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Radiation efficiency of a distribution of baffled pistons
with arbitrary phases

Carlos Garc�ıa A.,a) Nicolas Dauchez, and Gautier Lefebvre
Universit�e de Technologie de Compiègne, Roberval (Mechanics, Energy and Electricity), Centre de Recherche
Royallieu, CS 60319, 60203 Compiègne Cedex, France

ABSTRACT:
The radiation resistance and efficiency of a collection of circular pistons, randomly placed on a plane and vibrating

with arbitrary phases, are expressed as a combination of the self- and mutual-radiation components. We use the first

product or bridge theorem to construct the directivity pattern of this type of arrangement and the radiation properties

are calculated according to Bouwkamp’s impedance theorem. To illustrate the versatility of our approach, we refer

to special cases for symmetric arrangements, for example, to compare with the modal radiation efficiency in struc-

tures having “regular” modal patterns. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0013569

(Received 17 May 2022; revised 6 July 2022; accepted 27 July 2022; published online 24 August 2022)

[Editor: Nicole Kessissoglou] Pages: 1135–1145

I. INTRODUCTION

The acoustic radiation impedance of a circular piston is

a fundamental problem in acoustics and has been well-

documented over the last two centuries. Early studies in

optics describing the passage of plane waves through circu-

lar apertures (Babinet, 1837) Rayleigh, 1897; and

Bouwkamp, 1970) were used later to define the radiation of

a baffled piston. The Rayleigh integral (Rayleigh, 1945), as

a consequence of these previous studies, has become a

widely used tool to express not only the radiation of a circu-

lar piston in an infinite baffle but to approximate the radia-

tion of loudspeakers in an enclosure. Special equations

describing the force over the surface of the piston were stud-

ied by Rayleigh, King (1934), Struve (1882), and Greenspan

(1979) who derived a solution of the Hankel transform and

obtained the exerted force over the radiator and thus, the

acoustic impedance. While the imaginary part of the acous-

tic impedance, the radiation reactance, creates an evanescent

field and does not radiate sound, the radiation resistance is

responsible for the radiation of sound into the far-field. The

radiation resistance can be obtained by calculating the

acoustic source’s power by integrating the real part of the

intensity over a hemisphere and letting the radius tend to

infinity. A generalization of this procedure led later to

Bouwkamp’s impedance theorem (Bouwkamp, 1945): if the

directivity of a source is known, its radiation impedance can

be calculated by integrating the squared directivity over a

hemisphere. This method was employed to calculate, for

example, the radiation impedance of circular, rectangular,

elliptic (Mellow and K€arkk€ainen, 2016) flat rigid disks.

When two sources are present, the acoustic effect of

one source on the other is described by the mutual-radiation

impedance. Pritchard (1960) calculated the mutual radiation

of two pistons in a series formed by expanding the Bessel

functions with Lommel’s theorem and identifying specific

cases of Sonine integrals. Porter (1964) generalized this

method for flexural baffled disks and Chan (1967) extended

it for radiators of different sizes. Crane (1967) used the

“Gutin” concept to explore the radiation of unbaffled and

partially baffled pistons, and Van Buren and King (1973)

studied the self- and mutual-impedance of two coplanar

unbaffled disks. Stepanishen (1978) used the impulse

response method approach to give a simple approximation

of the mutual radiation coefficient. This method was later

utilized by Hashimoto (2001) to calculate the radiation of a

structure in terms of elementary radiators with the acoustic

radiation resistance matrix (ARM): a flat structure is decom-

posed into equally small sections or radiators, each radiator

is considered a circular piston and the acoustic impedance

of the structure is expressed in a matrix form, taking into

account the self- and mutual-radiation impedance. Going

further, this semi-analytical formulation was employed by

Arenas (2008) for calculating the radiation properties of

simple baffled structures in terms of structural and radiation

modes (see also Elliott and Johnson, 1993; Naghshineh and

Koopmann, 1991). Arenas (2009) employed the same

method for a circular hatchway and pointed out its validity

for studying the radiation of a baffled complex shaped struc-

ture, with no numerical integration needed for calculating

the acoustic radiation but still required in the eigenanalysis

of the structure’s vibration.

A general approach for studying more than two sources

is by means of the bridge theorem (Beranek and Mellow,

2019) or first product theorem (Williams, 1999), which

states that it is possible to construct the directivity pattern of

an array composed by N number of sources if the directivity

of a single elementary source is known. Following this

course, particular attention has been given to the study of

transducer arrays, such as antennas in communications, linea)Electronic mail: carlos.garcia@utc.fr
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arrays and directive speakers in audio, sonar in underwater

acoustics, and ultrasonic transducers for medical purposes.

In these cases, the study of mutual impedance plays a pri-

mordial role: Lee et al. (2004) studied the effect of the

mutual impedance for optimizing the transducer placement

in arrays present in sonars; Maadi et al. (2015) used the

mutual radiation impedance for modelling capacitive micro-

fabricated ultrasonic transducers (CMUTs). However, nei-

ther of these works included the phase component. Audoly

(1991) used the Kirchhoff-Helmholtz integral to investigate

the baffled and unbaffled cases for arrays, where the mutual

impedance had to be solved numerically; Caronti et al.
(2005) showed that an equivalent circuit (lumped method

instead of radiators) does not always return accurate results

due to the effect of the fluid load, but here the phase compo-

nent plays an important role, allowing the energy to be

focalized without changing the geometry of the array.

In this paper, we present a generalized method for con-

structing the radiation resistance and efficiency of distribu-

tion of circular pistons vibrating with arbitrary phases

regardless of their size and position. The directivity pattern

of the arrangement is calculated by means of the first prod-

uct/bridge theorem and Bouwkamps’s impedance theorem is

then employed for deriving complete expressions of the

radiation resistance and efficiency. The method described

here is an extension of that presented by Beranek and

Mellow (2019, pp. 699–713), which allowed us to explore

the radiation of multiple sources. Some examples are pre-

sented when multiple sources of the same size are placed

side by side. In these examples, the sources vibrate in-phase

or in anti-phase. The radiation efficiency is then analyzed

and compared to other kinds of structures such as a vibrating

and oscillating sphere, circular radiators (Greenspan, 1979),

or flat simply supported rectangular plates (Wallace, 1972),

where the modal radiation patterns are found to be similar

given the structure symmetry. With this approach, the

underlying physics can be revealed allowing us to better

understand the radiation traces, and the effects of the self-

and mutual-efficiency.

II. RADIATION FROM PLANAR SOURCES

The pressure p̂ of a baffled structure at any point in the

space r is described by Rayleigh’s integral,

p̂ðrÞ ¼ jkq0c

2p

ð ð
S

Gðrjr0Þv̂ðr0ÞdS; (1)

in which k is the acoustic wavenumber and q0c the specific

impedance of a medium with volume density q0 and speed

of sound c. G is the Green function, v̂ðr0Þ the piston’s sur-

face velocity, and r0 the position vector on the surface S.

The radiation impedance of a baffled structure Zs can be cal-

culated directly using Bouwkamp’s impedance theorem.

Given a structure’s directivity pattern for a vector k; DðkÞ,
the radiation impedance is calculated as

Zs ¼ Rsþ iXs

¼ k2q0cS

4p2

ð2p

0

ðp=2

0

jDðkÞj2 sin hdhd/

 

þ
ð2p

0

ðp=2þj1

p=2þj0

jDðkÞj2 sin hdhd/

!
; (2)

where Rs and Xs are the specific radiation resistance and

reactance, respectively. Since the reactive part does not radi-

ate sound into the far-field, throughout the remainder of this

paper only the resistive part will be considered.

III. RADIATION FROM MULTIPLE SOURCES

A. The first product and bridge theorems

The first product theorem for arrays was stated as fol-

lows (Williams, 1999, p. 49):

“the directivity pattern of an array of N identical (size

and shape) radiators is equal to the product of the

directivity pattern of one of the radiators times the

transform of the array of N baffled point sources

positioned at the centers of the original radiators (now

removed) with the same relative amplitude and phases

as the original radiators.”

The first product or bridge product theorem (illustrated

in Fig. 1) addresses the multiplication of an elementary

source’s directivity by a point source in the Fourier space,

where the relative distances to the sources appear now as in

a phase component. Note that the phase component appears

to be relative to multiple sources, so its placement is

arbitrary.

Hence, by knowing the directivity of one baffled ele-

mentary source, the construction of a distribution of radia-

tors becomes straightforward.

B. Single baffled piston

To obtain the directivity pattern of the baffled piston

(illustrated in Fig. 2), a variety of approaches may be used.

One road is to employ Eq. (1) with a uniform velocity field

on the surface, use the image theory to calculate the Green

function, and then integrate the result over a hemisphere,

letting the distance tend to infinity. Other approaches may

be followed; for example, by using Hankel and Bessel trans-

forms of the pressure fields (Valier-Brasier, 2017), the

FIG. 1. The first product or bridge product theorem (illustration by Beranek

and Mellow, 2019).
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cylindrical Green’s function in Eq. (1) or by taking the

Fourier transform of the velocity field (Morse and Ingard,

1986, p. 377 and 381). All these approaches lead to

Dðh;/Þ ¼ 2J1ðka sin hÞ
ka sin h

; (3)

where Jn is the Bessel function of the first kind of n-order

and h and / the azimuth and elevation angles, respectively.

Inserting this into Eq. (2),

Rs ¼ ðkaÞ2q0c

2p

ð2p

0

ðp=2

0

2J2
1ðka sin hÞ
ðkaÞ2 sin h

dhd/;

¼ q0c 1� J1ð2kaÞ
ka

� �
;

¼ q0c rpðaÞ ¼ RpðaÞ; the self-radiation resistance:

(4)

A detailed explanation of how to solve the previous

integral can be found in King (1934, pp. 136–137). The radi-

ation efficiency or self-radiation efficiency of the baffled

piston rp is found by normalizing the radiation resistance by

the acoustic characteristic impedance q0c. By expanding the

Bessel function [see Eq. (33)], the self-radiation efficiency

rp can be expressed in a series as

rpðaÞ ¼
ðkaÞ2

2
� ðkaÞ4

22 � 31
þ ðkaÞ6

24 � 32
� � � : (5)

C. Two pistons with arbitrary phases

Two baffled pistons, as presented in Fig. 3, are vibrating

with phases U1 and U2, respectively; Ui 2 ½0; 2p�. The nor-

malized by the surface directivity pattern is expressed as

Dðh;/Þ ¼ a2
1

a2
1 þ a2

2

D1ðhÞeiU1

þ a2
2

a2
1 þ a2

2

D2ðhÞeiðkd sin h cos /þU2Þ; (6)

where D1 and D2 are defined by Eq. (3). The squared modu-

lus of the directivity is

jDðh;/Þj2 ¼ 2p2

ðkSÞ2
2a2

1J2
1ðka1 sin hÞ
sin2h

þ 2a2
2J2

1ðka2 sin hÞ
sin2h

�

þ 4a1a2J1ðka1 sin hÞJ1ðka2 sin hÞ
sin2h

� cos ðkd sin h cos /þ U12Þ
�
; (7)

in which the total surface S ¼ pða2
1 þ a2

2Þ and U12 ¼ U1

�U2. The specific radiation resistance Rs for the two pistons

is expressed as

Rs¼ q0c

2S

ð2p

0

ðp=2

0

2a2
1J2

1ðka1 sinhÞ
sinh

dhd/

"

þ
ð2p

0

ðp=2

0

2a2
2J2

1ðka2 sinhÞ
sinh

dhd/

þ2

ð2p

0

ðp=2

0

2a1a2J1ðka1 sinhÞJ1ðka2 sinhÞ
sinh

�ðcosðkd sinhcos/ÞcosU12

þsinðkd sinhcos/ÞsinU12Þ
#

dhd/

¼ p
S

a2
1Rpða1Þþa2

2Rpða2Þþ2a1a2R2pða1;a2;d;U12Þ
� �

:

(8)

RpðalÞ is the self-radiation resistance of piston l and R2p

is the mutual-radiation resistance between pistons 1 and 2.

Employing the integral representation [refer to

FIG. 2. (Color online) A piston of radius a in an infinite baffle with its directivity pattern for various values of ka. The amplitude Q̂ is here and henceforth

normalized to 1.

FIG. 3. Problem geometry: two pistons with radii a1 and a2, respectively,

spaced a distance d and aligned on the x-axis.
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Eqs. (27) and (28)] and setting s ¼ sin h, the mutual radia-

tion is calculated as

R2pða1; a2; d;U12Þ

¼ 2q0c

ðp=2

0

J1ðka1 sin hÞJ1ðka2 sin hÞ
sin h

� ðJ0ðkd sin hÞ cos U12 þH0ðkd sin hÞ sin U12Þdh;

¼ 2q0c

ð1

0

J1ðka1sÞJ1ðka2sÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� ðJ0ðkdsÞ cos U12 þH0ðkdsÞ sin U12Þds; (9)

Lommel’s expansion [see Eq. (30)] is used to expand J1,

then Bessel and Struve functions [Eqs. (31) and (32)] are

integrated to find

R2pða1; a2; d;U12Þ

¼ 2q0c
X1
m¼0

X1
n¼0

ka1

2

� �m
ka2

2

� �n
Jmþ1ðka1ÞJnþ1ðka2Þ

m!n!

�
ð1

0

J0ðkdsÞ cos U12 þH0ðkdsÞ sin U12½ �

� ð1� s2Þmþn�1=2sds;

¼ q0c
2ffiffiffi
p
p
X1
m¼0

X1
n¼0

a1

d

� �m a2

d

� �n

� Jmþ1ðka1ÞJnþ1ðka2Þ
m!n!

C mþ nþ 1

2

� �
� jmþnðkdÞ cos U12 þ hmþnðkdÞ sin U12½ �: (10)

The gamma function of a positive half-integer is defined for

any n 2 Zþ as C½nþ ð1=2Þ� ¼
ffiffiffi
p
p

=2nð2n� 1Þ! and jm and

hm are the spherical Bessel and Struve functions of the first

kind of order m, respectively [refer to Eqs. (34) and (35)]

This approach to calculating the mutual radiation impedance

Z12 for pistons in phase, was taken first by Pritchard (1960),

demonstrating an absolute convergence of the series when

a1a2 < d2. In the same lane, Chan (1967) and Beranek and

Mellow (2019, pp. 699–713) studied the case for two pistons

in phase with arbitrary dimensions. In all these cases, by

placing the pistons along the y axis instead of the x-axis, the

previous derivation of the expressions becomes clearer, as the

classical Bessel integral representation appears [Eq. (29)

instead of Eq. (27)]. When the pistons are in phase or in anti-

phase, the mutual-radiation reactance can be calculated fol-

lowing the same procedure; however, for an arbitrary phase,

no simple expression can be obtained.

The mutual-radiation efficiency is calculated by divid-

ing the mutual-radiation resistance by the free-space resis-

tance q0c,

r2p ¼ R2p=q0c: (11)

For two pistons with the same radii a1 ¼ a2 ¼ a, it is

possible to take the first three terms in Eq. (10) and the trig-

onometric representation of the spherical Bessel function to

find

r2pða; dÞ ’ 2ðJ2
1ðkaÞ þ a

d
!J1ðkaÞJ2ðkaÞ

þ a

d

� �2

KJ2
2ðkaÞÞ sin kd

kd
; (12)

where ! ¼ 1=kd � cotðkdÞ; K ¼ ð3=4Þ½ð3!=kdÞ � 1� and

which represents a good approximation for the mutual radia-

tion efficiency when d � 2a, as observed in Fig. 4.

Moreover, taking only the zero-order terms in a1;2=d, it is

for m; n ¼ 0 and if a1a2 � d2 it is possible to derive the

coefficients of the Acoustic Radiation Resistance Matrix

(ARM) described by Hashimoto [2001, Eq. (2)], here nor-

malized by the specific impedance,

r2pða1; a2; dÞ ’ 2J1ðka1ÞJ1ðka2Þ
sin kd

kd
: (13)

In addition, if the no-overlapping condition d � a1 þ a2

is fulfilled, the first zero is given by the sinus function in Eq.

(13), that is when kd ¼ p, and if d ¼ 2a, then it occurs

when ka ¼ p=2 as depicted in Fig. 4. The influence of the

mutual efficiency is illustrated in Fig. 5 as a function of the

distance between the pistons and the phase.

Finally, the complete formulation of r for two pistons

becomes

rða1; a2; d;U12Þ ¼
p
S

a2
1rpða1Þ þ a2

2rpða2Þ
�
þ 2a1a2r2pða1; a2; d;U12Þ

�
: (14)

Keeping in mind that the phase term U12 equals zero or p
when the pistons vibrate in phase or in anti-phase, the

Struve function in Eq. (10) cancels and the mutual radiation

efficiency becomes

FIG. 4. (Color online) Mutual-radiation efficiency of two pistons of the

same size at the minimum distance without overlapping, d ¼ 2a. The first

zero arrives near ka ¼ p=2.
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r2pða1; a2; d;U12 þ pÞ ¼ �r2pða1; a2; d;U12Þ: (15)

By expanding the first terms of r2p when a1 ¼ a2 ¼ a and

d¼ 2a,

r2pða; d ¼ 2aÞ ¼ ðkaÞ2

2
� 11ðkaÞ4

22 � 3!
þ 233ðkaÞ6

24 � 5!
� � � � (16)

Note that the first term is the same as in the piston case [see

Eq. (5)], and the limit when ka� 1! 0. In a general sense,

a monopolar behaviour will appear if the term proportional

to ðkaÞ2 persists. If this term is cancelled and the term pro-

portional to ðkaÞ4 remains, the pistons radiate as a dipole.

By eliminating both terms, a quadrupole radiation will be

observed. In Secs. III D, III E, and V, these cases will be dis-

cussed in more detail.

D. Two pistons vibrating in phase

When the pistons vibrate in phase, as in Fig. 6, U12 ¼ 0.

This cancels the sinus and leaves unchanged the R2p func-

tion in Eq. (10). Finally, the radiation efficiency can be writ-

ten as

rmonopole
	
	 ¼ rmonopole




 ¼ rpðaÞ þ r2pða; dÞ;

if a1 ¼ a2 ¼ a: (17)

The low-frequency limits for both components are the

same, and the radiation efficiency of the two pistons vibrat-

ing in phase is similar to a piston whose surface is doubled.

E. Two pistons vibrating in anti-phase

The directivity pattern of two pistons vibrating in anti-

phase makes U12 ¼ 6p (Fig. 7). This changes the sign of

the mutual radiation efficiency r2p in Eq. (14) from a þ into

a –, and also eliminates the sinus coefficient in Eq. (10), as

in the previous case. Note that the first term proportional to

ðkaÞ2 is cancelled between the self- and mutual parts, which

produces a dipolar radiation pattern. For pistons with equal

radii

rdipole
	

 ¼ rpðaÞ � r2pða; dÞ; if a1 ¼ a2 ¼ a: (18)

In Fig. 8, the characteristic monopolar radiation slope

of 6 dB/octave can be clearly identified. This slope is the

same for one single radiator as it is for two radiators in

phase. Also, this slope describes the radiation of monopole

point sources, pulsating spheres [Valier-Brasier, 2017, Eq.

(3.38)], and the spherical harmonics of degree zero [Wu

et al., 2014, Eq. (19)], as well as circular simply supported

or clamped radiators [Greenspan, 1979, Eqs. (45b), (47b)]

and [Aarts and Janssen, 2009, Eq. (36)].

As seen in Eq. (5), the monopolar behaviour is pro-

portional to ðkaÞ2, while in the dipole case, this term coun-

teracts, leaving the characteristic dipolar-slope

proportional to ðkaÞ4 at low frequencies. Consequently,

the radiation efficiency increases by 12 dB/octave, similar

to oscillating spheres [Valier-Brasier, 2017, Eq. (3.39)]

and first-degree spherical harmonics.

F. Three pistons on the plane

Three radiators, whose radii are a1, a2, and a3, respec-

tively, are placed on the plane xy. The vector ri describes

the position from the origin to the i source’s center, as

depicted in Fig. 9. The directivity pattern using the bridge

product theorem takes the general form

DðkÞ ¼ p
S

XN

l¼1

a2
l DlðkÞeiðk�rlþUlÞ; (19)

where N¼ 3 in this case. The squared modulus of the direc-

tivity is expressed as

FIG. 5. (Color online) Ratio r2p=rp for ka¼ 1 as a function of kd and the

relative phase between two pistons U12 of equal area.

FIG. 6. (Color online) (a) Pistons vibrating in phase having the same radius a1 ¼ a2 ¼ a at a distance d ¼ 2a. b) The directivity pattern of the array for

/ ¼ 0.
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jDðkÞj2 ¼ p2

S2

X3

l¼1

a4
l D2

l ðkÞ þ a2
1a2

2D1ðkÞD2ðkÞ
"

� ei k�ðr1�r2ÞþU1�U2½ � þ e�i k�ðr1�r2ÞþU1�U2½ �
	 


þa2
2a2

3D2ðkÞD3ðkÞ
� ei k�ðr2�r3ÞþU2�U3½ � þ e�i k�ðr2�r3ÞþU2�U3½ �
	 


þa2
3a2

1D3ðkÞD1ðkÞ

� ei k�ðr3�r1ÞþU3�U1½ � þ e�i k�ðr3�r1ÞþU3�U1½ �
	 
#

¼ p2

S2

X3

l¼1

a4
l D2

l ðkÞþ2a2
1a2

2D1ðkÞD2ðkÞ
"

� cos ðk � ðr1� r2Þ þU12Þ
þ2a2

2a2
3D2ðkÞD3ðkÞcos ðk � ðr2� r3Þ þU23Þ

þ2a2
3a2

1D3ðkÞD1ðkÞcos ðk � ðr3� r1Þ þU31Þ
#
:

(20)

In the new coordinate axis, it is possible to see the contri-

bution of each piston and the cross terms, which, after

integration, will result in the self- and mutual-radiation between

each pair of pistons. Due to the circular symmetry of the

pistons, Dl does not depend on / but only varies with h, which

is unchanged in the new coordinate system, as depicted in Fig.

9. Hence, it is possible to reallocate the system of coordinates

as convenience to calculate the radiation resistance. Consider,

for example, the mutual radiation resistance between pistons 1

and 3,

R2pða1; a3; k � ðr3 � r1Þ;U13Þ

¼ 2kq0c

S

ð2p

0

ðp=2

0

a2
1a2

3D1ðkÞD3ðkÞ

� cos ðk � ðr3 � r1Þ þ U31Þ sin hdhd/

¼ 2kq0c

S

ð2p

0

ðp=2

0

a2
1a2

3D1ðh0;/0ÞD3ðh0;/0Þ

� cos ðkd31 sin h0 cos /0 þ U13Þ sin h0dh0d/0

¼ R2pða1; a3; d13;U13Þ: (21)

Clearly, we are able to take advantage of the local coordi-

nates due to the symmetry of the circular piston, thereby

compacting the problem and leaving only two functions to

define the radiation: the self- and mutual-radiation resistance

and efficiency.

IV. RADIATION RESISTANCE AND EFFICIENCY
OF A RANDOM DISTRIBUTION OF PISTONS

It is now possible to express the radiation of a distribu-

tion of N baffled sources, regardless of their radius, position,

or phase.

FIG. 7. (Color online) (a) Pistons vibrating in anti-phase at a distance d ¼ 2a with the same radius a1 ¼ a2 ¼ a. Positive amplitudes are displayed in red

and negative amplitudes in blue. (b) The directivity pattern of the array (U12 ¼ p).

FIG. 8. (Color online) Radiation efficiency, from top to bottom: one single

piston (dotted blue), mutual radiation efficiency of two pistons (dotted

green), pistons vibrating in phase (solid blue), pistons vibrating in anti-

phase (solid orange). All pistons have the same radius a and are separated

the same distance d ¼ 2a.

FIG. 9. Three pistons placed on the plane xy. The bridge product theorem

can be implemented more straightforwardly by changing the axis origin to

coincide with the piston’s center and utilizing directly the distances

between each pair of pistons.
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The radiation parameters Rs and r of the arrangement

can be expressed as a linear combination of the contribution

of every single piston plus a term coming from the mutual

radiation of each pair of radiators. The mutual radiation

term is a function of each piston radius ai, the distance

between each pair of sources dij ¼ kri � rjk, and the vibrat-

ing phase Ui of each radiator. Therefore, the radiation effi-

ciency can be summarized as

r¼p
S

XN

l¼1

a2
l rpðalÞþ2

XN

i¼1

XN

j>i

aiajr2pðai;aj;dij;UijÞ

0
@

1
A: (22)

Note than only two types of functions are presented in the

previous equation: rp, defined in Eq. (4), and r2p, developed

from Eqs. (8)–(11). Section III C provides useful and fast

approximations of mutual-radiation efficiency [see Eqs. (12)

and (13)], even though the double series in the complete

expression of r2p converges fast.

V. ANALYSIS OF THE RADIATION EFFICIENCY
IN SOME TYPICAL CASES

A. Dipole with non-zero flux

Taking two pistons vibrating in anti-phase with areas

S2 ¼ 2S1, as seen in Fig. 10, we find

rd ¼
p
S

a2
1rpða1Þ þ a2

2rpða2Þ � 2a1a2r2pða1; a2; dÞ
� �

: (23)

As shown in Fig. 11, annulling the low-frequency dipole

slope is the main effect when two pistons are of different

sizes. For small values of ka, the term �(ka)2 does not can-

cel itself out, resulting in a small monopole. This monopole

radiates more energy in the low-frequency range than a sin-

gle piston, whose surface would be S ¼ S2 � S1.

B. Three sources aligned and in “L” shape

In this case, two dipoles are formed, sharing one single

radiator in anti-phase. The dipoles are spaced a distance

d ¼ 2a in both cases and have the same radius a, as illus-

trated in Fig. 13.

The first case leaves the pistons vibrating in phase sepa-

rated a distance d23 ¼ 2d and for the second case

d23 ¼
ffiffiffi
2
p

d. The distance d12 ¼ d13 ¼ d in both examples,

which results in

rt ¼ rpðaÞ �
4

3
r2pða; dÞ þ

2

3
r2pða; d23Þ;

d23 ¼
2d if aligned;ffiffiffi

2
p

d; if in 00L:00

(
(24)

When the radiators are aligned, as exposed in Fig. 12(a),

two different regions are well identifiable: the monopolar

behaviour in the low-frequency regime when ka� 1 comes

from the contribution of all pistons plus the contribution of the

FIG. 10. (Color online) (a) Vibrating pistons with different areas vibrating in anti-phase. (b) Directivity of the dipole when / ¼ 0.

FIG. 11. (Color online) Dipole when one of the piston’s area is (a) twice that of the other, (b) triple that of the other.
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pistons vibrating in phase at
ffiffiffi
2
p

d. When 1 � ka < 2, the

dipole regime with its characteristic slope appears at first

sight and can also be identified in the directivity pattern in

Fig. 12. These two tendencies in the radiation efficiency are

also present in the mode (1,3) in a simply supported rectangu-

lar plate (Wallace, 1972). In the second case [Fig. 13(b)], the

monopole dominates the low frequency regime even when ka
approaches the unity. The separation between monopolar and

dipolar radiation cannot be identified and the dipole effect is

seen to be suppressed, clearly appreciated in the efficiency

plot and the directivity pattern in Fig. 12. As shown in Fig.

13(b), this effect is solely the result of the pistons vibrating in

phase at different distances, whose mutual radiating effi-

ciency is illustrated in green dotted lines. The orange dashed

lines represent the contribution of each pair of pistons sepa-

rated a distance d, and the overlapping between these two

traces marks the transition between monopolar and dipolar

radiation. In addition, the evolution of the slope is similar to

that of the dipole case exposed in Sec. III E.

C. Quadrupole

Four sources are arranged along one axis in one case,

and in a squared array in the other, as shown in Fig. 14. In

terms of radiation efficiency,

rq ¼ rpðaÞ �
3

2
r2pða; dÞ þ r2pða; 2dÞ � 1

2
r2pða; 3dÞ; (25)

if the pistons are aligned, and

rq ¼ rpðaÞ � 2r2pða; dÞ þ r2p a;
ffiffiffi
2
p

d
	 


; (26)

if they are placed in a squared arrangement. It can be seen in

Fig. 15(a) that only half of the amplitude of the two most

distant pistons is not cancelled, so the remainder radiator

becomes a dipole and then the slope changes into a quadru-

pole (18 dB/octave). The distance between each pair is 2d
and the transition between regimes is around ka¼ 1. The

dipole and quadrupole behaviour can also be seen in the

FIG. 13. (Color online) Three pistons, two of them are separated of (a) d23 ¼ 2d and (b) d23 ¼
ffiffiffi
2
p

d.

FIG. 12. (Color online) Three piston with the same radius a1 ¼ a2 ¼ a3 ¼ a and d ¼ 2a. The distance between the pistons in phase (in blue) is smaller in

the second case. The directivity is plotted on the axis of symmetry: / ¼ 0 in the first case and / ¼ p=4 when the pistons are aligned in “L”. A three-

dimensional (3D) plot is provided in the supplemental material (Garc�ıa et al., 2022).
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directivity pattern in Fig. 14. When the pistons form a

square, due to the symmetry between the sources, the dipole

effect is fully cancelled, leaving the structure radiating as a

quadrupole [see Fig. 15(b)], with a slope proportional to

ðkaÞ6 as also seen in the spherical harmonics of degree 2

[Wu et al., 2014, Eq. (19)] Both cases are also well identifi-

able in the simply supported plate presented by Wallace

(1972).

VI. CONCLUSION

In this paper, we present a method for calculating the

far-field radiation of distribution of pistons with different

sizes, placed arbitrarily on a baffled plane and vibrating with

arbitrary phases. This approach allows for the direct calcula-

tion of radiation resistance and efficiency of any type of pis-

ton arrangement, which extends the work of Pritchard

(1960) and Beranek and Mellow (2019). The core of this

analytical formulation lies in the calculation of only the self-

and mutual-radiation components including a phase compo-

nent. The circular piston’s symmetry enables the derivation

of analytical formulas for any arrangement without the need

for numerical integration. The acoustic radiation of this type

of structure can be analyzed by the contribution of each

term, resulting in simple expressions formed by the self- and

mutual-radiation of the sources, the phase, and the distance.

By using this approach, we can gain some insight into the

tendencies and physical understanding of radiation effi-

ciency. This method can be developed further to take into

account axisymmetric non-uniform velocity profiles, as in

resilient radiators, or to include the near field effects induced

by the reactance, which are not considered in this paper, but

that may occur when two sources are too close to each other,

or when the fluid loading cannot be ignored and may couple

the vibration of several sources at once. The versatility of

this approach allows different scenarios to be explored, such

as the radiation present in ultrasonic instrumentation; the

inverse problem presented in antennas. In classic flat vibro-

acoustic structures, as plates or membranes, the mode

shapes could be approached by a combination of vibrating

pistons to a certain extent. The method that we have devel-

oped here can be used to predict the modal radiation effi-

ciency of this kind of structure, revealing the underlying

physics, where numerical solutions have to be implemented

in the absence of more intuitive approaches.

VII. INTEGRALS

Lommel integral representation [Watson, 1966, Eq. (1),

p. 47],

J�ðzÞ ¼
1

C � þ 1

2

� �
C

1

2

� � z

2

� ��

�
ðp

0

sin2�ð/Þ cos ðz cos /Þd/; Re � > � 1

2

� �
:

(27)

Integral representation of the Struve function [Zwillinger

et al., 2014, Eq. (3.715), p. 16],

ðp=2

0

sinðzcos/Þsin2�/d/¼
ffiffiffi
p
p

2

2

z

� ��
C �þ 1

2

� �
H�ðzÞ;

Re� >�1

2

� �
: (28)

Integral representation of the Bessel function [Watson,

1966, Eq. (1), p. 19],

FIG. 14. (Color online) Four pistons (a) arranged in a line and in a square with two of the vibrating with positive phase and the other in anti-phase. (b)

Directivity of each array for / ¼ 0 when the pistons are disposed on the axis x, and / ¼ p=4 or / ¼ 3p=4 when the pistons are disposed in a square array.

See the supplemental material (Garc�ıa et al., 2022) for some 3D plots.

J. Acoust. Soc. Am. 152 (2), August 2022 Garc�ıa A. et al. 1143

https://doi.org/10.1121/10.0013569

https://doi.org/10.1121/10.0013569


JnðzÞ ¼
1

2p

ð2p

0

cos ðz sin /� n/Þd/: (29)

Lommel expansion [Beranek and Mellow, 2019, Eq.

(13.343)],

J�ðbzÞ ¼ z�
X1
n¼0

b

2

� �n ð1� z2Þn

n!
J�þnðbÞ: (30)

Sonine’s integral [Beranek and Mellow, 2019, Eq. (A2.96)],

ða

0

1� z2

a2

� �lþ1
2

J0ðbzÞzdz¼ a2

2
C lþ 3

2

� �

� 2

ab

� �lþ3
2

Jlþ3
2
ðabÞ: (31)

Integral of the Struve function [Zwillinger et al., 2014, Eq.

(6.815), p. 1],ð1

0

z
1
2
�ð1� zÞl�1

H� b
ffiffi
z
p	 


dz ¼ 2lb�lCðlÞHlþ�ðbÞ;

Re � > � 3

2
; Re l > 0

� �
: (32)

Bessel expansion,

JnðzÞ ¼
X1
k¼0

ð�1Þk

k!Cðnþ k þ 1Þ
z

2

� �nþ2k

: (33)

Bessel trigonometric half-integer expansion,

Jnþ1
2
ðzÞ ¼ ð�1Þnznþ1

2

ffiffiffi
2

p

r
dn

ðzdzÞn
sin z

z

� �
: (34)

Spherical Bessel function (Rayleigh formula),

jnðzÞ ¼ ð�zÞn 1

z

d

dz

� �n
sin z

z
: (35)
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