w /I ∼ = R expl,∇ M , w /I . https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press • There exists an isomorphism of étale ϕ-modules between the base change of M w,τ to R expl,∇ M, w /I and the base change of M w ,τ to R expl,∇ M , w /I compatible with the above ring homomorphism. Let J (respectively J ) denote the intersection of minimal primes in R τ ρ (respectively R τ ρ ) which correspond to I (respectively I ). Then, J and J induce the same ideals in R 2 ρ .

  expl,∇ M, w . For σ ∈ W ? (ρ, τ ), let p expl (σ ) ⊂ R expl,∇ M, w be the prime ideal corresponding to the weight σ . The minimal prime ideals of R expl,∇ M, w containing are of the form ((z j ) N j=1 + ( ))R expl,∇

  M, w f -1-i is the quotient of F[[c 12 , c 13 , c 22 , c 23 , d 23 , c 31 , d 33 , c * 13 -[c * 13 ], c * 21 -[c * 21 ], c * 32 -[c * 32 ]]] by the relations c 12 c 23 -c 22 c 13 = 0; (3.14) c 22 c 31 = 0; https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press c * 32 c 13 -d 33 c 12 = 0; c 12 ((bc)d 33 c * 21 + (ab)c 31 d 23 ) = 0; (-1 -a + c)c 23 c * 32 = (-1 -a + b)c 22 d 33 . Note that all equations except for the last one are mod reductions of equations in [LLHLM18, Section 5.3.3]. We explain how to justify the last equation from the computations in [LLHLM18, Section 5.3.3], which was implicit in [LLHLM18, Table 7]. For the remainder of this paragraph, we adopt the notation of loc. cit. We have c 12 ((ab)c 31 c 23 + (bc)c * 21 c 33 ) = pz * . From the equation c * 32 c 13 -pc * 32 c * 13 -c 33 c 12 = 0, replacing p by (z * ) -1 (c 12 ((ab)c 31 c 23 + (bc)c * 21 c 33 )), we deduce that c 13 is a certain multiple of c 12 . Finally, using the equation c 12 c 23 = c 22 c 13 and canceling out c 12 (as it is a unit after inverting p), we get an equation solving c 23 in terms of the remaining variables. The mod reduction of this equation gives the last equation above.The minimal primes of Rexpl,∇ M, w f -1-i are c (0,0) = (c 12 , c 22 ); c (ε 1 ,1) = (c 12 , c 31 ); c (ε 1 -ε 2 ,0) = (c31 , d 33 ) and c (0,1) = (c 22 , (bc)d 33 c * 21 + (ab)c 31 d 23 ). (Note that in R expl,∇ M, w f -1-i , there are no more relation than those listed in (3.14). Indeed, let R be the quotient of F[[c 12 , c 13 , c 22 , c 23 , d 23 , c 31 , d 33 , c * 13 -[c * 13 ], c * 21 -[c * 21 ], c * 32 -[c * 32 ]]] by the relations (3.14). Then the discussion above proves that there is a surjection R R expl,∇

  /doi.org/10.1017/fmp.2020.1 Published online by Cambridge University PressOn the other hand, w f -1-i = αβαγ t 1 , z * i = αγ + , (a , b , c ) = (c -1, a, b + 1), and A ( f -1-i) has the form Now we note that z f -1-i = t (-1,0,1) (123) and

  21 + v 2 d 21 c * 22 c 23 v 2 c 31 0 vc * 33   . https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press The ring R expl,∇ M , w f -1-i is the quotient of F[[c 21 , d 21 , c 23 , c 31 , c * 11 -[c * 11 ], c * 22 -[c * 22 ], c * 33 -[c * 33 ]]] by the relation (-1 -a + b )c 21 c * 33 -(bc )c 31 c 23 = 0.

c

  22 = c 23 , c 23 = c 21 , d 23 = d 21 , d 33 = c 31 , c * 13 = c * 11 , c * 21 = c * 22 , c * 32 = c * 33 . We finish the matching in this case. Finally, we explain the matching of the ideal w 0 def = c (0,1) ∩ c (0,0) = (c 22 ). We have R expl,∇ M, w f -1-i w 0 = F[[c 12 , d 23 , c 31 , d 33 , c * 13 -[c * 13 ], c * 21 -[c * 21 ], c * 32 -[c * 32 ]]] c 12 ((bc)d 33 c * 21 + (ab)c 31 d 23 )

c

  The ring R expl,∇ M , w f -1-i is the quotient of F[[c 11 , c 23 , c 32 , d 33 , c * 31 -[c * 31 ], c * 22 -[c * 22 ], c * 13 -[c * 13 ]]] by the relations c 11 ((ab )c 23 c 32 -(ac )c * 33 d 33 ) = 0. https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press (We remark that the form of the (3, 3) entry of A ( f -1-i) is as above because in the notation of [LLHLM18, Section 5.3.1], we have c 33 = -y 33 c 13 c * 31 = 0 mod p since c 13 c * 31 = c 11 c 33 mod p and y 33 c 11 = 0 mod p.) Now we note that   c 31 c 12 (c * 32 ) -1 c 12 d 33 c 12 (c * 32 ) 11 c 11 c 32 (c * 31 ) -1 d 33 c 11 (c * 31 )

c 21 .

 21 32 c * 21 -d 22 c 31 c * Recall from item (2) above that R expl,∇ M, w f -1-i is the quotient of F[[c 11 , c 12 , c 13 , c 22 , c 23 , c 31 , c 32 , c 33 , d 22 , c * 12 -[c * 12 ], c * 21 -[c * 21 ], c * 33 -[c * 33 ]]]by the following relations: c 11 c 23 = 0, c * 33 c 11 c 32 = c 13 c 31 c 32 , c 11 d 22 c * 33 = bc ab c * 21 c 13 c 32 , c 13 c 23 c 32 = 0, c 23 c 31 c 32 = 0, c * 21 c 33 = c 31 c 23 , c 12 c * 33 = ac ab c 13 c 32 , c 22 c * 33 = (-1 -a + c) (-1 -a + b) c 23 c 32 , https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press and (ab)c 13 c 31 d 22 + (cb)c 13 c 32 c * 21 + (-1 -a + c)c 23 c 31 c * 12 = 0. (Note that R expl,∇ M, w f -1-i is formally smooth of relative dimension three over the ring R defined in [LLHLM18, Proposition 8.11].)

  M , w f -1-i is the quotient of F[[c 21 , d 21 , c 23 , c 31 , c * 11 -[c * 11 ], c * 22 -[c * 22 ], c * 33 -[c * 33 ]]] by the relation (-1 -a + b )c 21 c * 33 -(bc )c 31 c 23 = 0.

  c * 12 = c * 11 , c * 21 = c * 22 , d 22 = d 21 c 23 = c 23 c 32 = c 31 c * 33 = c * 33 . https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  31 vd 22 c 31 (c * 21 ) -1 c 23 c 31 (c * 21 )On the other hand,w f -1-i = αγ α, z * i = γ + α and (a , b , c ) = (b, c -1, a + 1) and A ( f -1-i) has the form 21 (c * 23 ) -1 v(c 33 d 22 (c * 23 ) M , w f -1-i is the quotient of F[[c 12 , c 21 , d 22 , c 33 , c * 11 -[c * 11 ], c * 23 -[c * 23 ], c * 32 -[c * 32 ]]]by the relation c 33 (-1 -a + c )c 12 c 21 -(1 -b + c )c * 11 d 22 = 0. 31 vd 22 c 31 (c * 21 ) -1 c 23 c 31 (c * 21 )

  c * 21 = c * 23 , c 31 = c 33 , c * 12 = c * 11 d 22 = c 21 , c 13 = c 12 , c 23 = d 22 , c * 33 = c * 32 .

  Recall from item (3) above that R expl,∇M, w f -1-i is the quotient of F[[c i j , c * kk -[c * kk ], 1 i, j, k 3]]by the relations c ii c j j = 0 for i = j, c 11 c 23 = 0, c 31 c 22 = 0, c 33 c 12 = 0, c 12 c 23 = c 22 c 13 , c 11 c 32 = c 12 c 31 , c 21 c 33 = c 31 c 23 , and (-1 -a + c)c * 22 c 33 + (-1 -a + b)c 22 c * 33 -(-1 -a + c)c 23 c 32 = 0 (ab)c * 33 c 11 + (-1 -b + c)c 33 c * 11 -(ab)c 13 c 31 = 0 (bc)c * 11 c 22 + (ac)c 11 c * 22 -(bc)c 12 c 21 = 0 c 11 c * 22 c * 33 + c 22 c * 11 c * 33 + c 33 c * 11 c * 22 -c * 11 c 23 c 32 -c * 22 c 13 c 31 -c * 33 c 12 c 21 + c 13 c 32 c 21 = 0. (Note that R expl,∇ M, w f -1-i is formally smooth of relative dimension three over the ring R defined in [LLHLM18, Corollary 8.4].)

  On the other hand, w f -1-i = αβαγ t 1 and A ( f -1-i) has the form  v 2 c * 11 0 0 v 2 c 21 vc *22 0 v 2 c 31 vc 32 c * 33   . https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University PressWe note that z f -1-i = t (1,0,-1) and 32 vc * 33

  c 21 )) (we have used the relations c * 33 c 12 -c 13 c 32 = 0, c * 33 c 11 -c 13 c 31 = 0, (ac)c * 22 c 11 -(bc)c 12 c 21 = 0 holding in R expl,∇M, w f -1-i w 0 ). Moreover,A ( f -1-i) mod w 0 =   c 13 c 31 (c * 33 )On the other hand,w f -1-i = αβα = z * i , (a , b , c ) = (c, b, a) and A ( f -1-i) has the form   c 11 c 11 c 32 (c * 31 ) -1 c 11 d 33 (c * 31 ) M , w f -1-i is the quotient of F[[c 11 , c 23 , c 32 , d 33 , c * 13 -[c * 13 ], c * 22 -[c * 22 ], c * 31 -[c * 31 ]]]by the relation c 11 (ab )c 23 c 32 -(ac )c * 22 d 33 = 0. We now note that   c 13 c 31 (c * 33 ) -1 + vc * 11 c 13 c 32 (c * 33 ) -1 c 13 vc 21 vc * /doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press =   c 11 c 11 c 32 (c * 31 ) -1 c 11 d 33 (c * 31 )

  and, hence, we need to prove that the surjection R/(c 22 , c 33 ) R/(w 0 ∩ c (ε 1 ,0) ∩ c (ε 2 ,0) ) (3.15) is an isomorphism. The ring on the right-hand side is equidimensional of dimension three and has four minimal primes. By Lemma 3.6.11, it suffices to show that R/(c 22 , c 33 ) is reduced, is equidimensional of dimension three, and has four minimal primes. Now R/(c 22 , c 33 ) is the quotient of the power series ring F[[c 11 , c i j , 1 i, j, 3, i = j]] by the ideal generated by the following elements: hence, by writing c 12 def = c 12 -c 13 c 32 , c 31 def = κc 31 -c 21 c 32 , we obtain R/(c 22 , c 33 ) ∼ = F[[ c 12 , c 31 , c 23 , c 13 , c 21 , c 32 ]] ( c 12 c 31 , c 12 c 23 , c 12 c 21 , c 31 c 23 , c 31 c 13 , c 23 c 32 ) .

  6.15. Consider the ring R expl,∇ M,α (cf. Table3) and let I Λ 0 def = c (0,0) ∩ c (0,1) ∩ c (ε 2 ,0) . Then(1)I Λ 0 = (c 11 c * 33 -c 13 c 31 , c 23 c 31 , c 23 (c 32 c * 21 -d 22 c 31 )), (2) c (ε 1 ,1) ∩ c (0,0) ∩ c (ε 2 ,0) = (c 11 , c 13 c 31 ), (3) c (0,1) ∩ c (0,0) = (c 23 , c 11 c * 33 -c 13 c 31 ).Proof. As in the proof of Lemma 3.6.13, it suffices to work in the ring R which has the same presentation asR expl,∇ M,α except that all c * i j are set to 1. Recall that c 32 def = c 32 -d 22 c 31 in R.We start with item (1). From Table(3), we easily deduceI Λ 0 ⊇ (c 11 -c 13 c 31 , c 23 c 31 , c 23 c 32 ),that is, a surjection R/(c 11 -c 13 c 31 , c 23 c 31 , c 23 c 32 ) R/I Λ 0 (3.16) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press which we claim is an isomorphism. Note that, by construction, the ring R/I Λ 0 has three minimal primes, and it is equidimensional of dimension three. From [LLHLM18, Proposition 8.11], we immediately deduce that the ring R/(c 11 -c 13 c 31 , c 23 c 31 , c 23 c 32 ) is isomorphic to the quotient of the power series ring F[[c 31 , c 13 , d 22 , c 32 , c 23 ]] by the ideal generated by the following elements: c 13 c 31 c 23 , c 13 c 31 d 22 -bc ab c 13 c 32 , c 23 c 31 , c 23 c 32 , (ab)c 13 c 31 d 22 + (cb)c 13 c 32 + (-1 -a + c)c 23 c 31 that is, by the ideal generated by c 13 c 31 d 22 -bc ab c 32 , c 23 c 31 , c 23 c 32 , or, equivalently, the ideal generated by c 13 c 31 d 22 -bc ab c 32 , c 23 c 31 , c 23 c 31 d 22 -bc ab c 32 . In other words, by an evident change of variables, we have R (c 11 -c 13 c 31 , c 23 c 31 , c 23 c 32 ) ∼ = F[[X, Y, Z , W, c 22 ]] (X Y, Y Z , W Z )

  From [LLHLM18, Proposition 8.11], we see that R/(c 11 , c 13 c 31 ) is isomorphic to F[[c 13 , c 23 , c 31 , c 32 , d 22 ]]/(c 13 c 31 , c 13 c 32 , c 31 c 23 c 32 , c 31 (κc 23 -c 13 d 22 )) = = F[[c 13 , c 23 , c 31 , c 32 , d 22 ]]/(c 13 c 31 , c 13 c 32 , c 31 c 23 ), for some κ ∈ F × depending on (a, b, c). The conclusion is obtained by an analogous argument to the previous case. The proof of item (3) is similar and left to the reader. (Note that c (0,1) ∩ c (0,0) ⊇ (c 23 , c 11 -c 13 c 31 ) and use the explicit presentation of R given by [LLHLM18, Proposition 8.11] to check that R/(c 23 , c 11 -c 13 c 31 ) is reduced with two irreducible components of dimension three.) LEMMA 3.6.16. In R expl,∇ M,α , we have

  PROPOSITION 4.1.1. The assignment of JH(N ) to a subobject N ⊂ M gives a bijection between subobjects of M and closed subsets of JH(M).

  3), it suffices to consider the case of SL 3 , where the result follows from [And87, Section 4.1]. Let µ ∈ X 1 (T ) be a p-restricted weight 6-deep in alcove B. Let w, y ∈ W a be elements such that the alcoves containing λ def = w • µ, θ def = y • µ are in {A, B, C, D, E, F, G} J and Ext 1

  1 follow from Theorem 4.2.7(2). The equation [Inj(σ op ) : σ ] = 1 is proved similarly using Theorem 4.2.1. PROPOSITION 4.2.15. Let µ ∈ X 1 (T ) be a weight such that µ ∈ B is 6-deep and R def = R s (µ op + η ). Set σ op def = F(µ) and let σ def = F(λ) ∈ JH(R) be the unique constituent at maximal graph distance. Let R σ be an O-lattice in R with irreducible cosocle isomorphic to σ . There is an injection ι : R σ → U .

  LEMMA 4.3.15. Let d < (R σ ) and let

  j : U def = X ∞ (τ S ) \ Z → X ∞ (τ S )https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  j * θ∈W ? (ρ S ) p(θ) m(θ) R ∞ (τ S ) ⊗ O U j * M ∞ (σ (τ S ) σ ) ∼ = j * θ∈W ? (ρ S ) p(θ) m(θ) R ∞ (τ S ) j * M ∞ (σ (τ S ) σ) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press = j * θ∈W ? (ρ S ) p(θ) m(θ) M ∞ (σ (τ S ) σ )

  THEOREM 5.2.3. With the notation of Lemma 5.2.2, suppose further that σ is as in Theorem 5.1.1. Then the induced injection M ∞ (ι) :M ∞ (σ (τ S ) κ ) → M ∞ (σ (τ S ) σ ) has image j * j * θ∈W ? (ρ S ) p(θ) m(θ) R ∞ (τ S ) M ∞ (σ (τ S ) σ ). Proof. If M is a Cohen-Macaulay sheaf on X ∞ (τ S ), then j * j * M = M since the codimension of Z is two (cf. [HK04, Proposition 3.5]). Hence, the image of M ∞ (ι) is j * j * θ ∈W ? (ρ S ) p(θ) m(θ) M ∞ (σ (τ S ) σ )by Lemma 5.2.2. Since M ∞ (σ (τ S ) σ ) is free over R ∞ (τ S ), we have thatj * j * θ ∈W ? (ρ S )p(θ) m(θ) M ∞ (σ (τ S ) σ )= j * j * θ ∈W ? (ρ S )

  v ) ∼ = U 3 (R) for all v|∞. Recall from [EGH13, Section 7.1] that G admits a reductive model G defined over O F + [1/N ], for some N ∈ N which is prime to p, together with an isomorphism ι :G /O F [1/N ] ι → GL 3/O F [1/N ] (5.7) which specializes to ι w : G(O F + v ) ∼ → G(O F w ) ι → GL 3 (O F w ) for all places w ∈ Σ p with w| F + = v. Let U = U p U p G(A (∞, p) F + ) × G(O F + , p ) be a compact open subgroup.If W is a finite O-module endowed with a continuous action of U , we write S(U, W ) to denote the space of algebraic automorphic forms with coefficients in W :S(U, W ) def = f : G(F + )\G(A ∞ F + ) → W | f (gu) = u -1 f (g) ∀ g ∈ G(A ∞ F + ), u ∈ U .We define S(U p , W ) p U p , W ) and S(U p , W ) p , W/ s ) where in the first limit, the subgroups U p G(O F + , p ) run over the compact open neighborhoods of 1 ∈ G(O F + , p ).

Figure 5 .

 5 Figure 5. Comparison of Σ V j ,i in Lemma 5.1.6 when w * i t -1 = α.
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Figure 6 .

 6 Figure 6. Comparison of Σ V j ,i in Lemma 5.1.6 when w * i t -1 = γ + .
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( 11 )

 11 In Definition 7.11(2), 'automorphic of weight V ' should be replaced with 'automorphic of weight V , level U , and coefficients W ' where U is a fixed compact open subgroup of G(A ∞, p F ) × G(O F + , p ) which is unramified at places v| p and W is a fixed O-module with a U -action on which the factor G(O F + , p ) acts trivially. This definition of patching functor depends on the implicit choices of U and W .(12) The definition of e(M), given before Proposition 7.14, is incorrect. The correct definition of e(M) is the following: given a finitely generated R ∞module M with scheme-theoretic support Spec A of dimension at most d, define e(M) to be d! times the coefficient of the degree d-term of the Hilbert polynomial of M (considered as an A-module).(13) In the paragraph following the proof of Proposition 7.14, the definition of Σ 0 should exclude primes dividing p.(14) In the proof of Proposition 7.15, 'automorphic of weight V ' should be replaced with 'automorphic of weight V , level U , and coefficients W ', whereU = v ∞ U v and U v is • G(O v ) for v which split in F except for v 1 ,• the preimage of the upper triangular matrices under the mapG(O v ) → G(k v ) if v = v 1 , or • a maximal hyperspecial maximal compact open subgroup of G(F v ) if v is inert in F,andW is an O-lattice in v∈Σ + 0 σ (τ v ) • ι v .(15) In the proof of Proposition 7.16, the tame inertial type τ should read:τ def = ω -((b+1)+ p(b+1)) 2 ⊕ ω -((c-1)+ pa) 2 ⊕ ω -(a+ p(c-1)) 2 .(16) The proof of Theorem 7.8 also requires the following proposition, which is a level-lowering result based on techniques in[START_REF] Taylor | Automorphy for some l-adic lifts of automorphic mod l Galois representations. II[END_REF]. The proof of Theorem 7.4, which was omitted, uses the same techniques. PROPOSITION 6.0.2. Let r : G F → GL 3 (F) be a continuous Galois representation with split ramification outside p, which is automorphic and satisfies the Taylor-Wiles conditions. If r is automorphic of a reachable weight, then it is automorphic of a reachable weight and level U and coefficients W , where U = v ∞ U v and U v is https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  or• a maximal hyperspecial maximal compact open subgroup of G(F v ) if v is inert in F, and W is an O-lattice in v∈Σ + 0 σ (τ v ) • ι v .

  2.1], r ⊗ F F p is isomorphic to the reduction of r π : G F → GL n (Q p ) for some π as in [EGH13, Theorem 7.2.1]. Let π F be the regular, algebraic, (conjugate) self dual, cuspidal automorphic representation of GL n (A F ) obtained from π through base change. Choose a totally real extension L + of F + such that • 4|[L + : Q];

τ

  be the universal deformation ring corresponding to the deformation problemF/F + , S, S, O E , r , -2 δ F/F + , {R v 1 } ∪ {R ,τ v v } v∈Σ + ,and we let R univ S be the universal deformation ring corresponding to the deformation problemL/L + , S L , S L , O E , r | G L , -2 δ L/L + , {R u 1 } u 1 ∈ S L ,1 ∪ {R ,τ v v } v∈ Σ L . The proof of [Gee11, Theorem 5.1.4] shows that R univ τ is finite over O E . Indeed, R univ τ is finite over R univ S and R univ S is finite over O E since (R univ S )red is isomorphic to an appropriate Hecke algebra by the proof of [Gue11, Theorem 3.4]. One replaces Fontaine-Laffaille deformation rings with R ,τ v for v ∈ Σ L , p , which is geometrically integral by [LLHLM18, Section 5.3].

  This would then show that M ∞ ( v∈Σ + p σ (τ v ) • ) is nonzero in the third paragraph (one cannot directly cite Definition 7.11(2) because of the change above). (17) In Section 8.1, after the proof of Lemma 8.2, the O-algebra R τ,β,2 M,ρ has relative dimension 15 over O. (18) In Corollary 8.4, there should be the further relation c 12 c 33 = 0. (19) The final sentence of Corollary 8.4 should be replaced by the claim that the ring R τ,β,2 M,ρ / is a quotient of R[[c * ii -[c * ii ], x j , 1 i 3, 1 j https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  Published online by Cambridge University Press 2.3. Combinatorics of types and Serre weights. Recall the notation ρ S from the previous section. We will always assume that ρ v is 2-generic and semisimple for all v ∈ S in what follows. The following proposition describes W obv (ρ S ) in terms of the extension graph. PROPOSITION 2.3.1. Assume that ρ S is a collection of semisimple Galois representations. Suppose that ρ S
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  This follows from [LLHL19, Corollary 2.2.13 and (2.6)].

	DEFINITION 2.3.2. Define

Table 1 .

 1 We define the defect of σ with The graph Σ 0 .

	σ (ε1+ε2,0)	
	σ (ε1,1)	σ (ε2,1)

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  then any Deligne-Lusztig representation which contains F(λ) works.

	Otherwise, by Proposition 2.1.4, there exists (sω, a) ∈ Λ µ W × A such that

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

Table 2 .

 2 Intersections.

  on Kisin modules and étale ϕ-modules with descent data. Most of these results are generalized https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  R acts as σ on W (k ), trivially on R, and sends u to (u ) p .

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  Definition 3.2.8].) https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press 3.2. Étale ϕ-modules with descent data. The main result of this subsection is Proposition 3.2.1, describing the Frobenius action on étale ϕ-modules with tame descent data.

Table 3 .

 3 Universal matrix, presentation, and component labeling for the ring R

expl,∇ M, w f -1-i .

Table 3 .

 3 (continued) 

Table 5

 5 

	], the matrix of the partial

  https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

Table 4 .

 4 Universal matrix and presentation for the rings R

	expl,∇ M, w f -1-i for extremal and

  • A)) is β(ω, w +,i w µ ) with β as in Lemma 2.1.1 since we have that t ω π( w +,i w µ ) ∈ W a . Then by definition, we haveF(Tr λ+η (ω, π( w + w µ • A))) ∼ = F( w + w µ •(λ+ω)) ∼ = F( w + •µ+w + w µ ω), (4.10) Published online by Cambridge University Presswhere w + w µ is the image of w + w µ in W . We conclude by combining (4.9) and (4.10).4.2.3. Study of the Weyl moduleV µ | G .We now assume that µ ∈ X 1 (T ) is such that µ ∈ B and push the analysis in Lemma 4.2.6 further to describe V µ | G in this case. Recall that G 0 def = Res k v /F p GL 3 and that

https://doi.org/10.1017/fmp.2020.1

  c) if we denote the restriction Fil | U by Fil, for any σ ∈ JH(U ), we have [gr

d (U ) : σ ] = 1 if and only if d = d gph (σ (0,1) , σ ); and https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

Table 5 .

 5 Comparison between alcoves C i , affine Weyl group elements w i and the graph.

  org/10.1017/fmp.2020.1 Published online by Cambridge University Press in V µ | G . Let U be the intersection ∩ i U i . We claim that U has the desired properties. If d < d gph (σ (0,1) , σ (ω,a) ), then (4.13) holds by Theorem 4.2.7(2). If d = d gph (σ (0,1) , σ (ω,a) ), then [gr d (V µ | G ) : σ (ω,a) ] = 1 and [gr d (U i ) : σ (ω,a) ] = 1 for all i by the proof of Theorem 4.2.7(2). We conclude that [gr d (U ) : σ (ω,a) ] = 1.

  there is a unique up to scalar nonzero map With the hypotheses of Theorem 4.1.9, assume, moreover, that σ is a lowest alcove weight with Def R (σ ) = 0. Proof of the structure theorem in the general case. The aim of this section is to deduce Theorem 4.1.9 from the particular case in Theorem 4.2.16. For this, we introduce a third notion of distance called the saturation distance (see Definition 4.3.4). The first step is to show an inequality between the graph and saturation distances (Corollary 4.3.8) and then proceed further in Section 4.3.2 to prove that under appropriate conditions on σ ∈ JH(R) (that is, when σ is maximally saturated), the notions of graph, saturation, and cosocle distances (d σ rad (κ)) actually coincide (Proposition 4.3.16

			Then Theorem 4.1.9(1)-(4)
	hold.			
	Proof. By Remark 4.1.10, it suffices to prove Theorem 4.1.9(3). This follows
	from Theorem 4.2.7(3) and Propositions 4.2.15 and 4.1.2.	
	4.3.			
	R	σ	→ Inj(σ op ).	(4.20)
	We first prove that the map (4.20) factors through the embedding	
	U	α → Inj(σ op )	(4.21)
	or, equivalently, that the composite of (4.20) with the natural projection Inj(σ op ) coker(α) is zero. As formation of cosocle is right exact and R σ
	has irreducible cosocle isomorphic to σ , the image of the composite map R σ → coker(α) is either zero or has irreducible cosocle σ . By Lemma 4.2.14,
	we know that σ is not a Jordan-Hölder constituent of coker(α), and, therefore,
	Hom G (R			

σ , coker(α)) = 0. Now the image of this nonzero map contains σ as a Jordan-Hölder factor. Since the minimal submodule of U containing σ as a Jordan-Hölder factor has length 9 f , which is the length of R σ , by Theorem 4.2.7(3) and Proposition 4.1.1, this map must be an injection. https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press THEOREM 4.2.16.

  a saturated inclusion. REMARK 4.3.5. We indicate a justification for the existence of the integer d in Definition 4.3.4. Given two O-lattices Λ 1 and Λ 2 in an E-vector space V , there is a unique d ∈ Z such that d Λ 2 ⊂ Λ 1 is a saturated inclusion. If V , Λ 1 , and Λ 2 are obtained from base change from an unramified subfield of E, then, in fact, We deduce the following inequality. COROLLARY 4.3.8. Assume that R is 13-generic and let σ 1 , σ 2 ∈ JH(R). Thend gph (σ 1 , σ 2 ) d sat (σ 1 , σ 2 ).Proof. The proof proceeds by induction on d gph (σ 1 , σ 2 ), the case d gph (σ 1 , σ 2 ) = 1 being covered by Proposition 4.3.7. Pick a weight κ ∈ JH(R) distinct from σ 1 and σ 2 such that d gph (σ 1 , κ) + d gph (κ, σ 2 ) = d gph (σ 1 , σ 2 ). Then we have d gph (σ 1 , σ 2

d is a power of p up to units. Since R, R σ 1 , and R σ 2 are defined over an unramified extension of Q p , the integer d in Definition 4.3.4 exists.

The following lemma is clear.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

  Assume that R is 2-generic and let σ ∈ JH(R). We say that the radical strata of R The 'if' part is clear. Let κ ∈ JH(R) be any weight and write d

	and thus d σ rad (σ 1 ) > d σ rad (σ 2 ) by Lemma 4.3.3. = d gph (σ, DEFINITION 4.3.11. def This is a contradiction. κ) and D def

σ are predicted by the extension graph if d gph (σ, σ ) = d σ rad (σ ) for all σ ∈ JH(R). https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

Proof.

  the result follows from Lemma 4.3.10. Assume for the sake of contradiction that k > d. By the definition of the radical filtration, we may, and do, fix an extension path of length k +1 in Γ rad (R

	We can use Lemma 4.3.15 to show that all three notions of distance from σ
	agree in some particular situations.	
	PROPOSITION 4.3.16. If σ ∈ JH(R) is maximally saturated, then Γ rad (R	σ ) is
	predicted by the extension graph with respect to σ .	

Proof. Assume that σ is maximally saturated. By Lemma 4.3.12, it suffices to show that d gph (σ, σ ) = d σ rad (σ ) for all σ ∈ JH(R). Let σ ∈ JH(R) and d = d gph (σ, σ ). We have that Hom G (σ , gr k (R σ )) = 0 for some k d by Corollary https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press 4.3.1. σ

  ).

	Proof of Theorem 4.1.9. (5) follows from Propositions 4.3.14 and 4.3.19. Items (1) and (2) follow from Propositions 4.3.16 and 4.3.19. Note that Γ rad (R σ ) is a subgraph of Γ (R σ ). Using Lemma 4.2.6 and the fact that Γ (R σ ) is acyclic, Γ (R σ ) must in fact be Γ rad (R σ

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

n (M))) is nonzero. For F semisimple, we say that σ ∈ JH(M) F -points to σ ∈ JH(M) if σ points to σ and the (shifted) induced filtration on the subquotient which is isomorphic to a nontrivial extension of σ by σ has length 2.If M is multiplicity free, we can attach a directed acyclic graph Γ (M) and a subgraph Γ F (M) of Γ (M) (respectively Γ F (M)) of Γ (M)) where the vertices are in bijection with the Jordan-Hölder factors of M and there is an arrow σ → σ in Γ (M) if σ points to σ and an arrow σ → σ in Γ F (M) (respectively in Γ F (M)) if σ F -points to σ . An extension path (in M) is a directed path in https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

i =i 0 Q 1 (λ i ) ⊗ Q 1 (λ 0 i 0 ) ⊗ L( pω λ )whose restriction to G is an injective hull. https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press
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LEMMA 4.2.2 [Pil97, Lemma 3.1]. Let M be a G-module. If M is 3(h -1)-deep with p-bounded highest weight, then

Proof. The statement on the socle filtration for G der and G der follows from the proof of [Pil97, Lemma 3.1]. While loc. cit. assumes that G der 0 is split over F p , the proof applies setting n = 1 and using that L( pλ 1 )| G der is isomorphic to L(π λ 1 )| G der rather than L(λ 1 )| G der . By duality, noting that M is 3(h -1)-deep if and only if its linear dual M * is 3(h -1)-deep and that soc • (M)-i (M * ) = (M/rad i • (M)) * for • ∈ {G der , G der }, we obtain the analogous statement for the radical filtration (recall that (M) is the Loewy length of M). The general case follows from Claim 1 in the proof of Theorem 4.2.1.

Proof. This follows from Theorem 4.2.1 and Lemma 4.2.2.

If ν, κ ∈ X * (T ), we let m κ (ν) def = dim F (L(κ)) ν . Moreover, we write ν ∈ L(κ) as a shorthand for (L(κ)) ν = 0. LEMMA 4.2.4 (Translation principle). Assume that p 2(h -1). Let λ, ξ ∈ X 1 (T ). Assume that for all weights ν ∈ L(ξ ), the weights λ + ν belong to the same alcove as λ. Then we have the following isomorphism of G-modules:

(1) L(λ) ⊗ F L(ξ ) = ν∈L(ξ ) L(λ + ν) ⊕m ξ (ν) ,

Proof. We first prove item (1). The isomorphism holds upon restriction to G der 1 by [Pil93, Lemma 5.1]. As the LHS and RHS of (1) have the same central characters, the G der 1 -isomorphisms extend to G-isomorphisms by (4.3). We now switch to item (2). By the same argument as above, we deduce from [Pil93, Lemma 5.1] a G 1 T -equivariant isomorphism (ν) .

(4.6)

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press (d) if (ω, a), (ω , a ) ∈ Λ (η ,0) , then σ (ω,a) points to σ (ω ,a ) (with respect to U ) if and only if d gph (σ (0,1) , σ (ω,a) ) d gph (σ (0,1) , σ (ω ,a ) ), and d gph (σ (ω,a) , σ (ω ,a ) ) = 1. In particular, Γ (U ) op (that is, the graph obtained from Γ (U ) by reversing the direction of the edges) is predicted by the extension graph with respect to σ (0,1) . Proof of 4.2.7(1) and (2). We first show that the image of Tr V µ contains JH(V µ | G ). Let w ∈ W a such that [V µ : L( w • µ)] = 0. It suffices to show that Tr V µ contains JH(L( w • µ)| G ).

(4.11)

The proof is similar to that of Lemma 4.2.6. There is a decomposition w = t ω -w + where w

by Lemma 4.2.4. As in the proof of Lemma 4.2.6, the summand F( w + • µ + ε) is σ (w 0 ε,π( w + • w h •A)) . Then (4.11) is contained in the image of Tr V µ by an analysis of the weights of L(πω -). Indeed, w • µ is in one of the alcoves in the set {A, B, C, D, E, F, G} J so that ω -,i can be taken to be one of 0, ε 1,i , ε 2,i , and η i for all i, and if ω -,i is η i , then w +,i = w B,i .

Item (1) follows from (2) and the above paragraph. We now prove item (2). With w as above, we define n i ( w i ) ∈ N by

Let 0 d 3 f . Since V µ is multiplicity free, it suffices to show that

contains weights of the form σ (ω,a) with multiplicity one if (ω, a) ∈ Λ (η ,0) and the distance between (ω i , a i ) and (0 i ,

is a permutation of πω -, then it appears in L(πω -) with multiplicity one. Thus, σ (ε,π( w + w h )•A) appears in (4.12) with multiplicity one. A casewise analysis, using the fifth column of Table 5 and the description of the socle layers of V µ i in [START_REF] Bowman | Decomposition of tensor products of modular irreducible representations for SL 3 : the p 5 case[END_REF], shows that the distance from (ν i , π( w

We now move to the proof of Theorem 4.2.7(3). We start with the following preliminary lemma. 

be such that λ 0 + ε λ and θ 0 + ε λ are in the same W -orbit under the p-dot action. Similar to an earlier argument of the three simple Jordan-Hölder factors of L(λ ,i 0 ) ⊗ (gr 1 Q 1 (λ i 0 )), only the restriction to G of one of the form L(θ 0 + ε λ ) ⊗ L( pω ) for some ω contains F 1 ∼ = F(θ 0 + ε θ ) as a Jordan-Hölder factor. By construction, ω must be ω. It now suffices to show that the composition

with multiplicity one, and we see that (4.19) is nonzero.

Finally, we assume that ω θ is ε 1,i 0 . Let ε be ε θ -ε λ which is in L(π ω) by the composition (4.19). Note that ε ≡ ε λ (mod X 0 (T )). The weight F 1 appears with multiplicity two in ν λ ∈L(πω λ ) L(θ 0 +ν λ )⊗ L( pω)| G and with multiplicity one in each of

Assume for the sake of contradiction that the composition (4.19) is zero. Then the image of the composition of the first four maps of (4.19) is contained in L(θ 0 +ε -π(1, 1, 1) i 0 ) ⊗ L( pω)| G . In particular, since ε ≡ ε λ (mod X 0 (T )), the image of the composition of the first three maps of (4.19) is not stable under the involution action on

| G which permutes the last two tensor factors. Since F 1 appears with multiplicity one in L(θ )| G , this implies that the image of

which induces the second map of (4.19), is not stable under this involution action (note the key role played by Lemma 4.2.11). However, the unique submodule of L( pω λ ) ⊗ L( pω λ ) isomorphic to L( pω θ -p(1, 1, 1) i 0 ) is the submodule where this involution acts by -1. This is a contradiction. Proof of Theorem 4.2.7(3). Let Γ be the directed graph with vertices JH(U ) = JH(V µ | G ) so that there is a directed edge σ 1 → σ 2 for σ 1 and σ 2 ∈ JH(V µ | G ) if and only if d gph (σ (0,1) , σ 1 ) > d gph (σ (0,1) , σ 2 ) and d gph (σ 1 , σ 2 ) = 1. Note that the first condition ensures that Γ is acyclic. We claim that Γ is a subgraph of Γ (U ). Let σ 1 and σ 2 be in JH(U ) with d gph (σ 1 , σ 2 ) = 1. Let d j = d gph (σ (0,1) , σ j ) for j = 1 and 2 and suppose that d 1 > d 2 so that d 1 = d 2 + 1. Then by Lemma 4.2.8, d soc U (σ j ) is d j for j = 1 and 2. Moreover, by Theorem 4.2.7(2) and parity reasons, [gr d j (V µ )| G : σ k ] = δ jk for j and k in {1, 2}. Using that every nontrivial extension which can occur in the layers of V µ does occur (see Table 6), it is easy to check that there is a unique length 2 subquotient M of Fil d 1 (V µ )/ Fil d 2 -1 (V µ ) such that σ 1 and σ 2 appear in JH(M| G ) with multiplicity one. By Proposition 4.2.10, there is a subquotient of M| G which is a nonsplit extension of σ 1 by σ 2 . For multiplicity reasons, this must also be a subquotient of U . Hence, there is a directed edge from σ 1 to σ 2 in Γ (U ).

We now claim that if Γ is a subgraph of a directed graph Γ such that

(1) Γ and Γ have the same vertices,

(2) Γ is acyclic, and

then Γ = Γ . Since Γ (U ) satisfies these conditions ((3) follows from Lemmas 4.2.5 and 4.2.6), this would complete the proof. Assume that σ 1 → σ 2 is a subgraph of Γ . By (3) and the geometry of the extension graph, we have that d gph (σ (0,1) , σ 1 ) = d gph (σ (0,1) , σ 2 ) ± 1, and, hence, it is enough to prove that d gph (σ (0,1) , σ 1 ) = d gph (σ (0,1) , σ 2 )+1. Suppose otherwise. Then σ 2 → σ 1 is a subgraph of Γ by definition and thus a subgraph of Γ . But this contradicts (2). 4.2.4. The embedding construction. We start with the following observation. LEMMA 4.2.13. Let R be an n-generic Deligne-Lusztig representation. Then R is n -2-deep.

Proof. If we write R = R s (µ + η) with µ being n-deep, it is hence enough to prove that σ r (ω,a) is n -2-deep for any obvious weight σ (ω,a) in JH(R). This follows from Proposition 2.3.4. 

Proof. Let τ S be the collection of tame inertial type such that σ (τ S ) = R. We can and do fix a collection ρ S of semisimple 10-generic Galois representation such that if w def = w(ρ S , τ S ), then ( w * i ) 2 for all i ∈ J and σ 1 and σ 2 ∈ W ? (ρ S , τ S ). (Note that the condition that R, hence τ S , is 13-generic guarantees that ρ S is 10-generic by the argument of Proposition 3.4.5.) Fix a weak minimal patching functor M ∞ for ρ S , which exists by Corollary 3.5.16. Recall R

For i ∈ {1, 2}, define the modules

Similarly, define R ∞ (τ S ) and R ∞ (τ S ). Then M ∞ (R σ i ) is p-torsion-free and maximally Cohen-Macaulay over R ∞ (τ S ), and generically of rank one, and similarly M ∞ (σ i ) is maximally Cohen-Macaulay over R ∞ (τ S ). We recall the setup of Lemma 3.6.10. The ring R ∞ (τ S ) is formally smooth

, where we write M v ∈ Y η,τ v (F) for the unique Kisin module corresponding to ρ v as in Theorem 3.3.12. By letting

-module, it is a maximal Cohen-Macaulay S-module as well by [Gro65, Corollaire 5.7.10] and using that the maximal ideal of R ∞ (τ S ) is the only prime above the maximal ideal of S. The maximality follows from the fact that R ∞ (τ S ) is finite over S. It is convenient to work over S below since Spec S/ pS is reduced.

For
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For all 1 j N , assume, without loss of generality, that z j (σ 1 ) = x j and let z j def = z j (σ 2 ). Then by Lemma 3.6.10, #({x j } j ∆{z j } j ) = 2. We assume, without loss of generality, that z 1 = y 1 and z j = x j for j = 1. To simplify notation, let

does not contain σ 2 as a Jordan-Hölder factor (as can be seen from descent to an unramified coefficient ring). Thus,

The scheme-theoretic support of M ∞ (C) in Spec S is contained in Spec S/ pS and is thus generically reduced so that by the proof of Lemma 3.6.2, the scheme-

. Symmetrically, we have

Combining these, we have

). Simplifying and canceling p, we have

) is free over (a power series ring over) F[[y 1 , . . . , y N ]], being maximal Cohen-Macaulay over it.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press LEMMA 4.3.12. Assume that R is 13-generic and let σ ∈ JH(R). If the radical strata of R σ are predicted by the extension graph, then Γ rad (R σ ) is predicted by the extension graph with respect to σ .

Proof. Let σ i and σ i+1 be elements of JH(R) such that d gph (σ, σ i ) = i and d gph (σ, σ i+1 ) = i + 1. As the radical strata of R σ are predicted by the extension graph,

This implies that σ i+1 appears in the second layer of the radical filtration of Q σ (σ i ), whose cosocle is isomorphic to σ i by Lemma 4.3.2(1). Then there is an edge from

Conversely, if there is an edge from

is 1 by Lemma 4.2.6.

Distance equalities.

In this subsection, we define when a weight σ ∈ JH(R) is maximally saturated. Crucially using Lemma 4.2.6, we show that if σ is maximally saturated, then the graph, saturation, and cosocle distances from σ are equal, and, therefore, the structure Theorem 4.1.9 holds for R σ . From now on, we assume that the Deligne-Lusztig representation R is 13-generic. From Proposition 2.3.5 and the definition of defect (Definition 2.8), it follows

Furthermore, if Def R (σ ) = 0, then there is a unique σ op ∈ JH(R) which has maximal graph distance from σ . DEFINITION 4.3.13. Let σ ∈ JH(R). We say that the weight σ is maximally saturated in R if the following property holds: We claim that the inclusions

obtained by composing the saturated inclusions above, are saturated.

We first show that Proof. We induct on the defect δ def = Def R (σ ) for σ ∈ JH(R). The case δ = 0 holds by Lemma 4.3.18. Suppose that δ > 0. To ease notation, let We now consider the case Def R (σ d ) = Def R (σ ). By a direct check on the extension graph, we see that there exists

rad (κ) for all κ ∈ JH(R) by Propositions 4.3.14 and 4.3.16.

Let

saturated inclusions of lattices. By Lemma 4.3.9, we are in one of the following situations:

(1)

where the inclusions are all saturated.

Case (1). Taking κ = σ in the above, we have that d sat (σ, σ d-1 ) = d -1 and, hence, obtain chains of saturated inclusions: We assume that R ∞ (τ S ) is nonzero. Then there exists w = ( w v ) v∈S = ( w i ) i∈J ∈ Adm ∨ (η) such that τ S ∼ = τ S (s(w * ) -1 , µ + s( w * ) -1 (0)) with the lowest alcove presentation (s(w * ) -1 , µ + s( w * ) -1 (0) -η) by Theorem 3.3.12 and Proposition 3.4.1. Note that w v = w(ρ v , τ v ). Then, as explained in Section 3.6.1, SpfR

∞ (V ) is always maximal Cohen-Macaulay over its support. It will often be more convenient to prove that M ∞ (V ) is a cyclic R ∞ (τ S )-module, and we will switch to M ∞ (V ) without comment. If σ ∈ JH(σ (τ S )), then recall from Section 4.1.2 that σ (τ S ) σ is the unique O-lattice up to homothety in σ (τ S ) with cosocle σ . THEOREM 5.1.1. Let τ S be a 13-generic tame type and

Then M ∞ (σ (τ S ) σ ) is free of rank one as a R ∞ (τ S )-module.

The proof of Theorem 5.1.1 proceeds by proving cases of increasing complexity.

We distinguish five steps in the argument.

LEMMA 5.1.2.

Proof. The proof follows the methods of Diamond and Fujiwara [START_REF] Diamond | The Taylor-Wiles construction and multiplicity one[END_REF].

Note that the support of M ∞ (σ ) is formally smooth as can be checked from Theorem 3.5.2. Since M ∞ (σ ) is maximal Cohen-Macaulay over its formally smooth support by Definition 3.5.1(3), it is free over its support by the Auslander-Buchsbaum-Serre theorem and the Auslander-Buchsbaum formula.

Since e(M ∞ (σ )) = 1 by Theorem 3.5.2, the free rank is one.

If V is a -torsion K -module satisfying the hypotheses of Lemma 3.6.2, we write R ∞ (V ) to denote the quotient R ∞ /I (V ). For the rest of this subsection, we assume that the weight σ satisfies the conditions of Theorem 5.1.1.

LEMMA 5.1.3. Assume that ( w * i ) > 1 for all i ∈ J . Let σ ∈ W ? (ρ S , τ S ) and let V be a nonzero quotient of σ (τ S ) σ . Then M ∞ (V ) is a cyclic R ∞ (τ S )-module. Proof. If R ∞ (τ S ) is formally smooth over O, then the result follows from Lemma 5.1.2. Suppose otherwise. We use the notation of the proof of Lemma 4.3.7 with R = σ (τ S ). Recall that for σ ∈ JH(σ (τ S )), p S (σ ) = (z j (σ )) N j=1 + ( p). By Lemma 3.6.10, for σ 1 and σ 2 ∈ W ? (ρ S , τ S ), we have # {z j (σ 1 )} j ∆{z j (σ 2 )} j = 2d gph (σ 1 , σ 2 ).

(5.2)

Let σ 1 ∈ W ? (ρ S , τ S ) be such that d gph (σ, σ 1 ) = 1. Furthermore, fix a

, we have a map M 1 → M. By Proposition 4.3.7, σ (τ S ) σ /σ (τ S ) σ 1 is p-torsion, with Jordan-Hölder factors determined by Theorem 4.1.9. By the proofs of Lemmas 3.6.2 and 4.3.7, the scheme-theoretic support of M/M 1 in Spec S is Spec S/ σ ∈JH(σ (τ S ) σ /σ (τ S ) σ 1 ) p S (σ ) .

(5.

3)

The sets {z j (σ 1 )} j and {z j (σ )} j differ at exactly one component, say j 1 . The equation (5.2) determines p S (σ ) for all σ ∈ JH(σ (τ S )) from which one checks that z j 1 (σ ) is in p S (σ ) for any σ ∈ JH(σ (τ S ) σ /σ (τ S ) σ 1 ). By (5.3), we see that coker(M 1 → M) is killed by z j 1 (σ ). Similarly, we have that coker( pM → M 1 ) is annihilated by z j 1 (σ 1 ). Hence, we have inclusions z j 1 (σ )M ⊂ M 1 and z j 1 (σ 1 )M 1 ⊂ pM. Combining these, we have that pM = z j 1 (σ )z j 1 (σ 1 )M ⊂ z j 1 (σ 1 )M 1 ⊂ pM. We conclude that the above inclusions are equalities.

Applying the above argument for all σ 1 ∈ W ? (ρ S , τ S ) at distance one from σ , we have that M ∞ (σ ) ∼ = M ∞ (σ (τ S ) σ )/( , {z i (σ )} i ). The left-hand side, and hence the right-hand side, is cyclic by Lemma 5.1.2. We conclude that

As in Section 2.3, let σ (ω,a)

where τ S def = τ (s(w * ) -1 , µs( w * ) -1 (0)). In what follows, σ ∈ W ? (ρ S , τ S ) is a Serre weight satisfying (5.1) and V is a nonzero quotient of σ (τ S ) σ . We assume that for each i ∈ J , there exists a subset is a bijection. All representations we consider below satisfy this assumption.

In the following lemmas, we use a gluing procedure to show that M ∞ (V ) is cyclic in cases where the set W ? (ρ S , τ S ) is of increasing complexity. In Figures 34567, we give a pictorial realization of the gluing procedure employed in the proofs of Lemma 5.1.4-5.1.7, respectively. LEMMA 5.1.4. Suppose that for each i ∈ J , either ( w

Proof. Note that by condition (5.1), one has (ω, 1) ∈ Σ V,i whenever ( w * i ) 1. In this case, we assume, without loss of generality, that (ω, 0) ∈ Σ V,i (because the quotient of a cyclic module is cyclic). Let Σ V,i be the image of Σ V,i in Λ W under the natural projection. We proceed by induction on

If n = 0, then a casewise check shows that there exists w ∈ Adm(η) such that for all i ∈ J , ( w i ) > 1 and Σ V,i ⊂ Σ ( w i ) -1 . For example, if Σ V,i ⊂ {(0, 1), (0, 0), (ε 1 , 0)}, then one takes w i = βαt 1 . Let τ S be τ S (s(w ) -1 , µ + s( w ) -1 (0)) where w ∈ W is the image of w . Then M ∞ (V ) is a cyclic R ∞ (τ S )-module by Lemma 5.1.3. Hence, M ∞ (V ) is a cyclic R ∞ -module, and, thus, it is a cyclic R ∞ (τ S )-module as well. Suppose now that n > 0 so that there is an i ∈ J such that #Σ V i = 3 and ( w * i ) 1. By Theorem 4.1.9 and Propositions 4.1.1 and 4.1.2, there are quotients V 1 and V 2 of V satisfying (5.4) with the following additional properties:

(1)

(4) Σ V j ,i = Σ V,i for all i = i and j = 1, 2.

For example, if Σ V,i = {(0, 1), (0, 0), (ε 1 , 0), (ε 2 , 0)}, then one takes Σ V 1 ,i = {(0, 1), (0, 0), (ε 1 , 0)} and Σ V 2 ,i = {(0, 1), (0, 0), (ε 2 , 0)} (cf. Figure 3). Let V 3 be the quotient of V 1 and V 2 satisfying (5.4) such that 

is an isomorphism by exactness of M ∞ and Theorem 3.5.2. We are then done by Lemma 5.1.4. Suppose now that n > 0. Suppose that #(Σ V,i ∩ r (Σ 0 )) = 5 for some i ∈ J . This, in particular, implies that #(Σ V,i ) = 6, by consideration of submodule structure given in Theorem 4.1.9. Then V has a unique quotient V 1 such that

} where ν 4 = 0, ε 1 , or ε 2 and ν 4 = ν 2 (cf. Figure 4 for an example in the particular case where w i = t 1 ). Then M ∞ (V 1 ) is cyclic by the induction hypothesis. There is also a submodule

LEMMA 5.1.6. Suppose that for all i ∈ J , either

In the setting of Lemma 5.1.6, note that when

Proof. We proceed by induction on

The case n = 0 is covered by Lemma 5.1.5. Suppose that n > 0 and that i ∈ J with ( w * i ) 1 and

Assume, without loss of generality, that Σ V,i = ( w * i ) -1 (Σ 0 \ {(ν, 0)}), as the quotient of a cyclic module is again cyclic. We can further assume, without loss of generality, that ν = ε 1 + ε 2 (which implies that if σ = σ (ω,a) , then (ω i , a i ) = ( w * i ) -1 (0, 1)). Then there are quotients V 1 and 5 for an example when w i = α). We now argue by induction as in the proof of Lemma 5.1.4 using Theorem 3.6.4 and Lemmas 3.6.14, 3.6.16(3.17), and 3.6.16(3.18). Note that the analogue of Lemma 3.6.16 for the shapes β and γ hold symmetrically (see Remark 3.6.5).

LEMMA 5.1.7. With V as described before Lemma 5.

Proof. We proceed by induction on n = #{i ∈ J : ( w * i ) 1 and #Σ V,i = 9}. (In the definition of n, note that the condition #Σ V,i = 9 can be replaced by 'for

The case n = 0 is covered by Lemma 5.1.6. Suppose that n > 0. Let i ∈ J be such that ( w * i ) 1 and #Σ V,i = 9 (equivalently, ( w * i ) 1 and 7 for an example when

) is an isomorphism, we are done. Otherwise, there is a submodule

Then one argues as in the proof of Lemma 5.1.5.

Proof of Theorem 5.1.1. Lemma 5.1.7 implies that M ∞ (σ (τ S ) σ ) is a cyclic R ∞ (τ )-module. Nakayama's lemma implies that M ∞ (σ (τ S ) σ ) is a cyclic R ∞ (τ S )-module. By Theorem 3.5.2, M ∞ (σ ), and thus M ∞ (σ (τ S ) σ ), is nonzero. By Theorem 3.5.3, R ∞ (τ S ) is irreducible and reduced so that Definition 3.5.1(3) implies that M ∞ (σ (τ S ) σ ) is a faithful R ∞ (τ S )-module. Since a faithful cyclic module is free of rank one, we are done.

Finally, we show that the hypothesis of Theorem 5.1.1 is actually necessary. PROPOSITION 5.1.8. Let τ S be a 13-generic tame type and σ def = F(λ) ∈ W ? (ρ S , τ S ). Assume that for some i ∈ J ,

Then M ∞ (σ (τ S ) σ ) is not free as an R ∞ (τ S )-module.

Proof. As we will not make use of this, we only give a sketch of proof. Unlike the rest of this section, we will parametrize the weights by centering around https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press τ S so that τ S = τ (s, µ) and σ (ω,a) means σ (ω,a) def = F(Tr µ (sω, a)). In particular, W ? (ρ S , τ S ) consists of σ (ω,a) such that (ω, a) ∈ Σ w * .

We write σ = σ (ω,a) , so (ω, a) ∈ Σ. For each i satisfying (5.6), we have a i = 0. If moreover (ω i , a i ) ∈ Σ inn 0 , we set (ω i , a i ) = (ω i , 1), otherwise we set (ω i , a i ) to be one of the two elements in Σ 0 that are adjacent to (ω i , a i ). For i not satisfying (5.6), we set (ω i , a i ) = (ω i , a i ). Thus, we obtain a weight σ = σ (ω ,a ) which satisfies the hypothesis of Theorem 5.1.1.

We now fix a saturated inclusion ı : σ (τ S ) σ → σ (τ S ) σ , and let

. Thus, we need to show that I (C) is not a principal ideal, and to do so, it suffices to show that the image of

Let V denote the cokernel of ı mod . Using Theorem 4.1.9, we see that V is multiplicity free, and JH(V

, where

, where I (V ) is the intersection, over κ ∈ JH(V ) ∩ W ? (ρ S ), of the ideals p(κ) defined in Proposition 3.6.1. Note that the image of

M, w /I has the expected cycle. To do this, we check using Table 3 For technical reasons, we choose a place v 1 of F + as in [CEG+16, Section 2.3]. We now fix U p G(A (∞, p) F + ) to be the subgroup with:

(1)

for all finite places v of F + which split in F and do not belong to Σ + p ∪ {v 1 };

(2) (U p ) v 1 is the preimage of the upper triangular matrices under the map

Let r be an automorphic Galois representation. Let Σ + 0 denote the set of finite places of F + which are the restriction of the finite places of F away from p where r ramifies. For each v ∈ Σ + 0 , we let τ v be the minimally ramified type in the sense of [CHT08, Definition 2.4.14] corresponding to r | G F v and σ (τ v ) be the GL 3 (O F v )-representation over E associated with it (cf. the beginning of Section 5.3.1). We write σ (τ v )

• . We let T univ denote the abstract Hecke algebra over O generated by the formal variables T ( j) w , where w runs over the finite places of F such that w| F+ is split in F and w| F + / ∈ Σ + 0 ∪ Σ + p ∪ {v 1 }, and by T ( j) v 1 for j = 1, 2, 3. For a G(A (∞, p) F + )module V over O, T univ acts naturally on S(U p U p , W ), S(U p , W ), and S(U p , W ) where W = W Σ + 0 ⊗ V (cf. [CEG+16, Section 2.3]), and we let m ⊆ T univ be the maximal ideal as before. We will now assume that S(U, W ) m is nonzero for some choice of V above. In fact, one can show, by the proof of Proposition 6.0.2, that this is a consequence of the hypothesis that r is automorphic.

In the remainder of this section, we let r : G F → GL 3 (F) be an automorphic Galois representation that satisfies the Taylor-Wiles conditions in the sense of [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF]Definition 7.3]. We assume furthermore that (i) the extension F/F + is unramified at all finite places;

(ii) (split ramification) if r : G F → GL 3 (F) is ramified at a place w of F, then v = w| F + splits as ww c ;

(iii) p is unramified in F + and all places in F + above p split in F; and

(iv) r | G Fw is semisimple for all w ∈ Σ p .
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For each v ∈ Σ + p , we choose a place v|v of F and let S be the set { v|v ∈ Σ + p }. Let ρ v be r | G F v and ρ S be (ρ v ) v∈S . We set K def = v∈S GL 3 (O F v ). Let M ∞ be the weak minimal patching functor for r in the sense of [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF]Definition 7.11] constructed in [START_REF] Le | Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF]Proposition 7.15]. As in Section 3.5, we let M ∞ be M ∞ • v∈S ι v , which is a weak minimal patching functor for ρ S by Proposition 3.5.14.

Along with the construction of M ∞ (cf. [CEG+16, Section 2.8], [Le18, Section 4.2], and [LLHLM18, Section 7.3]), one has a ring homomorphism

) . We also write m for the pullback in R ∞ of the maximal ideal of

where • ∨ denotes Pontrjagin duals (cf. [Le18, Theorem 4.1.5]).

Automorphy lifting.

Recall from Proposition 2.2.6 that if v ∈ S and τ v is a 1-generic tame inertial type for I F v , we defined a GL 3 (O F v )-representation σ (τ v ) over E corresponding to τ v by results toward inertial local Langlands. We again let σ (τ S ) be v∈S σ (τ v ).

THEOREM 5.3.1. Let r : G F → GL 3 (E) be an absolutely irreducible Galois representation such that

(1) for all places w ∈ Σ p , r | I Fw is semisimple and 10-generic;

(2) r is unramified almost everywhere and satisfies r c ∼ = r ∨ -2 ;

(3) for all places v ∈ S, the representation r | G F v is potentially crystalline, with parallel Hodge-Tate weights (2, 1, 0) and with tame inertial type τ v (see [LLHLM18, Definition 2.1]);

(4) r satisfies the Taylor-Wiles conditions as above and r has split ramification; and

(5) r ∼ = r ı (π ) for a regular algebriac conjugate self dual cuspidal (RACSDC) representation π of GL 3 (A F ) with trivial infinitesimal character such that v∈S σ (τ v ) is a K -type for v∈S π v .
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Then r is automorphic in the sense of [LLHLM18, Section 7.2].

Proof. Given Theorems 5.3.3 and 3.5.3, the proof of [LLHLM18, Theorem 7.4] goes through unchanged.

REMARK 5.3.2. Compared to [LLHLM18, Theorem 7.4], we relaxed the hypothesis that p splits completely to p being unramified. However, we also assumed that r is semisimple at all places above p. The reason is that we only established the connectedness of the generic fiber of R τ ρ when ρ is semisimple (though we do know it for non-semisimple ρ in the case that all shapes have length 2). In work in progress, we will establish a counterpart of [LLHLM18, Theorem 7.4] for non-semisimple representations. This will allow us to remove the semisimplicity hypothesis in a manner similar to [LLHLM18, Theorem 7.4]. 5.3.2. The Serre weight conjecture. Let r : G F → GL 3 (F) be as in the beginning of Section 5.3. Recall that for each v ∈ Σ + p , we chose a place v|v of F and set S to be the set

We have the following version of the weight part of Serre's conjecture.

THEOREM 5.3.3. Let r : G F → GL 3 (F) be a continuous Galois representation, satisfying the Taylor-Wiles conditions. Assume that ρ v def = r | G F v is semisimple and 10-generic for all v ∈ S, that r is automorphic, and that r has split ramification. Then W (r ) • v∈S ι v = W ? (ρ S ).

Proof. We have that W BM (ρ S ) = W (r )• v∈S ι v by (5.8). The result now follows from Theorem 3.5.2. 5.3.3. Mod p multiplicity one. We continue using the setup from the beginning of Section 5.3. We have the following mod p multiplicity one result. THEOREM 5.3.4. Let τ S and σ ∈ W ? (ρ S , τ S ) be as in the statement of Theorem 5.1.1. Then
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Proof. By (5.8),

By Theorem 5.1.1, the dimension of M ∞ (σ (τ S ) σ )/m is one.

Lattices in cohomology.

Let r : G F → GL 3 (E) be an automorphic Galois representation as in Theorem 5.3.1. We say that r is minimally ramified if r | G F v is minimally ramified in the sense of [CHT08, Definition 2.4.14] for all v ∈ Σ + 0 . Following the notation of [LLHLM18, Section 7.1], let λ be the kernel of the system of Hecke eigenvalues α :

for all w as above. We now set W def = W Σ + 0 as in Section 5.3.3. By Theorem 5.3.1, S(U p , W )[λ] is nonzero. Since r is minimally ramified, r corresponds to a prime ideal of R ∞ as in [HLM17, Theorem 5.2.1]. By an abuse of notation, we call this ideal λ. Note that we have that M ∞ /λ ∼ = S(U p , W ) d /λ by (the proof of) [CEG+16, Corollary 2.11]. THEOREM 5.3.5. Let r : G F → GL 3 (E) be as in Theorem 5.3.1. Assume furthermore that r is minimally ramified. Let {τ v } v∈S be a 13-generic tame type. The lattice σ (τ ) Observe that the image of the inclusion O ∼ = Hom U p (σ (τ S ) σ , S(U p , W )[λ]) → Hom U p (σ (τ S ) κ , S(U p , W )[λ]) ∼ = O, is given by the ideal (γ (κ)). By Schikhov duality, the natural inclusion O ∼ = Hom is given by the ideal (γ (κ)).

On the other hand, the image of (5.9) is given by j * j * ) which is unramified at places v| p, and W be an O-module with a U -action for which the factor G(O F + , p ) acts trivially. We say that r is automorphic of weight V , level U , and coefficients W if there exists a cofinite subset P ⊂ P U such that S(U, V ⊗ W ) m = 0, where m is the kernel of the system of Hecke eigenvalues α : T P → F associated with r , and α satisfies the equality det 1 -r ∨ (Frob w )X = 3 j=0 (-1) j (N F/Q (w)) ( j 2 ) α(T ( j) w )X j for all w ∈ P. We say that r is automorphic of weight V (or that V is a Serre weight of r ) if r is automorphic of weight V , level U , and coefficients W for some subgroup U and coefficients W as above. We write W (r ) for the set of all Serre weights of r . We say that r is automorphic if W (r ) = ∅.