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Abstract. We study the single source single destination shortest path
problem in a graph where information about arc weights is modelled by
a belief function. We consider three common criteria to compare paths
with respect to their weights in this setting: generalized Hurwicz, strong
dominance and weak dominance. We show that in the particular case
where the focal sets of the belief function are Cartesian products of in-
tervals, finding best, i.e., non-dominated, paths according to these crite-
ria amounts to solving known variants of the deterministic shortest path
problem, for which exact resolution algorithms exist.

Keywords: Shortest path · Belief function · Exact method.

1 Introduction

The Shortest Path Problem (SPP) is one of the most studied problems in com-
binatorial optimization with a wide range of applications in, e.g., transportation
and telecommunications. In many realistic situations, uncertainty on arc weights
is encountered; for instance, the travel times between cities can be affected by
external factors such as weather conditions or traffic jams. Many approaches
have been proposed to model the uncertainty on arc weights. In particular, ro-
bust optimization frameworks have represented uncertainty by discrete scenario
sets [15,3] and by intervals [3,10].

In this paper, we investigate the case where the uncertainty on arc weights is
evidential, i.e., modelled by a belief function [12]. More specifically, we assume
that each focal set of the considered belief function is a Cartesian product of
intervals with each interval describing possible values of each arc weight. Such
a belief function is a direct and natural generalization of the above-mentioned
interval-based uncertainty representation, which arises when considering prob-
abilities that the intervals hold. It can be illustrated as follows: in a network
with three cities A, B, and C, under good weather conditions, it may take 20 to
30 minutes to travel from A to B, and 10 to 20 minutes to travel from B to C;
however under bad weather conditions, the travel times from A to B (resp. B to
C) takes 30 to 40 minutes (resp. 15 to 25 minutes) and the forecast tells us that
the probability of good weather (resp. bad weather) is 0.8 (resp. 0.2).
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In the presence of evidential uncertainty on arc weights, the notion of best,
i.e., shortest, paths becomes ill-defined. In a similar vein as [3] and using decision
theory under evidential uncertainty [2], best paths are defined in this paper as
the non-dominated ones with respect to a preference relation over paths, built
from some criterion relying on the notions of upper and lower expected weights
of paths. We consider in particular three common criteria, called generalized
Hurwicz, strong dominance and weak dominance; the first one induces a complete
preference relation while the latter two induce partial relations leading, as will
be seen, to more challenging optimisation problems.

Combinatorial optimization problems under evidential uncertainty have re-
ceived some attention recently. Notably, in [8,14], the authors studied different
variants of the Vehicle Routing Problem (VRP) with different uncertainty fac-
tors and with similar particular focal sets as in this paper. They proposed ap-
proximate resolution methods based on metaheuristics to find non-dominated
solutions with respect to a complete relation built from a particular case of the
generalized Hurwicz criterion. Guillaume et al. [6] studied a general optimiza-
tion problem in which the coefficients in the objective function are subject to
uncertainty. They considered also the generalized Hurwicz criterion and provided
results about the complexity of finding a non-dominated solution.

In contrast to [8,14], we provide in this paper exact methods to find non-
dominated solutions with respect to both complete and partial relations, owing
to the fact that the SPP is much simpler than the VRP. Furthermore, although
Guillaume et al. [6] showed that in general it is intractable to find best solu-
tions, our results indicate that it can nonetheless be done when focal sets are of
a particular kind. Finally, we may note that the particular optimization prob-
lems that we consider allow us to take advantage of specialized (SPP-related)
algorithms, in contrast to [11] which also provides means to find best elements
according to some criteria, such as strong dominance, but which cannot benefit
from such specialized algorithms as it is framed in a more general setting.

The rest of this paper is organized as follows. Section 2 presents necessary
background material. Section 3 is devoted to the formalization and resolution of
the SPP with evidential weights. The paper ends with a conclusion in Section 4.

2 Preliminaries

In this section, we present basic elements necessary for the rest of the paper.

2.1 Deterministic shortest path problem

Let G = (V,A) be a directed graph with set of vertices V , set of arcs A and
weight cij > 0 for each arc (i, j) in A. Let s and t be two vertices in V called
the source and the destination, respectively. Let X be the set of all s-t paths
in G with the assumption that X ≠ ∅. If all arc weights cij are known then
finding a s-t shortest path, i.e., a s-t path of lowest weight, can be modelled as
the following optimization problem
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min
∑

(i,j)∈A

cijpij (1)

∑
(s,i)∈A

psi −
∑

(j,s)∈A

pjs = 1 (2)

∑
(t,i)∈A

pti −
∑

(j,t)∈A

pjt = −1 (3)

∑
(k,i)∈A

pki −
∑

(j,k)∈A

pjk = 0, ∀k ∈ V \{s, t} (4)

pij ∈ {0, 1}, ∀(i, j) ∈ A (5)

where each path in X is identified with a set p = {pij |(i, j) ∈ A} of which
element pij = 1 if arc (i, j) is in the path and pij = 0 otherwise.

Example 1. Considering the directed graph depicted in Figure 1, the set of all
s-t paths is X = {s-a-t, s-b-t, s-t} and s-a-t is the shortest s-t path with weight 2.

s

a

b

t

1 1

3

2 2

Fig. 1. Shortest path s-a-t between vertices s and t.

2.2 Belief function theory

Let Θ = {θ1, . . . , θn} be the set, called frame of discernment, of all possible
values of a variable θ. In belief function theory [12], partial knowledge about the
true (unknown) value of θ is represented by a mapping m : 2Θ 7→ [0, 1] called
mass function and such that

∑
A⊆Θ m(A) = 1 and m(∅) = 0, where mass m(A)

quantifies the amount of belief allocated to the fact of knowing only that θ ∈ A.
A subset A ⊆ Θ is called a focal set of m if m(A) > 0.

Assume θ represents the state of nature and its true value is known in the
form of some mass function m. Assume further that a decision maker (DM)
needs to choose an act (decision) f from a finite set Q, where each act f ∈ Q
induces a cost l(f, θi) for each possible state of nature θi ∈ Θ. In this context,
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the DM’s preference over acts is denoted by ⪯, where f ⪯ g means that act f is
preferred to act g. Relation ⪯ is complete if for any two acts f and g, f ⪯ g or
g ⪯ f , otherwise, it is partial. Furthermore, f is strictly (resp. equally) preferred
to g, which is denoted by f ≺ g (resp. f ∼ g), if f ⪯ g but not g ⪯ f (resp. if
f ⪯ g and g ⪯ f).

Typically, the DM seeks elements in the set Opt of non-dominated acts:

Opt = {f ∈ Q : ∄g such that g ≺ f}. (6)

If relation ⪯ is complete, finding one element in Opt is enough since elements in
Opt are preferred equally between each other and strictly preferred to the rest
Q\Opt. In this case, elements in Opt are also called optimal acts. On the other
hand, if relation ⪯ is partial, the DM may need to identify all elements in Opt.

Usually, the DM constructs his preference over acts based on some criterion.
We denote by ⪯cr his preference according to some criterion cr and by Optcr its
associated set of non-dominated (or best) acts. In this paper, we consider three
common criteria defined as follows for any two acts f and g [2]:

1. Generalized Hurwicz criterion: f ⪯hu g if

αEm(f) + (1− α)Em(f) ≤ αEm(g) + (1− α)Em(g) (7)

for some fixed parameter α ∈ [0, 1], and where Em(f) and Em(f) denote,
respectively, the upper and lower expected costs of act f with respect to
mass function m defined as

Em(f) =
∑
A⊆Θ

m(A)max
θi∈A

l(f, θi), (8)

Em(f) =
∑
A⊆Θ

m(A) min
θi∈A

l(f, θi). (9)

Relation ⪯hu is complete and we have f ≺hu g if (7) is strict.
2. Strong dominance criterion: f ⪯str g if

Em(f) ≤ Em(g). (10)

Relation ⪯str is partial and we have f ≺str g if (10) is strict.
3. Weak dominance criterion: f ⪯weak g if

Em(f) ≤ Em(g) and Em(f) ≤ Em(g). (11)

Relation ⪯weak is partial and we have f ≺weak g if at least one inequality
in (11) is strict.

3 Shortest path problem with evidential weights

In this section, we formalize what we mean by best paths in a graph with evi-
dential weights and provide methods for finding such paths.
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3.1 Modelling

Let us assume that the arc weights cij , for all (i, j) ∈ A, of the graph introduced
in Section 2.1 are only partially known. More specifically, we consider the case
where information about arc weights is modelled by a mass function. Formally,
letΩij denote the frame of discernment for the variable cij , i.e., the set of possible
values for the weight cij . We assume that Ωij ⊂ N>0. Let Ω := ×(i,j)∈AΩij . Any
c ∈ Ω will be called a scenario: it represents a possible assignment of values for
all the weights in the graph. A mass function m on Ω, with set of focals sets
denoted by F = {F1, . . . , FK}, represents then uncertainty about arc weights.

Example 2. Let c1 and c2 be the two scenarios represented by Figures 2a and 2b,
respectively. The mass function m such that m(F1) = 0.4 and m(F2) = 0.6, with
F1 = {c1, c2} and F2 = {c1}, represents partial knowledge about arc weights.
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(a) Scenario c1

s
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(b) Scenario c2

Fig. 2. Two possible assignments of values, i.e., two scenarios, for the arc weights.

As will be seen, making a particular assumption about the nature of the
focal sets of m is useful. This assumption, denoted CI for short, is the following:
each focal set of m can be expressed as a Cartesian product of intervals, i.e.,
Fr = ×(i,j)∈A[l

r
ij , u

r
ij ] for all r ∈ {1, . . . ,K}. Such a focal set is illustrated by

Example 3.

Example 3. Let F be the Cartesian product of intervals (depicted by Figure 3):

F = [lsa, usa]× [lsb, usb]× [lst, ust]× [lat, uat]× [lbt, ubt]

= [1, 5]× [2, 4]× [2, 4]× [1, 3]× [2, 5].

F is a subset of Ω: it includes, for instance, the scenario c = {csa, csb, cst, cat, cbt}
with csa = 1, csb = 3, cst = 2, cat = 1, and cbt = 3.

When arc weights are evidential, i.e., there is some uncertainty about them
in the form of a mass function m on Ω, the preference over s-t paths with
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s
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[2,4]

[2,4] [2,5]

Fig. 3. Focal set as a Cartesian product of intervals.

respect to their (uncertain) weights can be established using the decision-making
framework recalled in Section 2.2. Specifically, the set Ω of scenarios represents
the possible states of nature. The set X of s-t paths represents the possible
acts. The weight

∑
(i,j)∈A cijpij of path p = {pij |(i, j) ∈ A} ∈ X under scenario

c = {cij |(i, j) ∈ A} ∈ Ω represents the cost l(p, c) of path (act) p for the scenario
(state of nature) c. The preference over s-t paths, and the associated best s-t
paths, can then be defined using any of the three criteria recalled in Section 2.2.
In the next section, we provide the main results of this paper, which concern
best s-t paths according to these three criteria and under assumption CI.

3.2 Solving

In this section, methods for finding best paths according to, in turn, the general-
ized Hurwicz, strong dominance, and weak dominance criteria, are provided. We
can remark that these criteria rely on the notions of upper and lower expected
costs of acts, acts being here paths. These costs Em(p) and Em(p) of a path p
can be computed easily under assumption CI:

Proposition 1. Under assumption CI, we have

Em(p) =
∑

(i,j)∈A

ūijpij (12)

Em(p) =
∑

(i,j)∈A

l̄ijpij (13)

with ūij :=
∑K

r=1 m(Fr)u
r
ij and l̄ij :=

∑K
r=1 m(Fr)l

r
ij for all (i, j) ∈ A.

Proof. By definition, the upper and lower expected costs of path p are

Em(p) =

K∑
r=1

m(Fr) max
cr∈Fr

(
∑

(i,j)∈A

crijpij), (14)

Em(p) =

K∑
r=1

m(Fr) min
cr∈Fr

(
∑

(i,j)∈A

crijpij). (15)
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The inner maximum and minimum in (14) and (15) are obtained when each arc
weight crij in scenario cr equals ur

ij and lrij , respectively. By regrouping terms we
get the desired result. ⊓⊔

Proposition 1 is instrumental to uncover exacts methods finding best s-t paths.

Generalized Hurwicz criterion Since relation ⪯hu is complete, it is sufficient
to find one element of the set Opthu, as explained in Section 2.2. To find one
such element, i.e., best path according to the generalized Hurwicz criterion, we
need to solve the optimization problem

min αEm(p) + (1− α)Em(p) (16)

p ∈ X . (17)

The complexity of the problem (16-17), in the case of general focal sets,
has been studied in the literature. If α = 1, the problem is weakly NP-hard
already in the case when mass function m has a single focal set containing two
elements [15]. If α = 0, the problem is even harder: it is strongly NP-hard and
not approximable [6, Theorem 1]. However, under assumption CI, the problem
(16-17) becomes much easier to solve:

Proposition 2. Under assumption CI, solving the problem (16-17) amounts to
solving the SPP in graph G = (V,A) with arc weights cij = αūij + (1− α)l̄ij.

Proof. Using Proposition 1, the problem (16-17) becomes

min
∑

(i,j)∈A

(αūij + (1− α)l̄ij)pij (18)

pij satisfies (2-5) ∀(i, j) ∈ A (19)

⊓⊔

According to Proposition 2, to find one element in Opthu, we can use a fast
algorithm for the SPP such as [4].

Strong dominance criterion Since relation⪯str is partial, it may be necessary
to find all elements of the set Optstr, i.e., all best paths according to the strong
dominance criterion.

Proposition 3. Under assumption CI, finding all elements in Optstr amounts
to finding all paths, in graph G = (V,A) with arc weights cij = l̄ij, whose weights
are lower than or equal to d̄⋆ := minq∈X Em(q).

Proof. By definition,

p ∈ Optstr ⇔ ∄q ∈ X such that Em(q) < Em(p) (20)

⇔ ∀q ∈ X then Em(q) ≥ Em(p) (21)

⇔ min
q∈X

Em(q) ≥ Em(p) (22)
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As a special case of Proposition 2, when α = 1, minq∈X Em(q) is obtained
by solving the deterministic SPP in G with arc weights cij = ūij . From Proposi-
tion 1, we have Em(p) =

∑
(i,j)∈A l̄ijpij . Hence, to find p such that Em(p) ≤ d̄⋆,

we set arc weights cij of G to l̄ij and finding all elements in Optstr amounts to
finding all s-t paths in G whose weights are lower or equal than d̄⋆. ⊓⊔

To find all elements in Optstr, we can use efficient algorithms such as the one
in [1], where the authors studied a problem of determining near optimal paths;
for example, they wished to find all s-t paths in a directed graph whose weights
do not exceed more than 10% the lowest weight, which is basically finding all
paths whose weights are lower than or equal to a given value.

Weak dominance criterion Similarly as for the strong dominance criterion,
all elements of the set Optweak may need to be found since ⪯weak is partial.

There is a strong connection between the weak dominance criterion and bi-
objective optimization. A bi-objective optimization problem can be expressed as

min f1(x) (23)

min f2(x) (24)

x ∈ X (25)

As the objectives (23-24) are typically conflicting, there is usually no solution x
that minimizes simultaneously f1(x) and f2(x). Instead, we seek to find all so-
called efficient solutions of (23-25): a solution x is efficient if there is no feasible
solution y ∈ X such that f1(y) ≤ f1(x) and f2(y) ≤ f2(x) where at least one of
the inequalities is strict.

The bi-objective SPP is a particular bi-objective optimization problem. As-
sume that each arc (i, j) in G has two deterministic attributes cij and tij that
describes, e.g., the distance and the travel time from i to j, respectively. The
goal is to find all efficient solutions, i.e., s-t paths of the following problem

min
∑

(i,j)∈A

cijpij (26)

min
∑

(i,j)∈A

tijpij (27)

pij satisfies (2-5) ∀(i, j) ∈ A. (28)

Proposition 4. Under assumption CI, finding all elements in Optweak amounts
to finding all efficient solutions of a bi-objective SPP in graph G where each arc
(i, j) ∈ A has two attributes ūij and l̄ij.

Proof. Finding all elements in Optweak is equivalent to finding all efficient so-
lutions p ∈ X of a bi-objective optimization problem with objectives f1(p) :=
Em(p) and f2(p) := Em(p), which, using Proposition 1, comes down to a bi-
objective SPP in graph G where each arc (i, j) has two attributes ūij , l̄ij . ⊓⊔
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To find all elements in Optweak, we can apply fast algorithms developed for
the bi-objective SPP such as the one in [5].

We note that any generalized Hurwicz optimal solution for 0 < α < 1 is also
an element in Optweak, hence finding such solutions for various α will provide
an inner approximation of Optweak. This stems from bi-objective optimization
theory, where they are known as the supported efficient solutions, which are the
solutions of min{λ1f1(x) + λ2f2(x) : x ∈ X} for some λ1, λ2 > 0.

Example 4. Assume that mass function m has a single focal set, which is the one
in Figure 3. There are three s-t paths with their lower and upper expected costs
indicated between parentheses: s-a-t : (2, 8) ; s-t : (2, 4); s-b-t : (4, 9). If α = 0,
the two optimal paths according to generalized Hurwicz criterion are s-a-t and
s-t with expected cost 2. If α = 0.5, s-t is the unique optimal path with expected
cost 3. We also have Optstr = {s-a-t, s-t, s-b-t} and Optweak = {s-t}.

3.3 Sizes of Optweak and Optstr

It is clear that if p ≺str q then p ≺weak q, and that the converse does not hold,
hence Optweak ⊆ Optstr. Example 4 showed that Optweak ⊂ Optstr in general.

The sets Optweak and Optstr can be huge so enumerating their elements can
be time-consuming. In fact, it is shown in [7, Theorem 1] that in the worst case,
the size of the set of efficient paths grows exponentially with |V |. Therefore, it is
useful to be able to know the size of these sets in advance, without enumerating
their elements explicitly. Proposition 5 is a first result in this direction:

Proposition 5. If d̄⋆ and l̄ij in Proposition 3 are rational numbers, |Optstr|
(and thus an upper-bound of |Optweak|) can be computed in O(|V |2 ×W ), with
W = d̄⋆×D where D is a common denominator of d̄⋆ and of l̄ij, for all (i, j) ∈ A.

Proof. Hereafter, consider graph G with integer arc weights cij = l̄ij × D. It
is easy to show that |Optstr| is equal to the number of s-t paths in G whose
weights are lower than or equal to integer value W . Furthermore, let |V | = n
and assume, without loss of generality, that vertices are indexed by 0, . . . , n− 1,
with 0 and n− 1 the source and destination vertices, respectively. Denoting by
Nw(i) the number of paths in G from i to n − 1 whose weights are lower than
or equal to w, then we need to calculate NW (0) since it is equal to |Optstr|. We
have clearly, for all i ∈ {0, . . . , n− 2} and all w ∈ {1, . . . ,W},

Nw(i) =
∑

j such that (i,j)∈A and cij≤w

Nw−cij (j), (29)

withN0(i) = 0 for all i ∈ {0, . . . , n−2} andNw(n−1) = 1 for all w ∈ {0, . . . ,W}.
Consider a (W + 1)× n 2-dimensional array M with each cell M [w][i], w ∈

{0, . . . ,W}, i ∈ {0, . . . , n − 1}, storing Nw(i); by filling this array row-wise
starting with row w = 0, computing each row costs O(|V |2). This leads to the
desired complexity. ⊓⊔
We note that given [9, Theorem 1] and the above proof, computing |Optstr| is
actually NP-hard. Nonetheless, in practice, W in Proposition 5 may not be too
big, so that computing |Optstr| may be quite fast.
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4 Conclusion

In this paper, we have considered the case where uncertainty about arc weights
in a graph is represented by a mass function. We have proposed extensions of
the notion of shortest path to this context, as the sets of non-dominated paths
according to the generalized Hurwicz, strong dominance, and weak dominance
criteria. We have shown that if the focal elements of the mass function are
Cartesian products of intervals, these sets can be found by applying algorithms
developed for variants of the deterministic SPP. Future works include considering
other criteria, such as maximality [2] or minimization of expected costs according
to Shenoy’s expectation operator [13].
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9. Mihalák, M., Srámek, R., Widmayer, P.: Approximately counting approximately-
shortest paths in directed acyclic graphs. Theory Comput. Syst. 58(1), 45–59
(2016)

10. Montemanni, R., Gambardella, L.M.: An exact algorithm for the robust shortest
path problem with interval data. Comput. Oper. Res. 31(10), 1667–1680 (2004)

11. Nakharutai, N., Troffaes, M.C.M., Caiado, C.C.S.: Improving and benchmarking
of algorithms for γ-maximin, γ-maximax and interval dominance. Int. J. Approx.
Reason. 133, 95–115 (2021)

12. Shafer, G.: A mathematical theory of evidence. Princeton university press (1976)
13. Shenoy, P.P.: An expectation operator for belief functions in the Dempster–Shafer

theory. Int. J. Gen. Syst. 49(1), 112–141 (2020)
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