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 
Abstract—This paper is an introduction to mesh based 

generated reluctance network modeling. An overview of scientific 
works which led to the development of this approach is first 
presented. Basic concepts of the approach are then presented in 
the case of electromagnetic devices. A step-by-step procedure for 
coding the approach in the case of a flat linear permanent magnet 
machine is presented. Codes developed under MATLAB and 
Scilab environments are also included. 
 

Index Terms—Lumped parameter modeling, finite element 
method, mesh, electromagnetic devices, modeling 

I. INTRODUCTION 

HE finite element method (FEM) is used in different 
engineering domains [1], and has proven to be very useful 

for the analysis and the design of engineering components and 
devices. Many commercial and open-source packages are now 
available and often used for teaching purposes and in R&D 
departments in industry [2]. It is inconceivable that an engineer 
can graduated without at least having heard about the FEM. 
Nevertheless, the FEM is always introduced at the end of 
engineering teaching programs, because it requires mastering 
relatively advanced mathematical concepts. 

This isn’t the case of lumped parameter models which 
require less mathematical knowledge, and which can be 
directly linked to the studied physical problems. This is why 
they are taught much earlier in the engineering teaching 
programs. They are qualified as semi-analytical approaches due 
to their derivation from simple analytical expressions, or as 
semi-numerical approaches because they require the 
discretization of the studied domains. 

This contribution presents a tutorial introduction to mesh  
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based generation of lumped parameter models for 
electromagnetic problems. In the case of electromagnetic 
problems, the lumped parameter models are qualified as 
reluctance or permeance networks. In general, this approach is 
often developed with the minimum number of reluctances by 
identifying global flux tubes. Their identification is often done 
using FEM when the studied device is relatively complex, e.g., 
electrical machines. 

The aim of the mesh based generated reluctance networks 
(MBGRN) approach is to avoid resorting to FEM and to make 
it an independent versatile tool, as FEM based software. This is 
done by automating the generation of these models, as it is the 
case in FEM. 

Many recent works [3]–[12] have been dedicated to this 
approach, whether alone [3]–[8] or coupled with pure analytical 
models [8]–[12]. In [7], the software implementation of the 
approach is discussed and applied to a flux switching machine. 
The implementation was limited to the magnetic scalar 
potential formulation. In all cited references [3]–[12], the 
authors addressed one specific formulation. In [13], the authors 
coupled both magnetic scalar potential and mesh fluxes 
formulation, but didn’t use the MBGRN. They used the 
classical approach based on the preliminary flux tubes 
identification method. In the present contribution, the goal is to 
discuss the fundamental bases of the approach, and it is 
presented for the two possible formulations: magnetic scalar 
potential, also known as the nodal approach, and the mesh 
fluxes formulation. 

After positioning the approach regarding the works 
dedicated to the modeling of electromagnetic problems, and its 
genesis, basic concepts of the approach are presented. It is then 
detailed in the case of a flat linear permanent magnet machine. 
Codes developed under MATLAB and Scilab environments are 
provided along this contribution. 

II. OVERVIEW OF THE GENESIS OF MBGRN 

It is always difficult to identify the origin of a concept, 
because it may be proposed by several authors in different 
places with different names. In this section, an overview of the 
reluctance network models from its origin is proposed. It will 
help introduce the concept of MBGRN modeling. 

The subject of this contribution is the modeling of 
electromagnetic devices. More precisely, it is the modeling of 
magnetic fields distribution, in these devices, which is targeted. 
In these objects, two domains should be distinguished: 
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electricity and magnetism. Both domains are governed by the 
Maxwell’s equations [14]. James Clerk Maxwell (1831–1879) 
mathematically formalized some works that have been done at 
that time by different scientists as André-Marie Ampère (1775–
1836), Michael Faraday (1791–1867) and many others. While 
some scientists focused their works on the fundamental aspects 
related to electricity and magnetism, some others worked on the 
application of these fundamental aspects to electrical machines 
[15] [16]. 

Similarly to what has been done for electrical circuits, for 
which theoretical tools have been developed during the first 
half of the 19th century, some scientists, as John Hopkinson 
(1849–1898) and Gisbert Kapp (1852–1922), developed analog 
tools for the study of the magnetic circuits, during the second 
half of this century. An interesting historical overview on the 
genesis of the concept of magnetic circuit model can be found 
in [16]. 

The magnetic circuit model concept was the first to be used 
in order to compute the magnetic field distribution in 
electromagnetic devices. Numerical modeling tools, as the 
finite difference and the finite element methods, were only 
developed and used decades later [17]. With the development 
of numerical modeling approaches, the models used in physics 
and engineering were classified into two categories: analytical 
and numerical models. The magnetic circuit models, due to the 
fact that they are based on the use of spatially distributed 
reluctance (or permeance) elements, which are expressed 
analytically, overlap both modeling categories. They are 
qualified as semi-analytical or semi-numerical models. Many 
different terms are used to qualify the magnetic circuit model: 

1) Magnetic circuits; 
2) Magnetic equivalent circuits (MEC); 
3) Reluctances or permeances networks (RN or PN); 
4) Lumped parameter magnetic circuit models. 

The term "lumped parameter model" is a general term used 
in different physical and related engineering domains. It 
reflects the spatial distribution of the circuit or network 
elements. 

The generation of the RN can be done in two ways. The first 
way supposes the prior knowledge of the distribution of flux 
tubes, which are represented by the reluctance elements. The 
second approach, as for numerical modeling approaches, is 
based on a discretization of the studied domain without the 
prior knowledge of flux tubes distribution. Placed in the general 
context of solving Maxwell’s equations, this idea is by no 
means new [18] [19]. Nevertheless, this contribution focuses on 
its application to magnetic circuits [20]–[28]. The development 
of these approaches requiring a more or less fine discretization 
in the space and time domains is concomitant with the 
development of computing science, and the larger availability 
of computing equipments (computers) [29]. This contribution 
is also motivated by the lack of commercial, or largely available, 
software tools based on this approach. 

III. BASIC CONCEPTS OF THE MBGRN 

Different concepts related to this approach, e.g. mesh type, 
elements type, are similar to corresponding concepts for FEM 

[30]. In this contribution for the sake of simplicity and in order 
to simply introduce the approach, it will be described in the 
case of 2D problems (Cartesian coordinates) with a uniform 
homogeneous mesh, and rectangular elements (Fig. 1). Fig. 2 
presents a flow chart of the MBGRN approach implementation. 
Being a numerical approach, this flow chart is similar to what 
could be found for the FEM approach. 

 
(a) Uniform mesh 

 
(b) Reluctance element 

Fig. 1. Illustration of the MBGRN. 

 
Fig. 2. Flow chart of the MBGRN modeling approach. 

This flow chart can be adopted for the analysis of 
steady-state or transient problems. In electrical machines, the 
analysis of transient phenomenon requires the coupling of the 
MBGRN to electrical circuits and mechanical equations. 
Aiming at introducing the MBGRN approach, its coupling with 
electric circuits and mechanical equations are not discussed. 
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Nevertheless, being equivalent from a conceptual point of view 
to FEM approach, interested readers could consult references 
[30], [31] and [32]. 

This approach is based on the subdivision of the studied 
domain into a certain number of reluctance elements (Fig. 1). 
Each element is composed of one central node and 4 nodes at 
the element boundary. The central node is connected to the 
boundary nodes via 4 reluctances [Fig. 1(b)]. The expressions 
of the four reluctances composing the reluctance element are 
given by: 

1 2 1 2
0 0

1 1
, and

2 2
R R   R Rx x y y

r a r a

l h

l h l l   
    ,  (1) 

where, l and h are the length and the height of the element [Fig. 
1(b)], 0 and r are the permeability of the vacuum and the 
relative permeability of the region (material) where the element 
is located, and finally, la is the active length of modeled 
problem.  

Note that the use of triangular elements is also possible [8] 
[33]. For the sake of simplicity, the MBGRN approach will be 
implemented in the case of a linear structure, where the 
geometry is well adapted for rectangular elements. In case the 
geometry imposes it [33], the triangular elements could be 
adopted exclusively or along with the rectangular ones. 

In following subsections, all elements required to build the 
algebraic equations system to solve in order to obtain the 
magnetic field distribution for the studied device are presented. 

A. Mesh and Elements Numbering 

In order to simply introduce the approach, a uniform 
homogenous mesh, only containing rectangular elements, is 
adopted [Fig. 1(a)]. The 2D studied domain is a rectangular 
area. It is divided into m elements (segments) in x direction and 
n elements (segments) in y direction. Fig. 3 illustrates the way 
the elements of this mesh are indexed. In order to identify the 
number of an element in relation to its position in the mesh a 
matrix representation is adopted (2). Two vectors, one 
corresponding to the position of the element in x direction (s 
vector) and the other to its position in y direction (r vector), are 
adopted. This matrix is given by: 

(1,1) (1,2) (1, 1) (1, )

(2,1) (2,2) (2, 1) (2, )
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MN r s

n n n m n m

   
   
 
 
 
   

   
    

.  (2) 

The number (index) of an element (en) located at the position 
(r,s) in the matrix is then given by: 

( 1)en r m s    .       (3) 

Apart from the elements located at the boundaries of the 
studied domain, an element number en will be connected to 
four elements as shown in Fig. 3. Treatment of elements at the 
boundaries is analyzed in following subsection. 

B. Boundary Conditions Consideration 

Four different boundary conditions could be encountered: 

1) Parallel magnetic field boundary condition; 
2) Normal magnetic field boundary condition; 
3) Cyclic (or periodic) boundary conditions; 
4) Anti-cyclic (or anti-periodic) boundary conditions. 

 
Fig. 3. Indexing of the mesh elements. 

Fig. 4 illustrates how the parallel magnetic field boundary 
condition impacts the reluctance elements located at this 
boundary. Reluctances connected to this boundary are set equal 
to the infinite. This means that no magnetic flux is going out 
from this boundary. Fig. 5 illustrates how the normal magnetic 
field boundary condition is considered in the RN. If the 
magnetic field is considered deriving from a scalar magnetic 
potential U, its components, in a 2D Cartesian coordinates 
referential, can be obtained from 

x y

U U
H gradU e e

x y

 
    

 

   
.     (4) 

A normal magnetic field boundary condition applied to a line 
located at a given y coordinates, as the example in Fig. 4, is 
equivalent to imposing a constant value of the scalar magnetic 
potential U to nodes located on this line. This constant value 
could be set null. 

For the periodic or the anti-periodic boundary conditions, 
two boundaries are concerned. As for the FEM, these 
boundaries should be meshed similarly. Considering that these 
two boundaries are located at positions x = 0 m and x = Lt, 
where Lt is the total length of the studied domain in x direction. 
Fig. 6 shows an illustration of the way these two boundary 
conditions are treated for two elements i and (i+m–1) located at 
the two boundaries respectively. 

If the periodic boundary condition is applied at the two 
boundaries, the equation related to the element i, (i+m–1) 
respectively, is established by considering that the element 
connected to it at the left-hand side, right-hand side 
respectively, is the element (i+m–1), i respectively. 

This corresponds to considering that the magnetic flux 
incoming from the left-hand side of element i, is equal to the 
flux outgoing in right direction from the element (i+m–1). 
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Fig. 4. Parallel magnetic field boundary condition. 

 

Fig. 5. Normal magnetic field boundary condition. 

If the anti-periodic condition is applied at the two boundaries, 
the equation related to element i, (i+m–1) respectively, is 
established by considering that the element connected to it at 
the left-hand side, right-hand side respectively, has a value of U, 
at its central node, which is opposite to the value of U in the 
element (i+m–1), i respectively. The use of the sign minus in 
the numbers of the elements in Fig. 6(b) is intended to highlight 
this aspect. The antiperiodic boundary conditions also 
correspond to consider that the magnetic flux incoming from 
the left-hand side of the element i is opposite to the flux 
outgoing toward right direction from the element (i+m–1). 

C. Magnetic Field Sources Modeling 

Two magnetic field sources do exist in electrical machines: 
coils or windings, and permanent magnets (PM). Permanent 
magnets can either be modeled by a flux source in parallel with 
a reluctance or a magneto-motive force MMF in series with a 
reluctance, as shown in Fig. 7. 

MMF sources corresponding to a winding have not 
necessarily to be represented within the RN. They have to when 
magnetic scalar potential at central nodes are chosen as the 
unknowns. In this case, Fig. 8 shows the variation of MMF with 
the coordinates corresponding to the direction for which the 
coil closes (x direction). This figure shows the modelling 
principle on the illustrative example of the following section. ws 
and s are respectively the slot opening and the slot pitch. 

MMF sources are located in the branches perpendicular to 
the direction for which the coil closes (x direction). All MMF 
sources are located between y0 and y0 +hs, where hs is the slot 
height. The first slot (x  [x0, x0+ws]) is divided into two 
elements in x direction. The values of the MMF sources in the 
elements, located between x0 and x0+ws/2, will correspond to 
MMF(x0+ws/4)/Nsy/2, where Nsy is the number of elements in 
the slot in y direction (two elements in the case of Fig. 8). 
Notice that x0+ws/4 is the coordinate of the central nodes of 
these elements in x direction. The total MMF is obtained by 
summing MMF of the different phases. 

If the mesh fluxes are chosen as the unknowns, the MMF 
sources haven’t to be considered in the RN. The MMF sources 
are naturally considered by the Ampere’s law, which is the 
basic law helping establishing the algebraic equations system. 
Further details are provided in subsection III.E. 

D. Magnetic Scalar Potential Formulation (MSPF) 

In this formulation, the unknowns are the magnetic scalar 
potentials at each central node of the reluctance elements. The 
so-called nodal method [34] is used to generate the algebraic 
equations system. 

 

(a) Cyclic boundary conditions 

 

(b) Anti-cyclic boundary conditions 

Fig. 6. Periodic and anti-periodic boundary conditions illustration. 
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Fig. 7. Permanent magnet (PM) region modeling. 

 

Fig. 8. Windings MMF distribution. 
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Fig. 9 illustrates how the equations corresponding to a node i 
are determined after Kirchhoffs’s laws. According to 
Kirchoff’s laws, it can be established that 

1

( )
0 Wb and   

nn
ij ij

ij i j ij
ijj

j i

s
U U Fms

P

 






      (5) 

and then, 

1 1 1

( ) ( )
nn nn nn

ij i ij j ij ij ij
j j j
j i j i j i

P U P U s P Fms
  
  

 
 

       
 
 

     (6) 

The equations system, corresponding to the RN, is expressed 
using matrix formulation as 

    P U            (7) 

where [P] [nm  nm] is the permeance matrix, [U] [nm  1] is 
the magnetic scalar potential vector (the unknowns vector), and 
[][nm × 1] is the flux sources vector. nn = nm is the number 
of nodes. Having adopted a uniform homogenous mesh, the 
maximum number of non-null elements in a given line of the 
matrix [P] is 5. The matrix is then sparse. 

E. Mesh Fluxes Formulation (MFF) 

In this formulation, the unknowns are the mesh fluxes. The 
so-called mesh method [34] is used to generate the algebraic 
equations system. Fig. 10 illustrates how the equations 
corresponding to a mesh i are determined from Kirchhoffs’s 
and Ampere’s laws. According to these laws, it can be 
established that 

   
   

AB BC 1

ABCDA C D DA 1

R R

 R R
i i m i i

i i m i i

Hdl Ni
 

 

     
  

       

 
 , (8) 

where Ni is the number of Ampere-turns (MMF) surrounded by 
the mesh loop. Ni is counted positive if the current is coming 
out of the plan towards reader, and negative inversely. 

The equations system, corresponding to the RN when mesh 
fluxes are chosen as the unknowns, is expressed using matrix 
formulation as 

    R F  ,         (9) 

where [R] is the reluctance matrix, [] is the mesh fluxes vector 
(the unknowns vector), and [F] is the magneto-motive forces 
vector. Depending on the boundary conditions the number of 
unknowns, problem dimension, in this formulation could be 
lower or higher as compared to previous formulation. Having 
adopted a uniform homogenous mesh, the maximum number of 
non-null elements in a given line of the matrix [R] is 5. The 
matrix is then also sparse. 

F. Motion Consideration 

Techniques used for the consideration of motion in FEM [30] 
can be simply adapted to the MBGRN approach. In the 
illustrative example presented in the next section, the moving 
armature is non-salient. The stator armature is salient 
considering the slotting effect. The motion consideration is 
simply realized by modifying the right-hand side excitation 
vector, [] or [F], in (7) or (9), respectively. No need to 
actualize elements values of matrices [P] or [R]. This is specific 
to the chosen example. 

As for FEM, the motion can be considered by remeshing the 
air-gap region [30] [35], using sliding surface between the 
moving region and the static one [30], and others [36].  

G. Magnetic Saturation Consideration 

If magnetic saturation is considered, the algebraic equations 
system becomes non-linear (10). It can only be solved using 
iterative approaches. The main approaches used for that 
purpose are the Newton method and fixed point method [30]. 

     
     

for MSPF

for MFF

P U U U

R F

              
     (10) 

As illustrated by (10), the consideration of magnetic 
saturation will result in the dependence of matrix [P], and 
vector [], on the solution vector [U], for the MSPF, while only 
the matrix [R] will depend on the solution vector [], for the 
MFF. It is then easier to adopt the MFF when considering the 
magnetic saturation. Authors in [34] have highlighted the 
superiority of the MFF as compared to MSPF, when magnetic 
saturation is considered. 

In following section, the magnetic saturation is considered 
using the MFF, and the fixed point method is used in order to 
solve the non-linear algebraic equations system (Fig. 11). 

The convergence criterion is given by: 

 

 

21
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k
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i
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

 
  

  
 

  
 




,    (11) 

where k refers to the iteration number. If the number of 
iterations exceeds a certain number NbI, the resolution is 
stopped, even if the convergence criterion is not reached. 

Fig. 11 shows the adopted algorithm for solving the 
non-linear algebraic equations system. Initial solution is 
obtained considering the value of relative permeability of iron 
core at the origin. 

 
Fig. 9. Equation setting for the ith node. 

 

Fig. 10. Equation setting for the ith mesh. 
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Fig. 11. Non-linear algebraic equations system solving algorithm. 

IV. ILLUSTRATIVE EXAMPLE 

The MBGRN is implemented in the case of a flat linear 
permanent magnet machine (FLPM) (Fig. 12). The MBGRN 
approach is compared to FEM in the cases of linear and 
non-linear iron cores characteristics. In the linear case, the two 
precedent formulations are used, and compared to 
corresponding analyses using the FEM. In the non-linear case 
(consideration of magnetic saturation), only the MFF MBGRN 
is compared to the FEM. 

Due to geometric and electromagnetic symmetries; only one 
pole pitch is modeled. Anti-periodic boundary conditions are 
adopted. Table I gives main machine’s dimensions. Equation 
(12) gives the non-linear characteristic of iron cores used in 
both the FEM and the MFF MBGRN. 

TABLE I  
MACHINE CHARACTERISTCS 

Mechanical air-gap e (mm) 1 
Pole pitch p (mm) 60 

hst, hs, hm, hmbi, m, s and ws (mm) 30, 20, 10, 10, 55, 20, 10 
Active length (mm) 1000 

PM magnetic remanence Br (T) 1.2 
Relative permeability of iron rf and PM rm 7500, 1 

 
Fig. 12. Longitudinal cross-sectional view of the studied FLPM structure. 

  
(a) (b) 

Fig. 13. Computation of magnetic field B components for node i. 

 0 0

0

12
( ) 1 arctan

2
rsat

r
sat

HB
H

H B

  


 
     

          
 (12) 

Bsat is the saturation induction, set equal to 1.99, and r0 is the 
value of relative permeability at the origin, set equal to 7500. 

Programs coded under MATLAB and Scilab environments 
allowing the analyses can be downloaded from [37] for the 
linear case, and from [38] for the non-linear case. They are 
coded using simple instructions. 

A. Computation of Local Quantities 

The magnetic field B components at the central node of an 
element i (Fig. 13) are computed by 
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  (13) 

Fig. 13 shows the different quantities used in (13). The local 
quantities are used to compute global quantities. 

B. Computation of Global Quantities 

The global quantities are computed in a post-processing 
phase, as it is done in FEM packages. The phase flux linkages, 
under open-circuit or load conditions, are computed by 
summing fluxes in the RN branches located at mid-height of the 
slots, and spanning one pole pitch, which corresponds to the 
opening distance of a phase coil for the studied machine. Fig. 
14 illustrates how this is done for the used model which is 
limited to one pole pitch. The total flux in this coil is given by 

0 1t            (14) 

The voltage (EMF under open-circuit condition) is computed 
by differentiating the total flux and multiplying it to the number 
of turns. 

 
Fig. 14. Computation of the total flux in a coil spanning one pole pitch. 
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The cogging force under open-circuit condition or the thrust 
force under load conditions are computed using the Maxwell 
stress tensor (MST). MST can also be used to compute the 
attraction force between the stator and moving armature. The 
force components in x and y directions are given by 

 2 2

0 00 0

, and
2

  
p p

a a
x y x y y x

l l
F B B dx F B B dx

 

 
      (15) 

Bx and By correspond to the components of magnetic field 
vector B in nodes located at a given y coordinate in the air-gap. 
As for FEM, the mesh of the air-gap should be given a 
particular attention in order to insure good quality results. 

Other global quantities as the iron losses can also be 
computed in the post-processing phase [39]. Nevertheless, as 
an introduction to the MBGRN, the computation of the global 
quantities is limited to the voltages and the forces. 

C. Comparison with FEM 

Since results from MBGRN approach using magnetic scalar 
potential and mesh fluxes formulations are identical, in the 
linear case, only these issued from the second are presented. 
The results are plotted for a mesh with m = 120 and n = 102, 
which corresponds to 12240 square elements. By doing so, the 
air-gap contains two layers of elements. It is referred to results 
from the MBGRN in following figures by simply using the 
acronym RN. FLUX2D package [2] is used for the FEM 
computations. 

Fig. 15 compares magnetic field B components under 
open-circuit condition. The position for which these spatial 
distributions are plotted corresponds to the one of Fig. 12, the 
PM having a positive magnetization. The origin point (x = 0 m, 
y = 0 m) corresponds to the bottom-left corner of the structure. 
The spatial distributions are plotted for a path located at y = hmbi 
+ hm +3e/4, which corresponds to r = 42. The slotting effect is 
clearly visible in this figure. 

Fig. 16(a) shows the variation of cogging force (CF). The CF 
period corresponds to s. The moving armature is moving 
toward negative x values. Fig. 16(b) shows the phase 
electromotive force (EMF) per turn, for one pole pair, for a 
linear speed v = 1 m/s. 

Fig. 17(a) compares magnetic field B components only due 
to armature reaction field (ARF) (no PM). Fig. 17(b) shows in 
which conditions these spatial distributions are obtained. 
Fig. 18(a) shows the variation of thrust force (TF), for one pole 
pair, with the displacement xd. The current in each phase is 
imposed with a null phase shift with the corresponding phase 
EMF (Maximum force per-Ampere (MFPA) control). The 
maximum current density is set equal to 5 A/mm2. Fig. 18(b) 
shows the phase voltage per turn, for one pole pair. 

Same comparisons are performed in the non-linear case. 
These comparisons are shown in Figs. 19 to 22. In this case, 
discrepancies appear between results obtained from the FEM 
and the MFF MBGRN. Table II gives relative errors between 
both methods, considering the FEM as the reference. The errors 
are relatively low. 

From all these comparisons, it can be concluded that the 
MBGRN approach performs similarly to what can be done 
using FEM. 

TABLE II 
RELATIVE ERROR IN NON-LINEAR CASE 

Quantity Relative error (%) 

Cogging force (RMS value) [Fig. 21(a)] 3.12 

EMF (RMS value) [Fig. 21(b)] 3.96 

Thrust force (Mean value) [Fig. 22(a)] 3.11 

Thrust force (RMS value) [Fig. 22(a)] 2.42 

Voltage (RMS value) [Fig. 22(b)] 3.76 

 
Fig. 15. Magnetic field B components in the air-gap (open-circuit condition). 

 
(a) Cogging force 

 

(b) EMF for a linear speed v = 1 m/s 
Fig. 16. Global quantities under open-circuit condition. 

 
(a) Magnetic field B components in the air-gap (armature field reaction). 
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(b) Illustration of the conditions of computation of the ARF. 

Fig. 17. Comparison of ARF magnetic field components. 

Along with this contribution, these programs can be used in 
classrooms for the introduction of electromagnetic devices 
design and analysis. 

 
(a) Thrust force 

 
(b) Phase voltage under load condition for a linear speed v = 1 m/s 

Fig. 18. Global quantities under load condition. 

 
Fig. 19. Magnetic field B components in the air-gap (open-circuit condition). 

 

 
Fig. 20. Magnetic field B components in the air-gap (armature field reaction). 

 
(a) Cogging force 

 

(b) EMF for a linear speed v = 1 m/s 

Fig. 21. Global quantities under open-circuit condition. 

 

(a) Thrust force 
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(b) Phase voltage under load condition for a linear speed v = 1 m/s 

Fig. 22. Global quantities under load condition. 

V. CONCLUSIONS 

An introduction to the MBGRN approach has been presented. 
This approach requires less mathematical knowledge as 
compared to FEM, and may be adapted to also study other 
physics involved in the operation of a device. For example, by 
replacing the reluctances by thermal resistances, this approach 
can help study the thermal behavior. 

The provided programs have been coded under MATLAB 
and Scilab environments, which are widely distributed and used 
in the academic institutions. Very simple instructions have been 
used to make them the most simple to understand. 

This approach, introduced in the case of 2D problems, can 
also be used for 3D problems [5] [40]. Its introduction for 3D 
problems will be the subject of a future contribution. 
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