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DYNAMICS OF A DISCRETE SIZE–STRUCTURED

CHEMOSTAT WITH VARIABLE NUTRIENT SUPPLY

PABLO AMSTER, GONZALO ROBLEDO & DANIEL SEPÚLVEDA

Abstract. This article revisits and extends to the nonautonomous frame-

work the results about the dynamics of a discrete and nonlinear matrix model
describing the growth of a size–structured single microbial population in an

autonomous chemostat, which has been introduced by T.B. Gage et.al and

H.L. Smith. The first and the second result provide a threshold determining
either the extinction or the persistence of the total biomass. The main result

establishes a set of sufficient conditions ensuring the existence, uniqueness and

global attractiveness of an ω–periodic solution.

1. Introduction

The mathematical modeling of the dynamics in a chemostat has an impressive
amount of research on a wide scope of problems by using a plethora of approaches
[14]. Nevertheless, in midst of that context, there exist topics sparingly treated.
This is the case of the modeling of the dynamics of a single microbial biomass
size–structured by using nonlinear matrix difference equations, which started with
the seminal work of T. Gage et al. in [7], revisited by H.L. Smith in [15], both
in the autonomous context. The main contribution of this article is to extend the
above mentioned works to the nonautonomous framework, with specific focus on
the periodic case.

1.1. The chemostat. The chemostat is a device where a microbial species is cul-
tivated in a liquid medium containing nutrients to be consumed by the species.
The nutrients are assumed to be in abundance with the exception of a specific one
which is named limiting substrate or nutrient. The dynamics between the microbial
biomass and the nutrient is described as follows: the nutrient is pumped into in
with fixed rate at either fixed or variable concentration (input) while the mixture of
microbial biomass and nutrient is removed to the exterior with fixed rate (washout).
Moreover, we have to consider the consumption of the nutrient and the biomass
growth.

In addition, we will take into account the following environmental, mechanical
and biologic assumptions:
- The liquid medium is uniform in space.
- The substrate and the microorganisms are uniformly distributed in space.
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- The input and the washout rate are similar.
- Respiration and mortality are negligible.
- The only organism-to-organism interaction is mediated by the nutrient concen-
tration: the consumption of nutrient has a direct effect on the microbial species.

1.2. The chemostat ODE models and its shortcomings. The most known
chemostat model satisfying the above assumptions is described by the system of
ordinary differential equations

s′(t) =

Input︷ ︸︸ ︷
Ds0(t)−

Washout︷ ︸︸ ︷
Ds(t) −

Nutrient consumption︷ ︸︸ ︷
γ−1f(s(t))x(t)

x′(t) = x(t)f(s(t))︸ ︷︷ ︸
Microbial growth

− Dx(t)︸ ︷︷ ︸
Washout

,

where s(t) and x(t) are the densities of the nutrient and the microbial biomass
respectively. The nutrient is pumped into in with fixed rate D > 0 at concentration
described by t 7→ s0(t) > 0, which has been supposed constant, periodic, almost
periodic or continuous in the literature and we refer to [1, Table 1] for a summary.
Note that the work with ODE systems assumes implicitly the uniform distribution
of nutrient and microbial biomass in the liquid medium. Moreover, the absence of
mortality of the microbial species combined with the fact that the input and the
washout rate are equal to D imply that the transformation v(t) = s(t) + γ−1x(t)
yields to

v′(t) = −Dv(t) +Ds0(t),

and for any bounded and continuous inputs of nutrient t 7→ s0(t) > 0 there exists
a unique positive solution

v∗(t) = D

∫ t

−∞
e−D(t−r)s0(r) dr

such that any solution t 7→ v(t) verifies v(t)− v∗(t)→ 0 when t→ +∞.
The last assumption, namely, that the only organism-to-organism interaction is

mediated by the nutrient concentration, is taken into account by considering that
the consumption of substrate is proportional to the per capita growth rate of the
biomass, that is

x′(t)

x(t)
= f(s(t)).

As f(·) describes the consumption of nutrient and its conversion in microbial
biomass, the constant γ−1 is a yield coefficient reflecting this conversion. The
modeling of f(·) is dependent of the specific nutrient and microbial biomass but
usually it is assumed that satisfies the following qualitative properties:

(H1) The function f : R+ → R satisfies: a) f ∈ C1(R+,R) and f(0) = 0; b)
f ′(S) > 0 for any S ∈ R+ and c) f ′(S) ≤ f ′(0) for any S ∈ R+.

A serious shortcoming of the above model is the underlying assumption that the
microbial cells have constant size and density, which only allows the description of
the growth of the total microbial biomass while processes as DNA replication, uni-
cellular growth and cellular division are not considered. This lack has been addre-
ssed in the seminal work of T. Gage et al. [7], which introduces a size–structured
model of one species chemostat described by an autonomous and nonlinear system
of r difference equations, where the modeling of the size structure of the microbial
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cells is carried out by a matrix formalism reminiscent to the Leslie matrices. This
formulation was improved by H.L. Smith in [15] who also considered two competing
species in the reactor and proved that the competitive exclusion principle is verified.

The Gage-Smith model has been extended to n competitors in [16], where the
competitive exclusion is verified. These results are also presented in [17, Ch.4].
Later, in [3], the hypotheses of homogeneity in the cell division assumed in the
Gage–Smith model are reviewed and extended to the case where the division of
cells can occur in several biomass classes. In the last years, the competitive model
of Gage–Smith has been generalized in [18, 19] by considering f with inhibitory
kinetics, namely, in (H1) it is assumed that f is a unimodal function.

1.3. Novelty of this work. We generalize the Gage-Smith model by considering a
nonautonomous input of a nutrient. The importance and applications of considering
bounded variable nutrient inputs has been addressed in the continuous framework
by the authors in [1] and the conclusions are certainly valuable for the discrete case.
In particular, we will focus on cases in which the input of nutrients are periodic.

The first results provide sufficient conditions ensuring either the washout (ex-
tinction) or the permanence of the microbial species. We point out the originality
of these conditions and emphasize that can be understood in terms of the lower and
upper Bohl exponents associated to a scalar linear difference equation. The main
result is focused in the ω–periodic case and gives a set of sufficient conditions ensur-
ing the existence, uniqueness and attractiveness of a nontrivial ω–periodic solution.
The proof of this result emulates two steps of the autonomous case: i) the original
r–dimensional system is reduced to a planar one, ii) The asymptotic behavior of the
planar system allows to deduce asymptotic properties of the r–dimensional system
by using the Golubitsky ergodic weak theorem. Nevertheless, we point out that
our treatment is totally different. Firstly, the asymptotic behavior of the planar
system is addressed by constructing a Poincaré map and then followed by the study
of a non-homogeneous linear scalar equation, which is asymptotically equivalent to
a ω–periodic linear scalar equation. Finally, we adapt the use of the weak ergodic
theorem for a sequence of maps defined with the use of Poincaré operators and
Floquet Theory.

Last but not least, a formal novelty is our revisiting to the construction of the
Gage-Smith model in order to contribute to a better understanding of a still little
known model, which has been described only in [7],[15],[2] and [3]. This structured
class model involves: size classes, cell growth and cell division. We shall try to
make a clearer and detailed deduction of each of these topics, which, beyond the
similarities, is not a mere repetition since it has original aspects mainly in the mod-
eling of the cell growth. We trust that our exposition will be helpful for stimulating
the study of this model.

2. The discrete time varying model

2.1. Basic assumptions. To introduce a structure into the size of the cells, the
microbial biomass is divided in r > 1 size classes. The biomass of the cells at
the j–th class size, with j ∈ {1, . . . , r}, at time t ∈ Z is denoted by yjt while
the amount of nutrient at time t is denoted by St. We also define the vectors
xt = (y1

t , y
2
t , . . . , y

r
t )
T ∈ Rr and 1 = (1, · · · , 1) ∈ Rr.

The equation describing the nutrient dynamics is challenging in this class of
models, since it needs to be consistent in the relative times of nutrient consumption
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and pumping out over an iteration interval, see [15, pp.737]. We consider that, in a
period of iteration, the nutrient is consumed first and then evacuated, in this way
the evolution of the nutrient St in one unit of time is described as follows:

(2.1) St+1 = St − f(St)(1 · xt)︸ ︷︷ ︸
Nutrient consumption

−E (St − f(St)(1 · xt))︸ ︷︷ ︸
Washout

+E S0
t︸ ︷︷ ︸

Input

.

That is, first, the nutrient is consumed by the biomass, second, the nutrient is
pumped into in with fixed rate E ∈ (0, 1) at variable bounded concentration S0

t

with inf
t∈Z

S0
t > 0, and the liquid medium inside the vessel is expelled with similar rate

E. The consumption of nutrient is described by f(·) which satisfies the assumptions
(H1), similarly as in the continuous case.

To describe the dynamics of the total biomass vector xt, we need to introduce
additional assumptions and complementary descriptions:
(SC1) The microorganisms are born with a biomass b and grow to double in size.
(SC2) The reproduction of cells is given by the division of mature cells, with a
mass equal to 2b, into two cells of equal size.
(SC3) The size of organisms increases exponentially in an environment where the
nutrient is abundant and constant.
(SC4) The average nutrient uptake rate per unit biomass is constant across all size
classes.

More specifically, some consequences of (SC1)–(SC4) are:

i) The growth of every microbial cell passes through r > 1 size classes. The
average mass of an individual cell at the i–th class will be assumed as

2
i−1
r b = M i−1b > 0 where M = 2

1
r , then:

Class Average biomass of cell

1 2
0
r b = M0b

2 2
1
r b = M1b

...
...

r 2
r−1
r b = Mr−1b

.

In absence of washout, the number of cells at the i–th class is given by

(2.2) ni(t) =
yit

M i−1b
.

ii) In the i–th classes with i = 2, . . . , r − 1 there are neither birth of new cells
nor division of cells. The cells only can either advance to the next size class
or stay at the same one. Then, ni(t) can be decomposed as follows:

(2.3) ni(t) = nsi (t) + npi (t),

where nsi (t) is the number of cells that remain at the class i at the next
unit time while npi (t) is the number of cells reaching the i + 1–th class at
the next unit time.

iii) The first class is named birth class. The cells can either stay at this class or
advance to the second one in the next unit time. The decomposition (2.3)
can be also applied for i = 1. We recall that there are no division of cells.

iv) The r–th class will be called the maximal size class, where the cells reach a
biomass 2b and could divide in two cells of biomass b, which go back to the
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birth class. In this context, the decomposition (2.3) is still valid but npr(t)
should be understood as the number of cells that are duplicated, then the
number of cells that reach the birth class in the next time unit is 2npr(t).

v) The equation (2.3) combined with the above property allows an alternative
description for ni(t+ 1) as follows:

(2.4) ni(t+ 1) =

{
ns1(t) + 2npr(t) for i = 1
nsi (t) + npi−1(t) for i = 2, . . . , r.

The equations (2.3)–(2.4) prompt to introduce the fraction of cells in the i–th
class at time t that, in absence of washout, are transferred to the i+ 1–th class at
the next unit time:

(2.5) Pi(St) =
npi (t)

ni(t)
for any t ≥ 0.

A direct consequence of the above identity is

(2.6)
nsi (t)

ni(t)
= 1− Pi(St).

To describe the dependence of the proportion Pi on the concentration of substrate
at time t, we have to consider the difference of biomass yi+1

t+1 − yit as follows

yi+1
t+1 − yit = Ri(t) + ∆i(t),

where ∆i(t) is the amount of biomass from the i–th size class reaching the i + 1–
th size class after one iteration period. Moreover, Ri(t) is the amount of biomass
remaining at the same class after one iteration period. By (2.3)–(2.4), we have

yi+1
t+1 − yit = M ib ni+1(t+ 1)−M i−1b ni(t)

= M ib[nsi+1(t) + npi (t)]−M i−1b[nsi (t) + npi (t)]
= M ibnsi+1(t)−M i−1bnsi (t)︸ ︷︷ ︸

=Ri(t)

+npi (t)[M
ib−M i−1b]︸ ︷︷ ︸

= ∆i(t)

and the transfert of biomass from the i-th size class to the i + 1–th one after one
iteration period is described by the term npi (t)[M

ib−M i−1b].
A key assumption will be that the biomass transfert ∆i(t) above described is

directly proportional to the biomass yit while the proportionality constant is depen-
dent of the consumption of substrate as follows:

∆i(t) = npi (t)[M
ib−M i−1b] = yit · f(St)︸ ︷︷ ︸

Biomass·Feed rate

or equivalently
∆i(t)

yit
= f(St).

Now, it is observed that the number of cells reaching the i+ 1-th class after one
iteration period can be obtained by dividing the increase in biomass of organisms
of the i-th class by the difference of average size of both class, namely

(2.7) npi (t) =
yitf(St)

M i+1b−M ib
,

and by combining equations (2.5) and (2.7), it is deduced that

(2.8) Pi(St) =
1

ni(t)

yitf(St)

(M i+1b−M ib)
=

f(St)

M − 1
, 1 ≤ i ≤ r.
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Since the proportions Pi(St) are independent of the i-th class, from now on, will
be denoted P (St). Note that the proportion P (St) is not necessarily well defined
and it is reasonable to introduce the additional assumption:

(H2) The function f is such that lim
u→+∞

f(u) := fsup < M − 1.

A first regard to (H2) can give the wrong idea that it is an ad–hoc hypothesis.
However, a better understanding of this assumption will be achieved by considering
the duplication time of a newborn cell, which is the subject of the next subsection.

2.2. Duplication time and well posedness of the problem. To ensure the well
posedness of the model, it will be necessary to take into in account the minimal
duplication time Tmin for a newborn cell and its relation with the length T of the
iteration interval, the number r of classes and the uptake function f .

The minimal duplication time can be achieved in favorable conditions as: i) no
outflow, namely E = 0, ii) infinite nutrient, namely, St large enough such that
f(St) ' fsup and iii) all the biomass from the i–th size class reaches the i + 1–th
one after one iteration period, that is P (S1) = 1 or equivalently Ri(t) = 0 and
∆i(t) = yitfsup. In addition to these assumptions, we consider that the duplication
will be reached after r iterations. Namely, the number of cells at the i–th class on
time is described by the equation yi+1

t+1 − yit = ∆i(t) or equivalently

yi+1
t+1 = (1 + fsup)yit with y1

0 = b,

and it follows that yn+1
n = (1 + fsup)nb. Since we know that yrr−1 = 2

r−1
r b, it is

deduced that (1 + fsup)r = 2.
From the above equation, it is possible to obtain constraints on the iteration

period T and the number of classes r, which depend on the minimum doubling
time Tmin and the maximal growth rate µ̂max := ln(2)/Tmin. We observe that the
duplication is obtained after passing through each of the r classes and given that
the iteration period has a length of T , thus obtaining the equation rT = Tmin, it
follows that in general rT ≤ Tmin must be satisfied to ensure that cell duplication
takes place in class r-th and not before.

It is worth mentioning that each species grown in the bioreactor has its own
parameters, which cannot be adjusted, in particular the minimum doubling time
and the maximum growth rate µ̂max. We also observe that the maximum growth
rate must be rescaled in time, considering fsup := µ̂maxT to define the nutrient
uptake function f(S) for the discrete model. In this way, the population’s own
parameters, µ̂max and Tmin, constrain both the iteration period T and the number
of classes r by means of (H2) and the inequality rT ≤ Tmin. We conclude by
mentioning that the imposition of upper bounds for f ′(0) also has an impact on
the iteration period.

2.3. Deduction of the equations. We represent the dynamics of biomass in the
different size classes in Figure 1.

Notice that (2.8) says that the cellular growth at any size class is explicitly
dependent of the consumption of limiting nutrient described by (2.1). On the other
hand, the number of cells at the i–th class passing towards the next class at the
next unit of time increases for bigger concentrations of limiting nutrient since, as
stated in (H1), f is an increasing function.
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1-P
1-P

1-P

1 2 r. . .

MP MP MP

MP

E

Figure 1. Scheme of dynamics in the different size classes.

Now, notice that the number of cells at the i–th class can be written as follows:

(2.9) ni(t+ 1) =

{
(1− E)nsi (t) + (1− E)2npr(t) if i = 1

(1− E)nsi (t) + (1− E)npi−1(t) if i = 2, . . . , r.

The identities (2.5)–(2.6) allow to re–write (2.9) for i ∈ {2, . . . , r} as follows:

ni(t+ 1) = (1− E)ni(t)
nsi (t)

ni(t)
+ (1− E)ni−1(t)

npi−1(t)

ni−1(t)

= (1− E)ni(t)[1− P (St)] + (1− E)ni−1(t)P (St).

Let us multiply the above identity by M i−1b to obtain

M i−1bni(t+ 1)︸ ︷︷ ︸
yit+1

= (1− E)M i−1bni(t)︸ ︷︷ ︸
yit

[1− P (St)]

+(1− E)MM i−2bni−1(t)︸ ︷︷ ︸
yi−1
t

P (St)

and, from (2.2), this is equivalent to

yit+1 = (1− E)[1− P (St)]y
i
t + (1− E)MP (St)y

i−1
t .

Similarly, as 2 = MMr−1 we multiply by b and for i = 1 we deduce that

y1
t+1 = (1− E)[1− P (St)]y

i
t + (1− E)MP (St)y

r
t ,

and the dynamics of xt = (y1
t , . . . , y

r
t )
T can be summarized as follows:

y1
t+1 = (1− E)[1− P (St)]y

1
t + (1− E)MP (St)y

r
t

y2
t+1 = (1− E)MP (St)y

1
t + (1− E)[1− P (St)]y

2
t

...
...

yrt+1 = (1− E)MP (St)y
r−1
t + (1− E)[1− P (St)]y

r
t

or equivalently as

(2.10) xt+1 = A(St)xt − EA(St)xt,
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where A(·) is defined by

(2.11) A(·) =


1− P (·) 0 . . . MP (·)
MP (·) 1− P (·) 0 . . . 0

0 MP (·) 1− P (·) 0 . . . 0
. . . 0

0 . . . MP (·) 1− P (·)

 ,

The coupling of the equations (2.1) and (2.10) leads to

(2.12)


St+1 =

Input︷ ︸︸ ︷
E S0

t +St −

Nutrient consumption︷ ︸︸ ︷
f(St)(1 · xt) −

Washout︷ ︸︸ ︷
E (St − f(St)(1 · xt)),

xt+1 = A(St)xt︸ ︷︷ ︸
Biomass growth

−EA(St)xt︸ ︷︷ ︸
Washout

.

Note that assumptions about uniform distribution of nutrient and biomass in
the liquid medium are implicitly satisfied since (2.12) is a system of difference
equations. Moreover, a careful reading of the deduction of Eqs. (2.12) shows
that the mechanical and biologic assumptions stated in the introduction are also
satisfied. In fact, the equations (2.1), (2.8) and (2.9) show that we are considering
E ∈ (0, 1) as input and washout rate, the respiration and mortality are negligible
and the species growth depends directly on its consumption of the nutrient.

2.4. About the matrices A(St). The matrices A(St) ∈Mr(R) have the following
properties, which shall be useful to study the system (2.12):
1) A(St) are nonnegative for St > 0. This fact follows from the identity P (St) =
f(St)/(M − 1) stated by (2.8) combined with (H1) and (H2).

2) A(St) are circulant for any St > 0, namely, the i–th rows with i ∈ {2, . . . , r}
are cyclic permutations of the first one. More precisely, given at = 1 − P (St) and
bt = MP (St), we have A(St) = Circ(at, 0, . . . , 0, bt), In other words,

(2.13) A(St) = atIr + btC, where C := Circ(0, . . . , 1).

In addition, A(St) are semi–magic matrices for St > 0 since the sum of each row
or column is equal to 1 + (M − 1)P (St) = {1 + f(St)}.

3)A(St) are irreducible for St > 0: Let us recall (see [14]) that a matrix is irreducible
if it cannot be put as a upper triangular block form with square diagonal blocks and
nonzero upper block by reordering the standard basis vectors. A useful criterion for
irreducibility is given by the study of the associated graph GA of A(Si) ∈ Mr(R):
Let P1, P2, . . . , Pr be r points in the plane. If Aij(St) 6= 0, then there exists a line
PiPj connecting Pi and Pj and A(St) is irreducible if for each pair (Pi, Pj) there
exists a path PiPk1 ,Pk1Pk2 , . . . , Ps−1Pj connecting Pi and Pj .

Observe that the lower diagonal terms given by Ai,i−1(St) = MP (St) for any
i ∈ {2, . . . , r} also coincide with A1,r(St) and the irreducibility of A(St) follows by
studying its associated graph.

4) A(St) are primitive for any St > 0, i.e. A(St)
m is positive for some m. It is seen

that positiveness holds for arbitrary m ≥ r: indeed, from (2.13) we note that

Am(St) =

m∑
k=0

(
m
k

)
am−kt bktC

k
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and it follows inductively that

Ckij =

{
1 if i ≡ j + k(r)
0 otherwise.

This means that for all i, j ∈ {1, . . . , r} there exists k ≤ r such that Ckij = 1 and,
consequently, Am(St)ij > 0 for all m ≥ r. In addition, this condition (see e.g,
[5, p.28]) is equivalent to the fact that the matrix has only one eigenvalue with
modulus equal to its spectral radius.

Lemma 1. For St > 0, the spectral radius of (1− E)A(St) is

(2.14) ρ((1− E)A(St)) = (1− E){1 + f(St)}.

Proof. From the Perron–Frobenius Theorem for non negative irreducible matrices
[14, p.257] we have that ρ((1−E)A(St)) is a real number and a simple eigenvalue.
In addition, see e.g [11, p.141], the spectral radius satisfies the inequalities

min
i

r∑
j=1

(1− E)Aij(St) ≤ ρ((1− E)A(St)) ≤ max
i

r∑
j=1

(1− E)Aij(St)

and the identity (2.14) follows from the fact that (1− E)A(St) is semi–magic. �

Corollary 1. For St > 0 and any m > ` ≥ 0 it follows that

(2.15) ρ

(
`+m−1∏
t=`

(1− E)A(St)

)
≤ (1− E)m

`+m−1∏
t=`

{1 + f(St)}

Proof. As the matrices (1−E)A(St) are circulant, they are commutative [11, p.113]
and a consequence of the Gelfand’s formula for the spectral radius is that

ρ

(
`+m−1∏
t=`

(1− E)A(St)

)
≤
`+m−1∏
t=`

ρ((1− E)A(St)).

Thus, the result follows from Lemma 1. �

3. Basic results

3.1. A reduced system. Similarly as in the continuous case, (B1)–(B2) imply
that the change of variables Σt = St + 1 · xt, where 1 = (1, · · · , 1) ∈ Rr leads to

(3.1) Σt+1 = (1− E)Σt + ES0
t , t ≥ 0.

Let us recall that in subsection 2.1 we assumed that inf
t∈Z

S0
t > 0 and S0

t is bounded

in Z, which allows to define the solutions of (3.1) on Z. Moreover, we can define

(3.2) 0 < S0
inf := inf

t∈Z
S0
t and S0

sup := sup
t∈Z

S0
t .

Remark 1. Every solution of (3.1) with Σ0 > 0 verifies Σt > 0 for any t ≥ 0.
Indeed, any solution has the form

Σt = (1− E)tΣ0 +

t−1∑
k=0

(1− E)t−k−1ES0
k,

and the positiveness follows from the fact that Σ0 > 0 and S0
t > 0 for any t ≥ 0.
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Lemma 2. Any solution Σt of (3.1) verifies

lim
t→+∞

(Σt − Σ∗t ) = 0, with |Σt − Σ∗t | = |Σ0 − Σ∗0|(1− E)t,

where t 7→ Σ∗t is defined by

(3.3) Σ∗t = E

t−1∑
j=−∞

(1− E)t−j−1S0
j

and is the unique Z–bounded solution of (3.1). Moreover if Σ0 < Σ∗0 (resp. Σ0 >
Σ∗0) then Σt < Σ∗t (resp. Σt > Σ∗t ) for any t ≥ 0.

Proof. As S0
t is a bounded sequence and E ∈ (0, 1), it is easy to verify that (3.3) is

well defined and is a bounded sequence. A direct computation shows that

Σ∗t+1 = E

t∑
j=−∞

(1− E)t−jS0
j = (1− E)E

t−1∑
j=−∞

(1− E)t−j−1S0
j + ES0

t

and we can deduce that t 7→ Σ∗t is a bounded solution of (3.1).
In order to prove that (3.3) is the unique bounded solution, let us consider a

Z–bounded solution t 7→ Σ̃t of (3.1) and note that

Σ̃t − Σ∗t = (1− E)t(Σ̃0 − Σ∗0),

is also bounded on Z. Now, if Σ̃0 6= Σ∗0, then the left hand side term diverges when
t→ −∞, obtaining a contradiction.

Finally, given any solution t 7→ Σt, let et = Σ∗t − Σt and notice that

(3.4) et+1 = (1− E)et

has solutions et = (1−E)t(Σ∗0 −Σ0) and we verify that Σ∗t is the unique bounded
solution and is attractive for t→ +∞ since et → 0 when t→ +∞. �

Remark 2. The identity

E

t−1∑
j=−∞

(1− E)t−j−1 = E

∞∑
k=0

(1− E)k = 1

implies the following properties:

i) If S0
t ≡ S0 > 0, then Σ∗t = S0 for any t,

ii) As S0
inf ≤ S0

t ≤ S0
sup for any t ∈ Z then S0

inf ≤ Σ∗t ≤ S0
sup for any t ≥ 0. In

addition, the inequality is strict when S0
t is not constant.

iii) A direct consequence of the discrete Lebesgue dominated convergence The-
orem is that if S0

t → S0 when t→∞ then Σ∗t → S0 when t→∞.

Remark 3. As Σ∗t is a bounded sequence, the numbers Σ∗inf and Σ∗sup can be defined
similarly as in (3.2) and by statement ii) from the previous remark we can see that

S0
inf ≤ Σ∗inf ≤ Σ∗sup ≤ S0

sup.

Remark 4. It is important to note that if t 7→ S0
t is ω–periodic then t 7→ Σ∗t is

also ω–periodic. This property can be generalized to other function spaces and is
due to the fact that (3.1) admits a unique ω-periodic when S0

t is ω-periodic.
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Since A(St) are semi–magic matrices we note that

1 ·A(St) = [1 + (M − 1)Pt]1 = [1 + f(St)]1,

and the total biomass Ut = 1 · xt has a behavior described by

Ut+1 = (1− E)[1 + f(St)]Ut,

which allows us to construct the reduced planar system

(3.5)

{
Ut+1 = (1− E) (1 + f(St))Ut,
St+1 = (1− E)St − (1− E)f(St)Ut + ES0

t .

The next subsections study basic qualitative properties of (3.5) as boundedness
and positiveness of the solutions. In addition, we will search sufficient conditions
ensuring either the washout of the total biomass or its persistence.

3.2. Boundedness and positiveness of solutions. An accurate description of
the biological context needs to consider new restrictions for the total biomass Ut
since, otherwise, the total amount of nutrient consumed in the t–th iteration period,
namely Utf(St), could exceed the concentration of the substrate available, which
would imply St+1 < 0. In consequence, additional work must be done to rule out
this case and it will be useful to write the second equation of (3.5) as:

(3.6) St+1 = (1− E) [St − f(St)Ut] + ES0
t .

In the autonomous case, namely, when S0
t := S0 = Σ∗sup for any t, this posi-

tiveness problem has been addressed by finding sufficient conditions ensuring that
St−f(St)Ut > 0 for any t ≥ 0 which implies by (3.6) that St+1 > 0. In fact, in [15,

p.739] the authors assume that f(S)U
S < η for some η ∈ (0, 1). Moreover, to verify

this last property, in [3, p.322] the authors use f ′(St) < f ′(0)St combined with
the concavity of f and prove that if there exists V > S0 and η ∈ (0, 1) such that
f ′(0)V < η, then St > 0 for any t ≥ 0. A careful reading of these results shows that
the existence of a positively invariant and bounded set of initial conditions plays a
key role.

In the non autonomous case, we will consider the following invariance conditions
in order to address the positiveness problem:

(I1) The function f and the input of limiting substrate S0
t are such that

f ′(0)S0
sup ≤ 1 + 2

√
f ′(0)ES0

inf

1− E
.

(I2) The function f and the unique bounded solution Σ∗t of (3.1) are such that

f ′(0)Σ∗sup < 1.

While the condition (I2) is reminiscent to the conditions considered in [3] and
[15] since S0 = Σ∗sup in the autonomous case. We remark that (I1) provides a
new perspective since, instead of focusing on St − f(St)Ut, it sheds light on the
positiveness of the right side of (3.6). Let us note that (I1) takes advantage of the
fact that S0

inf > 0 and can be verified even when (I2) is not.

Remark 5. We stress that conditions (I1) and (I2) are independent. For example,
consider a 2-periodic function S0 with S0

0 = 1 and S0
1 = S > 1, then

Σ∗0 =
1− E + S

2− E
> 1, Σ∗1 = (1− E)Σ∗0 + E < Σ∗0.
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Observe that, if E is small, then

Σ∗max = Σ∗0 ' (S + 1)/2.

Given f such that (H1) and (H2) are satisfied and f ′(0) < 1, we may choose
S > 1 such that

1

S
< f ′(0) <

2

S + 1
.

Thus, taking E sufficiently small, condition (I2) is verified although (I1) does not
hold. On the other hand, if the oscillation of S0 is not large, then (I1) is less
restrictive than (I2): in particular, observe that if S0 is constant then Σ∗ ≡ S0, so
clearly (I2) implies (I1).

As mentioned before, the positiveness of the substrate is strongly related with
the boundedness of the solutions and the next results show that either (I1) or (I2)
implies the existence of a bounded positively invariant set for the solutions. In fact,
given W > 0, let us consider the set

ΩW := {(U, S) : U, S > 0, U + S < W}

Lemma 3. Assume that (H1),(H2) and (I1) hold and let W := S0
sup. If (U, S) ∈

ΩW , then Gt(U, S) ∈ ΩW , where

Gt(U, S) := ((1− E)(1 + f(S))U, (1− E)S − (1− E)f(S)U + ES0
t ).

Proof. Let (Ũ , S̃) := Gt(U, S). It is clear that Ũ ≥ 0 and, moreover,

Ũ + S̃ = (1− E)(U + S) + ES0
t ≤ (1− E)W + ES0

sup ≤W.

Finally, observe that S̃ ≥ 0 if and only if

f(S)U − S ≤ E

1− E
S0
t .

Because f(S) ≤ f ′(0)S by (H1), it suffices to verify that

(f ′(0)U − 1)S ≤ E

1− E
S0

inf .

Next, observe that the absolute maximum value of the function

g(U, S) := (f ′(0)U − 1)S

over the triangle ΩW is achieved at its upper side; thus, it suffices to compute the
absolute maximum of the parabola g(U,W − U) = (f ′(0)U − 1)(W − U), namely

gmax =
1

4f ′(0)
(Wf ′(0)− 1)

2
,

then gmax <
E

1−ES
0
inf is equivalent to

|Wf ′(0)− 1| < 2

√
f ′(0)ES0

inf

1− E
,

which is always implied by (I1). �

A careful reading of the last step in the preceding proof shows that we have to
take into account the sign of S0

supf
′(0)−1 and the distance between Σ∗sup and S0

sup,
which leads to three possible cases when (I1) is verified:

a) If S0
supf

′(0) < 1, then (I1) implies (I2) since Σ∗sup ≤ S0
sup,
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b) If Σ∗supf
′(0) < 1 < S0

supf
′(0) < 1 + 2

√
f ′(0)ES0

inf

1−E , then (I1) and (I2) are

satisfied,

c) If 1 ≤ Σ∗supf
′(0) ≤ S0

supf
′(0) < 1 + 2

√
f ′(0)ES0

inf

1−E , then (I1) is verified while

(I2) is not.

Lemma 4. Assume that (H1),(H2) and (I2) hold and let W := 1
f ′(0) . Then there

exists t∗ ∈ Z such that (Ut, St) ∈ ΩW for all t > t∗, provided that (Ut∗ , St∗) ∈ ΩW .
If furthermore Ut∗ > 0, then (Ut, St) ∈ ΩW for all t > t∗.

Proof. As Σ∗sup < W , fix ε > 0 such that Σ∗sup + ε
E < W and set t∗ such that

Σ∗t∗ > Σ∗sup − ε. Now, for (Ut∗ , St∗) ∈ ΩW , we have that Ut∗ ≥ 0, St∗ ≥ 0 and
Ut∗ +St∗ ≤W . In order to prove that Ut +St ≤W for any t > t∗, we will consider
` 7→ ΣWt the solution of (3.1) such that ΣWt∗ = W , then for t > t∗ we have that

ΣWt − Σ∗t = (1− E)t−t
∗
(W − Σ∗t∗),

whence,

ΣWt ≤ Σ∗sup + (1− E)(W − Σ∗t∗) ≤W + ε− E(W − Σ∗t∗) < W,

because Σ∗t∗ > Σ∗sup−ε and E(W−Σ∗t∗) ≥ E(W−Σ∗sup) > ε. As Ut+St satisfies the

difference equation (3.1), the preceding inequality proves that ΣWt = Ut + St < W
for all t > t∗. Now, since Ut∗ + St∗ ≤ W = ΣWt∗ it follows by comparison that
Ut + St < ΣWt ≤W for any t ≥ t∗.

The proof of the fact that St and Ut are nonnegative for any t ≥ t∗ shall proceed
by induction. Assume that Ut, St ≥ 0, then the inequality Ut+1 ≥ 0 can be proved
easily. Moreover, by (H1) we have that

f(St)Ut ≤ f ′(0)StUt ≤ St
which, in turn, implies St+1 ≥ 0 by (3.6). �

From now on, we may assume for simplicity that t∗ = 0.

Corollary 2. Assume that (H1),(H2) and either (I1) or (I2) hold and set W :=
S0

sup or W := 1
f ′(0) respectively. Then ΩW is positively invariant.

3.3. Washout of the total cellular biomass. In order to obtain sufficient con-
ditions ensuring the washout of the biomass in the system (3.5), we will study the
boundedness properties of the following sequences:

(3.7) πc0(t, t0) := (1− E)t−t0
t−1∏
j=t0

{
1 + f(Σ∗j ) + c0

}
where c0 ∈ R and t0 ∈ Z+

0 .

For convenience, we shall always assume c0 ≥ −1. This is not strictly necessary but
will ensure the positiveness of the factors. In addition, it will be useful to introduce
a technical result:

Lemma 5. If the bounded sequences of nonnegative numbers {cj}j,{Aj}j and {bj}j
verify Aj − bj ≥ c for some constant c > 0, then

(3.8)

 t∏
j=t0

cjAj

 e
− 1

(A−b)inf

t∑
j=t0

bj

≤
t∏

j=t0

cj{Aj−bj} ≤

 t∏
j=t0

cjAj

 e
− 1

Asup

t∑
j=t0

bj

,

where Asup := sup
j≥t0

Aj > 0 and (A− b)inf := inf
j≥t0
{Aj − bj} > 0.
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Proof. By using the mean value Theorem, we write

ln(Aj − bj) = ln(Aj)−
bj
ξj

with ξj between Aj − bj and Aj , then it can be deduced that

t∑
j=t0

[ln(cj) + ln(Aj)] ≤
t∑

j=t0

[ln(cj) + ln(Aj − bj)] +
1

(A− b)inf

t∑
j=t0

bj

which is equivalent to the left inequality of (3.8). Similarly, we can deduce that

t∑
j=t0

[ln(cj) + ln(Aj − bj)] ≤
t∑

j=t0

[ln(cj) + ln(Aj)]−
1

Asup

t∑
j=t0

bj ,

which is equivalent to the right inequality of (3.8). �

Theorem 1. Let us consider the system (3.5) with initial conditions (U0, S0) ∈ ΩW
and the sequences (3.7):

i) If {π0(t, 0)}t≥0 is bounded, then lim
t→∞

(Ut,Σ
∗
t − St) = (0, 0).

ii) If {πc0(t, 0)}t≥0 is bounded for some c0 > 0, then the above convergence is
exponential.

iii) If {πc0(t+m,m)}t≥0 is uniformly bounded for some c0 > 0 and any m ∈ N0,
then the above exponential convergence is uniform with respect to the initial
time. Namely, there exist two constants K > 0 and α > 0 such that

(3.9) Ut ≤ Ke−α(t−t0)U0 for t ≥ t0,

with K and α independent of t0.

Proof. The proof will be divided in several steps:
Step 1: The case St > Σ∗t for any t ≥ 0. In this case, we can deduce the inequality
St+1 − Σ∗t+1 < St − Σ∗t and, consequently that {St − Σ∗t }t is a decreasing and
nonnegative sequence convergent to C ≥ 0. Moreover, by Lemma 2 we have that

Ut = Σt − St = Σt − Σ∗t + Σ∗t − St,

is convergent to −C. Thus, the positiveness of Ut implies that C = 0 and the
statement i) is verified in this case.
Step 2: The case ST0

≤ Σ∗T0
for some T0. In this case, it is easy to see that St < Σ∗t

for any t ≥ T0. Now, we can see that, for any t > T0, the sequence Ut verifies

Ut
U0

= (1− E)t
t−1∏
j=0

{1 + f(Sj)} ≤ (1− E)t
T0−1∏
j=0

{1 + f(Sj)}
t−1∏
j=T0

{1 + f(Σ∗j )}

= (1− E)t


T0−1∏
j=0

{1 + f(Sj)}

T0−1∏
j=0

{1 + f(Σ∗j )}


t−1∏
j=0

{1 + f(Σ∗j )} = CT0
π0(t, 0),

and is bounded since we assume the boundedness of {π0(t, 0)}t≥0. We claim that

(3.10) lim sup
t→∞

Ut = 0.
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Indeed, otherwise, there exists a subsequence {Utj}j verifying

lim
j→∞

Utj = Ũ > 0, or equivalently lim
j→∞

Σ∗tj − Stj = Ũ ,

and we can assume that Σ∗tj − Stj ≥ c > 0 for any j. Consequently,

f(Σ∗tj )− f(Σ∗tj − c) = f ′(ξj)c ≥ b > 0,

for some b ∈ (0, 1 + f(Σ∗min)). In addition, define the sequence

bk :=

{
b si k ∈ {tj}
0 si k /∈ {tj},

and note that

Ut
U0

= (1− E)t


T0−1∏
j=0

{1 + f(Sj)}

T0−1∏
j=0

{1 + f(Σ∗j )− bj}


T0−1∏
j=0

{1 + f(Σ∗j )− bj}
t−1∏
j=T0

{1 + f(Sj)}

= KT0
(1− E)t

T0−1∏
j=0

{1 + f(Σ∗j )− bj}
t−1∏
j=T0

{1 + f(Sj)}.

In order to estimate the above identity, we will consider two cases when t ≥ T0:
If t /∈ {tj}j , we have that f(St) ≤ f(Σ∗t ). On the other hand, if t ∈ {tj}j then
f(St) ≤ f(Σ∗t − c) ≤ f(Σ∗t )− b and it follows that

Ut
U0
≤ KT0(1− E)t

t−1∏
j=0

{1 + f(Σ∗j )− bj}.

By Lemma 5, and considering cj = 1, Aj = 1 + f(Σ∗k) > bj and Asup :=
1 + f(Σ∗sup), we have the inequality

Ut
U0
≤ KT0

(1− E)t
t−1∏
j=0

{1 + f(Σ∗j )}

 e−
1
A sup

∑t−1
j=0 bj ,

where the right term is convergent to zero, obtaining a contradiction and (3.10) is
verified. This fact combined with the positiveness of Ut and Lemma 2 leads to the
asymptotic behavior lim

t→∞
(Ut,Σ

∗
t − St) = (0, 0) and the statement i) is proved.

Step 3: The convergence is exponential when πc0(t, 0) is bounded for some c0 > 0.
If πc0(t, 0) is bounded, then π0(t, 0) is also bounded and by the previous steps we
know that Σ∗t − St converges to 0. Then, we can fix T0 large enough such that
f(St) < f(Σ∗t ) + c0/2 for t > T0, and, as in the previous step, we can deduce

Ut
U0
≤ KT0

(1− E)t
t−1∏
j=0

{
1 + f(Σ∗j ) + c0/2

}
.

By using again Lemma 5 with Aj = 1 + f(Σ∗j ) + c0 and bj = c0/2, combined
with the boundedness of πc0(t, 0), it follows that

Ut
U0
≤ KT0

(1− E)t
t−1∏
j=0

{
1 + f(Σ∗j ) + c0

} e
− c0

2(Asup+c0)
t ≤ K1e

− c0
2(Asup+c0)

t
,
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and the statement ii) follows.

Step 4: End of proof. The statement iii) assumes the existence of a constant M > 0
such that

(3.11) (1− E)`
m+`−1∏
k=m

{1 + f(Σ∗k) + c0} ≤M

for some c0 > 0 and for any couple of positive integers m and `. Now, by using
Lemma 2 combined with the positiveness of c0, we can deduce the existence of
T > 0 such that

(3.12) f(Sj) < f(Σ∗j ) + c0/2 for any j ≥ T .

Now, we will prove the property (3.9) by considering three cases.
Case a): T ≤ t0 < t. In this case, the inequality (3.12) implies that

Ut
Ut0

= (1− E)t−t0
t−1∏
j=t0

{1 + f(Sj)}

≤ (1− E)t−t0
t−1∏
j=t0

{1 + f(Σ∗j ) + c0 − c0/2}.

Now, by using Lemma 5 with Aj = 1 + f(Σ∗j ) + c0 and bj = c0/2 followed by the
inequality (3.11) with m = t0 and ` = t− t0, we can deduce that

Ut
Ut0
≤ (1− E)`

t0+`−1∏
j=t0

{1 + f(Σ∗j ) + c0}e−α(t−t0) ≤Me−α(t−t0),

where α := c0
2(1+f(Σ∗max)+c0) . Then, we have that

Ut ≤Me−α(t−t0)U0 for any T ≤ t0 ≤ t.
Given t 7→ St, let us denote

X(t) := (1− E)t
t−1∏
j=0

{1 + f(Sj)}.

Then, notice that Ut

Ut0
= X(t)X−1(t0), and the above inequality is equivalent to

(3.13) X(t)X−1(t0) ≤Me−α(t−t0) for any T ≤ t0 ≤ t.
Case b): t0 < T ≤ t. In this case, let us define

N = sup
0≤σ,τ≤T

X(τ)X−1(σ)

and by using Ut

Ut0
= X(t)X−1(t0) combined with (3.13), we have that

Ut
Ut0

= X(t)X−1(T )X(T )X−1(t0)

≤ NX(t)X−1(T )
≤ MNe−α(t−T )

≤ MNeαT e−α(t−t0),

then, we conclude that

Ut ≤MNeαT e−α(t−t0)U0 for any t0 < T ≤ t.
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Case c): t0 ≤ t ≤ T . In this case, note that t − t0 < T , which implies that
eαT e−α(t−t0) ≥ 1. Moreover, by using the definition of N and the inequality (3.13),
we can see that

Ut
Ut0

= X(t)X−1(0)X(0)X−1(t0)X(T )X−1(T )

≤ N2MeαT e−α(t−t0),

and we conclude that

Ut ≤MN2eαT e−α(t−t0)U0 for any 0 ≤ t0 ≤ t ≤ T .

In consequence, the inequality (3.9) is satisfied with K = M max{1, NeαT , N2eαT }
and α defined as in the case a). �

The previous theorem provides sufficient conditions ensuring the washout of the
microbial biomass, which are described in terms of the boundedness of the sequences
{πc0(t, 0)}t and {πc0(t+m,n)}t. In this context, it is important to emphasize that
these properties are related to the upper Bohl exponent (see [4] for details) of the
scalar difference equation

(3.14) zt+1 = (1− E)[1 + f(Σ∗t )]zt,

which is defined by
(3.15)

β := lim sup
n−m,m→+∞

n−1∏
j=m

(1− E){1 + f(Σ∗j )}

 1
n−m

= lim sup
n−m,m→+∞

π0(n,m)
1

n−m .

The following results describe the relation between the upper Bohl exponent of
(3.14) and the statement of Theorem 1.

Lemma 6. If β < 1, then there exists c0 > 0 such that {πc0(t, 0)}t is bounded.

Proof. The definition of upper limit implies the existence of ε > 0 and n0 ∈ N such
that

n−1∏
j=0

(1− E){1 + f(Σ∗j )} < (1− 2ε)n n ≥ n0

.
Now, we can prove the existence of α > 1 such that

n−1∏
j=0

(1− E){1 + f(Σ∗j )}α < (1− ε)n n ≥ n0.

The boundedness of πc0(t, 0) with c0 = α− 1 is obtained by noticing that

{1 + f(Σ∗j )}α > 1 + f(Σ∗j ) + α− 1.

�

Remark 6. It is easy to see that the converse statement of the above result is false,
in fact, it may happen that πc0(t, 0) is bounded but β = 1.

Lemma 7. The sequence {πc0(t+m,m)}t≥0 is uniformly bounded for some c0 > 0

and any m ∈ N0 if and only if β < 1
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Firstly, if we assume the existence of c0 ensuring the uniform boundedness of
the sequence {πc0(t+m,m)}t≥0, then condition (3.11) holds. This fact, combined
with Lemma 5 implies that

π0(t+m,m) = (1− E)t
t+m−1∏
j=m

{1 + f(Σ∗j ) + c0 − c0}

≤ (1− E)t
t+m−1∏
j=m

{1 + f(Σ∗j ) + c0}e
− c0t

1+f(Σ∗max)

≤ Me
− c0t

1+f(Σ∗max)

Now, if t = n−m, we have that

β = lim sup
m,n−m→∞

π0(n,m) ≤ lim
n−m→∞

M
1

n−m e
− c0

1+f(Σ∗max) = e
− c0

1+f(Σ∗max) < 1.

Secondly, if the Bohl exponent is lower than 1, we can rewrite (3.15) as

lim sup
m,t→∞

(1− E)t
m+t−1∏
k=m

{1 + f(Σ∗k)} = β < 1

by the change of variables n = t + m. Now, we can proceed as in the proof of
the previous Lemma. In fact, the definition of upper limit implies the existence of
ε > 0, m0 and t0 such that

(1− E)t
m+t−1∏
k=m

[1 + f(Σ∗k)] < (1− 2ε)t−1

for any m > m0 and t > t0. As before, this also implies that, for some values
c0 > 0, m > m0 and t > t0,

(1− E)t
m+t−1∏
k=m

[1 + f(Σ∗k) + c] < (1− ε)t−1.

Finally, for m ≤ m0 and t ≤ t0 it is verified that

(1− E)t
m+t−1∏
k=m

[1 + f(Σ∗k) + c0] ≤ (1− E)t
[
1 + f(Σ∗sup) + c0

]t ≤ K0

for some constant K0.

Corollary 3. Assume that (H1),(H2) and either (I1) or (I2) hold. If t 7→ S0
t is

ω–periodic and E is such that

(3.16) (1− E)

ω−1∏
j=0

{1 + f(Σ∗j )}

 1
ω

< 1,

then lim
t→+∞

(Ut,Σ
∗
t − St) = (0, 0) and the convergence is uniformly exponential.

Proof. If t 7→ S0
t is ω–periodic, then we know from Remark 4 that t 7→ Σ∗t and

t 7→ 1 + f(Σ∗t ) are ω–periodic. Thus, the result follows since β coincides with the
left-hand side of (3.16) in the ω–periodic case. �
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3.4. Persistence of the total biomass. Usually, it is said that the total biomass
Ut described in (3.5) is persistent if lim inf

t→+∞
Ut > 0 whenever U0 > 0. In order to

obtain sufficient conditions ensuring persistence, it will be useful to introduce the
following result:

Lemma 8. The following assumptions are equivalent:

a) There exists c0 < 0 such that

(3.17) lim inf
t−t0,t0→∞

πc0(t, t0) > 0,

b) There exists c1 < 0 such that

lim
t−t0,t0→+∞

πc1(t, t0) =∞.

c) There exists c0 < 0 and T, ε > 0 such that πc0(t, t0) > ε for t−T ≥ t0 ≥ T .
d) For each M > 0 there exists c1 < 0 and T > 0 such that πc1(t, t0) > M for

t− T ≥ t0 ≥ T .

Proof. a) ⇐⇒ b): As the implication b) ⇒ a) is direct, we shall only prove
a)⇒ b). Choose c1 < 0 and ∆ > 0 such that

c0 < c1 −∆ < 0 and 1 + f(Σ∗inf) + c1 > ∆,

which combined with Lemma 5 allows us to deduce

πc0(t, t0) ≤ (1− E)t−t0
t−1∏
j=t0

{1 + f(Σ∗j ) + c1 −∆}

≤ πc1(t, t0)e−r(t−t0),

where r = ∆/(1 + f(Σinf) + c1). Thus, πc1(t, t0) ≥ πc0(t, t0)er(t−t0) and the impli-
cation follows.

Let us recall that lim inf
t−t0,t0→+∞

πc0(t, t0) = ` > 0 if and only if for any δ > 0 there

exists T > 0 such that πc0(t, t0) ≥ `− δ for any t− t0 > T and t0 > T .
If we assume a), let us consider δ ∈ (0, `) and define ε = `− δ. Then there exists

c0 < 0 and T, ε > 0 such that πc0(t, t0) ≥ ε for any T < t0 < t − T , and c) is
verified. On the other hand, the implication c)⇒ a) is straightforward.

Finally, note that b) ⇐⇒ d) is clear from the definition of limit. In fact, let us
recall that the property lim

t−t0,t0→+∞
πc1(t, t0) =∞ is equivalent to:

For all M > 0 there exists T > 0 such that t− t0 > T, t0 > T ⇒ πc1(t, t0) > M.

�

Theorem 2. For any initial condition (U0, S0) ∈ ΩW with U0 > 0, the total
biomass is persistent if and only if there exists c0 < 0 such that (3.17) is verified.

Proof. Let us assume that lim inf
t→∞

Ut > 0. Then, there exists ε > 0 and T > 0 such

that Ut > ε for any t ≥ T . Now, if t ≥ t0 ≥ T , then

Ut
Ut0

>
ε

Ut0
≥ ε

W
,

and we can deduce that

ε

W
≤

t−1∏
j=t0

(1− E){1 + f(Σ∗j )− f ′(ξj)(Σ∗j − Σj + Uj)},
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where ξj is a number between Σ∗j and Sj = Σj − Uj . By using Lemma 2 and
considering T large enough, we obtain the estimation:

ε

W
≤

t−1∏
j=t0

(1− E){1 + f(Σ∗j )− ηε}

for some constant η > 0 and the condition (3.17) is verified with c0 := −ηε < 0.
Now, let us assume that the condition (3.17) is verified for some c0 < 0. Firstly,

we claim the existence of t0 ≥ 0 such that St < Σ∗t for any t ≥ t0. Indeed, otherwise,
assume that St > Σ∗t for any t ≥ 0, then it follows trivially that

π0(t, 0) <

t−1∏
j=0

(1− E){1 + f(St)} =
Ut
U0
,

which is bounded. Moreover, by using Lemma 5 and writing c0 = −|c0|, it is seen
that

πc0(t, 0) =

t−1∏
j=0

(1−E){1+f(Σ∗t )−|c0|} ≤
t−1∏
j=0

(1−E){1+f(Σ∗t )}e
−|c0|
Asup

t
= π0(t, 0)e

c0
Asup

t
,

with Asup =: 1+f(Σ∗sup), obtaining a contradiction with the boundedness of π0(t, 0).
Secondly, we will see that Ut cannot converge to 0. Indeed, otherwise, note that

there exists ξt between Σ∗t and St such that

f(Σ∗t )− f(St) = f ′(ξj)(Σ
∗
t − St) = f ′(ξj)(Σ

∗
t − Σt + Ut).

Hence, there exists T0 > t0 large enough such that if t ≥ T0 then

f(Σ∗t )− f(St) ≤ −c0,

which implies that 1 + f(Σ∗t ) + c0 ≤ 1 + f(St) for any t ≥ t0. Then

πc0(t, t0) ≤
t−1∏
j=t0

(1− E)[1 + f(St)] =
Ut
Ut0

,

and the convergence of Ut towards zero leads a contradiction with (3.17).
Finally, let us verify that lim inf

t→+∞
Ut > 0 for arbitrary U0 > 0. Indeed, otherwise

there exists a divergent sequence {tj}j such that lim
j→∞

Utj = 0. Without loss of

generality, we will also assume that Utj ≤ Ut for any t ≤ tj . According to Lemma
8, condition (3.17) is verified for some c0 < 0 if and only if d) holds; hence, let us
fix T > 0 and c < 0 such that πc(t, t0) > 1 for t − T ≥ t0 ≥ T and observe that if
tj − T ≤ k < tj , then

Utj
Uk
≥ (1− E)tj−k ≥ (1− E)T ,
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which allows us to see that

1 ≥
Utj
Utj−T

=

tj−1∏
k=tj−T

(1− E){1 + f(Sk)}

=

tj−1∏
k=tj−T

(1− E){1 + f(Σ∗k)− f ′(ξk)[Σ∗k − Σk + Uk]}

≥
tj−1∏

k=tj−T

(1− E){1 + f(Σ∗k)− f ′(ξk)[Σ∗k − Σk + Utj (1− E)−T ]}.

Thus, for j large enough such that f ′(ξk)[Σ∗k−Σk +Utj (1−E)−T ] < −c we deduce

1 ≥
tj−1∏

k=tj−T

(1− E){1 + f(Σ∗k)− f ′(ξk)[Σ∗k − Σk + Uk]} > πc(tj , tj − T ).

This contradiction proves that lim inf
t→∞

Ut > 0. �

Similarly as in the washout study, the condition (3.17) is related to the inferior
Bohl exponent β associated to the difference equation (3.14), which is defined by

β := lim inf
n−m,m→+∞

n−1∏
j=m

(1− E)[1 + f(Σ∗j )]

 1
n−m

= lim inf
n−m,m→+∞

π0(n,m)
1

n−m .

Lemma 9. If β > 1, then there exists c0 < 0 such that (3.17) is verified.

Proof. Assume β > 1, then there exists ε ∈
(
0, ef(Σ∗inf ) − 1

)
such that if t − t0, is

large enough, then

t−1∏
j=t0

(1− E)[1 + f(Σ∗j )] > (1 + ε)t−t0 .

By using Lemma 5 with c0 := − ln(1 + ε) < 0, we can verify that

πc0(t, t0) ≥
t−1∏
j=t0

(1− E)[1 + f(Σ∗j )](1 + ε)−(t−t0) > 1

for t− t0 and t0 large enough and (3.17) follows.
�

Corollary 4. If t 7→ S0
t is ω–periodic and there exists E0 ∈ (0, 1) such that t 7→

Σ∗t (E0) verifies

(3.18) (1− E0)

ω−1∏
j=0

{1 + f(Σ∗j )}

 1
ω

> 1,

then the total biomass of the system (3.5) with E = E0 is persistent.

Proof. As done in the proof of Corollary 3, the periodicity implies that β is equal to
the left side of (3.18). The result is a direct consequence of Lemma 9 and Theorem
2 �
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4. Study of the periodic case

In this section, we address the existence and attractiveness of positive ω-periodic
solutions for (2.12) whenever the input t 7→ S0

t is positive and ω-periodic. To this
end, we consider the planar system (3.5) with f satisfying (H1),(H2) and (I2).
As noticed in Remark 4, these assumptions imply that Σ∗t is the unique ω-periodic
positive solution of (3.1). In this framework, it will be useful to define

0 < S0
min := min

t∈{0,...,ω−1}
S0
t and S0

max := max
t∈{0,...,ω−1}

S0
t .

4.1. Study of a reduced system. The change of variables Σt = St+Ut combined
with the positiveness of St also leads to the decoupled system

(4.1)

{
Σt+1 = (1− E)Σt + ES0

t

Ut+1 = (1− E) (1 + f(Σt − Ut))Ut.

Note that the initial conditions of (3.5) lie in ΩW with W = 1/f ′(0) if and only
if the initial conditions of (4.1) belong to the set

(4.2) X0 =
{

(Σ, U) ∈ R2 : 0 < Σ ≤W and 0 < U < Σ
}
.

Now, under the assumption that (H1),(H2), (I2) are verified, we can see that
if (Σt, Ut) is a solution of (4.1) passing trough (Σ0, U0) ∈ X0 at t = t0 = t∗ = 0,
by Lemma 4, it follows that (Σt, Ut) ∈ X0 for any forward solution of (4.1) passing
through (Σ0, U0) at initial time t0 = 0.

The study of (4.1) will be a complementary and useful tool. In fact, by Lemma
2, it follows that the biomass equation is asymptotically equivalent to

(4.3) Ut+1 = (1− E)(1 + f(Σ∗t − Ut))Ut, U0 = a ≥ 0.

Note that (4.3) is well defined when (I2) is satisfied. In fact, as we already know
that St = Σ∗t − Ut verifies

St+1 = (1− E)[St − f(St)Ut] + ES0
t

and by (I2), the positiveness of St implies that Σ∗t > Ut. For simplicity, we may
extend f to the whole line by setting f(Σ∗t − Ut) = 0 if Σ∗t ≤ Ut, so the solutions
are globally defined and it is clear that Ut > 0, provided that a > 0. This defines
the Poincaré mapping P : [0,Σ∗0]→ [0,+∞) given by P(a) := Uω.

Theorem 3. Assume that (H1), (H2), (I2) hold and condition (3.18) is sa-
tisfied for some E ∈ (0, 1). Then (4.3) has a unique positive ω-periodic solution
t 7→ U∗t , and any other solution of (4.3) with initial condition 0 < U0 ≤ Σ∗0 has the
asymptotic behavior lim

t→+∞
|Ut − U∗t | = 0.

Proof. The proof will be divided in two steps.
Step 1: Existence and uniqueness. Using Lemma 4 it is seen, for a > 0, that
St > 0 for all t and consequently P(a) < Σ∗ω = Σ∗0. On the other hand, notice that
P(0) = 0 and, moreover, since f is of class C1, it follows that P is continuously
differentiable, see [9]. Direct computation shows that

P ′(a) = lim
h→0

U(ω, 0, a+ h)− U(ω, 0, a)

h
=
∂U

∂ξ
(ω, 0, ξ) |ξ=a:= vω,

where vt is the solution of the initial value problem

vt+1 = (1− E)[1 + f(Σ∗t − Ut)− f ′(Σ∗t − Ut)Ut]vt with v0 = 1.
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Then

vt = (1− E)t
t−1∏
j=0

[1 + f(Σ∗j − Uj)− f ′(Σ∗j − Uj)Uj ]

and therefore

(4.4) P ′(a) = vω = (1− E)ω
ω−1∏
t=0

[1 + f(Σ∗t − Ut)− f ′(Σ∗t − Ut)Ut].

In particular, using (3.18) it is seen that

P ′(0) = (1− E)ω
ω−1∏
j=0

[1 + f(Σ∗j )] > 1.

Thus, if we set q(a) := a− P(a) it follows that q(0) = 0, q′(0) < 0 and q(Σ∗0) > 0,
which leads to the existence of a ∈ (0,Σ∗0) such that q(a) = 0, that is, P(a) = a.
Furthermore, observe that if a > 0 is a fixed point of P and Ut is the corresponding
solution with U0 = a, then Ut is ω–periodic. Hence, the equality

Ut+1

Ut
= (1− E)(1 + f(Σ∗t − Ut)),

implies that

(4.5) 1 =
Uω
U0

= (1− E)ω
ω−1∏
j=0

(1 + f(Σ∗j − Uj)).

Now, from (4.4) and (4.5) we obtain:

(4.6) P ′(a) = (1− E)ω
ω−1∏
j=0

[1 + f(Σ∗j − Uj)− f ′(Σ∗t − Uj)Uj ] < 1.

In other words, if a ∈ (0,Σ∗0) is such that q(a) = 0, then q′(a) > 0 and we conclude
that P has a unique nontrivial fixed point a0.

Step 2: Asymptotic stability. By (H1) and (I2) he have f ′(Σ∗t −Ut)Ut ≤ f ′(0)Ut <
1; as a consequence, it follows from (4.4) that P ′(a) > 0 for all a ∈ [0,Σ∗0].

As P(Σ∗0) < Σ∗0, we know that P([0,Σ∗0]) ⊂ [0,Σ∗0). Let b ∈ (0,Σ∗0] \ {a0}, and
define {Pn(b)}n∈N ⊂ (0,Σ∗0]. For P(b) > b, the sequence {Pn(b)}n∈N is strictly
increasing and converges to b0 ∈ (0,Σ∗0] which is a fixed point of P, so b0 = a0.
Similarly, if P(b) < b then {Pn(b)}n∈N is strictly decreasing and converges to
b0 ∈ [0,Σ∗0] which is a fixed point of P. Since P ′(0) > 1, we know that P(x) > x for
0 < x < a0; thus, b > a0 and Pn(b) > a0 for all n, whence b0 = a0. We conclude
that every orbit of P starting in (0,Σ∗0] converges to a0. So, from the continuous
dependence on initial conditions, see [9], it follows that |Ut − U∗t | → 0 as t → ∞,
where U0 = b ∈ (0,Σ∗0] and U∗0 = a0. Indeed, given ε > 0, fix δ > 0 such that if
|U0 − a0| < δ then |Ut − U∗t | < ε for 0 ≤ t ≤ ω. Since Pn(b) = Unω, fix n0 such
that |Unω − a0| < δ for n ≥ n0. The function Wt := Unω+t is solution of (4.3) with
W0 = Unω and |Unω+t − U∗nω+t| = |Wt − U∗t | < ε for n ≥ n0 and 0 ≤ t ≤ ω. �

Remark 7. The first step in the previous proof is valid if (I1) is assumed instead
of (I2): indeed, it suffices to observe that the map P is still well defined, in virtue
of Lemma 3. This yields the existence of a unique periodic solution. However, the
asymptotic stability may fail, because the monotonicity of P is not guaranteed. A
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simple example of this reads as follows: as in Remark 5 let S0 be 2-periodic with
S0

0 = 1 and S0
1 = S > 1, then both values Σ∗0 = Σ∗max and Σ1 tend to 1 as S → 1.

Next, consider f such that f ′ ≡ c in [0,Σ∗0], where c is the (unique) value such that

1 < cS = 1 + 2

√
Ec

1− E
.

Thus, (I1) is satisfied although, when S ∼ 1, we seen cΣ∗0 > 1 and (I2) is not
fulfilled. Observe, moreover, for simplicity fix E = 1/2 and U0 = a ∈ [0,Σ∗0] then

U1 =
1

2
(1 + c(Σ∗0 − a))a, U2 =

1

2
(1 + c(Σ∗1 − U1))U1.

Notice that U1 is a parabola whose maximum value is attained at a = 1
2c +

Σ∗0
2 < Σ∗0

which, in turn, implies U ′1(Σ∗0) < 0. Furthermore,

P ′(a) = U ′2(a) =
1

2
[1 + cΣ∗1 − 2 cU1(a)]U ′1(a)

and, note that the definitions of c,Σ∗0 and Σ∗1 allow us to conclude that the positivity
of the term in the bracket is equivalent

1 + 2
√
c < 3 + c

and, because the latter inequality holds for all c > 0, it is deduced that P ′(Σ∗0) < 0.

Remark 8. H.L. Smith and P. Waltman proved an analogous version of the above
result for a continuous-time chemostat model with periodic dilution rate, see [14,
Ch. 7, Prop. 3.2]. Our proof of Theorem 3 deserves some comments:
i) The identity Σt = St+Ut allows to define S∗t := Σ∗t−U∗t , where as before U∗t is the
unique ω–periodic solution of (4.3). Then, we can easily deduce that t 7→ (U∗t , S

∗
t )

is the unique ω–periodic solution of the system (3.5).

ii) In the same way as in (4.5), it follows from the above identity that

(4.7) (1− E)ω
ω−1∏
t=0

(1 + f(S∗t )) = 1.

Theorem 4. Assume that (H1),(H2),(I2) and condition (3.18) are satisfied for
some E ∈ (0, 1), then the ω–periodic solution t 7→ (Σ∗t , U

∗
t ) of (4.1) is globally

attractive for any positive solution, namely, any solution t 7→ (Σt, Ut) of (4.1) with
initial condition (Σ0, U0) ∈ X0 (where W = 1

f ′(0)) verifies the asymptotic behavior

lim
t→+∞

|Σt − Σ∗t |+ |Ut − U∗t | = 0.

Proof. Note that (Σ0, U0) ∈ X0 if and only if (U0, S0) ∈ ΩW . Then, by Lemma
4 it follows that (Σt, Ut) ∈ X0 for any forward solution of (4.1) passing through
(Σ0, U0) at initial time t0 = t∗ = 0.

By Lemma 2, we know that lim
t→+∞

|Σt − Σ∗t | = 0. In consequence, we will only

verify that lim
t→+∞

|Ut − U∗t | = 0.

By Theorem 3 and statement i) from Remark 8, there exists a unique ω-periodic
solution (U∗t , S

∗
t ) with U∗t + S∗t = Σ∗t . Moreover, if (Ut, St) is another positive

solution of (4.1), then the function Σt = Ut + St verifies the identity Σt − Σ∗t =
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(1 − E)t−t0 [Σt0 − Σ∗t0 ], as proved by Lemma 2. Now, let us define Wt := Ut − U∗t
and

At :=

{
f(St)−f(S∗t )

St−S∗t
St 6= S∗t

f ′(S∗t ) St = S∗t ,

which allows us to write
Wt+1 = CtWt +Dt,

where Ct and Dt are defined by:

Ct := (1− E)[1 + f(S∗t )−AtUt] and Dt := (1− E)AtUt(Σt − Σ∗t ).

By variation of parameters we have that, for any t0 ≥ 0,

(4.8) Wt0+k+1 =

t0+k∏
j=t0

Cj

Wt0 +

t0+k∑
j=t0

Dj

t0+k∏
s=j+1

Cs

where, as usual, we assume that
∏t0+k
s=t0+k+1 Cs = 1. Let us recall that {St}t is

bounded since (Σ0, U0) ∈ X0, then we can write At = f ′(ξt) with ξt between
St and S∗t such that ξt ∈ [0,W ] since 0 < St ≤ St + Ut ≤ W . From (H1) it
may be concluded that there exists a constant a := min

r∈[0,W ]
f ′(r) > 0 such that

a ≤ At ≤ f ′(0). Moreover, by (I2) and the positiveness of St, it follows that

1− Utf ′(0) = 1− (Σ∗t − St)f ′(0) + (Σ∗t − Σt)f
′(0)

= 1− Σ∗t f
′(0) + Stf

′(0) + (Σ∗t − Σt)f
′(0)

≥ (Σ∗t − Σt)f
′(0).

Next, we can deduce that

St+1 ≥ (1− E)[1− Utf ′(0)]St + ES0
t ≥ (1− E)(Σ∗t − Σt)f

′(0)St + ES0
t ≥ c > 0

for some c ∈ (0, ES0
min), when considering t large enough.

Now, as Ut = Σt − St, and by using again (I2) combined with the fact that Σt
and Σ∗t are asymptotically equivalent, it is verified that

AtUt ≤ f ′(0)[Σt − c] < f ′(0)Σ∗t ≤ 1,

which implies that Ct > 0 for t large enough.
As Ut is also bounded, for any initial time t0 we have

|Dt| ≤ c1|Σt0 − Σ∗t0 |(1− E)t−t0

for some c1 and any t > t0. In order to estimate (4.8), we observe that

t0+k∏
s=j+1

Cs ≤
t0+k∏
s=j+1

(1− E){1 + f(S∗s )},

which is bounded since S∗t is ω-periodic and
∏ω−1
s=0 (1− E){1 + f(S∗s )} = 1. Then,

there exists a constant K such that

(4.9)

∣∣∣∣∣∣
t0+k∑
j=t0

Dj

t0+k∏
s=j+1

Cs

∣∣∣∣∣∣ ≤ K|Σt0 − Σ∗t0 |
t0+k∑
j=t0

(1− E)j−t0 ≤ K

E
|Σt0 − Σ∗t0 |,

is arbitrarily small for t0 > T1, where T1 is large enough. Now, let us write

t0+k∏
j=t0

Cj =

t0+k∏
j=t0

(1− E){1 + f(S∗j )}
t0+k∏
j=t0

(
1− AjUj

1 + f(S∗j )

)
,
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where, as we have seen, the first factor is bounded. On the other hand, note that the

second factor converges towards 0. Indeed, as 0 <
AjUj

1+f(S∗j ) < 1 for large values of

j, the convergence follows from the fact that AjUj cannot be convergent to 0 since

Aj ≥ a > 0 and Uj is persistent by (3.18). In consequence, lim
k→∞

∏t0+k
j=t0

Cj = 0.

Now, given ε > 0, from (4.8) and (4.9) we may fix t0 such that∣∣∣∣∣∣Wt0+k+1 −
t0+k∏
j=t0

CjWt0

∣∣∣∣∣∣ < ε,

and, by letting k →∞, we obtain lim sup
j→∞

|Wj | ≤ ε and lim inf
j→∞

|Wj | ≥ −ε. Finally,

as the above limits hold for any ε > 0 we conclude that lim
j→∞

Uj − U∗j = 0 and the

result follows. �

4.2. Existence and attractiveness of a periodic solution of the original
system (2.12). In this subsection, we will assume that the hypotheses of Theorem
4 are satisfied. Now, let t 7→ (St,xt) be a solution of (2.12) such that (1 · x0, S0) ∈
ΩW with W = 1/f ′(0) at initial time t0 = 0. Moreover, let us recall that 1 · xt =
Ut. By Theorem 4 and the asymptotical equivalence between St = Σt − Ut and
S∗t = Σ∗t − U∗t , we can deduce that t 7→ (1 · xt, St) is a solution of the system (3.5)
such that

lim
t→∞

|St − S∗t | = 0 and lim
t→∞

|1 · xt − U∗t | = 0,

where t 7→ (U∗t , S
∗
t ) is the unique ω–periodic solution of (3.5).

Now, for any initial condition (1 · x0, S0) ∈ ΩW at initial time t0 = 0, it follows
that the linear system

(4.10) xt+1 = (1− E)A(St)xt,

is ω–asymptotically periodic with limit

(4.11) xt+1 = (1− E)A(S∗t )xt,

where A(·) is described by (2.11). The Floquet theory for linear difference ω–
periodic systems (see e.g. [12, Ch.3]) allows a deep study of the system (4.11).

Lemma 10. If (H1), (H2), (I2), hold and condition (3.18) is satisfied for some
E ∈ (0, 1), then any basis of solutions of the ω–periodic system (4.11) is composed
by one ω–periodic solution and r − 1 uniformly exponentially stable solutions.

Proof. The evolution operator associated to the system (4.11) is defined by

Φ(k, `) = (1− E)k−1−`A(S∗k−1) · · ·A(S∗` ) for all k ≥ `.
The Floquet multipliers of (4.11) are the eigenvalues of Φω := Φ(ω − 1, 0) and

consequently, a basis of solutions can be constructed in terms of its associated
eigenvectors. By Proposition 3.2.3 from [12] it follows that if λ = 1 is a Floquet
multiplier, then there exists an ω–periodic solution.

A first step to deduce the existence of a Floquet multiplier λ = 1, is to prove
that ρ(Φω), the spectral radius of Φω, verifies ρ (Φω) = 1. By using the Corollary
1 combined with the identity (4.7) we have that

ρ (Φω) ≤ (1− E)ω
ω−1∏
t=0

{1 + f(S∗t )} = 1.
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Now, we will see that the above inequality is, in fact, an identity. Indeed,
otherwise we will have that ρ(Φω) < 1, that is, all the Floquet multipliers are
inside the unit circle, which implies that the linear ω–periodic system (4.11) is
uniformly exponentially stable. Then for any non trivial solution t 7→ xt of (4.11)
it follows that t 7→ 1 · xt is a solution of Ut+1 = (1 − E){1 + f(S∗t )}Ut, which is
convergent to zero, but we obtain a contradiction with (4.7) and we conclude that
ρ(Φω) = 1.

As (1−E)A(S∗t ) are primitive, nonnegative and commutative, it follows that Φω
is irreducible and nonnegative [5, p.28] and also primitive [11, p.268]. By Perron–
Frobenius Theorem for irreducible nonnegative matrices [14, p.257], we have that
1 = ρ(Φω) is a simple eigenvalue having a strictly positive eigenvector v∗, namely,

Φωv
∗ = Φ(ω − 1, 0)v∗ = v∗,

and it follows that t 7→ Φ(t− 1, 0)v∗ is an ω–periodic solution of (4.11).
The Floquet multiplier λ = 1 is also called the Perron–Frobenius eigenvalue and

the one dimensional subspace of its right eigenvectors will be denoted by 〈v∗〉. Any
vector e ∈ 〈v∗〉 is called a Perron–Frobenius eigenvector and it follows clearly that
Φωe = e.

Finally, as Φω is a primitive matrix and because 1 = ρ(Φω) is simple, it follows
that –see subsection 2.4 for details– any other Floquet multiplier λ verifies |λ| < 1.

�

To prove the existence and attractiveness of an ω–periodic solution of (2.12) it
will be useful to recall a byproduct of the weak ergodic theorem of Golubitsky [8]:

Proposition 1. [3, Th.2.4] Suppose that Tn is a sequence of nonnegative and pri-
mitive matrices, and that Tn → T as n → ∞ where T is also nonnegative and
primitive. If e is the Perron–Frobenius eigenvector of T satisfying 1 · e = 1 and
ξn+1 = Tnξn is a sequence with ξ0 > 0 then

lim
n→∞

Tn−1ξn−1

1 · ξn−1
= e.

Theorem 5. If (H1), (H2), (I2), hold and (3.18) is satisfied for some E ∈ (0, 1),
then (2.12) has an ω–periodic solution (S∗t ,x

∗
t ) such that lim

t→∞
|St−S∗t |+|xt−x∗t | = 0

for any solution (St,xt) with (1 · x0, S0) ∈ ΩW (with W = 1
f ′(0)) at t0 = 0.

Proof. Existence: Let x∗t be an ω–periodic solution of (4.11) with initial condition
x∗0 ∈ 〈v∗〉 and S∗t be the nutrient coordinate of the unique ω–periodic solution of
(3.5). Now, let us construct the family of systems:

(4.12) St+1 = (1− E)St + (1− E)f(S∗t )1 · x∗t + ES0
t .

From now on, we will consider the equation (4.12) where x∗t is an ω–periodic

solution of (4.11) verifying x∗0 =
U∗0
1·v∗ v

∗, which implies that 1 · x∗t = U∗t is the
unique ω–periodic solution of

Ut+1 = (1− E)[1 + f(S∗t )]Ut with U0 = U∗0

and we restrict our interest to

(4.13) St+1 = (1− E)St + (1− E)f(S∗t )U∗t + ES0
t .
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As in Remark 1, it can be proved that (4.13) has a unique ω–periodic solution

denoted by S̃∗t . To prove that S̃∗t = S∗t , let ηt = S̃∗t −S∗t , satisfying ηt+1 = (1−E)ηt
and its unique Z–bounded solution is ηt = 0, then the identity S̃∗t = S∗t follows.

When summarizing the above facts, we deduce that if x∗t is an ω–periodic solution

of (4.11) with x∗0 =
U∗0
1·v∗ v

∗ then S∗t is an ω–periodic solution of (4.12) coincident
with the unique ω–periodic solution of (4.13). Then by coupling (4.11) and (4.12),
it follows that (S∗t ,x

∗
t ) is an ω–periodic solution of (2.12).

Attractiveness: Let us recall that Σt−Σ∗t → 0, Ut−U∗t → 0 and St−S∗t → 0 when
t→∞. In consequence, we only need to verify that xt − x∗t → 0.

We consider the Poincaré operator P : Rr+ → Rr+ related to (4.10). If x0 6= 0 is

the biomass of an initial condition of (2.12), then let xnω := xn for n ∈ Z+
0 . Thus,

x1 = Px0 = (1− E)ωA(Sω−1) · · ·A(S0)x0

and we can define the recursion

xn = Pxn−1 = (1− E)ωA(Snω−1) · · ·A(S(n−1)ω)︸ ︷︷ ︸
=Tn−1

xn−1,

or equivalently xn = Tn−1xn−1. By using the properties of A(St) stated in the
subsection 2.4 we can prove that Tn is a sequence of primitive, nonnegative and
commutative matrices. Moreover, Theorem 4 also ensures that Tn → Φω when
n → ∞. Note that Φω is also nonnegative, primitive and commutative as we
observed in the proof of Lemma 10. Now, the weak ergodic theorem of Golubitsky
states that if e is a Perron–Frobenius eigenvector of Φω satisfying 1 · e = 1, then

(4.14) lim
n→∞

xn
1 · xn−1

= e.

As we know that lim
n→∞

Unω−1 = U∗nω−1 = U∗j for some j ∈ {0, . . . , ω − 1}, the

identities 1 · xn−1 = 1 ·xnω−1 = Unω−1 allow us to deduce that lim
n→∞

1 · xn−1 = U∗j

and by (4.14) it follows that

(4.15) lim
n→∞

xn = U∗j e =
U∗j e

1 · e
∈ 〈v∗〉.

As we see at the beginning of the proof of this theorem, the above vector U∗j e
can be seen as a initial condition of the linear periodic system (4.11), that is, we
have the identity U∗j e = x∗0 = x∗nω.

Let us note that (4.15) is equivalent to Pnx0 → x∗nω ∈ 〈v∗〉 when n→∞, which
implies that xnω −x∗nω → 0. We emphasize that it can be proved that xt−x∗t → 0
in a similar way as in the proof of Theorem 3.

�

5. Numerical Simulations

To illustrate our results and allow a comparison with previous ones, we carry
out numerical simulations for the cultivation of microalgae of the Cryptomonas
species, as was done by Arino et al. [3]. The genus Cryptomonas was established
by C.G. Ehrenberg in 1831, and this kind of algae can be found in both fresh and
saltwater sources around the world. Two aspects that have been investigated about
Cryptomonas are the identification of new species that belong to this genus [6], and
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how these unicellular algae regulate their internal protein reserve to optimize their
growth rate under nitrogen- and light-limited conditions [13].
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(a) Dynamics with transient phase.
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(b) Dynamics without transient phase.

Figure 2. Dynamic of the total biomass and substrate. The initial condi-

tions are: (U, S) = (90, 50) (blue curve), (U, S) = (20, 50) (green curve), and
(U, S) = (70, 50) (red curve).

We consider the growth of the microalgae Cryptomonas sp with nitrate as lim-
iting substrate and a Monod or Michaelis–Menten type growth function µ(S) =
µ̂max

S
K+S and the periodic input rate of nitrate

S0
t = 260 + 70 sin

(
2πt

1000

)
µ Mol L−1.

For the convenience of the reader, the culture conditions are presented in Table 1.

By considering E = DT , f(S) =
fsupS
K+S where fsup = µ̂maxT , the hypotheses (H2),

(I1), (I2) and the inequality for the minimum doubling time, then the constraints
for the number of size classes, r, and the iteration period, T , are:

fsup ≤ 21/r − 1, rT ≤ Tmin, f ′(0)S0
sup ≤ 1 + 2

√
f ′(0)ES0

inf

1− E
, f ′(0)Σ∗sup < 1.

Then we set the number of size classes in (2.12) to eight, that is, r = 8. Conse-
quently, we consider T = 0.001 and it is possible to determine f and D. We carried
out our numerical simulations in the software R version 4.0.2 and use libraries
ggplot2, reshape2, latex2exp and plotly to build Figures 2 and 3.
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[12] Pötzsche C (2010) Geometric Theory of Discrete Nonautonomous Dynamical Systems.
Springer, New York

[13] Sciandra A, Lazzara L, Claustre H, Babin M (2000) Responses of growth rate, pigment
composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Mar

Ecol Prog Ser. 201:107–120.

[14] Smith HL, Waltman P (1995) The Theory of the Chemostat, Dynamics of the Microbial
Competition. Cambridge University Press, Cambridge

[15] Smith HL (1996) A discrete, size–structured model of microbial growth and competition in

the chemostat. J Math Biol. 34:734–754
[16] Smith HL, Zhao XQ (2001) Competitive exclusion in a discrete size–structured chemostat

model. Discrete Contin Dyn Syst Ser B. 1:183–191

[17] Zhao XQ (2005) Dynamical Systems in Population Biology. Springer, New York
[18] Zhang D, Wang L (2019) Multistability driven by inhibitory kinetics in a discrete–time size–

structured chemostat model. Chaos 29 063112

[19] Zhang D, Cai X, Wang L (2019) Complex dynamics in a discrete–time size–structured chemo-
stat model with inhibitory kinetics. Discrete Contin Dyn Syst Ser B. 24:3439–3451.

Email address: pamster@dm.uba.ar, grobledo@uchile.cl, daniel.sepulveda@utem.cl
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Departamento de Matemáticas, Universidad de Chile, Casilla 653, Santiago, Chile.


