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Abstract

The broad Cauchy problems with nonlocal differential operators, including fractal, fractional, and
fractal-fractional derivatives, have been taken into consideration in this work. We have presented the
existence and uniqueness of each case with fractal-fractional within the framework of Carathéodory
existence and uniqueness conditions because fractional derivatives can be recovered by taking the fractal
order to one, and fractal derivatives can be recovered by taking the fractional order to be one. We
have changed the parametrized numerical techniques for solving nonlinear ordinary differential equations
in order to produce greater accuracy. For each scenario, we presented the stability and consistency
analyses. For purposes of illustration, a few examples are given. It has been found that our adjustment
still produces a better approximation than the original, even when the parameter p = 0.1.

Keywords: Nonlinear ODE, nonlocal differential operators, Carathéodory existence and uniqueness,
modified parametrized approximation.

1 Introduction

A strong mathematical tool for simulating processes with nonlocal behavior in nature is a nonlinear ordinary
differential equation with nonlocal operators, such as fractional differential operators, fractal operators and
fractal-fractional differential operators [[1]-[4]]. Their applications can be found in a variety of academic
disciplines, such as chaos, where researchers are concentrating on underlying patterns and deterministic
laws of dynamical systems that are highly sensitive to initial conditions and were previously believed to
have completely random states of disorder and irregularities. In epidemiological modeling, the idea focuses
conceptually on the complex shift in health and illness patterns as well as the connections between these
patterns and their demographic, economic and sociologic antecedents and effects. In the field of signaling
theory, a body of theoretical research on interspecies and intraspecies communication is the core area of study.
Aquifers, turbulence, and other media commonly show fractal features in porous media. The conventional
diffusion or dispersion equations, which are based on random walks in empty space, do not apply to fractal
media. To solve this, scales for space and time need to be modified, as well as ideas like velocity and
distance need to be redefined for fractal media. Following, fractal space-time redefines fundamental physics
concepts like velocity. Researchers from various backgrounds have adopted these notions as a result of their



broad applicability to create theoretical and practical investigations. These differential equations are used
in modeling to forecast how particular processes will behave in the future as a function of time or space.
These mathematical equations must, however, be resolved analytically or numerically in order to accomplish
this. However, most often because of nonlinearities, they cannot be resolved by analytical approaches.
Therefore, numerical schemes make good candidates for generating numerical results that may then be used
for simulations. However, theory on fixed points has been created, such as the Carathéodory method, which
was well-developed for ordinary differential equations, to ensure that such models have precise solutions.
There are undoubtedly a lot more. Several techniques for solving conventional ordinary differential equations
have been expanded in recent years to include nonlocal differential operators. One first-order numerical
method is the Euler method, which can be used to solve ordinary differential equations with a specified initial
value. It is the simplest Runge-Kutta method and the most fundamental explicit method for the numerical
integration of ordinary differential equations. In order to identify an unknown function that satisfies a given
differential equation, predictor-corrector techniques are used to integrate ordinary differential equations.
Perhaps less well-known is the parametrized approximation, which is a modified Runge Kutta method or a
more broad approximation capable of recovering the Heun, Ralston, and Midpoint approximations [[6]-[10]].
Lagrange, linear, and Newton interpolation are only a few examples of polynomial interpolation techniques
that have been utilized extensively to create various numerical schemes. We should highlight that polynomial
interpolation, in the context of numerical analysis, refers to the interpolation of a given data set by the
polynomial of the lowest degree that traverses the data set’s points. We will first examine the effectiveness
of the parametrized technique for conventional differential ordinary differential equations in this study, and
then we will broaden the applicability of this method to nonlocal differential operators.

2 Definitions, problems and hypothesis

In this section, we present some definitions, theorem and properties that will be used in the paper. Let f be
differentiable within [0, 7] then

Fe po *Lt T —7)dT
D0 = [ 1K= (1)

where

K() = t_o‘,exp<—1aat> or E, <—1O‘ata>, 2)

1 1
’Y(Oé) = F(a) orm,0<a§1.
Br i) — qig 1) = ()
thf(t) _tlllglt t? —tﬁ 76 > 07 (3)
FF o, _ I p B ! . — Adr
SR =~ §00 [ f o K (=) (W

In the rest of the paper, we will consider a general Cauchy problem

FED{Py(t) = F(t,y(t) ift>0
y(0) =yo, ift=0
For this problem, we will assume that the function F (¢,y (¢)) is Carathéodory, that is to say
i) F (t,y (t)) is continuous in y for all fixed .
ii) F (t,y (t)) is measurable in ¢ for each fixed y.



iii) There exists a function m (t) positive such that
[F &y (@) <m(t),V(ty) eR (6)

where the function m (¢) is Lebesgue integrable in ¢.
In the case of singular kernel, we shall assume that F' (¢,y (t)) is a—continuous that is to say if F (¢,y (t))
is continuous in y for all fixed ¢, there exists a function G (¢,y (t)) such that

Gty () = (t—7)"" F(ty (1) (7)

is continuous.

But above condition without be necessary if we consider the nonlocal operator at ¢ > 0, which indeed is
the case in general. The reason is that if F' (¢, (t)) is continuous on y for each ¢, then since t*~! is absolutely
continuous, it is concluded that (t — 7)* "' F (¢, (t)) is continuous where 0 < 7 < t.

3 Existence and uniqueness

In this section, we consider the general Cauchy problem with fractal-fractional

FEDMPy () = f(ty (1) ift>0 .
y(0)=yo, ift=0 ’

We consider this case since when 5 = 1, we recover all fractional derivatives, when o = 1, we obtain a fractal
derivative and if & = § — 1, we recover classical.
To cover all cases, we consider the case with the following kernels

1 « 1 a t—¢
O(t — t),—E,——1t" d .
()’1—anp< 1—a)’1—a a( 11—« )an I'(«)
In this section, we shall present only the last point of the Carathéodory principles, since first and two
are obtained directly. Additionally, we will also present the Lipschitz condition to insure the uniqueness.

g‘ny(t):f(t,y(t)) ift>0 (9)
y(0) =yo, ift=0 '
We assume that f (¢,y (t)) is Carathéodory.
y(t) =yo+ fy BT f (r,y (7)) dr, ift>0
. (10)
y(0) =yo
We define .
{ Ay(t):y0+f0 /BTﬁilf(Tay(T))dTa 1ft>0 . (11)
y(0) = o
Applying the absolute value on both sides yields
t
Ay O] =l + 5 [ 751 1F (roy (7). (12)
0

Since f (t,y (t)) is Carathéodory, we can find m (t) > 0,V¢ € [0,T] such that

If (my (M) <m (). (13)



Therefore .
Ay O] =l +5 [ 7 tm(r)dr.
0
But m (t) is Lebesgue integrable also t?~!m (t) is Lebesgue integrable. Thus,
[Ay ()] = [yo| + BM (t) = M (t)
where M (t) is Lebesgue integrable. Therefore, A satisfies the last condition.
t
Ay = Aol =8 [ P2 If ()~ £ (o)
0
Since f (t,y (t)) is Carathéodory, then there exists & (¢t) > 0 such that
[f Gyn) = f (& y2)| < k@) [yr -yl

Therefore,

IN

t
Ay — Aol < B / Uk (7)o 1ot — vl dr

1k (7)o ly1 — yallo, T7
Q1 — v2llo

INIA

which completes the proof.
We consider next the following problem

FEEDMPy(t) = f(ty(t) ift>0
y(0)=yo, ift=0 :

We convert above into

{ y(t)=(1—a) Bt Lf (ty () +aB [y 777 f (ry (7)) dr, ift>0
y(0) =wo

We define the mapping

Ay(t) = (1—a) B Lf (ty (1) + aB / P91 F (r,y () dr

We evaluate

Ay ()] < (1—a)B° 1 f(ty (1) +a5/0 P (ry (7)) dr
< (1- a)ﬂtﬁ_lm (t) + aT? /tm (r)dr
0
< M(t)

where M (t) is Lebesgue integrable.

Ay — Agal < (1—a) 5 |F (boan) — f (6 32)]
tap / P () — f (7o) dr
0
< (1) Bk (1) lys — vl

t
Jrozﬁ/ =1k (1) |ly1 — yo| d7
0

(18)

(22)



which concludes the proof.
We consider now the following Cauchy problem

{FFPD“% y=f(ty@®) ift>0
(

(t
0) =yo, ift=0

We convert above into

= a) [P (ry () (=) hdr, i t>0
y(0) = yo
We define the following mapping
Ay(t)::5J/t75‘1f<7wy<7o><t—-7>aldT.
I'(a) Jo

We evaluate

Ay (t)] < J;Aﬂ*fmmmw—ﬁ“m

g tT[Fl — ) tar t T,y (T T

< o [ e dALﬂ7MDM
B

< FgB e /m
L

< FB A

< M(1)

which is also Lebesgue integrable. Therefore

A9 = Mgl < s B 0B ) bl o =

which completes the proof.
We now consider the following problem

{5FED?’ﬂy(t)=f(t,y(t)) ift>0
y(0) =yo, ift=0 :

We convert above into

{ y(t) = (1=a) BP~1f (ty (8) + oy Jo 7071 (g (7)) (8 = 1),

y(0) = wo

We define the mapping

< (1- )&5 "kl 11 = y2lloo + TP Kl o llyr — v2lloo
< (M=) Bt k| o + T |1kl ) vy — v2loo
< K Hy1 - y2||oo

ift>0

Ay (t) = (1—a) Bt77F (8, y () + 0‘5/0 A (ry(n) (=) dr.

I'(a)

(24)

(25)

(26)

(28)

(29)



We evaluate

Ay (1) < (1—a>ﬁtﬁ—1|f<t,y<t>>|+‘*§) [t (32)
0

X/o f (o (7)) dr

< (1—a)BtPtm(t) + ’6) (t, B8, / m (
< (1—a) Bt 'm(t) + F(i)B(t,ﬁ,a)M(t)
< M)

where M (t) is Lebesgue integrable. Therefore
[Ayy — Aya| < (1= a) BT [kl llyr — w2l (33)

ﬂ) (£, 8.0) K]l o2 — well

+

o

. +F%§>B i, ) el
R (0)

A

191 = w2l

which concludes the proof.
In the next section, we shall derive the numerical scheme for the considered Cauchy problems based on
the parametrized approach. To yield accuracy, we will modify the scheme.

4 Background for parametrized method for ordinary differential
equations
In this section, we present background of the parametrized method. We shall present exactly the procedure

when the derivative is classical. We shall note that this method using the classical derivative was already
given in [7]. To derive this method, the following general nonlinear equation is considered

w(t) = u(?)
{ v (0) o . (34)
Applying the integral on both side to obtain
t
u(t) =u(0) + fo v (7, u(r))dr, . (35)
u(0) = ug
We consider ¢t = t41 and t = ti, to have after substracting
tht1
u(tgs) = u(te) + / v (r,u(r))dr. (36)
tk

Within [tg, tr11], it was suggested that the function « (7, u (7)) could be approximated

¥ (ryu (7)) ~ (1 - ;p) Y () + 2—1/)7 (st ) (37)



Replacing yields
1 h
U1 = Up + (1 - 2p) hy (e, ue) + 3,7 (trt1, Ut) - (38)
The ug41 and tx41 that appeared on the other side of the equation were replaced, and their expressions were
specified in [7] as a consequence of the observation that the obtained results led to an implicit scheme that
was occasionally burdensome when doing simulation. Thus, we get

1 h ~ ~
Up41 = up + (1 - 2p> hy (tr, ug) + 2,7 (tht1, Urtr) (39)

where t~k.+1 =ty + ph. For the function @1, we have

_ tp+ph
Ukr1 = U + / v (r,u (7)) dr. (40)

tr

Here is approximated by Euler approach to obtain
U1 = ug, + phy (tg, ) . (41)

Therefore, the numerical scheme is given as

Upt1 = Ui + (1 — 21p> hey (te, ur) + %7 (ti + ph,ug + phy (tx, ug)) - (42)
Note that when a = 1, = 1/2 and o = 2/3, the parametrized method corresponds to Heun’s, midpoint
and the Ralston’s methods for the Cauchy problem, respectively [[6]-[10]].

We discovered that the method is less accurate when the parameter p is smaller than 0.5 as we can
achieve a very high error when comparing the exact answer and the numerical solution by solving a few
ordinary differential equations. Because of this, we reexamined the process and offered a modified version,
notably for getting the predictor component. Because we stop at t,, + ph for the predictor section, we lose
(1 — p) h step and as a result, accuracy is lost. The Euler approximation will be used to simply generate a
modified version in the sections that follow.

1 h
Ugt1 = Up, + (1 - 2p> hry (th, ur) + %W’ (th1s Urg1) - (43)

Knowing that explicit terms make the calculation complicated, we reformulate the aforementioned equation
as follows using the same concept introduced in the parametrized method:

1 h -
Ukl = U + (1 — 2p> hry (t, ur) + %7 (thg1, Urs1) (44)

where tg11 = tx + h. For the function uy41, we have

tr+h
U1 = Uk +/ v (7 u(r))dr. (45)
tg
Then, the predictor is obtained as
ak—i—l = U + h"}/ (tk, uk) . (46)

Thus, we have the following numerical scheme

1 h
U1 = Uk + (1 — 2,0) hey (t, uk) + 27)’7 (tk + hyup + by (te, ur)) - (47)



Example 1. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

yr(t) = 2 (48)
y(0) = 0.

The following is the exact solution to the equation above. To check the method’s accuracy, we will compare
the precise solution to the parametrized and our modified versions.

3
)= —.
y(t) =3
The obtained graphical representations are presented in Figure 1 and 2 below. We shall note that, in Figure
1, we present the comparison between the exact solution and the numerical solution by the parametrized
method. While in Figure 2, we present the comparison between the exact solution and the numerical solution
obtained by the suggested method. We achieved this when the parameter is 0.4 and the step size is 0.001.

p=0.4

Approximate solution

VB O e Exact solution |

0251

0.2}

y(t)

0151

0.1r

0.05

t

Figure 1. Numerical simulation for Cauchy problem for p = 0.4.



p=0.4

Approximate solution

= = = = Exact solution
0.3

025t

0.2f

y(t)

015}

017

0.05¢

t

Figure 2. Numerical simulation for Cauchy problem for p = 0.4.
The error is presented in Table 1 below.

Table 1. Error for the function y (%)

Predictor With p Without p
p=1 1.6666 e — 07 1.6666 e — 07
p=08 1.7990e — 04 9.8333 e — 05
p=06 31991 e—-04 1.9983 e —04
p=04 41988 e—04 2.9983 e — 04
p=02 47985 ¢e—04 3.9983 ¢ —04

Example 2. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

i) = -y (19)
y(0) = 1.

The following is the exact solution to the equation above. To check the method’s accuracy, we will compare
the precise solution to the parametrized and our modified versions.

y (t) = exp(—1)

The obtained graphical representations are presented in Figure 3 and 4 below. We shall note that, in Figure
3, we present the comparison between the exact solution and the numerical solution by the parametrized
method. While in Figure 4, we present the comparison between the exact solution and the numerical solution



obtained by the suggested method. We achieved this when the parameter is 0.6 and the step size is 0.001.

: p=0.6
Approximate solution
= = = = Exact solution
0.9}
0.8
=071
=
06
0.5}
04
0 0.2 0.4 0.6 0.8
t

Figure 3. Numerical simulation for Cauchy problem for p = 0.6.

»=0.6
Approximate solution
- = - = Exact solution
0.9}
0.8
=077
=
DB
057}
04f
0 0.2 0.4 0.6 0.8
t

Figure 4. Numerical simulation for Cauchy problem for p = 0.6.
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The error is presented in Table 2 below.

Table 2. Error for the function y ()

Predictor With p Without p
p=1 6.1359 e — 08 6.1359 e — 08
p=08 6.6317e — 05 3.6761 e —05
p=06 1.1775e—-04 7.3580 e—05
p=04 15454e—-04 1.1039 e —04
p=02 1.7665 e—04 1.4720 e— 04

5 Parametrized method for ordinary differential equations with
global derivative

We consider the following Cauchy problem

Dgu (t) =~ (t,u(t))
{ R (0) = ug : (50)
Integrating the above equation
w(t) =u(0)+ [y (ru(r)dg(r),
{ u (00) = uo 1)
and ]
{ w(t) =u(0) + [y (rou(m) g (r)dr (52)
uw(0) = ug
At t =ty and t = ti, we have
w(ti) = u(t) + /f () dr (53)

where v (7,u (7)) = v (1,u (7)) g/ (7). Within [tg, tk+1], v (7,u (7)) is approximated by

Y (ru () = (1 - ;p) 3 ) + 5 (). (54)

Adding this approximation to above integral yields

1 1
Upy1 = ug +h { (1 - 2p> v (ks ur) + %7 (trs1, Uk+1)} . (55)
Therefore, the numerical scheme associated to this is given as
1 1 ~
Uppr =up +hq(1- 37 (o, ur) + 3,7 (tht1, Uk41) (56)

where tx11 =t + h and Ugr; = ug + hy (tk, ur). Putting the value of the function g/ (7) yields

(1= %) 7 ) (0 () — 9 (02) } 67)

Ug4+1 = Uk + ~
{ +71pW (tra1, Uky1) (9 (Tr1) — g (tr))

11



Thus, we obtain the following numerical scheme

P uk+(1—;p)v(tk,uk><g<tk+1>—g<tk» (58)

1
+7pv (tx + v, ur + hy (tg, uk))
X (g (tk41) — g () -
Example 3. To illustrate the major difference between the parametrized approach and our modified
version, we consider the following nonlinear equation:
oDgy(t) = t (59)
y(0) = L
where ¢ (t) = sint and exact solution
y(t) = tsint + cost.

The obtained graphical representation is presented in Figure 5 below. We shall note that, in Figure 5, we
present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.55 and the step size is 0.001.

g(t)=sint, p=0.55
Approximate solution '
= = = = Exact solution
10}
5|
"
U I
5
-10 |
0 5 10 15

t
Figure 5. Numerical simulation for Cauchy problem for g (t) = sint, p = 0.55.
Error for the function y (¢) is presented in Table 3.
Table 3. Error for the function y ()

p value Error

p=1 17011 e—-07
p=09 5.0082e — 05
p=0.7 15008 e — 04
p=04 3.0008 e —04
p=03 3.5008 e — 04

12



6 Parametrized method for ordinary differential equations with

fractal derivative

We now present the method for the fractal type of Cauchy problem. We consider the following Cauchy

problem
§Du(t) =7 (t,u(t))
u(0) = ug
where g ¢t Dﬁ is the fractal derivative. Integrating the above equation, we can have

{ u(t) =u(0) + Bfot Py (1, u (7)) dr
u(0) = ug

At t =ty and t = ti, we have

u(tgs1) = w(ty) + ﬂ/t o 1y (r,u(r))dr.

Within [¢g, tg+1], 7 (7,1 (7)) is approximated by

Y (ryu (7)) = (1 - 1) 3 ) + 5 ().

2p

Adding this approximation to above integral yields

+ /3/tk+1 . ) (Bes )
Uk+1 = Uk T.
te +$7 (trt1, Ukg1)
trta 1-— ) tk uk)
Uk+1:Uk+/6/ ’ dr.
th -l-ﬁ’)’ (ths1, Ukt1)

1 1 -
Upt1 = up+B9(1-— 27) v (b, ug) + %W(tkﬂaukﬂ)

Then, we have
Now, we derive

o i
X </3 - E .

Thus, we obtain

1 1 ~
Uk+1 = Uk + hﬁ { (1 - 2> vy (tka uk) + %7 (tk+1a UkJrl)}

P
X ((k+ 17 — kﬁ) .

where
_ tht1
Ugt1 = uzﬁ-ﬁ/ v (th, ug) dr
B B
t t
= up + By (tr, ur) ((k;) - g)

= up + By (tg, up) ((k-l—l)ﬂ—k:ﬂ).

13
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(67)



One can see that when p = 1, we have
1 1 ~
Uper =up+hq(1- 27 (ths ur) + 2" (L1, Uk41) (69)
where
Ug1 = g + by (tg, ur) - (70)

Example 4. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

§UDly(t) = £+t (7
y(0) = 0
where exact solution (543 (B+1
y(t):’g(5+3+ﬁ+1>'

The obtained graphical representation is presented in Figure 6 below. We shall note that, in Figure 6, we
present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.1 and the step size is 0.001.

=0.9,0=0.1
- £=0.9,p=0.1

Approximate solution
- = = = Exact solution

0.6

0.5}

0.4r

y(t)

0.3}

0.2}

0.1

t

Figure 6. Numerical simulation for Cauchy problem for 5 = 0.9, p = 0.3.
Error for the function y (¢) is presented in Table 4.

Table 4. Error for the function y ()

p value Error
p=1 13013 e—-04
p=09 22662 —04
p=0.7 4.1960 e — 04
p=04 7.0907¢ — 04
p=03 8.0556e — 04

14



7 Parametrized method for a general Cauchy problem with Caputo-
Fabrizio derivative

Having this accurate scheme in hand, we can now extent it to the case of Caputo-Fabrizio derivative. To
achieve this, we consider the following nonlinear equation

{ gFD?Z((tg)::'Yu(OL u(t)) ] (72)

We apply the Caputo-Fabrizio integral on both sides to obtain
{u@®=uO)+0-a)ytu®) +afjy(ru@)dr . (73)

At t = ty41 and t = ti, we have

u(tps1) = u(te) + (1 —a) [y o1, wrtr) — v (e, ug)] (74)
tht1
+a/ v (r,u (7)) dr.
tk
Within [tg, tx+1], 7 (7,u (7)) is approximated by
1 1
yrum) = (1= 3 ) () + ooy e i), (75)

where tx11 = tx + h. Adding this approximation to above integral yields
Uppr = up+ (1= ) [y (o1, Unrr) — ¥ (ks ui)] (76)

1 1 -
+ah { (1 - 2/)) v (th, ug) + 27)7 (tk+1,uk+1)}

where
k
Ugt1 :uo+(1fa)fy(tk,uk)+ah27(tj,uj). (77)
§=0
Therefore, the numerical scheme associated to this is given as
upp1 = g+ (L —a) [y (trgrs Ur1) — 7 (e, ur)] (78)

1 1 -
+ah { (1 - 2p> v (b, ug) + 27)7 (trt1s Uk+1)} .

Example 5. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

6Dy (t) = ¢ (79)
y(0) = 0.

where exact solution 5

9 t
yt)=(1—-a)t —I—ozg.

The obtained graphical representation is presented in Figure 7 below. We shall note that, in Figure 7, we
present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.3 and the step size is 0.001.

15



@=0.3,p=0.3

Approximate solution
- = = = Exact solution

0 0.5 1 1:5 2 2.5
t
Figure 7. Numerical simulation for Cauchy problem for o = 0.3, p = 0.3.

Error for the function y (¢) is presented in Table 5.

Table 5. Error for the function y (¢) for different values of a.

p value Error for « = 0.3  Error for « = 0.6  Error for o« = 0.9
p=1 1.5000 e — 07 3.0000 e — 07 4.5000 e — 07

p=09 1.3485¢ — 05 2.6970 e — 04 4.0455 e — 04
p=20.6 5.3985 e — 04 0.0011 0.0016
p=04 8.0985 e — 04 0.0016 0.0024
p=03 9.4485 e — 04 0.0019 0.0028

8 Parametrized method for a general Cauchy problem with Ca-
puto derivative

We consider next the following Cauchy problem with the Caputo derivative

§ Diu(t) =y (t,u(t))
0+t )
{ w (0) = ug . (80)
Integrating the above equation
w(t) =u(0) + ri Jo v (Tu(r) (¢t =7)" " Hdr (81)

At t = tg41, we have
u(tga1) = u(0) + ﬁ fot’““ v (7w (7)) (trr — 1) Hdr
k

=uw(0) + 75 D S Y (ru () (kg — ) e (82)
j=0
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Applying the Riemann-Liouville integral on both sides yields

k . o
U(tk+1)=u(0)+F(1a)Z{ (1 2p)7(tav i) }

§j=0 +ﬁry (tj+1auj+1) (83)
tit1 a—1
X tj” (tgyr —7)° dr
and i
1- L) ’}/(t',”U.‘)
wtn =)+ gy 3] (1 a) 7
Te) Z +557 (Ejr1s ujt1) (84)

j=0
)k =7+ 1) = (k= )"}
Arranging above yields

u (trr1) = u (0) + v { (1 - i) 7 (tk, uk) }

(a+1) —I-ylp’y (tht1, Ukt1)

e N { (1= %) ) } - (85)

I'(a+1
O | ik (41, u00)

Ak —j+1)% = (k- )"}

where t;41 = tx + h. Noting that

1 k ti+1
T = wO s > [ ) (-0 (56)

_ L N (b1 —15)"
= w0+ St | }

(thr —tj41)"
_ e 5 (k—j+1)°
= ’U,(O>+F(O[+1)Z’Y(tj,u]'){ 7(k*j)a }

Example 6. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

§DMy (1) = ¢ (87)
y(0) = 0.
where exact solution r)
t) =t L
y () I'(a+3)

The obtained graphical representation is presented in Figure 8 below. We shall note that, in Figure 8, we
present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 1 and the step size is 0.001.
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@=0.9,p=1
40 T s T

Approximate solution
= = = = Exact solution

357

30

25|

t

Figure 8. Numerical simulation for Cauchy problem for « = 0.9, p = 1.
Error for the function y (¢) is presented in Table 6.

Table 6. Error for the function y (t)

p value Error for « = 0.1  Error for « = 0.3  Error for « = 0.9

p=1 0.0022 4.1153e — 04 6.2403e — 07
p=09 0.0028 0.0011 0.012
p=0.6 0.0044 0.0032 0.0047
p=04 0.0056 0.0046 0.0079
p=0.1 0.0072 0.0067 0.0105

9 Parametrized method for a general Cauchy problem with Atangana-
Baleanu derivative

We consider here the Cauchy problem with the Atangana-Baleanu fractional derivative

607 Diu(t) = (t,u(t))
0 t )
{ u(0) = ug (88)
Integrating the above equation, we have
u(®) = u(0) + (1= a)y (b u(t) )
+ﬁ Jov(mou(r)(t—7)"""dr~
At t = tp41, we have
u (tk+1)t= u(0) + (1 = @)y (tpt1, Ug41) (90)
+ri Jor Ty (o (7)) (b — 1) T

18



and
(tk+1) =u(0) + (1 — )y (trt1, Uk+1)

_ . 91
Q>ny“ ) (b1 — 1) dr o)
Nevertheless, the above could be 1mphc1t therefore to remove this problem, we rewrite as follows

u (try1) = u(0) + 1*04 (tht1, Urs1)

k
B = v (t;,uy)
F(ah+1 { . } (92)

j+1auj+1)

-+ = (k—5)"}

Using the approximation of the function «y (7, u (7)) within [tg, tx11], we get

u(tpr1) = w(0) + (1 — @)y (tkt1, Uk41)

o 1 - L) Y (tk uk)
ah 0 ’
AR vCEsy { >

+ tht1,U
i 2,,7(1;+1 Uk+1) (93)
4 _an® Z{ (1 z)w(tj,uj) }
T(a+1) = Jrip,y (tj1, 1)

< {(k—j+1)" = (k—j)"}

where

Upyr = uw(0)+ (1 —a)y (tr, ux) (94)
ahe & (k—j+1)°
+F(a+1)j§7(tj’uj){ Srhrt

Example 7. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

0PCDMy () = (95)
y(0) = 0.
where exact solution r)
H=(1—-a)t?+at®T?—"2_,

The obtained graphical representation is presented in Figure 9 below. We shall note that, in Figure 9, we
present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.8 and the step size is 0.001.
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«=0.95,0=0.8

Approximate solution
S | Exact solution

30 1

257

=20t

W

15

1071

Figure 9. Numerical simulation for Cauchy problem for o« = 0.95, p = 0.8.

Error for the function y (¢) is presented in Table 7.

Table 7. Error for the function ¥ (t)

p value Error for « = 0.1  Error for « = 0.5  Error for « = 0.95

p=1 21975 e — 04 3.6668 e — 05 2.3202 e — 07
p=09 2.7587e — 04 4.5719 e — 04 0.011
p=20.6 4.4423e — 04 0.0017 0.0046
p=04 5.5647e¢ — 04 0.0026 0.0069
p=0.1 7.2483e — 04 0.0038 0.0103

10 Parametrized method for fractal-fractional with the exponen-

tial law kernel

We can now present the following problem with fractal-fractional derivative with the exponential law kernel

{ §PEDY u(t) = (t,u (1))
u(0) = ug

The above problem can be converted to

{ 6 Diru(t) = BtP 1y (tu(t))
u(0) = ug

We apply the Caputo-Fabrizio integral on both sides to obtain

{ u(t) =u(0)+ (1 —a)Btlly(t,u(t)) +ab fg =1y (1, u (7)) dr

20
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At t =tg41 and t = ti, we have

wlter) = ult)+ (0= a)B |61y (b, ) — 6]y (b ue) (99)

)+
th+1
p-1 dr.
+o¢ﬁ/tk TPy (ryu (7)) dr

Within [tg, tx+1], 7 (7,u (7)) is approximated by

yrum) = (1= 3 )t + oy b i), (100)

where t;11 =t + h. Adding this approximation to above integral yields
— B—1 o~ B-1
upr1 = up+(1—a)p {tkﬂﬁ’ (tkt1, Uk 1) — T, (tk,uk)} (101)
1 1 ~
taq(l- 2)7 (tk, uk) + 2,7 (k1 Ukt1)

B B
X (tk-i-l - tk)

and we get
upy1 = up+(1—a)p [t[;jlh (thar, Tpg1) —tp 'y (tk‘vuk)} (102)
vant (1- = ¥ (tks uk) + i’Y(tk+1 Up+1)
2p ’ 2p ’
X ((k +1) - lf)
where
g1 = (I—a)pBty "y (tr, ur)
n
. B B
+ah® 3 () (G+1) = 57). (103)
=0

Example 8. To illustrate the major difference between the parametrized approach and our modified version,
we consider the following nonlinear equation:

o FDRy(t) = (104)
y(©0) = 0.
where exact solution )
y(t)=(1—a)BtPT? 4 apt? 3/ + 3. (105)

The obtained graphical representation is presented in Figure 10 below. We shall note that, in Figure 10,
we present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.5 and the step size is 0.001.
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Figure 10. Numerical simulation for Cauchy problem for & = 0.9, 3 = 0.4, p = 0.5.
Error for the function y (¢) is presented in Table 8.

Table 8. Error for the function ¥ ()
p value Error for 3 =0.4 Error for « = 0.6 Error for a« = 0.9

p=1
p=209
p=20.6
p=04
p=0.1

1.6560 — e7
2.2334 — €5
8.9834 — e4
1.3483 — e4
2.0233 — e4

2.0254 — €7
3.0951 — b
1.2441 — e4
1.8672 — e4
2.8018 — e4

2.2464 — e7
4.1672 — eb
1.6736 — e4
2.5115 —e4d
3.7684 — e4

11 Parametrized method for fractal-fractional with the power law
kernel

We consider next the following Cauchy problem with the fractal-fractional derivative with power-law kernel

ST DR (t) =7 (¢ u (1))
{ 0 (0) = . (106)

The above problem can be converted to

C Nna — B—1
{ 6 Ds U(t)u (0/;’15: J (tu(t) (107)
Integrating the above equation
t
u(t) = F(ﬂa) /0 Py (ru () (E—7)* dr. (108)
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At t = tg41, we have
u(tin) = o f*w Ly (ryu (7)) (bper — 7))V dr

k
— % Z 7+1 — 7_ U(T)) (tk-',-l _ 7_)04—1 dr (109)

Applying the Riemann-Liouville integral on both sides yields

=] (o abm) N

+2p (J+17u7+1)
t]+1 ﬁ_l (tk+1 — T) a-l dT

X
and
1
o %, ’Y(tjuuj)
U(tpt1) = pi t+5 ! ( ZP)
t+1
< {5 (ti+~ﬂ= o) - (tM» o)}
where
B o
Upe1 = (—Ztkﬁ“ 3y (t) (112)

< aoa) -2 (o)}

where tj41 = t; + h. Arranging above yields

u(thyr) = % { (11_ 2%) ’Y(tic,wc) }

+3,7 (tk+17 Uk41)
xt TP B (1,8, 0) — B
k+1 y Oy & tk+17 )
k

B (it 0.0))
s 1{ (1-2) 7ty } ' (113)

+2,7 (41, uj41)

0
a+£—1 t;
2 {5 (2,0.0) - ()

Noting that

k ti+1
Upy1 = F(Ba) Z/ 7y (1, u (7)) (begr — 1) dr (114)

k+1 Y (tjauj)

t .
{ (b20) (i)}
eyt ]
Example 9. To illustrate the major difference between the parametrized approach and our modified

version, we consider the following nonlinear equation:

0Dy () = (115)
y(0) = 0.
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where exact solution r 5
()= LB javare (116)
I'(a+p+3)
The obtained graphical representation is presented in Figure 11 below. We shall note that, in Figure 11,

we present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.3 and the step size is 0.001.

3.5

Approximate solution
= = = = Exact solution

257}

y{t)

1.5

0.5}

0.5 1 1.5 2 25
t

Figure 11. Numerical simulation for Cauchy problem for o = 0.7, 3 = 0.6, p = 0.7.
Error for the function y (¢) is presented for o = 0.7 in Table 9.
Table 9. Error for the function y (£)
p value Error for 8 = 0.25 Error for 5 = 0.55 Error for § = 0.85

p=1 3.6762e¢ — 07 8.3241e — 07 1.3197e — 06
p=038 2.7601e — 04 7.4510e — 04 0.0014
p=0.6 5.5238e — 04 0.0015 0.0029
p=04 8.2876e — 04 0.0022 0.0043
p=02 0.0011 0.0030 0.0057

12 Parametrized method for fractal-fractional with the Mittag-
Leffler kernel

We consider here the Cauchy problem with the fractal-fractional derivative with Mittag-Leffler kernel

EEM peeBy, () = ~ (t,u (t))
{ 0 i) = | (117)

The above problem can be converted to

ABR Doy, () = BtF= 1y (t, u (t))
{ a0 S, =0 ' (118)
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Integrating the above equation, we have

u(t) =Bt (L —a)y (tu(t) + F(a)/o BTy (rou (7)) (¢ = 1) dr. (119)

At t = tg41, we have

u (tktl) =B(1—a)ti v (tk+17?7k+1)1 (120)
oy o TPy (o (7)) (g — 1) dr
and 1
u(tysr) = B(1 = @) i1y (b, T
(121)

k
t; _ —1
o O S T (1w () (tea =) dr
§=0
Nevertheless, the above could be implicit therefore to remove this problem, we rewrite as follows

w (trs1) = Bty (1= )y (b, Uns1)

k 1
afb (172*)’7(753‘,16]') }
e g 122

: )J’ZO{ +2,7 (Ej1,uj41) (122)

at+pB—1 tj tj
th+l {B (tkiivﬁaa) 7B(m?ﬁaa>}

Using the approximation of the function «y (7, (7)) within [tg, tx+1], we get

(1= ) Bty 1y (tryr, Tar)

_ 1 s
+r‘E§>Z{ (1= %) 6) } (123)

+3,7 (Gj+1, wj41)

0
a+p—1 t tj
it (i (12.010) 5 )

where
ﬂk+1 = (]. — a) Bt£717 (tk7 ’U,k) (124)

k
OLB a+B—1
+—=— E v (tj,u;)t
I'(a) = SR

o) o(00)
tra1 tet1

Example 10. To illustrate the major difference between the parametrized approach and our modified
version, we consider the following nonlinear equation:

o MDDy (1) = ¢ (125)
y(0) = 0.
where exact solution
abT (ﬂ + 3) ta+,6’+2'
I'(a+B+3)
The obtained graphical representation is presented in Figure 12 below. We shall note that, in Figure 12,

we present the comparison between the exact solution and the numerical solution obtained by the suggested
method. We achieved this when the parameter is 0.7 and the step size is 0.001.

y(t)=(1—a)pt? 2+ (126)
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Figure 12. Numerical simulation for Cauchy problem for &« = 0.9, 5 = 0.6, p = 0.7.
Error for the function y (¢) is presented for o = 0.9 in Table 10.

Table 10. Error for the function ¥ (t)
p value Error for § = 0.1 Error for 5 =0.6 Error for § = 0.8

p=1 1.2310e — 07 6.1391e — 07 7.6676e — 07
p=09 2.7437e — 05 1.8827e — 04 2.6786e — 04
p=0.7 8.2557e — 05 5.6603e — 04 8.0511e — 04
p=0.5 1.3768e — 04 9.4379¢ — 04 0.0013
p=02 2.2036e — 04 0.0015 0.0021

13 Consistency and stability analysis

In this section, we present the theoretical analysis of the suggested scheme. Without loss of generality, we
present the analysis for fractal-fractional cases as the results of others could be obtained by setting the fractal
dimension 1 and fractional order 1. We start with the fractal case. The aim in this analysis is to show that
if u (t,41) is the exact solution and u,; is the approximate one.

Jin [ (tn1) — | = 0. (127)

If %41 is a perturbed term of w41
[Unt1| < C luol (128)
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where C' is a constant. Then, we evaluate
w(tn) = tn &+ 70 TPy (ru () dr
|u (thrl) — Un+1 = _hﬁ { (1 - ﬁ) Y (tna un) + ﬁ'y (tn+17 a’rLJrl)}
X ((n +1)° - nﬁ)
B Lyt 871y (7w (7)) dr = WO (b, un)
X ((n +1)° - nﬁ)

1
35 17 s nia) =3 (b wa) |7 (04 1)~ n?)

IA

[ (tn) — un| +

tn+1 tnt1
< u(tn) — unl| + ‘5/ Tﬁ_l’y(T,u(T))dT—/ Tﬁ_lv(tn,un)dr
tTlr t7l
1
gy 11 st a) =5 (b wa) |27 (04 1) = n?)
[
< Jutn) — unl + 8 / Py (1w (7)) = 7 (tay )| d
tn

1
+% 1Y (tngts Ung1) = (bny un) | P ((n +1)° - nﬂ) .

Since the function « (¢, u (t)) is differentiable, by the mean value theorem we have

tny1

o (bsn) =] < ulta) —wal + Bl (eru(e))l [ 77 (r—ty)dr

|
tn
1
— B+1 B_ B
g, e ule) | ()7 - n)
< Julta) = unl + v (eru ()| B
e ((" + 1) - n,6+1)

AN

x 8
—n ((n +1)° - nﬁ)
Then, we have
u (tn-l-l) — Unp+1 <1.
h—0 | u(ty) —un |~

We can find ¢ < 1 such that
lim fu (tp41) = tna| < limJu(fo) — uol ¢ = 0.
n—oo n—o0

Thus
li tn — Upt1| = 0.
P |u (tng1) = Unal

l

(129)

(130)

(131)

(132)

(133)

Let uy, 11, u, and ug be the perturbed terms of w11, u, and uy respectively. The perturbed equation is given

as

Upt1 + Upr1 = un—l-ﬂn—l—hﬁ((n—kl)’g—na)

x{ (1—$)w(tn,un+ﬁn) }

+2*1p’7 (tns1s Up gy +upyy)
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Thus, we write

Unp1 = G+ hP ((n +1)° - nﬁ) (135)

X { %1_ 7)) ['Y (tnvun+an) _ry(tn’u")} }
+271p Y (tn+17ﬂfl+1 + u'zr)z+1) - (tn+1’u’zl)l+1):|

Taking the norm of both sides yields

vl < a4+ (0407 =) { (1= 32 ) Ell + 55l (136)
But
@ 4] < [l + 1% fin | L (0 4+ 1) = n?) (137)
where L is the Lipschitz constant. Then
7 RN Y 5_ )G L B _pf
(s| < [fGn] + R ((n+1) —n)\unu 1—%+%L((n+1) —n) (138)
Since § < 1, we have that
m+1)7 < n+1, (139)
n? < n
m+1)° =0 < n+l-n=1
Therefore Vn > 0
(n+1)” —nf <1. (140)
Then
~ 1 W
[Uni1] < ||+ h° |u”|L{1_2,0+2pL} (141)
1 AP
< Lluy|(1+h°{1——+=—L}).
- lul( - { 2p+2p })
On the other hand,
hB
Wl < Lol (1+ertdio LM
ml < ol (1o {1- o4 pr)).
1R\
Uo| < Lol (1+hP31——+ —L 142
wl < el (1o {1- g porl) (142
1 W "
Uil < L"|To (1+h6{1+L}>
[tnt1] |t 5 T

which completes the proof.
Remark 10. When 5 = 1, we have

~ _ 1  h "
[l < L fiio| (14+h 1= oot Lo ) (143)
2p 2p
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When p =1, we have

~ - h "
|tnt1] < L™ |up <1 + 5 {1+ hL}) . (144)
When p = 1/2, we have
Unt1] < L™ [o| (1 + A2L)". (145)
When p = 2/3, we have
~ "~ 3  3h "

We now present consistency and stability analysis for the fractal-fractional Cauchy problem with exponential
decay kernel. To achieve this, we evaluate

B-1
w(ta) + (1 - a) B [ Fraad (et o) ]
o [ T (7 (7)) dr —
[u(tnt1) — Unt1]l =| — (1= @) Bltny1y ns1s uny1) =ty (En, un)] (147)
—ah? {(1 - 2*1,)) Y (tna un) + iry (tn-‘rl’ u"'i‘l)}
X ((n +1)° - n3>

< |u (tn) - un‘ + (1 - O‘) 515&;11? |U (tn—i-l) - un+1|
+(1—a) BIL Ju(ty) — un|
B [ T8 [y (7,0 (1) = (b, un)] dr
x ((n+1)° = n?)

«
3517 1 tnastinen) =t )| (4 1) = )

_|_

Since the function 7 (¢, u (t)) is differentiable, by the mean value theorem we have

|u (tn—i-l) - un-‘,—1| S (1 + (1 - O‘) ﬁnﬁilhgilL) ‘u (tn) - Un|
+(1=a) B+ R L [ (tg1) — tnan (148)

+af |y (c,u(c))] /f - 7 (r —t,)dr
EAACHION L (CRR VR
and

|u (tn+1) - un+1| ( % (,i __|_ i;ﬂ__laf)f?_lll ) S |’LL (tn) - un' (1 + (1 - a) ﬁ (nh)671 L)

*% [y (e u (@) 17 (n+1)" = ) (149)

B ((n—l— 1P+ —n5+1)
B (e u (@) { P "

—nf ((n + 1) - nﬁ>
Then, we have

<1 (150)




We can write
Lim fu (1) = una| < lim - fu (to) — ol ¢"
n— 00 n—oo

where ¢ < 1. Thus

}lllm U (tnt1) = Unt1] = 0.

We now evaluate |@,41|. Note that

tﬂ 1 [ 0 (tn+1au£+1 =+ 7—’*£+1) :|
et - (tn-l—lv qu+1)
RS [ Y (b, Un + Up)

" - (tnv un)

(1_L> { Y (s Un + Un) ]

2p = (tn, un)

+L [ v (t'n+1vﬂfl+1 _!_UZ-H) }
2 - (tn-i-laufH_l)

[Unt1] < fun|+(1—a)B

+ah” ((n +1)7 - nﬂ)

Using the Lipschitz condition of the function ~ (¢, (t)) with respect to u, we get

[Unt1] = |un|+ (1 —a)B(n+ )Pt Rf1L [tns1| + (1 — ) BnPthP =1L |,

s (=) {1~ &) e+ ..

But N
[ 1| < [ilo] + (1 = @) BEL fiin] + ah” LY fis| (GG +1)° = 57)
j=0
where L is the Lipschitz constant. Then
[Unt1] < fun|+(1-a) 6hﬁ71 (n+ 1)6_1

n

x 4[| + (1 — @) B (nh)’ " L+ ahPLy " Jii]
j=0

~ ~ 1
+ (1 — @) B P~1L |30, | + ah® |10,| L {1 - }

2p
OéhB ~ B—1 B - ~
+7L [to| + (1 — ) B (nh)”" " L+ ah LZ\uﬂ
§=0
On the other hand, we have
U :u0+(1—a)ﬁt§_l (to,Uo +Oéﬂ/ tQ,U,o)d
For ty = 0, thus
Uy fquraB/ to,uo)dequrahﬁ (to,uo) -

Therefore
1| < [to| (1 +ahPL).
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(154)

(155)

(156)

(157)

(158)
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We write

ue =u1 + (1 —a) BRP 1y (t1,u1) + ahPy (t1,u1) (25 — 1) ) (160)
Then, we get
|ﬂ2| < |a1| + (1 — a) 6h’8_1L |ﬂ1| + ahﬁL |1~Ll| (161)
< Ju|(1+ (1 —a)Bh" 'L+ ah’L)

ldo| (1+ah’L) (1+ (1 — ) BRP71L + ah’L)
C' || -

IAIA

We assume by recurrence that for n > 1
|Uun| < C [tio] - (162)

We want to show that this is also correct for |t,11]. So, we evaluate

fUnsa] < il + (1 —a) B (n+ 1) (163)
x 4[| + (1 — @) B (nh)’ " L+ ahPLy " Jii]
j=0

1
+ (1 — @) BRI |30, | + ah® |i,| L {1 — 2}
1

ahP - _ N
+2—pL o] + (1 — a) B (nh)” 1L+ah5Lj§:;)\uj|

Arranging above leads to

Co+(1—a) =t (n+1)""
X {1 +(1—a)B(nh)’ 'L+ ahﬁL(?g}

i< ~ _ 164
[t < fiol ¢ (1 —a)BhP~InP~1LCY + ahPCoL {1 - ﬁ} "
+2 {14 (1 - 0 ) Lo+ a1 )
Thus, we have =~
Ui | < Cy [io] - (165)

which completes the proof.
We now present the analysis of consistency and stability for the fractal-fractional Cauchy problem with
the power-law kernel.

way Jor T () (b = 1)

(0 (fng) — tUnsa| = | —Ta) {(1 - i) v (L ug) + 557 (tj+1,uj+1)} (166)

]_
-1 t; t;
<t B (7.8.0) - B (55 8.0) )
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Therefore

u (tn1) —

Thus, we have

L
I (@)

n

(1w (7)) (tny1 — T)Oﬁ1 dr

(1 - ﬁ) 7 (5, uj)

+a57 (41, u41)

E:““ i

t +1 1 a—1
e (th41 —17) {

}dT

j= O
BN o .
< Fiz (tnr = 7)1y (t,u5) =y (7, u (7)) dr
(OL =0 tj
/B n /tj+1 B_ 1
+ T tpt1 — T ¥ (1, wip1) — v (E,ug)| dT
QPF (a) = . ( + ) | ( J+ J+ ) ( J J)|
- it a—1
< ( (c,u( |/ (tny1 — 1) (T —t;)dr
B AN a—1
V! (e1,u(er))] (tnyr —7)" dr
BT (@) >/
n [ZES}
< X phrlen@l [ =0T g ar
§=0 OL) tg
n tit1
ﬂh a+pB—1 (J 1’B7 )
7 (ex,u ()| Dty o
20T () : - (t“+l,ﬂ, )
J+1
ot B( L B+ 1, a)
n
—-B B+1«
B (s — 1) (7 — 1) dr = <t 1> (167)
—te ! el O‘)
JYn+
_B (t +1,ﬁ+1,a>
B (5 .6.0) o
|/ (e, u( |Z (n+1)
- (thrla/B? )
pots ”1,5—&-1 a)
] < s R BT (168)
n _ , + o
1
T3 e g,
j=0 _] (n+ 1)a+571 tnt1’ &
- t _Haﬁaa)
}lngb [u (tnt1) = tupt1]| = 0. (169)
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For stability,
~ B a+p—1 1 1
[Unt1] < mtn-u - ?p Lltun|+ 5~ 2 |Un+1
B(1,8,a)
X
-B (tzil,ﬁ,a)

+F(5a)§n:{(1 )Luj|+ ! |ug+1}

7=0
Jj+1
a+pB—1 ( n+17/87 )
th+1
- (t Jr1757 )
Note that
3 o (f”l 3 )
a+B-1 1 a+p—1 nt1? 7
W] £ s (o D)™ R Y
( ) =0 -B (tn;rl’ﬁ’a)
Then, we evaluate
- BhotB=1
P T
|U1 F(Oé) |U0|,
- Bhoth-1 atB_ ~ ~
[uy| < WQ Lo | + [t |}
5ha+671 By |~ 5ha+571
S L L 1+ ———1L
k| < CP .
Then, we get
Bhoﬂr[}fl

i | < T(a) (n+ 1) LCR fao|

Replacing and using the same methodology for u, 1, we have

p

|an+1| < mha-l‘ﬁ—l (n + 1)a+ﬂ*1 |ﬁ0|

g1 - 7) LC™P ||
atp- ~
+iﬁhl“(a) (n +1)a+ﬂ ILC}?’ﬂ ||
n—1
B 1 a,3 o3
x +F<Q)ZO{(—2)LC 5,007}
j=
o0
x htB-1 (n+ 1)a+ﬂ—1 | I
B (51.8,a)

Thus, we get
[tin41] < B o]

which completes the proof.
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We can conclude our analysis with Atangana-Baleanu case

|U (tn—H) - un+1| < (1 - oz) 5tn+1 |7( n+1, U (tn+1)) -7 (tn+1vun+1)| (176)
fOn+1 T6_17 (T U (T)) (tn-i-l - T)a_l dr
et 1
+ O‘B _Ztnif t]7uj')
I'(a)
X{ (;+1767 ) (t"+1aﬁa )}
Otﬁ - a+,8 1
+3 I () S ot Y (b i) — v (1)
P =0
t.
Ao (i) -2 (5 00)
n+1 n—i—
We use the fact that v (7,u (7)) is Lipschitz and the fact that is differentiable, then, we have
6 (tns1) = tnss] < (1= @) BAOL u (bnsr) — s (177)
OZB n tit1 B o
T (a) / Ty (o u (7)) =y (t )] (b — 1) dr
j=0"t
O S U b ) — 7 (1)
20T (a) nt1 Y 1, Uyp1) — 7 (L, 4y
PT () =
t; t;
X{B(]+1aﬂaa>_B< ! 7670[>}'
tn+1 tn+1
< (1= a) BT L |u (tng1) — g
+T 7 (e, Z/ (bost — 1)L (r — ;) dr (178)
ey 0" { (00) =2 (i5om)]
n+1) L .y B,
2PF( ) Z tnt1 B tnt1 bra
< (1=a)BhP Ll (tngr) = tnga| (n 4+ 1)
B(,8,q)
(e, u |§; (n+ 1)
5 ()
Bkt 841 a)
490 poss (n+ 1) it (179)
I' (o) n -B(—,8+1,«a
+L n+1
2 =0 ( Lt aﬁa
J= _J (n + 1)06‘#5*1 tn+1
ﬁaﬁaoo
Thus, we have
i o (1) — | = 0 (180)
if B>1 or
if B<1
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which concludes the proof. We now present the stability.

x{_

B

I'(a)

a+/5
n+1

Noting that

B_jats- { (1-7) 21|

|an+1| S (1 - a) 6tn+1L ‘an-i-l‘ + )trH—l

(1,8, )
() |

Lo ) il 4 o figl
0{( ) F11+ 5, sl

t
| B(#8.0)

n.+1

tn+1’ﬂ’ )

] < (1—a) Bty L[|

+L (n+1)* P Rt LN |

I'(a)

By recursive, we show that

@4 | < o) {(1 —a)BtETIL 4 —= (n4 1) h‘“BlL@,‘f’ﬁ} .

af
(o)

Replacing into the original equation, we get

[tn 41| < Juol

Thus, we have

This completes the proof.

(1= ) Bt L+ 55 (n+ 1) et o
1 BhotA— ILCa,B

+(1- ) £Cp® + 25
n—1
N o, ~a, B
+ JZ::O {(1-%)LCr? + £t L

B (5:24.6.0)
- (tw’ﬂ’a)

(1| < B lido] -

’un+1

J+1
(tn+1’6’ )

7=0 - (t7L+1a67 )

(181)

(182)

(183)

(184)

(185)

14 Application of the modified parametrized method to nonlinear

equations

In this section, we present numerical simulations for some chaotic problems with nonlocal operators to show
efficacy of the modified parametrized method.

Example 1. We consider a multi-wing chaotic problem introduced in [[1

2r(t) = a(y—x)
y(t) = by—az
() = ¥ +f©)
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where
D [sgn(y +di) —sgn (y — di) — 2]
fy) = +Dz [sgn (y + d2) —sgn (y — d2) — 2] : (187)
+Ds [sgn (y + d3) —sgn (y —d3) — 2] — ¢

We take the parameters

a = 2,b=0.6,c=0.49,D; =1.1,Dy = 2.1, D3 = 3.1, (188)
di = 1.3,dy=23,d3 =33
and initial conditions
z(0) =1,y(0) =0.1,2(0) = —0.7. (189)
For simplicity, we take
w(t) = aly—a)
y(t) = by—az (190)
A1) = v+ [f(y)
[ @ (t)
Xt = |y@® |, (191)
L 2 ()
[ aly—=)
F,X k) = by — xz
L v*+f ()

By following the procedure of the modified parametrized method for classical case, we obtain the numerical
scheme for the considered chaotic problem as follows:

1 h -
Xp1 = Xp + <1 _ 2p> hE (ty, Xp) + 2 F (tkH,XkH) (192)

where _
Xk+1:Xk+hF(tk,Xk). (193)

For classical case, we depict the numerical simulations in Figure 13.
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£=0.95 ” £=0.95

vit)

Figure 13. Numerical simulation for multi-wing chaotic system for p = 0.95.
We now consider the chaotic problem with fractal-fractional derivative with exponential decay kernel

FTEDYOX (1) = F (1, X),
X (t)=Xo, ift=0

Using the modified parametrized method for associated derivative presented earlier, we can have the following
numerical scheme:

Xey = Xk+<1—a>ﬁ[tﬁ;iF(tkH,Xm)—tﬂ-lmk,xk)] (194)

+ah? {(1— —) (tr, Xi) + F(tk+1,Xk+1)}
(1) k)

where
)A(:k_i_l = (1 — a) ﬂtf_lF (tk,Xk)
k
. B B
+ah® 3 F (1, %) (G+1) —5). (195)
§=0
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In Figure 14, we depict the numerical simulations using same parameters and initial data.

Figure 14. Numerical simulation for multi-wing chaotic system for p = 0.3, = 0.99, 8 = 0.99.
We now consider the chaotic problem with fractal-fractional derivative with Mittag-Leffler kernel
§PMDEPX (1) = F (¢, X)),
X (t) = Xo, ift=0

Using the modified parametrized method for associated derivative presented earlier, we can have the following
numerical scheme:

X (tr1) = (1 =) Bt F (tk+1,?~(k+1)
k 1)
1— L) F(t, X,
+ ) { ( L (;( ) } (196)
o U e F (i, Xj)
+8-1 t t;
th+1ﬁ {B (ﬁaﬂaa) - B (ﬁaﬁaa)}
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where

Xpp1 = (1—a)Bt] ' F (tx, Xx) (197)
ap u
D Y

+m jz::o F (5, X;) te iy
t; t;

X {B ( J+1757a> - B ( ! 7ﬂ7a>} .
] (]

With same parameters and initial data, we perform the numerical simulations in Figure 15.

40 250

Figure 15. Numerical simulation for multi-wing chaotic system for p = 0.13, & = 0.99, 5 = 0.99.

We now consider the chaotic problem with fractal-fractional derivative with power-law kernel

FEPDIPX (t) = F(t, X),
X (t)=Xo, ift=0

Using the modified parametrized method for associated derivative presented earlier, we can have the following
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numerical scheme:

where

1-— %) F(tk,Xk)
%,,F (tk+1,Xk+1
th——:-_lﬁ_l {B(1567a)_B(tk+17/67 }

X (ths1) = piy

+ —

(198)
k 1
ap (1 - 2_) F(t5, X;) }
TG JZ::O { +2—1,)Flztj+1,Xj+1)
<ty {B (75 80) = B (s5.8.0)

k

o LT .X) (199)
=0

e ) (t,%’ﬁ’@}-

In Figure 16, we depict the numerical simulations using same parameters and initial data.

Figure 16. Numerical simulation for multi-wing chaotic system for p = 0.5, « = 0.99, 8 = 0.99.

Example 2. We consider Chen chaotic problem with time-delay term given in [14]
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wl (t) = a(y(t—7)—=z(t))
yt)=(c—a)z(t)—zt—-—7)zt—7)+cyt—7) , ift€]0,T],
2(t)=x(t—T1)y(t—7)—bz(t)

z(t)=z@),y@t)=y(t),2(t)=%(t), if t € [-7,0]
We take the parameters
a=34,b=3,c=2T.

and initial conditions

2(0) =0.2,5(0) =0,z (0) = 0.5.

X/1(t)=F (t,X),if t € 0,7
{ X(t)=X(t), ift € [-7,0]

To construct the numerical scheme, we first consider uniform grid
{tx =kh:k=-n,—n+1,..,-1,0,1,..., N}

such that
T = hN,T = nh.
We know that
x(ty —7) =z (kh —nh) =2 (tg—n), k=0,1,...,N.

For simplicity, we take

z(t)
Xt = yg

a(y(t—71)—=z())
Ft,X@),Xt-—1) = (c—a)z(t)—z(t—-T)z(t—7)+cy(t—7)
x(t—T1)y(t—71)—0bz(t)

(200)

(201)

(202)

(203)

By following the procedure of the modified parametrized method for classical case, we obtain the numerical

scheme for the considered chaotic problem as follows:

1 h
Xiy1 = X + <1 - 2) hF (th, Xk, Xp—n) + ?pF(thrl,XkJrlkafnJrl)

D

where _
Xpr1 = Xg + hF (tr, Xi, Xp—n) -
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For classical case, the numerical simulations for Chen chaotic system with delay is presented in Figure 17.
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Figure 17. Numerical simulation for Chen chaotic system with delay term for p = 1,7 = 0.009.
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For Caputo case, we depict the numerical simulations for « = 0.95 in Figure 18.
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Figure 18. Numerical simulation for Chen chaotic system with delay term for p = 1,7 = 9.

15 Conclusion

Although it is not often used, the parametrized approximation looks to be a very significant approximation
that results in precise numerical techniques for solving nonlinear ordinary differential equations. For instance,
the Heun’s technique is recovered when the parametrized value is 1, the midway scheme is recovered when
the value is 0.5, and the Ralston’s method is recovered when the parametrized value is 2/3. We have found
that the approach loses accuracy when the value of this parameter is less than 0.5. We changed the approach
for conventional ordinary differential equations to address this issue, and the resulting system is accurate
even when the parameter is smaller than 0.5. This allows us to derive a numerical technique for ordinary
differential equations that are fractal, fractional, or fractal-fractional. We demonstrate the condition under
which these nonlocal nonlinear ordinary differential equations admit a unique and precise solution using
the Carathéodory requirements for existence and uniqueness of exact solution. We provided a theoretical
examination of the obtained numerical schemes’ stability and consistency. We provide some numerical
simulations and instructive examples.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

43



References

[1]

2]

Atangana A., Baleanu D., New fractional derivatives with non-local and non-singular kernel, Theory
and Application to Heat Transfer Model, Thermal Science, 20 (2), 2016, 763-769.

Caputo, M., Fabrizio M., A New Definition of Fractional Derivative Without Singular Kernel, Progress
in Fractional Differentiation and Applications, 1(2015),2, pp.73-85.

Caputo, M., Linear model of dissipation whose Q is almost frequency independent II. Geo-physical
Journal International, 13 (5): 1967, 529-539.

Atangana A. Fractal-fractional differentiation and integration: Connecting fractal calculus and frac-
tional calculus to predict complex system, Chaos, Solitons & Fractals, 102, September 2017, 396-406.

Carathéodory, C. Uber den Variabilititsbereich der Koeffizienten von Potenzreihen, die gegebene Werte
nicht annehmen. Math. Ann. 64(1), 95-115, 1907.

Griffiths DF., Higham DJ., Numerical Methods for Ordinary Differential Equations: Initial Value Prob-
lems, Springer Undergraduate Mathematics Series, Springer, 2010.

Endre S., David M., An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0-521-
00794-1, 2003.

Heun, K. Neue methoden zur approximativen integration der differentialgleichungen einerunabhingigen
Veridnderlichen. Z. Math. Phys. (45) 1900, 23-38.

Argyros IK., Chen D., The midpoint method for solving nonlinear operator equations in Banach space,
Appl. Math. Lett., 5 (1992), pp. 7-9.

Ralston A., Runge-Kutta Methods with Minimum Error Bounds, Mathematics of Computation, 92,
339, 1962.

Binoy SS., Roy K., A new multi-wing chaotic attractor with unusual variation in the number of wings,
Chaos, Solitons & Fractals, 164, 2022.

Tahir FR., Jafari S., Pham VT., Volos C., Wang X., A novel no-equilibrium chaotic system with multi-
wing butterfly attractors, International Journal of Bifurcation and Chaos, 25, 04, 2015.

Lai Q., Wu Y., Liu F., Zhang DX., Generation of multi-wing chaotic attractors from Lorenz-like system,
International Journal of Bifurcation and Chaos, 23, 9, 2013.

Daftardar-Geiji, Bhalekar S., Gade P., Dynamics of fractional-ordered Chen system with delay, Pramana
Journal of Physics, 79(1), 2012, 61-69.

44



