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We study kinetic Monte Carlo (KMC) descriptions of active particles. We show that, when they
rely on purely persistent, active steps, their continuous-time limit is ill-defined, leading to the vanish-
ing of trademark behaviors of active matter such as the motility-induced phase separation, ratchet
effects, as well as to a diverging mechanical pressure. We then show how, under an appropriate
scaling, mixing passive steps with active ones leads to a well-defined continuous-time limit that
however differs from standard active dynamics. Finally, we propose new KMC algorithms whose
continuous-time limits lead to the dynamics of active Ornstein-Uhlenbeck, active Brownian, and
run-and-tumble particles.

Monte Carlo (MC) methods are widely popular across
disciplines [1, 2]. At equilibrium, detailed balance is en-
forced and unphysical dynamics can be used while pre-
serving the steady-state Boltzmann distribution. Un-
physical tricks can then be exploited to accelerate equi-
libration without altering steady-state averages of one-
time observables, a property which has led to many
breakthroughs in equilibrium statistical physics [3–5].
MC algorithms have also been used to study diverse
nonequilibrium phenomena like coarsening [6–8], slow re-
laxation in disordered systems [9–11], granular media
[12–15], self-assembly [16], gel electrophoresis of DNA
[17], or surface properties [18]. However, the relevance
of discrete-time dynamics for nonequilibrium systems is
questionable [19–21] since no detailed-balance symmetry
enforces a steady-state distribution that is independent
from the MC dynamics. This question is particularly rel-
evant in the field of active matter, where MC simulations
have been used extensively to simulate the collective dy-
namics of active particles [22–35].

Active matter constitutes a class of biological and
synthetic systems that are driven out of equilibrium
at the microscopic scale [36–38]. In their simplest
form, they comprise assemblies of particles that dissi-
pate energy to exert self-propelling forces, hence breaking
the fluctuation-dissipation relation that would otherwise
drive the dynamics of passive colloids towards Boltzmann
equilibrium. Active systems have attracted a lot of at-
tention due to their rich phenomenologies, ranging from
collective motion [39, 40], to phase separation in the ab-
sence of cohesive forces [41], to spatiotemporal chaos at
zero Reynolds number [42–44].

The study of active matter systems is, however, chal-
lenging because of two important limitations. Theoreti-
cally, first, there is no generic expression for the steady-
state distribution of active systems and no counterpart
to the Boltzmann weight to guide our intuition. Numer-
ically, then, studying the large-scale properties of active
systems requires sampling sizes much larger than the par-
ticle persistence length. Defined as the typical distance a

particle travels before it forgets its initial orientation, the
persistence length often has to be much larger than the
particle size for active matter to display its most exciting
features. This makes the system sizes to be simulated
much larger than for passive systems [34, 35, 45–48].

To address this problem, a natural strategy would be,
following the success of MC in equilibrium, to replace
the continuous-time setting in which active dynamics are
naturally defined by MC dynamics in which time has
been coarse grained. Several attempts along these lines
have been introduced recently, in particular to study
motility-induced phase separation (MIPS) [25, 30], the
two-dimensional melting [30, 33, 49], and high-density bi-
nary mixtures [26]. All these approaches however suffer
from a major drawback: unlike for equilibrium systems,
nothing guarantees that these MC dynamics, even in the
proper limit, correspond to bona fide continuous-time ac-
tive dynamics.

In this Letter, we bridge this gap by providing a
class of active kinetic MC dynamics (AKMC) whose
continuous-time limit—which we construct explicitly—
is shown to encompass the celebrated run-and-tumble
(RT) [50, 51], active Brownian (AB) [52, 53] and ac-
tive Ornstein-Uhlenbeck (AOU) [54, 55] dynamics. To
do so, we start by analyzing the continuous-time limit of
AKMC algorithms that have attracted a lot of attention
recently [25–27, 30, 33, 49]. We first show numerically
and analytically that algorithms relying exclusively on
correlated, ‘active’ steps lead to an ill-defined continuous-
time limit. We then show how the introduction of a finite
fraction of uncorrelated ‘passive’ steps, together with a
rescaling of the propulsion speed, leads to a well-defined
continuous active dynamics. Importantly, the latter de-
scribes a new class of active particles that differ from
AB, RT, and AOU particles, notwithstanding [25–27].
We close the Letter by discussing how our AKMC can
be modified to lead to RT, AB, and AOU particles hence
providing a generic toolbox to simulate active dynamics
using AKMCs.

Active kinetic Monte Carlo dynamics— We consider a
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FIG. 1. Simulations of N interacting active particles in 2D
using the AKMC with β = 1. (a) As dt is decreased from
10−2 to 10−5, the pumping effect induced by an asymmetric
potential V (x) (solid gray line, upper panel, explicit expres-
sion given in SM [56]) disappears, as can be seen by compar-
ing our simulations for dt = 10−2 (snapshot in center panel
and density profile shown as blue line in upper panel) and
for dt = 10−5 (snapshot in lower panel and density pro-
file shown as red line in upper panel). Parameters: τ = 1,
v0 = 4, average number density ρ0 ' 0.36; periodic (resp.
closed) boundary conditions are used along y (resp. x). (b)
MIPS is observed for dt = 0.5 (blue, left panel) but not for
dt = 0.001 (red, right panel), using periodic boundary condi-
tions. Parameters: τ = 200, v0 = 1, N = 43 904, L = 468.
(c) The mechanical pressure exerted on a confining potential
Uw(x, y) = Ω

ν
(x ± xw)ν for |x| > xw is measured using

Eq. (2) at bulk number density ρ0 = 0.425 using periodic
boundaries along y. It diverges as 1/dt when dt→ 0. Param-
eters: τ = 10, v0 = 1, Ly = 32, xw = 64, Ω = 10, ν = 8.

system of N active particles endowed with the following
dynamics, adapted from [25, 30]. At every time step
tn = ndt, N particles are successively chosen at random
and their positions ri and self-propulsion velocities vi are
updated, in this order. A particle at r moves to a new
position r + vdt, with probability

f(r,vdt) = min [1, exp (−β∆U(r→ r + vdt))] , (1)

where β is a control parameter and ∆U = U(r + vdt)−
U(r) is the total energy change. Equation (1) is nothing
but a standard equilibrium Metropolis filter, in the con-
text of which β would be the inverse temperature, and
the breakdown of detailed balance comes from the dy-
namics of v. A new velocity v(tn+1) is sampled from a
Gaussian distribution centered at v(tn), of standard de-
viation δv =

√
2Dvdt, which is then folded back using

reflecting boundary conditions at |v| = v0. (See Fig. S1
in [56] for an illustration of this procedure.) Successive
particle displacements are thus correlated, hence leading
to a persistent motion characterized, in two space di-

mensions, by a persistence time τ =
v20
c2Dv

where c is a
constant that can be computed exactly (see SM [56]).

Figure 1 shows AKMC simulations of N particles inter-

acting via a Weeks-Chandler-Andersen potential U(r) =
4
[
(σ/r)12 − (σ/r)6

]
+ 1 for r < 21/6σ and U(r) = 0

otherwise, with σ = 2−1/6. Simulations are shown for
different time steps dt, keeping the self-propulsion speed
v0 and persistence time τ constant. Using large time
steps, the simulations reproduce standard features of ac-
tive systems: motility-induced phase separation [41] is
observed and asymmetric obstacles are able to pump par-
ticles, hence generating long-ranged perturbations to the
density field [57–59]. However, both features disappear
for smaller time steps. Even more surprising, the me-
chanical pressure exerted by the particles on a confining
potential Uw, measured as [60]

P =

∫ ∞

xbulk

ρ(x)∂xUw(x) , (2)

is shown to diverge when dt→ 0. The AKMC algorithm
introduced in this section is thus not suitable to describe
active dynamics.

Vanishing mobility in the continuous-time limit— This
pathological behavior can be understood analytically by
showing that the particle mobility vanishes as dt → 0,
making the particles less and less sensitive to forces other
than the self-propulsion ones. Let us consider the sim-
pler problem of an isolated particle in the presence of an
external potential U(x) in one space dimension. The gen-
eralization to higher dimensions and interacting particles
is straightforward. Reformulating the AKMC in one di-
mension leads to a persistence time τ = 4v2

0/(π
2Dv) [56].

We denote Pn(x, v) the probability density to find the
particle at position x with velocity v at time tn. Its evo-
lution is given by

Pn+1(x, v) =

∫
dx′dv′g(v|v′)W (x|x′, dt v′)Pn(x′, v′)

(3)
where g(v|v′) is the probability density to transition from
self-propulsion velocity v′ to v and where

W (x|x′,∆x) ≡ f(x′,∆x)δ(x′ + ∆x− x)

+[1− f(x′,∆x)]δ(x′ − x) (4)

is the probability density to transition from x′ to x. The
two terms on the rhs of Eq. (4) correspond to hopping
from x′ 6= x into x and to staying in x′, respectively.

The continuous-time limit of the evolution equation is
obtained by truncating the Kramers-Moyal expansion of
∆P ≡ Pn+1(x, v) − Pn(x, v) to first order in dt [61, 62].
This has been done with success for equilibrium MC
dynamics—see e.g. [19, 20, 63], or [64] for a nice applica-
tion to neural networks. As we show in the following, the
generalization of this approach to the active case leads to
the Fokker-Planck equation [65]:

∂tP (x, v; t) = − ∂

∂x
[vP (x, v; t)] +Dv

∂2

∂v2
P (x, v; t) , (5)
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which is complemented by a zero-current condition

∂vP (x, v; t)|v=±v0 = 0 . (6)

The main lesson of this calculation is that the confining
potential drops out from Eq. (5). To understand better
how this happens, it is insightful to write ∆P as

∆P =

∫
dv′g(v|v′)[f(x− v′dt, v′dt)Pn(x− v′dt, v′)

−f(x, v′dt)Pn(x, v′)]

+

∫
dv′g(v|v′)Pn(x, v′)− Pn(x, v) . (7)

Consider first the last line of Eq. (7). Taylor expanding
Pn(x, v′) close to v′ = v leads to

∫
dv′g(v|v′)Pn(x, v′)− Pn(x, v) =

∑

k>0

ak
k!
∂kvPn(x, v) ,

where ak is related to the kth moment of the change in
velocity through ak = (−1)k

∫
dv′g(v|v′)(v − v′)k. The

coefficient a1 vanishes by symmetry in the dt → 0 limit
and a2 = δv2 provides the dominant order to ∆P . This
confirms the scaling δv =

√
2dtDv chosen above and leads

to the Laplacian on v in Eq. (5). The zero-flux condi-
tion on v is simply inherited from that of the discrete-
time process [61]. Consider now the first two lines of
Eq. (7). To leading order in dt, they are equivalent to
−dt

∫
dv′g(v|v′)v′∂x[f(x, v′dt)Pn(x, v′)]. This is already

of order dt so that only the O(1) contribution of the in-
tegral survives. To estimate the latter, we first note that
∆U ' vdtU ′(x) so that the Metropolis filter can be ap-

proximated as f(x, vdt) ' 1 − βvdtU ′(x) 1+sgn(∆U)
2 . To

leading order, f = 1 and the AKMC is insensitive to
the filter in the continuous-time limit. The computation
can then be concluded by using that v′ = (v′ − v) + v
and Taylor expanding P (x, v′) at v′ = v, yielding a lead-
ing order contribution −dtv∂xP (x, v). Mathematically,
U thus only enters Eq. (5) at the next order in dt: the
mobility of this AKMC vanishes linearly in dt. Physi-
cally, U is ignored by the particles since a succession of
infinitely small persistent steps lead to their systematic
acceptance.

The derivation above explains both the uniform distri-
bution measured in Fig. 1a and the suppression of MIPS
in Fig. 1b. Furthermore, as dt → 0, particles penetrate
more and more into confining walls, so that the mechan-
ical pressure exerted on the walls, measured as Eq. (2),
diverges.

A blended AKMC— Since KMC algorithms admit a
well-defined continuous-time limit in equilibrium [19–
21, 63, 64], it is natural to try and interpolate between
passive and active KMC dynamics [25]. To do so, we
introduce a blended AKMC as follows. At every time
step, an attempt to move from x to x + vdt/α is done
with probability α whereas a move from x to x + ξ

(a)

(b)

(c)

FIG. 2. Simulations of N interacting active particles using
the blended AKMC with β = 1 and α ∈ (0, 1). (a) As dt is
decreased from 10−2 to 10−5, the pumping effect induced by
an asymmetric potential V (x) (gray line, upper panel, explicit
expression given in SM [56]) is now converging to a stable
nonequilibrium steady state. Parameters: α = 0.4, τ = 1,
v0 = 4, D = 1, ρ0 ' 0.36. Periodic (resp. closed) boundary
conditions are implemented along y (resp. x). (b) MIPS is
now observed both for dt = 0.5 (blue, left panel) and dt =
0.001 (red, right panel), using periodic boundary conditions.
Parameters: α = 0.6, τ = 200, v0 = 1, D = 0.05, N =
43 904, L = 270. (c) The mechanical pressure exerted on the
confining potential Uw is measured using Eq. (2) and has now
a well-defined limit as dt → 0. Parameters: α = 0.6, τ = 10,
v0 = 1, D = 0.05. The same geometry, wall potential, and
densities are used as in Fig. 1(c).

is attempted with probability 1 − α, where ξ is sam-
pled uniformly and independently at each time step in
[−
√

6Ddt/(1− α),
√

6Ddt/(1− α)]. In both cases, the
move is accepted or rejected using the Metropolis filter
defined in (1). Note that the rescaling of the propulsion
speed and of the passive diffusivities with α will be proved
below to be crucial to the existence of an α-independent
well-defined continuous-time limit. Figure 2 shows simu-
lation results for α = 0.4 and α = 0.6. Motility-induced
phase separation and a long-range modulation of the den-
sity field by an asymmetric obstacle are again observed
for large dt. This time, however, these phenomena are
stable as dt → 0. The mechanical pressure exerted on
confining walls also admits a well-defined limit.

The continuous-time limit of the blended AKMC can
be constructed analytically from the following extension
of our calculation. The master equation now writes

Pn+1(x, v) = α

∫
dx′dv′g(v|v′)W

(
x
∣∣∣x′, v

′dt
α

)
Pn(x′, v′)

+(1− α)

∫
dx′dv′dξg(v|v′)W (x|x′, ξ)Pn(x′, v′)G(ξ) ,(8)

where G(ξ) is the uniform measure over
[−
√

6Ddt/(1− α),
√

6Ddt/(1− α)]. By linearity,
the continuous-time limit of this blended AKMC is now
readily obtained. The first line of Eq. (8) again leads to
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the drift and diffusion terms derived in Eq. (5), albeit
the latter multiplied by α. The second line still leads
to the diffusion of the self-propulsion velocity multiplied
by (1 − α), but also to the standard terms entering the
Fokker-Planck equation of a passive particle. All in all,
this leads to the Fokker-Planck equation

∂tPt(x, v)= −∂x [{v + µF (x)}Pt(x, v)] +

D∂2
xPt(x, v) +Dv∂

2
vPt(x, v) (9)

where Eq. (9) is again supplemented by the zero-current
condition in Eq. (6). This time, the confining force
F (x) = −∂xU(x) survives in the dt → 0 limit thanks
to a finite mobility µ = βD. Interestingly, comparing
Eqs. (5) and (9) shows that the role played by the pas-
sive steps to restore the continuous-time limit is not so
much the introduction of translational diffusion as the
restoration of a finite mobility.

We now compute the mechanical pressure predicted by
Eq. (9) to check that the latter quantitatively describes
the small dt limit of the blended AKMC. Integrating
over v and using the zero-flux condition along x imposed
by the confining wall leads to ρ(x)U ′w(x) = −Dµ ρ′(x) +
1
µ v̄1(x), where we define v̄k(x) =

∫
dvP (x, v)vk and

ρ(x) = v̄0(x). Further integrating from x = 0 to x = ∞
leads to P = D

µ ρ0 + 1
µ

∫∞
0
v̄1(x)dx. To compute the last

integral, we multiply Eq. (9) by vk and integrate over v
to get, in the steady state,

(k−1)v̄k−2 = vk−1
0 [P (x, v0)+(−1)kP (x,−v0)]+∂x

Jk
kDv

,

(10)
where Jk ≡ v̄k+1−v̄kµU ′w(x)−D∂xv̄k. For k = 1, Eq. (10)
leads to [P (x, v0) − P (x,−v0)] = −∂xJ1/Dv. Injecting
this into Eq. (10) for k = 3 and integrating both sides of
the equation from x = 0 to ∞ leads to 6Dv

∫∞
0
v̄1dx =

[3v2
0 v̄2(0)− v̄4(0)]. Since the bulk of the system is homo-

geneous and isotropic, P (x = 0, v) = ρ0/(2v0) and the
mechanical pressure reads

P = ρ0

(
kBT +

2v4
0

15µDv

)
, (11)

where we have introduced kBT ≡ β−1. Figure 3a shows
the perfect match between Eq. (11) and the mechanical
pressure measured in numerical simulations for five differ-
ent potential stiffnesses and several values of α ∈ (0, 1).
For α < 1, the pressure does not depend on the po-
tential, which indicates that the blended AKMC satis-
fies an equation of state in the continuous-time limit.
Note that the dependencies on α of the active steps,
r→ r+vdt/α, and of the amplitude of the passive ones,
ξ ∈ [−

√
6Ddt/(1− α),

√
6Ddt/(1− α)], may look sur-

prising at first glance—they were indeed absent in pre-
vious AKMCs [25, 30]. They are, however, crucial to
lead to continuous-time limits independent of α, as shown
from Eq. (9) and illustrated in Fig. 3.

(a) (b)

FIG. 3. Mechanical pressure P, defined in Eq. (2) and nor-
malized by its equilibrium value P = ρ0kBT , measured as a
function of the fraction of active steps α for noninteracting
particles in 1d, with β = 1, v0 = 1, τ = 5, dt = 10−4. Sym-
bols are measurements for several confining potentials U1 to
U5, corresponding to the potential Uw defined in Fig. 1 with
(ν,Ω) given by {(8, 10), (6, 10), (4, 10), (2, 100), (2, 10)}, re-
spectively. The confining walls are located at ±xw. (a) Sim-
ulations carried out with the blended AKMC for α ∈ (0, 1),
D = 1, and xw = 15. The limiting cases α = 0 and α = 1
correspond to purely passive and purely active KMCs, respec-
tively. The solid gray line is the prediction of Eq. (11). (b)
Simulations carried out without rescaling the active steps and
the passive diffusivity, using instead x(tn+1) → x(tn) + vdt

and ξ ∈ [−
√

6D̂dt,
√

6D̂dt], where D̂ = 1/6 and xw = 5.
The lack of rescaling leads to an unphysical dependency of
the pressure on α.

AB, RT, and AOU algorithms. We have shown that
our blended AKMC leads to the Fokker-Planck equa-
tion (9) in the continuous-time limit. In two space dimen-
sions, this active dynamics is equivalent to the Langevin
equation

ṙ = v − µ∇U(r) +
√

2Dη; v̇ =
√

2Dvζ (12)

where η and ζ are two uncorrelated unitary Gaussian
white noises and v experiences reflecting boundary con-
ditions at |v| = v0. Interestingly, the dynamics of
v corresponds to none of the standard active particle
models. As we now show, our blended AKMC can be
adapted to yield discrete-time versions of AB, RT and
AOU particles by solely modifying the dynamics of the
self-propulsion speed. For RT and AB dynamics, the
self-propulsion speed v(tn) lives on a circle of radius v0

and is parametrized by an angle θ(tn). A discretized RT
dynamics with tumbling rate γ is obtained by choosing
θ(tn+1) = θ(tn) with probability (1 − γdt) and by sam-
pling θ(tn+1) uniformly in [0, 2π) with probability γdt.
To implement an AB dynamics with rotational diffusivity
Dr, θ(tn+1) is sampled from a wrapped Gaussian distri-
bution of standard deviation δθ =

√
2Drdt, centered at

θ(tn). Finally, the AOU dynamics can be implemented as
follows. A change of velocity δv(tn) is sampled uniformly
in [−

√
6Dadt/(τ2),

√
6Dadt/(τ2)]2. It is accepted with
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probability

p = min
[
1, exp

(
− τ2

Da
∆Uv[v(tn)→ v(tn) + δv(tn)]

)]

(13)
where Uv(v) = 1

2τ v
2. Carrying out the continuous-time

limit of the dynamics indeed leads to the Fokker-Planck
equation equivalent to ṙ = v + µF +

√
2Dη and τ v̇ =

−v+
√

2Daζ where η and ζ are two uncorrelated unitary
Gaussian white noises.

Altogether we have shown how mixing passive
steps with active ones endow AKMCs with bona fide
continuous-time limits which encompass the workhorse
models of active matter. By clarifying the connection
between discrete and continuous-time dynamics, we be-
lieve our work will trigger a wider use of AKMCs in ac-
tive matter. They should prove especially useful in the
high density limit where Langevin equations are partic-
ularly difficult to use. This regime has indeed attracted
a lot of attention recently [66–69], in particular due to
its relevance to the modeling of confluent tissues [70–
72], but also because of the emergence of nontrivial spa-
tial velocity correlations [73–75]. Finally, it would be
interesting to generalize the approach developed in this
Letter to MC algorithms in which space has also been
discretized, which have recently attracted a lot of atten-
tion [22–24, 28, 29, 31, 32, 34].
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I. NUMERICAL IMPLEMENTATION IN 2D AND PERSISTENCE TIME

A. Numerical implementation of the reflecting boundary condition for the evolution of the self-propulsion
speed

The discrete-time implementation of the velocity dynamics is a random walk with circular reflecting boundaries
as illustrated in Fig. S1a. In this random walk, the new velocity v(tn+1) is sampled from a Gaussian distribution
centered at v(tn), of standard deviation δv =

√
2Dvdt. The reflecting boundary conditions are implemented as elastic

reflections at |v| = v0 that are applied when the point sampled by the Gaussian is located outside the circle (see
Fig. S1a).

For a free particle, the Metropolis filter in Eq. (1) of the main text is one, i.e. every particle displacement is
accepted r(tn+1) = r(tn) + dtv(tn). Fig. S1b shows a discrete-time trajectory where persistent motion is evident.

In the limit of dt → 0, the random walk of v converges to the Langevin dynamics (12) in the main text. The
corresponding persistence time is computed below, and given in Eq. (5). Figure S1c shows a rapid convergence of the
discrete-time algorithm to his asymptotic value for the persistence time.

B. Computation of the persistence time

In the continuous-time limit, the velocity dynamics is:

v̇ =
√

2Dv ζ , (1)

with reflecting boundary conditions at |v| = v0 and ζ an uncorrelated unitary Gaussian white noise. To compute the
persistence time τ , we consider the corresponding diffusion equation in polar coordinates (v, θ),

∂tPt(v, θ) = Dv∆Pt(v, θ) (2a)
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(a) (b) (c)

FIG. S1: (a) Random walk of v in the presence of circular reflecting boundaries at |v| = 1, τ = 10 and dt = 1. The symbols
correspond to the successive values of v(tn). The color encodes progress in time from dark to light shades in (a) and (b).
(b) The particle trajectory in position space corresponding to (a). (c) Normalized velocity auto-correlation for the decreasing
values of dt indicated in the legend. Remaining parameters as in (a). Overlapping curves show a fast convergence as dt → 0.
The semilogarithmic scale in the inset highlight the validity of the analyitical expression (5) for the persistence time.

with a zero current condition at v = v0,

∂vPt(v, θ) |v=v0= 0 . (2b)

The corresponding propagator is

Pt(v, θ|v′, θ′) =
1

πv2
0

+

∞∑

m=1

∞∑

n=1

e−t/τmnJm

(
smn
v0

v

)
[Amn cos(mθ) +Bmn sin(mθ)] , (3)

where τmn =
v20

s2mnDv
, Jm(x) is the mth Bessel function of the first kind [1], and smn is the n-th zero of ∂xJm(x), which

follows from the Neumann boundary conditions in Eq. (2b). The constants Amn and Bmn are functions of the initial
velocity (v′, θ′).

We compute the persistence time from the exponential tail of the velocity autocorrelation in the stationary state

〈~v2(t2)~v1(t1)〉 =

∫ 2π

0

dθ1dθ2

∫ v0

0

dv1dv2 v1v2 cos(θ2 − θ1)Pt2−t1(v2, θ2|v1, θ1)Pss(v1, θ1) , (4)

where Pss(v1, θ1) = 1
πv20

is the uniform stationary distribution. For large t2− t1, the leading-order contribution comes

from the term (m,n) ≡ (1, 1) in Eq. (3). This gives 〈~v2(t2)~v1(t1)〉 ∼ e−(t2−t1)/τ , where the auto-correlation time

τ = τ1,1 =
v2

0

c2Dv
, (5)

with c ≡ s1,1 ' 1.841.

II. SIMULATION PARAMETERS

Fig. 1a: α = 1, β = 1, v0 = 4, Dv = 4.72, leading to τ ' 1. N = 2000 particles were simulated in a box of
size Lx × Ly, where Ly = 35 and Lx = 158.5. Periodic boundary conditions are used along the y axis whereas hard
walls are implemented at x = −69.5 and x = 89. The asymmetric potential is given by V (x, y) = 160(x + 0.5) for
x ∈ [−0.5, 0] and V (x, y) = 4(20− x) for x ∈ [0, 20].

Fig. 1b: α = 1, β = 1, v0 = 1, Dv = 1.475× 10−3, leading to τ ' 200. N = 43 904 particles were simulated in a
box of size L× L, where L = 468. Periodic boundary conditions are used along x and y axes.
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Fig. 1c: α = 1, β = 1, v0 = 1, Dv = 2.95× 10−2, leading to τ ' 10. Periodic boundary conditions are used along
the y axis with Ly = 32. The particles are confined along the x axis at x = ±64 by potentials Uw(x, y) = 10

8 (x± 64)8

for |x| > 64.

Fig. 2a: α = 0.4, β = 1, D = 1, v0 = 4, Dv = 4.72 leading to τ ' 1. N = 2000 particles were simulated in
a box of size Lx × Ly, where Ly = 35 and Lx = 158.5. Periodic boundary conditions are used along the y axis
whereas hard walls are implemented at x = −69.5 and x = 89. The asymmetric obstacle is modelled by a potential
V (x, y) = 18(x+ 0.5) for x ∈ [−0.5, 0] and V (x, y) = 0.45(20− x) for x ∈ [0, 20].

Fig. 2b: α = 0.6, β = 1, D = 0.05, v0 = 1, Dv = 1.475× 10−3 so that τ ' 200. N = 43 904 particles were
simulated in a box of size L× L, where L = 270. Periodic boundary conditions were used along x and y axes.

Fig. 2c: α = 0.6, β = 1, D = 0.05, v0 = 1, Dv = 2.95× 10−2 so that τ ' 10. Periodic boundary conditions
are used along the y axis with Ly = 32. The particles are confined along the x axis at x = ±64 by potentials
Uw(x, y) = 10

8 (x± 64)8 for |x| > 64.

Fig. 3a: β = 1, D = 1, v0 = 1, Dv = 8.1055× 10−2 so that τ ' 5, dt = 10−4. The confining potential is given by
Uw(x, y) = Ω

ν (x± 15)ν for |x| > 15 and the different data sets correspond to

• U1 : ν = 8,Ω = 10,

• U2 : ν = 6,Ω = 10,

• U3 : ν = 4,Ω = 10,

• U4 : ν = 2,Ω = 100,

• U5 : ν = 2,Ω = 10.

Fig. 3b: β = 1, D̂ = 1/6, v0 = 1, Dv = 8.1055× 10−2 so that τ ' 5, dt = 10−4. The confining potential is given
by Uw(x, y) = Ω

ν (x± 5)ν for |x| > 5, with (ν,Ω) as in Fig. 3a.

III. AKMC ALGORITHMS AND PERSISTENT TIME IN 1D

We describe below the one-dimensional version of the blended AKMC; the purely active AKMC that we initially
describe in the Letter corresponds to setting α = 1 in the text below.

In 1d, an isolated particle of position x and velocity v in the presence of an external potential U(x) evolves as
follows. In one MC step, the particle attempts a move xn → xn + ∆x. With probability α the displacement is active,
i.e. ∆x = dt vn/α, and with probability 1 − α the particle attempts a passive move, i.e. ∆x = ξ, with ξ uniformly

sampled in [−
√

6Ddt/(1− α),
√

6Ddt/(1− α)]. In both cases, the move is accepted with a probability given by the
Metropolis filter f(xn,∆x) = min[1, exp(−β{U(xn + ∆x) − U(xn)})]. A new velocity vn+1 is then sampled. As in
2d, the velocity undergoes a random walk with reflecting boundary conditions at |v| = v0. The new velocity vn+1

is sampled form a Gaussian distribution centred at vn and of standard deviation δv =
√

2Dvdt. When the resulting
value v̂ is outside the interval [−v0, v0], vn+1 is obtained using the elastic reflection at |v| = v0:

vn+1 =

{
q − v0 , if q < 2v0

3v0 − q , if q ≥ 2v0
, (6)

where q = (v̂ + v0) mod (4v0). Here we use the definition of the modulo as amod b = a− bbab c with bac denoting the
floor function. Therefore, q satisfies 0 ≤ q ≤ 4v0 and thus |vn+1| < v0.

In 1d, the velocity dynamics describing the blended AKMC in the continuous-time limit is given by v̇ =
√

2Dvζ,
with additional reflecting boundaries at |v| = v0, and ζ is again a unitary Gaussian white noise.

The derivation of the persistence time in 1d is analogous to the 2d calculation, leading to the corresponding
propagator

Pt(v|v′) =
1

2v0
+

1

v0

( ∞∑

n=2,4,6

An cos

(
nπv

2v0

)
e−t/τn +

∞∑

n=1,3,5

Bn sin

(
nπv

2v0

)
e−t/τn

)
, (7)
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with

τn =
4v2

0

n2π2Dv
, (8)

and the constants An and Bn are functions of the initial v′. Following a similar argument as in 2d, the auto-correlation
time τ ≡ τ1 as given in the Letter.
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