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ONE-DIMENSIONAL INELASTIC BOLTZMANN EQUATION: REGULARITY &

UNIQUENESS OF SELF-SIMILAR PROFILES FOR MODERATELY HARD
POTENTIALS

R. ALONSO, V. BAGLAND, J. A. CANIZO, B. LODS, AND S. THROM

ABSTRACT. We prove uniqueness of self-similar profiles for the one-dimensional inelastic Boltz-
mann equation with moderately hard potentials, that is with collision kernel of the form | - |” for
v > 0 small enough (explicitly quantified). Our result provides the first uniqueness statement
for self-similar profiles of inelastic Boltzmann models allowing for strong inelasticity besides the
explicitly solvable case of Maxwell interactions (corresponding to v = 0). Our approach relies
on a perturbation argument from the corresponding Maxwell model through a careful study of
the associated linearised operator. In particular, a part of the paper is devoted to the trend to
equilibrium for the Maxwell model in suitable weighted Sobolev spaces, an extension of results
which are known to hold in weaker topologies. Our results can be seen as a first step towards a
full proof; in the one-dimensional setting, of a conjecture in Ernst & Brito (2002) regarding the
determination of the long-time behaviour of solutions to inelastic Boltzmann equation.
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1. INTRODUCTION

We treat the one-dimensional Boltzmann equation for moderately hard potentials, proving
regularity and uniqueness of equilibrium self-similar profiles. In the process we also contribute
to generalising results related to the asymptotic convergence for the time-dependent Maxwell
model as well by better describing such convergence in standard Lebesgue and Sobolev spaces.

1.1. One-dimensional inelastic Boltzmann equation. Inelastic models for granular matter
are ubiquitous in nature and rapid granular flows are usually described by a suitable modifica-
tion of the Boltzmann equation, see Garzo6 (2019); Villani (2006). Inelastic interactions are charac-
terised, at the microscopic level, by the continuous dissipation of the kinetic energy for the sys-
tem. Typically, in the usual 3D physical situation, two particles with velocities (v, v,) € R? x R?
interact and, due to inelastic collision, their respective velocities v" and v, after collision are such
that momentum is conserved

vt+uve =0+ v;
but kinetic energy is dissipated at the moment of impact:
e S UA RS (R (N

Often the dissipation of kinetic energy is measured in terms of a single parameter, usually called
the restitution coefficient, which is the ratio between the magnitude of the normal component
of the relative velocity after and before collision. This coefficient e € [0, 1] may depend on the
relative velocity and encode all the physical features. It holds then

<UI - U>/k7n> =€ <U - ’U*,’I’L>

where n € S? stands for the unit vector that points from the v-particle center to the v,-particle
center at the moment of impact. Here above, (-, -) denotes the Euclidean inner product in R3,

For one-dimensional interactions, we will rather denote by x, y the velocities before collision
and z’, 3y’ those after collision and the collision mechanism is then described more easily as

¥ =ar+ (1-a)y, y =1 —-a)x+ay, ae[%,l]

where the parameter a describes now the intensity of inelasticity and one checks indeed that
' + 1y = x + y whereas

2>+ [y = |2]* = [yl = —2ablz —y|* <0, b=1-—aq, (1.1)
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where we used that a2 + b2 — 1 = —2ab if b = 1 — a. In this case, the inelastic Boltzmann
equation is given by the following, as proposed in Ben-Naim & Krapivsky (2000):
88f(s,w) = Q’Y(faf)(saw)7 (S,I’) € (0,00) XRa (12)

with given initial condition f(0,z) = fo(x) > 0. The interaction operator is defined as
Q,(f. N /f:c—ay fat+ (=l dy— f@) [ fa=—pllay  03)

for fixed v > 0 and a € [, 1]. Notice that the model (1.2) conserves mass and momentum

/Q»y f.5) )dwz/RQw(f,f):vdeO,

but dissipates energy since

[ @5 @ s
— 5 [ F@I@ = 07 [P+ 1 = uf? ~ o] dude

= —ab fu)f()|u — v *2 dudo, b=1—a, (14)
RxR
where we used a change of variable v = = — ay,v = x + by and a symmetry argument to
get the first identity while we used (1.1) to establish the second one. This implies that, for any
nonnegative initial datum fy and any solution f(s, 2) to (1.2), it holds

£frea () (2)

ge / f(s,2)2%dz = —ab f(s,u)f(s,v)|u — v dudv < 0. (1.5)
ds Jr RxR

One sees therefore that the single parameter a (through the product ab = a(1 — a)) measures
the strength of energy dissipation. The case a = 1 represents a purely elastic interaction which,
in one dimension, is described by no interaction at all, or simply Q- (f, f) = 0. The other case
a= % is the case of extreme inelasticity or the sticky particle case; that is, after interaction the
particles remain attached yet considered distinct so that no global mass is lost. From now, in all
this manuscript, we consider this latter case

while

a =

N —

but wish to point out that the general case a € (%, 1) can be treated in a similar fashion.

The above dissipation of kinetic energy (together with mass and momentum conservation)
leads to a natural equilibrium given by the distribution that accumulates all the initial mass, say
my, at the initial system’s bulk momentum zg:

Q(F,F)=0 = Jmgy > 0,2 € Rsuch that F' = mg d,.

Such a degenerate solution is of course expected to attract all solutions to (1.2) but, as for the
multi-dimensional model, one expects that, before reaching the degenerate state, solutions be-
have according to some universal profile as an intermediate asymptotics.
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More precisely, it is believed that a more accurate description can be derived introducing a
rescaling of the form

Vy(s)g(t(s),x) = f(s,2), z=Vy(s)z,

where the rescaling functions are given by

1

Vi (s) = {(1 +cys)v %f’y € (0,1), and t(s) = £ (s) = {%log(l +cys), %f’Y €(0,1),

e® ify=0, S, ifv=0.
We refer to Bobylev & Cercignani (2003) for a study of the Maxwell model (v = 0) and Alonso
et al. (2020) for the hard potential model (y € (0, 1)). For v > 0, this rescaling is useful for any
¢ > 0 and we are free to choose this parameter as we see fit; while for v = 0, the only useful
choice is ¢ = %. We will come back to this later. Straightforward computations show then that,
if f(s, z) is a solution to (1.2), the solution g(s, z) satisfies

g (t, ac) + ¢ O, (wg(t x)) = Q,(9,9)(t, ), (t,z) € (0,00) X R, (1.6)
with ¢(0,z) = ) so that

/ (t,2) d:n—/fo /Ra:g(t,x)dw:/R:Efo(x)dznzo, w0 (17)

due to the conservation of mass and momentum induced by both the drift term and the collision
operator Q. Since, formally,

2de = — z) |z dz
Lé&@w@wmﬂch— 2Agw>||d,

one can interpret the rescaling as an artificial way to add energy into the system, the bigger the
¢ > 0 the more energy per time unit is added. Thus, the rescaling has the same effect of adding a
background linear “anti-friction” with constant ¢ > 0. However, unless in the special case v = 0,
evolution of the kinetic energy along solutions to (1.6) is not given in closed form. Namely, if

mmmzéwmﬁm

one sees from (1.6) and (1.4) that

d

EMQ( g(t)) — 2cMs(g / Q.(g,9)(t,z)x* dx
1

= —1/ g(t,2)g(t, y)|lx —y|"* dz dy
RxR

so that the evolution of the second moment of g(t) depends on the evolution of moments of order
v + 2. The situation is very different in the case v = 0 and this basic observation will play a
crucial role in our analysis.

(1.8)

It is important to observe that problems (1.2) and (1.6) are related by a simple rescaling, so
that knowledge of properties of one of them is transferable to the other. Equation (1.6) is referred
to as the self-similar equation. For v > 0 and any ¢ > 0, it has at least one non-trivial equilibrium
with positive energy (Alonso et al. , 2020), satisfying the equation

c0y(2G(z)) = Q4(G,G)(x). (1.9)

For v = 0, there is a non-trivial equilibrium with positive energy only if c = %. The equilibria are
known as self-similar profiles. Of course, G' depends on the choice of ¢ > 0; however, they are all
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related by a simple rescaling. Moreover, the fact the G is a regular (smooth) function is helpful
for the technical analysis, for example to have a standard linearisation referent. Indeed, in this
document we prove regularity properties for G' := G and answer the uniqueness question for
the problem (1.4), at least in the context of moderately hard potentials, that is, our results will be
valid for relatively small positive 7.

The question of uniqueness for self-similar profiles of the model (1.4) is notoriously difficult
for v > 0. Since the model conserves mass and momentum, a uniqueness result has to take into
account this fact. In other words, steady states should be unique in a space with fixed mass and
momentum. In the case of Maxwell interactions (y = 0 and ¢ = %), energy is additionally con-
served, and it is known that self similar profiles are unique when mass, momentum and energy
are fixed (Bobylev & Cercignani, 2003). This case is less technical, and somehow critical, since
the self-similar rescaling is uniquely determined (by the initial mass and energy) as opposed to
the case v > 0 where one can choose any ¢ > 0 to perform the rescaling. For the Maxwell case
the rescaling leads to the conservation of energy which is an important help in the analysis, to-
gether with a computable spectral gap for the linearised equation. We refer to Carrillo & Toscani
(2007) for a good account of the theory of the Maxwell model in one and multiple dimensions.

There is another type of uniqueness result. In the context of 3D-dissipative particles it is
possible to define a weakly inelastic regime. A big difference between the one-dimensional prob-
lem and the three-dimensional problem is that in the latter the elastic limit of the model is the
classical Boltzmann equation whereas in the one-dimensional problem the elastic limit @ = 1 is
simply O; f = 0. This is the reason one can study weakly inelastic systems as a perturbation of the
classical Boltzmann equation in several dimensions with powerful tools such as entropy-entropy
dissipation methods leading to a uniqueness result in this context, see Mischler & Mouhot (2009);
Alonso & Lods (2013, 2014). And yet, the same strategy completely fails in the 1D-dissipative
model where such tools are not available.

Our analysis for small positive v will be also perturbative taking as reference the one-dimensional
Maxwell sticky particle model; that is, our result covers the most extreme case of inelasticity pro-
viding a strong indication that the steady inelastic self-similar profiles should be unique in full
generality, for all collision kernels and degrees of inelasticity. This perturbation is highly singu-
lar in two respects: first, the Maxwell model conserves energy in self-similar variables which is
not the case for v > 0. This is a major difficulty since the spectral gap of the linearised Maxwell
model depends crucially on this conservation law. Second, the tail of the self-similar profiles are
completely different, for Maxwell models the profile enjoys some few statistical moments only,
whereas for hard potentials the profile has exponential tails. Fortunately, steady states will enjoy
regularity for all v > 0, a property that will be also proved in this paper.

1.2. The problem at stake. The main concern of the present paper is, as said, the uniqueness
of the steady solutions G to the equation

cOx(2G) = Q4(G,,G) , (1.10)
with unit mass and zero momentum where, for v € [0,1] , Q- (f, g) reads in its weak form as

1

[otrawe@ar=3 [ f@awdeple—slrardy 0
R R2
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with
Ap(z,y) = 2¢ <xT+y> —o(x) = ¢(y)
for any suitable test function . We can split Q. (f, g) into positive and negative parts

where, in weak form,

[ et awetas= [ faatme (T ) lo -l aray
R R2

and
| @ Gaetarde =5 [ o) (pla) + o) o = 1" dady.

The existence of a suitable solution G to (1.10) with finite moments up to third order has been
obtained in Alonso et al. (2020). We will always assume here that G, € Li(R) is nonnegative
and satisfies

/ Gy(r)dr =1, / G, (zr)xdr =0, v € [0, 1]. (1.12)
R R
Notice that the energy
/ 2’G,(z)dx = My(G.,)
R

is not known a priori since the non-conservation of kinetic energy precludes any simple selection
mechanism to determine it at equilibrium.

The crucial point of our analysis lies in the fact that this problem has a very well-understood
answer in the degenerate case in which v = 0. Indeed, in such a case, many computations are
explicit and, for instance, the evolution of kinetic energy for equation (1.6) is given in closed form
as, according to (1.8)

d 1 1

M) —26Ma(90) = =5 [ g(t.Ddg(t.le ol dedy = 3 Ma(o()

dt 4 Jrxr 2

where we used (1.7) to compute the contribution of the collision operator. In particular, for v = 0,
energy is conserved if and only if ¢ = % and, in such a case, we can prescribe the energy of the
kinetic energy of the steady state G.

For this reason, in the sequel we will always assume that

c=—.
4
Another important property of the Maxwell molecules case is that, due to explicit computa-

tions in Fourier variables, solutions to (1.10) are actually explicit in this case (and in this case
only). More precisely, one has the following

Theorem 1.1 (Bobylev & Cercignani (2003)). Let M3(R) denote the set of real Borel measures on
R with finite second order moment. Any u € Ma(R) such that
1

- Z/Rw’(x)u(dw) = %/R RAcp(w,y)u(dx)u(dy) Vi € Cy(R) (1.13)
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and satisfying

/R,u(da:)zl, /Ra:g(:n),u(dx) ~0, /R:c?u(dx): % >0

is of the form
p(de) = Hy(z)dz = AH (A\z) dz

where

2

") = sy

z € R.

Here above of course (1.13) is a measure-valued version of the steady equation (1.10) and in
particular one sees that H is the unique solution to

100 (WH () = Qo(H H)(2)

with unit mass and energy and zero momentum. The existence and uniqueness has been obtained,
through Fourier transform methods, in Bobylev & Cercignani (2003) and extended to measure
solutions in Carrillo & Toscani (2007).

We introduce the following set of equilibrium solutions

&y = {G7 € Li(R); G, satisfying (1.10) and (1.12)}

for any v € [0,1). The above Theorem ensures that elements of & are entirely described by
their kinetic energy, i.e., given £ > 0,

{g € &y and Ms(g) = E} reduces to a singleton.

The main objective of the present contribution is to prove that, for moderately hard potentials,
the situation is similar and more precisely, our main result can be summarized as

Theorem 1.2. There exists some explicit v € (0,1) such that, if v € (0,~") then &y reduces to a
singleton.

Notice here the contrast between the case v > 0 where &, is a singleton whereas, for v = 0,

&) is an infinite one-dimensional set parametrised by the energy of the steady solution. As we

will see, it happens that, in the limit v — 0, the steady equation (1.10) (with ¢ = %) somehow

selects the energy.
Before describing in details the main steps behind the proof of Theorem 1.2, we need to intro-
duce the notations that will be used in all the sequel.

1.3. Notations. For s € R and p > 1, we define the Lebesgue space L% (R) through the norm

1/p
I = ([ 1@ @leh™an) L 22 = {£ R R g < o0}
More generally, for any weight function @ : R — R™, we define, for any p > 1,

LP(w) := {f "R—>R; HfHIzP(w) = /]R |f‘pwp dr < OO}
A frequent choice will be the weight function
ws(x) = (1+[x])*,

s 20, x €R. (1.14)
With this notation, one can write for example L% (R) =

LP(ws),forp > 1, s > 0. We define the
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weighted Sobolev spaces by
WhP () = {f € LP(w); 8'f € IP(w) VO < L < k} , with keN,

with the standard norm

HNWM@:<§;éWQ®Ww@me

For p = 2, we will simply write H*(z) = W*2%(w), k € N. For general s > 0, the Sobolev
space H*(R) is defined thanks to the Fourier transform.

m®) = {F e P®; [0+ 1PIFOP & <o}
where
fl6) = [ e an

This space is endowed with the standard norm

nmmwz(éuﬂwﬂﬂmaﬁ3

We shall also use an important shorthand for the moments of order s € R of measurable mapping
fR—=R,

Jmuwzéfwmwm.

For k > 0 we define the norm (in Fourier variables)

_ [(€)]
|||¢|||k §€SR}1\IEO} |£|k

(1.15)

on the vector space of continuous functions ¢): R — C such that & — (£)/|¢|F is a bounded
continuous function (with a limit at £ = 0). This norm makes this vector space a Banach space.
Moreover, for k£ > 0 and p € (1, 00), we define

()P

VlIg, =
H’ mk,p R lf‘kp

which makes sense if [¢(¢)| < min{1, C|¢|?} for some C' > 0 and % <k<3+ 1—1).
For k > 2, we also define the following space of measures

/R,u(dzn):/R:E,Lz(dx):/Rx2u(d:E):0 } (1.17)

Here above, My (R) denotes the set of real Borel measures on R with finite total variation of
order k that are satisfying

de, (1.16)

Xo = {,U € Mi(R)

/meMM<m
R

Then, by abuse of notation, for y € X and 0 < k < 3, we define the norm

)
Ll := sup .
||| |||k £eR\{0} |£|k

(1.18)
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By (Carrillo & Toscani , 2007, Proposition 2.6), for any 0 < k < 3, if 1 € X then ||u]|, is finite.
Endowed with the norm |||-|||,, with 2 < k < 3, the space X is a Banach space, see Proposition
2.7 in Carrillo & Toscani (2007).

1.4. Strategy and main intermediate results. The idea to prove our main result Theorem 1.2
is to adopt a perturbative approach and to fully exploit the knowledge of the limiting case v = 0.
This explains in particular why our result is valid for moderately hard potentials v ~ 0. More
precisely, inspired by similar ideas developed in the context of the Smoluchowski equation (see
Canizo & Throm (2021) for a recent account and a source of inspiration for the present work),
the first step in our proof is to show that, in some weak sense to be determined,

lim G, = Go

where G is a steady solution in the Maxwell case, i.e. a solution to (1.13), and G, is any steady
solution in &,. Of course, such a limiting process is very singular as for instance can be under-
stood from the following fundamental property of steady solutions.

Proposition 1.3. Forany~y € (0,1), one has
M (Gy) = / G, (2)|z|" dz < oo foranyk >0
R

whereas

My (Gy) < o0 <= ke (—1,3).

Of course, because we are interested here in the behaviour of G for v — 0, the above
Proposition will play only a marginal role for our analysis (we refer the reader to Appendix C.3
for a full proof) but it highlights the fact that the limiting process we are interested in is highly
singular. In particular, since steady solutions to (1.10) exist with any energy, a first important
step is to derive the correct limiting temperature

lim MQ(G»Y) = EO == MQ(G())
v—0

since that single parameter, thanks to Theorem 1.1, would allow to completely characterize Gy.
This first step in our proof can be summarized in the following which characterises the limit
temperature for 7 — 0 and provides additional moment and L? bounds. Its proof will be given

in Section 2.7. We recall that we are always setting ¢ = % in Eq. (1.10): .

Theorem 1.4. For any ¢ € Cy(R) and any choice of steady states G, € & fory > 0 one has

2
lim G x)de = / Go(z Go(z) = %, z€eR
=0 7 (1 + Maz?)
with
Ao = exp (Ap) and / / H(z)H(y)|x — y|*log |z — y| dz dy > 0.

Moreover, for any ¢ € (0, 3) there exist Cy > 0 and v, € (0, 1), both depending on § such that
”G’YHL2 < CO; Mk( ) 007 vfy € [077*)7 k€ (073 - 5) (119)
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In fact it will be shown in Lemma 3.5 that Ay = log 2 + % and thus \g = 2+/e.

Notice that, as documented in Alonso et al. (2020), the derivation of L? bounds for solutions to
the 1D-Boltzmann equation is not an easy task. This comes from the lack of regularizing effects
induced by the collision operator Q. in dimension d = 1. Recall indeed that a celebrated result in
Lions (1988) asserts that, for very smooth collision kernels, the Boltzmann collision operator (for
elastic interactions and in dimension d) maps, roughly speaking, L?(R?) x L?(R?) in the Sobolev

space = (R%), i.e. the collision operator induces a gain of % (fractional) derivative. One sees
therefore that no regularisation effect is expected in dimension d = 1 whereas gain of regularity
is the fundamental tool for the derivation of L”-estimates for solutions to the Boltzmann equation
(see Mouhot & Villani (2004)). This simple heuristic consideration is also confirmed in the related
case of the Smoluchowski equation for which derivation of suitable LP-estimates p > 1is a
notoriously difficult problem (see Banasiak et al. (2020); Cafizo & Throm (2021)).

In the present paper, the derivation of L?-bounds (uniformly with respect to y > 0) is deduced
from quite technical arguments, specific to the study of equilibrium solutions, and crucially ex-
ploits the convergence of G, towards G together with the fact that G is completly explicit. In
particular, our argument does not seem to work for general solutions to (1.6).

A second step in our proofis then to be able to quantify the above convergence of G, towards
G and, in particular, to exploit the fact that Gy is a stable equilibrium solution to (1.10) for
~v = 0. To prove this, we need first to revisit several of the known results concerning the Maxwell
molecules case and in particular the long time behaviour of the solutions to the evolution problem

O9(t,2) + 100 (29(1,2)) = Qolg. 9)(1,7),  wERE>0 (120)

and show that any (suitably normalized) solution to this equation converges exponential fast
towards G as t — oo in Fourier norms ||-[||, and |||, (see Theorem 4.1). Thanks to new
regularity results regarding the above equation, we can also extend such an exponential conver-
gence to more tractable Sobolev spaces. This careful analysis of the Maxwell equation together
with new regularity bounds for the self-similar profile G, allows to derive the following stability
estimate for self-similar profiles which is also a main ingredient in the proof of Theorem 1.2 and
whose proof will be given in Section 3.1.

Theorem 1.5 (Stability of profiles). Let 2 < a < 3. There exist v, € (0,1) and an explicit
function = 7(7y) depending on a, with lim.,_,o+ 7(y) = 0, such that, for any v € (0,74), for any
G,cé,

Gy — Goll 11 (wa) < T(7)-

We point out here that some suitable smoothness estimates for G, in Sobolev spaces (uni-
formly with respect to ) are required for the proof of Theorem 1.5 (see Lemma 3.2) and, as
explained already for L? estimates, the lack of regularization effect for the operator Q., induces
severe technical obstacles in the proof of such Sobolev estimates for G .

A final important tool for the proof of Theorem 1.2 is the quantitative stability of the steady
state G of (1.20) in the space L' (w, ). More precisely, let us introduce the following linearisation
%y on LY (w,).
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Definition 1.6. We introduce, for2 < a < 3 the functional spaces
X, = LY (w,), Ya:{fEXa; /f(x)dw:/f(x)wdwzo}
R R
and Ygz{era; /f(w)xzdw:O}
R

with || - ||x, denoting the norm in X,. We define then
20 2() C Xy = X,

by
1
Zo(h) = Qo(h, Go) + Qo(Go, h) — 70:(zh),  Vhe I(4)
with
D(L) ={f €Xa; Ou(zf) € X}
and G given in Theorem 1.4.
The stability of the profile G for the Maxwell molecules case is then established through the

following result which provides a spectral gap for the linear operator .% in the space Y. The
proof will be given in Section 4.5.

Proposition 1.7. Let 2 < a < 3. The operator (£, 2(%)) on X, is such that, for any
v € (0,1 — % —2'79), there exists C(v) > 0 such that
v

Loh|x, = ——||h|x., Vh e 2(%) NYY. 1.21
|Zohl|x, o 12]x. € I2(L)NY, (1.21)
In particular, the restriction % of £ to the space YO is invertible with
> C(v
|Z74], < gl vgen (1.22)

The existence of a spectral gap for % in the space X endowed with the Fourier norm |||-|||,
is essentially well-known (see e.g. Carrillo & Toscani (2007)) but we revisit the arguments in
Section 4.5. To derive a similar spectral gap estimate in the more tractable space Y (for some
2 < a < 3), we rely on recent results from Cafizo & Throm (2021) and Mischler & Mouhot
(2016) using a suitable splitting

L =A+ B,
with A : X9 — YY bounded and B enjoying some dissipative properties (we refer to Section 4.5
for more details, in particular, we point out already that the results of Section 4.5 are given for
the linearised operator around H but that the results therein translate to %, by simple scaling
arguments). As a consequence, we will finally deduce that fg]Yg has a spectral gap as well.
Notice that, according to (Carrillo & Toscani , 2007, Lemma 2.5 and Proposition 2.6) for u € X,
we have

lill, <€ [ wio)lul(ds)  forany 2.<k <3
R
with ws(x) = (1 + |z|)® for s > 0. Hence, for a > k, we have
Yo C Xo.

Therefore, our scope here is to deduce the spectral property of the linearised operator on a small
space from those well-established on a large space: it is a shrinkage argument (see Mischler &
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Mouhot (2016) for pioneering work) in contrast with the enlargement techniques introduced in
Gualdani et al. (2017).

Combining Proposition 1.7 together with Theorem 1.5 yields then, in a non straightforward
way, a full proof of Theorem 1.2. Roughly speaking, the idea is to apply the above quantitative
stability estimate to the difference g, = G}/ — G?/ of two elements of &. Let us explain our main
strategy in the simplified situation in which both profile share the same energy. In this case, if
G,ly, G% € X, with 2 < a < 3 are two solutions of (1.10) and g, = G,ly — G,ZY then,

My(Gh) = My(G?) = g, €Y.
Moreover, it can also be shown that there exists a mapping 77 : [0,1] — R with
,}L%ﬂ 7i(y) =0
and such that
1% (G - G3) |z, <7i(v) |G} — G|
Combining this with (1.21) one gets

1%

C(V)HgvHxa < %094 [1xa < 1(7) llg4 Ik, -

X, ’ v > 0.

Since lim,_,0 7j() = 0, one can choose ' € (0, 1) such that
C)

i) <1, Yy e (0,9,

from which
lgallze < llgllx ¥y € (0.97).

This shows that g, = 0 for all v € (0, 7T) and gives a simplified version of Theorem 1.2 in
the special case in which G}Y and G,Zy share the same energy. To prove the uniqueness result
(without any restriction on the energy), we need therefore, in some rough sense, to be able to
control the fluctuation of kinetic energy introducing a kind of selection principle which allows
to compensate the discrepancy of energies to apply a variant of (1.21). This is done in Section
3.2 to which we refer for technical details regarding such a procedure.

1.5. Main features of our contribution. A first important novelty and main interest of the
present contribution is that, to our knowledge, it presents the first and only uniqueness result for
self-similar profiles associated to an inelastic Boltzmann equation for hard potentials in a regime
of large inelasticity. Indeed, the only uniqueness result available in the literature is the one in
the 3D case obtained in Mischler & Mouhot (2016) in a weakly inelastic regime corresponding
to a restitution coefficient e ~ 1. Our analysis here is the first one dealing with highly inelastic
interactions (the most inelastic one actually since, as said, a = % corresponds to sticky particles)
and we strongly believe that our approach can be adapted to the study of 3D models for arbitrary
restitution coefficient e € (0, 1) (of course, still in a regime of moderately hard potentials).
Second, one of the main interests of our analysis is that it provides a first step towards the
equivalent of the so-called scaling hypothesis which, in the study of Smoluchowski’s equation,
asserts that self-similar profiles are unique and attract all solutions to the associated evolution
equation (see Canizo & Throm (2021) for a first proof of the scaling hypothesis for non-explicitly
solvable kernels). In the present contribution, we proved, as in Cafiizo & Throm (2021), that, for
singular perturbation of the explicitly solvable case of Maxwell molecules (i.e. for v ~ 0), the
self-similar profile G, is unique. Some additional work should be undertaken to prove now that
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such a unique solution attracts all solution to (1.6) with some explicit (exponential) rate. We
strongly believe that the perturbative framework introduced in the present contribution is also
the right approach to the study of the long-time behavior of solutions to (1.6), exploiting now
the fact that convergence in Fourier norm ||-||, is indeed exponential in the limit case v = 0
(see Theorem 4.1). Combining this with a careful spectral analysis of the linearization of Q,
around the self-similar profile G, should provide important insights on this important question
and pave the way to a full mathematical justification of a conjecture in Ernst & Brito (2002) about
the long-time behaviour of granular gases, allowing in particular for strong inelasticity.

1.6. Organisation of the paper. After this Introduction, the rest of the paper is organised as
follows. Section 2 derives the main a posteriori estimates on the self-similar profile G, € &,,
focusing mainly on estimates which are uniform with respect to the parameter v ~ 0. We also
establish in this Section the proof of Theorem 1.4. The two main results, Theorem 1.5 and also
our main result Theorem 1.2, are proven in Section 3 in which we take for granted many of the
results regarding the Maxwell equation (1.20). The final Section 4 is devoted to a comprehensive
study of the special case v = 0, i.e. a careful analysis of solutions to (1.20). We revisit the
exponential convergence to equilibrium in Fourier norm ||-||, and extend it to more tractable
Sobolev spaces by a carefuly study of the regularising effects of (1.20). We also establish the
proof of the stability estimate Proposition 1.7. The paper ends with three Appendices containing
various technical results of independent interest. In Appendix A, we recall some properties of
the Fourier norm |||-|||,, as well as some useful interpolation inequalities. Appendix B is devoted
to some functional estimates of the collision operator Q,, and its linearised counterpart. Finally,
Appendix C provides rigorous justifications of several results whose proofs given in the text
are only formal. Indeed, we believe that the core text should contain the main technical ideas
underlying some of the results and decided to postpone their rigorous justifications to Appendix
C which also contains the full proof of the above Proposition 1.3.
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de Desenvolvimento Cientifico e Tecnoldgico, Bolsa de Produtividade em Pesquisa - CNPq (303325/2019-
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2. UNIFORM A POSTERIORI ESTIMATES IN THE LIMITING PROCESS

As explained in the Introduction, our proof of the uniqueness of solutions to (1.10) is based
upon a perturbative approach around the pivot case v = 0 corresponding to Maxwell molecules
interactions. To undertake this perturbative approach we need first to establish uniform estimates
for the self-similar profile G to (1.10) for v € (0, 1) small enough. We begin with the control of
the energy M>(G-).
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2.1. Uniform energy control. As far as the energy is concerned, one has the following esti-
mate:

Lemma 2.1. The following universal bound holds true: for any v € (0,1) and any G, € &, one
has

M>(G,) < 3"

As a consequence, there exists some universal constant C' > 0 such that, for any~ € (0,1) and any
G, €&,

IG5l <O Vs el0,2]. (2.1)
Proof. Multiplying the equation (1.10) by |x|? and integrating in z, one obtains formally
1
ZAAG7($)G7(y)|$—y|2(|az—y|7 —1) drdy=0. (2.2)
To prove this rigorously we note that G satisfies (1.10) in a weak sense, that is
1
-1 [[29@6, (@) de =
4 Jr
1 ~ Tty
3 o, [Tl (20 57 ) —9@) —00) ) G (@)GL(y) dedy - (23)

for any ¢ € C}(R). Since = — 22 does not belong to C{ (R), one cannot take ¢(z) = 2% but one

considers a sequence of approximating functions {¢¢},, C C}(R) satisfying
x? for |z| <Y,
W(:E)_{ﬂ—l—l for |z|>/(+1

Plugging ¢y in (2.3), one has for any ¢ > 0,

and |py(x)| < 2¢  forz € R.

1 [ 1
- —/ 2’G.(z)dz + —/ |z — y["T2G (2)G, (y) dz dy
2J 4 Jiene
T+y 1 1
= [t (0 () - 3 - 30 64016 ) de
R\ (6,02 2 2 2
1
+ — / ry(x)Gy(z)dz  (2.4)
4 Jo<|e|<er1
where we used that |25¥|? — 1|z|2 — $|y|?> = —1|z — y|? in the particle-particle collisional term

for (x,y) € [—£, ). Rewriting, we have moreover

¢
- / 2’G(z)dz = —/ °G,(2)G (y) dz dy
—0 [—£,0)2

¢

+ / 2*G(2)G(y) dz dy — / 2’G(z) dx
[—£,0)2 -0

1
:_—/[ |33—Z/|2G~/(33)G'y(y) dxdy—/[ e 2yG(2)Gy(y) dz dy

4 /_i PG (2) da (/_Z G (y) dy — 1).
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Thus, we get from (2.4)

1
il UGGy~ ) drdy = R @)

with

._ _ rryy _ L1
Ry := /R?\[—z,e}? |z —y|" <¢z < 5 > 2¢z(9€) 2@@)) G+ (2)Gy(y) dz dy

1 1
+ - / zdy(2)Gy () dz + = / 2yG(2)G,(y) dz dy
4 Jocizl<ert 2 )2

- %/_2952(%(3:) dx</_iG7(y) dy — 1>. 2.6)

Letting ¢ — oo one deduces easily that Ry is converging to zero. This justifies (2.2). Now, using
the elementary inequality v — 1 > logu, (u > 0) with u = |z — y|” one deduces from (2.2) that

1
0>+ g G, (2)G,(y)|z — y|*log |z — y|dz dy
1
=z L. G (2)G,(y)|z — y|*log |z — y* dz dy.

Applying the elementary inequality r log7 > r — 1 (r > 0) with 7 = |z — y|? we deduce that
02> | Gy(0)Gs() (lz —yl* = 1) dzdy.
Since

//G (y)|z — y|* dz dy = 2Ma(G.,), //G y)dzdy =1

we deduce the result. O

2.2. Weak convergence. A first consequence of the above energy estimate (2.1) is that, for any
choice of equilibria G, € &,

{G,(2) dw},ye(o 1)  isa tight set of probability measures.

From Prokhorov’s compactness Theorem (see (Kolokoltsov, 2011, Theorem 1.7.6, p. 41)), there ex-
ist some probability measure p( do) and some sequence (7y, )nen tending to 0 such that { G, (z) dz}
converges narrowly to u( dz), that is

/R o(@) G (2)dz — [ p(@)u(dz) Ve € CR).

n—oo R

neN

Let ¢ € Cy(R). Set g (w,y) = [ =y (20 (*52) — é(x) — 6(y)) and ¢ (z,y) = 26 (3¥) —
¢(x) — ¢(y). On the first hand, as already observed, one has

|z =y = 1] < wllog(lz —yl)] for |z—y|<1

and

'2¢ (532 - o0 —¢<y>' <o -yl 1)1
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Therefore, for |z — y| < 1,
1
[ihn (2, y) — (2, y)| < vnllog(|z —y|)| |z =yl |¢']| Lo < g%WHLw-
On the other hand, one has for any R > 1,

|z —y/™ =1 <y, RlogR for |z —y|>1and|z|+|yl<R

and

26 (252) - oto) - 80| < Al

Consequently, for |z — y| > 1 and |z| + |y| < R,
[¥n(2,y) = (2, y)| < 4ynllog Bl|¢| Lo
We may thus conclude that

lim  sup |¢n(z,y) —¥(z,y)| = 0.

"0 |z +y|<R

Un(@,y)| <42+ ||+ |y[)[[4]| Lo, which implies

2| +y[—oo n>1 2 + 2|2 + |y

Now, for any n € N,

The uniform convergence in compact sets and the above control of the tails of v, imply that

fim [ (.G, (016, ) dedy = [ v g)p(da(dy).

n—o0 R2

We refer to (Lu & Mouhot, 2012, Proposition 2.2) for details on the argument leading to this. We
thereby obtain that ( dx) is a steady solution to (4.1).

Notice that the energy of 1( dz) is not explicit but, from Theorem 1.1, there exists A > 0 such
that

pu(dz) = Hy(x)dx = AH (A\x) dx
satisfying

1
/ Hy(z)dz =1, / Hy(z)xdx =0, / Hy(z)z? dz = -
R R R A

We need here to identify the possible value(s) of the parameter A. Thus, any limiting point (as
v — 0) of the family {G(7) dz},¢(o,1) is a steady solution to (4.1). If we are able to identify a
unique possible limiting positive energy, we would have a unique possible limiting point and the
whole net {G(x) dz}, would converge to it.

2.3. Pointwise control. A second observation is the following uniform pointwise upper bound.

Lemma 2.2. There exists C > 0 independent of y such that
forae x € R, (2.7)

holds true for any v € [0,1] and any G., € &,.
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Proof. Formally, integrating equation for G, in (0, x), with = > 0, one has

z Gy (z) = 4/0 (G4, Gy) dy <427 (G, Gl < ClIGy |1 1G4l e

and the uniform control provided by (2.1) yields the result.
To justify rigorously this inequality, for z > 0, one considers some nonnegative mollifying
sequence (9, )nen and define

)
bn(y) = / on(z — 2)dz, y € R, n € N.

—00

Choosing the test-function ¢,, in (2.3), one obtains

- %/Ry@n(x —y)Gy(y)dy =

1
5 L0666 (20, (15) - o) - 0 ayas
for any n € N. Since 0 < ¢, (y) < [ 0n(2) dz = 1, we get

1 [ vena =G w)du = =5 [ 1y = 27CL )G () (9n(s) + 0u() dydz

4
> =2|G| - |t |Gl > —2C

where C is defined in (2.1). Letting n — oo, we get 2G,(z) < 8C, for ae. > 0. For z < 0,
we bound from above the above integral in order to obtain in the end —2G (x) < 8C, for a.e.
x < 0. This proves the result. 0

2.4. L?-estimates on the profile. We deduce from this the following technical estimate regard-
ing the control of L? norms.

Lemma 2.3. There exists some universal numerical constant Cy > 0 such that the inequality
l
Gl < oGy s [ 1o Gy o+ Co 0! @

holds true for any v > 0, G € &, and any { > 0.

Proof. We provide here a formal proof which provides the main ideas underlying the result. We
refer to Appendix C.1 for a rigorous justification of the formal argument that follows. For any
generic solution G to (1.10), after multiplying (1.10) with G, and integrating over R one sees
that

1
SIG I < [ 01(6,.6,) 6, d. 9
One sees that

/Q;’(GW,GW)Gde:// & — y"G, ()G, (y)G, <$2ﬂ> d dy
R RJR

< [ [ wme e we, (75 aay

:2/R]xWGV(w) dx/RGV(y)GV (””;y> dy.
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Notice that such an inequality actually means that
/Qi(c;y,c;y)c;V dz < 2/ o (|-G, GG, da. (2.10)

Given ¢ > 0, splitting the integral with respect to x according to |z| > ¢ and |z| < ¢, one has

/Q+ G,.G,) G, dz < / "G (x dx/G (”Hy) dy
2 he s [ 6006 (S5 ) a
|z|>¢ R 2
14
2 [ Pe i [ 6w, (S5Y)
+2C€71/d:c/G (“Ly) dy,

where we used (2.7) in the last step. Clearly, the last integral can be estimated as

/ dx/G <w+y> dy = 2||G, |2, =2

whereas, for any given x € [/, ], one has from Cauchy-Schwarz inequality

T+ T+
[ewe, (“30) wele s e (557)]  =vaelk.
L

Combining these estimates, we deduce that
Y4
/ Q7 (G4,G,) Gy dz < 2v2|G, 13- / |2["G(x) dz + 4001,
R —/

This gives the desired result thanks to (2.9). O
A trivial bound for the integral is the following
/ i 2[1G, (@) da < 01l = €7
which gives a bound like

HG'yH%? < COW||G~/||%2 + C'Om_1

and cannot provide a bound on |G, || 2 uniform with respect to 7. If one assumes say
l
Co / 2| G () dz < CLO ! (2.11)
-/

for some universal (independent of ) constant (', then picking ¢ small enough would yield
a uniform bound on |G |12 uniform with respect to vy small enough. We are actually not able
to establish the bound (2.11) for any G, € &, but will provide a similar estimate for any se-
quence {G,, } converging weakly-*. Recall that such a sequence always exists. One has then
the following
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Lemma 2.4. Let (7,),, be a sequence going to zero, G-, € &,, an equilibrium for each n, and
A > 0 such that

n—oo

lim G% x)de = / H)y(x dz, Vo € Cp(R).

Then there exists C = C'()\) depending only on A\ and N > 1 such that

sSup HG'Yn”L2 g C
n>N

Proof. From the weak-x convergence, for any ¢ > 0, one can choose a smooth cutoff function
@1, = 0 equal to one in [—/, {] and vanishing on R \ [—2¢, 2/] to deduce that there exists N > 1
such that

¢ 2 2\ ¢
/ G, (z)dr <2 Hy(z)dx =2 H(z)dx Vn > N.
-/ —2¢ —2X¢

Direct computations show that

200 )V

2
H(z)dz = - [arctan (2M\0) + T3 08

}<§>\£ Ve >0,A>0.
—2)¢ ™

Thus, for any n > N, one has

/|3:|“’” da:<€7"/ G, (x)dr <

Arguing as described previously, plugging this into (2.8) we get
16 Co

Ag“{ +1

1Guls € =220 |Gy, |32+ Co 0070 ¥ =N, e,

Picking then ¢ < 1 (dependmg on \) such that

16 Cy A Tl 16 Cy A 1 . . T
X 4 .C. == 71
- — - —/ < 5 ie { = min 320 Co

we deduce that
HG'YH ”%2 < 200 [Yn_l
and, since £ < 1 and vy, > 0, £’ < 1 so that

C 32
G2 < 25 =20y max{ Ecr1 |
¢ m
which gives the result. O

2.5. Lower control of the collision frequency. We introduce the collision frequency

0= [ o= 'Gy () da .12
and recall also the notation w; introduced in (1.14). One has then the following

Lemma 2.5. Giveny € (0,1) and G, € &,, there exists K, > 0 such that the following holds

S(y) > kg ws(y) — (1—87) — V25|G | 12 V6 € (0,1). (2.13)

Moreover, limy_,o ky = 1.
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Proof. Lety € (0,1) and G € &, be given. First, notice that, for any y € R and any 5 € (0,1),

S0 = [ (le =0+, y5) Gole) do = [ 1,156 f) da
> /R (I =y + 1, _y15) Grle) da — V231G l12 = 20 (4) — V251G, 12

thanks to Cauchy-Schwarz inequality. We need only to estimate the first term. To do so, for any
n > 1, we introduce the set

I=1(y,n) = {ac eER; wi(x) < n_lwl(y)}7

and write

S0 = [ (lo=ol 1) G dot [ (le=al +1, 1) Gy (a) da.
On the set I, one has
z—y" = (A +1yl) = (1L +1]2)" = (1 —n"") w,(y).

/I (’w —y[" + 1|m_y|<5> G, (z) dz > (%)wa(y)/l G. () dx
> (1) ) [ S

> 47, (0 < 1), one has

Therefore,

Now, observing that |z — y|? + 1, <5

/IC(\x—yWHx_yd)G()dw >5[ G@)de> | Gya) de— (1= )]Gyl

I
S w(y) G, ()
T e wy(2)

dz —(1-47),

since 1 > n(llﬂlzﬂl) forany x ¢ I. Choosing then 1 = 2 one sees that
20 (y) > (1-47
> g [ S )
which gives (2.13) with
€ (0,1).

T R W~ (2)

Let us now prove that lim,_,+ k£, = 1. Obviously, since w., (x) > 1 and G, has unit mass, one

has
0<hy <277,
One just needs to bound «., from below. For any v € (0,1) and r > 0

G, (x) . G, (z) . 1 ) da
/ﬂgwfy(:c)d >/m wy(@) T Z W) e, G0

1 1 M3 (G,) 1 C
gy <1_ |m|>rGV(x)dw> Z Wy (1_ o > ZWary <1_r_2>
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where we used that sup,,¢ o1y M2(G+) < C. Forany e > 0, one can first pick 7 > 1 independent
of v and large enough so that

(x) 1-¢
w,y x) (1+7r)
so that
1-¢
nar S S
and the result then follows letting v — 0. g

2.6. Uniform estimates for higher moments. We investigate here some uniform estimates
for higher moments Mj, . (G~). Of course, since one expects G, — Gy where Gy is a steady
state to (1.20) with G € Li(R) \ Li(R), for k > 3, it should hold that

lim sup My (G,) = oo
~¥—0

however, one can expect, for 2 < k < 3,

lim sup M4~ (G,) < oo.
¥—0

This is the object of the following

Lemma 2.6. Let (7,),, be a sequence going to zero, G-, € &,, an equilibrium for each n, and
A > 0 such that

lgn G x)dr = / Hy(z dz, Vo € Cyp(R).

Forany§ € (0,1/2), there exists C > 0 and N > 1 such that

Myt (G,) < C, ¥V246<k<3—6, VYn>N.

Proof. Formally, for any k > 0 and any solution G to (1.10),

-5 [ G @hltar= [ 06, G@ll* dr

with

/ Q.(G,. G\l de = / G ()G ()l — g (
R R2
/G y)lx —y|”

where X (y) is the collision frequency defined in (2.12). The above identity holds formally and
can be proved rigorously along the lines of the proof of (2.2). Notice that, for £ < 3 it holds that

2

k
x+y‘ - Iylk> dz dy

r+y K
2

dr dy — /R G ()|y" S, (y) dy

k
= 2772 + 32%y + 3xy? + 3|5

‘w—ky k
(2.14)
27 (o) + 3l T fy[5 + 3025 |y T +1yl)  V(z,y) eR®
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Then, with this inequality and a simple symmetry argument, one deduces that

| G @Gl —y ‘””‘2”’ ey
<327 [ G @)@ ) (' + 1) (JofF ulf + byl ¥ ) away
+21- k/G ()|y|* dy
<6-27F | My, (G)My(Go) + M (G) My, (G|
+2'- ’“/G ¥)Z,(y)lyl" dy
from which we obtain
=G+ (1-27) [ 6w, dy

<6-27* [M%+7(G7)M§(G7) + M (Gy) Mg (G-)

3 3

Notice that, with the condition 2 + § < & < 3 — 4, one has that

max { My (G,), Mz (G5), My, (Go) } < Mo(Gy) + Ma(Gr) <

N W

9

where we used that sup,¢ 1) M>(G,) < % Moreover, using Young’s inequality, one sees that,
for any n > 0,

3y

2k +3 _2k+3 k o3y
. e Mo(Gr) < My (Goy) +072 7%

RS (G
Skt 3y Mk (Gr) £ 3k + 37

With this, we deduce that there is C' > 0 (independent of y and k) such that

k
- MG+ (1-27) [ @ s Wyl ay

<C (1 7R 4 My (Gy)) Vi > 0.

We use now Lemma 2.5 to deal with the term involving the collision frequency. Precisely, con-
sidering now a converging sequence {G,, }, towards H), we deduce from Lemma 2.4 that
|G-, |12 < C forn > N and therefore forn > N,

k ~ . =
o (1-27F) /R G )y w, (y) dy — (1 + (1) + c@) Mi(G,)
<C<1+n—2—3”7" + 9 Mysry, (G ) V> 0.
Z

Let € > 0 be fixed. Picking 6 > 0 such that C'v/26 = S, one can find N’ > N large enough so

that
(1—5%) +CV2%<e, VYnzN
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and we deduce that

_ k
o (1-27 0 L) [ el w,ay - (§+2) 06,,)
Tn
<C (1 +n_2_3%) .

for any n > N’. Then

3
T e IR TEEI (R O R
Yn

There exists & (independent of k) such that, forany 2+ < k < 3—46,0 := 1 — ol—k _ % >a > 0.
One has

k 1 k
Lok o ke Jk_<__1>__ci_i
K 4K, Kay, Ky 4 Kyn B
5 (—,_<L_1>E_ no e
Ky 4 B B
Recalling that lim,, o %, = 1, one can choose N > N'large enough such that, for n > N
3 k|1 311 o
=~ d —|— -l <-]— -1 <.
fm 2y % 1 |n, ' 1|k, ' 9
One then chooses ¢, 7 small enough so that
Lot 7 g St e
Ky 379 Ky 3 9

for any n > N and gets that

k o _
M<1—2l—k—ci———i>>5>o Vn > N.
K 4Ky, Ky, 2
.. _9_3Mm _9_31m . _9_31n
We then deduce the result noticing that, forn € (0,1),7n k< 2 andlim, N 2 =
-2
n-°. O

2.7. Limiting temperature and proof of Theorem 1.4. Recall that any converging sequence
{G,, }n (with lim,,_,o 7, = 0) admits as a weak limit a function of the form

Hy(z) = HOz), A>0.

We prove here that ) is actually uniquely determined, yielding the uniqueness of the possible
limit point. Namely, we prove the following

Lemma 2.7. Let (vy,),, be a sequence going to zero and X\ > 0 such that

lim G x)dz = / Hy(z dz, Vo € Cyp(R).

n—oo

Then,
A= Ao :=exp (A4o)

where

/ / H(z)H (y)|z — y|*log|z — y|dzdy > 0. (2.15)
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Remark 2.8. We will see later on that Ay can be made explicit and, according to Lemma 3.5 Ag =
log 2 + 1 from which \g = 2//e.

Proof. We consider a sequence {G, },, and A > 0 such that

lim G x)dz = / Hy(z dz, Vo € Cyp(R).

n—oo

Let 0 > 0. Letus fix k € (2,3) and s > 0 small enough such that k + s € (24 9,3 — §). We
consider N € N large enough such that the conclusions of Lemma 2.4 and Lemma 2.6 hold true
and vy, < k — 2 for any n > N. Then, Lemma 2.6 and Young’s inequality imply that

My s(Gr,) € Mygs4+,(Go,) + Mo(G,,) < C+1=:C, (2.16)

for any n > N. Introducing

Ay(r) = , Vr >0, v >0

we recall from (2.2) that
//G'Yn W)z —y|*Ay, (Jz —y|)dedy =0 Vn > N. (2.17)

On the one hand, let § € (0, 1) tobe determinedlater. Using the elementary inequality [ A, (r)| <
—log r for any r € (0,1), v > 0, we have

[ e@6. @l -y, (e - )l dry
|z—y|<d
[ [ G.@6, wle-yPlog(la-yl) dedy < - 10gd [ [ Gy, (06, () dyda
|lz—y|<o R JR
from which

ST < 1
z—y|<

n=>N JR
(2.18)
On the other hand, for R > 1 to be determined later, since y,, < k — 2 for any n > NN one has

L[ @6, wle—uPs, (e -y dedy
lz—y|>R
<[ [ @G wle— Pl g drdy
|lz—y|>R
where we used that the mapping v — A (r) is non-decreasing for any r > 1. Then,

1 1 .
|z = y[* Ap—2(lz — y]) < Tl yl* < m\x —y[**, lz—y[>R, s>0

2
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where we recall that s > 0 has been chosen small enough so that k+s € (2+6,3—9). Therefore,

[ [ @6l — P, (- s aray
R J|z—y|>R

ok+s—1 . .
S m// ‘ L G @Gy )(\x! Tty +8> da dy
T—Y|>

We then deduce from (2.16) that

sup / / ‘ G, (2)G,, (y)|r — y* A, (Jz — y|) dedy < OR™* VR>1. (2.19)
z—y|>R

n>N JR

Since, for any fixed§ > 0, R > 1, (A, (r)),, converges to log r uniformly on the set {6 <r <R},
we deduce that

i [ [ G @G, )~ yPA, (i~ yl) dedy
N0 JR Ji<|e—y|<R
- / / Hy(2) By ()| — yl? log |z — y] dzdy. (2.20)
0<|z—y|<R

Combining (2.17) with (2.18)—(2.19) and (2.20), for any £ > 0, picking 6 > 0 small enough so that
—52logd < ¢, and R > 1 large enough so that CR~* < ¢, one can take N > 1 large enough so

that
L[ m@ml - P gl - yldsdy| <32
R Jé<|z—y|<R

from which we deduce easily that

/ / Ha@)Ha(y)|e — yP log [ — y| dz dy = 0. (2.21)
RJR

Now, recalling that H)(z) = AH (Az) for any € R, with the change of variables u = Az,
v = Ay, (2.21) becomes

1 lu — |
— H(uwH — %1 =
)\2/11&/]1& (u)H (v)|u — | 0g< 3 )dudv 0
from which
log/\//H(u)H(v)|u—v|2dudv://H(u)H(v)|u—v|210g lu — v|dudv = 2A,.
R JR R JR

Since
//H |u—v|2dudv—2/|u|2 u)H (v)dudv = 2

we deduce the result. O

Proof of Theorem 1.4. Lemma 2.7 proves that the weakly-x compact family {Gﬁ,} 0,1) admits a
unique possible limit (as v — 0) given by

GQ(I‘) = )\()H()\Qx), )\0 = exp (AO)
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with Ag defined in (2.15). In particular, the whole net {G,Y}V €(0,1) 18 converging (in the weak-

* topology) towards Gg. We can then resume the arguments of Lemma 2.4 and Lemma 2.6 to
deduce (1.19). O

We can complement the estimates (1.19) in Theorem 1.4 with L?-moments estimates.
Corollary 2.9. Forany § > 0 there exists y, € (0,1) and C > 0 such that
|G 2wy < C (2.22)
forally € [0,7,) withk +~ € (0,3 —0) and all G, € &,.

Proof. We give a formal proof here which presents the argument to obtain a uniform bound. A
complete justification can be found in Appendix C.1. Let vy, € (0, 1) be such that the conclusion
of Theorem 1.4 holds true. For any k > 0, setting

Gi(x) = Gy (x) |af*

one notices that

1 k

1
| 066G, Pt dr = § [ 0,0G) G o de = (5 = )Gl @229
R 1 Jg 8 4

Also, thanks to Lemma 2.5 (with 6 = 72) and Theorem 1.4

[ 216,66, P do = [ GHw)S, (@) do
R R
> ki ||Grws (|72 — yl1og v C |Gil72 = (ky =2 log | C)[|Gll7:
where we used that, for § = 72, —(1—§7) ~ 2vlog 7. For the positive part, using that |z +y|* <
261 (Jz)F + |y[*) while (|z[F + |y|*)|z — y[? < 2(|z[*+7 + |y|*T7), we can argue as in the
derivation of (2.10) to conclude that
/R Qj/—(G“/v G,) G, |33|2k dr <2 /R Q;(Gw|$|k+wv G,) G dx
< 2\/§Mk+7(G’Y)”G’Y”L2HGk”LQ .

Therefore, one deduces from Theorem 1.4 that there exists some positive constant C depending
neither on k, nor on v such that for k + v € (0,3 — 9),

/ 0H(G,.G) G 22 dz < Col| G 2.
R

Gathering these estimates with (2.23), one deduces that

1 k
(1 +5 =7 — 1081 C)IGullfz < CollGillsz
Since ky — 1 asy — 07, one easily concludes that for some explicit v, > 0 (independent of k),
it holds ., + % — % —v|logv| C > ky + % — % — v|logvy|C > % for any v € [0, v,) which
proves the result since then ||Gg|/72 < 8Cj. O
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2.8. Higher regularity. In this section we prove Sobolev regularity of G- uniformly with re-
spect to . Parts of the arguments are formal while a full justification is given in Appendix C.2.
From equation (1.10) we write

20,Gy =49,(G,,G,) — G,.
Consequently, taking the L?(wj,) norm, one has
120G 20 < 412G Gl 2amy) + Gl 2
< OllGywyiq 2 (|Gywgl r + [|Gyws [|11) + ”Gv”ﬂ(wk) )

thanks to Proposition B.2. Let > 0. Using now the uniform estimates obtained in Theorem 1.4
and Corollary 2.9, we see that

sup [[20:GH || 12(w,) = C1 < 00, Vk+2y<3-4. (2.24)
76(077*)

In order to deduce from this some L2-estimate for axGV, we need to handle the small values of
x. Introducing now

G () = 0, ()

one differentiate (1.10) to obtain that

1 1
Z816(:1:G;) - ZG; = 0,(G,,G) + Q,(G.,G,). (2.25)

Let us estimate each of the four terms in the right side in the following lemmata.

Lemma 2.10 (Gain part estlmate) Let 6 > 0 and ~y, € (0,1) given by Corollary 2.9. For any
d>0,7v€ (0,7%)and0 < k < 3— 2 — § it holds that

¢ . (2.26)

[ (5061640 + €1(611.6,)) 1G] [warde < OV |Gy 2 + =

m\m

for some explicit C' > 0.

Proof. Both terms are estimated similarly, so we only focus on the first. As in the proof of (2.10),
one first observes that

/ QH(G, |GL)) |G| way da
R

< [ el + ) 6, @G0
< [ e+ G2 @IGY "G/<

where we used first that woy,(-)=wy(-)? and then that wy, (£5¥) < wy(z)wy,(y). Consequently,
using the fact that 7 — 77 is concave, one checks that

) dz dy

) Juok(y) dz dy

o+ ol < 203 (e )y (5
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from which we deduce that
| (6116416} i do

<2 [ (w0306, 0) (w3 IS0 i (52 |65 (552 | o

2
= 2/R Qf (wk+%G%wk+g|Gly|> wk+%|G{y| da.
Therefore, for any 5> 0, one has

[ 21616416, wa s
R

< 2/]1@ Q(J{(G,yw,ﬁ%, [1[_375] + l‘x‘>g] |G£Y|’wk+%) |Gﬁy| Wt dx
<A(1G wi 322115 5Ghwgy 3l
G w11 115G w05 112 ) |G w5

where we used the known estimates for Q7 (see Lemma B.1). Consequently, using again Theo-
rem 1.4 and Corollary 2.9 one deduces that there exists C' > 0 such that

/R QF (G |G, G, | wae di < O G w22 (155G wrs oo + 1101256, w0 g 12

assoonas~y € (0,7,) and k+ 377 < 3—9 where we applied Corollary 2.9 to HG'y'le-% |12 Now,
one has

1155 Ghwhs 3l < VO IG w5 e
whereas, thanks to (2.24)

1 Cl 5’}’
11),55G w22 < 3 ”xG{yHLz(war%) < 5 0<k<3- 5
Thus
_ o
[ 9561163 16, oo < VG w32 + S G -
The result follows from here using Young’s inequality. g

The loss operator is estimated in the following

Lemma 2.11 (Loss part estimate). Let 0 > 0 and . € (0, 1) given by Corollary 2.9. There exists
some positive constant C' > 0, such that, forany§ > 0,y € (0,7,) and 0 < k < 3—~ — 9 it holds

that
[ 10:(64.6:)+ 05(6,. 6] &, warda
= C
> (1, — CV0) G wy 513 - =~ Orlloga G wnllze 227)
2

where k., has been defined in Lemma 2.5.
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Proof. One has

7= [ lo; )+ 06,6 G wada = [
R
(2)|z — y[" G’ () war(x) dz dy = J1 + Jo.

(G (2))? = (2)way () dz

+ G, (y)G
R2

The first term 7, is easily estimated using Lemma 2.5 (with 6 = v2) and Theorem 1.4, as in the
proof of Corollary 2.9. For 7, given by Corollary 2.9, one has for any v € (0, ),

Tt 2 #y||GLwyy 31172 — Cyllog [ GLawg| |72
for some positive constant C' > 0 independent of v and k. To estimate [J2, we introduce a smooth
cutoff function 0 < x(x) < 1 with support in the unitary interval [—1, 1] and set x;(z) =

(6~ 'x). For any z € R, one has then
/G’ !w—yl”dyz/RG;(y)Xg(w—y)\x—yWdy+/RG;

= /RGQ(y)Xg(x —y)lz —y[" dy
/G W[ = X3z — )|z — o] dy

—x5(x—y))|lz—y[" dy

Notice that, for § € (0,1),

AG;<y>xg<x—y>\x—y\7dy1<5v / Gl < VARG e
r—y|<

Q
o Q

while
(1 xs(e - )z — o] dy\ <9ien =

[«

where we used the fact that
10, [(1 = x5(z — )|z —y|"| = (xﬁ;(:v —ylz—yl"— (1= x5z — ) (x — )|z —y|"

< IXlloolz =911,y + 7 (1= x5(x = o)) [ =y

< (IXlloe +7) 071 6€(0,1).

Consequently,
< C
[ @l =t as] < VR GLunlin + S

and

- C
21 < (VARG wile + £ ) [ 66 @lhon @) da

— C
< < V20| GLwg| 2 + E) |G will 2 |Gy w2
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Using again Corollary 2.9 to estimate |G w2 for k + v < 3 — 0, we deduce using Young’s
inequality that there exists C' > 0 such that

< C
7l < OVolGwnlfs + =
2
Since [|GLwy||7, < HGiwaH% |32, we deduce then the Lemma from the bound on 71 and
| J2|. O
We have all in hands, starting from (2.25) to deduce the following

Theorem 2.12. Let & > 0. There exists v, € (0,1) such that, forany vy € (0,7,) and 0 < k <
3 — 3 —§ it holds that

1GA 1 ) + 1GAlwrr <O (2.28)

for some explicit C' > 0 depending on vy, but not v and k. In particular, as a consequence of the
WLt control of G, it holds that

—~ C

G,(§] < .
Proof. Letusfixy € (0,7,)and 0 < k < 3— 577 — J, where 7, € (0,1) is given by Corollary 2.9.
Multiply equation (2.25) by G’ngk and integrate to obtain

3 k
SIG il = 5 [ felwn 1)@ @) = [ (01(G1.6))+ (6. G)) Gl da

where we used integration by parts and the fact that x0, wor (v) = 2k|x|waoi—_1(z) to show that

1 2 2
/R 00 (+G (1)) G, (wywanl) dz = /R (G, (2)]* wap () dz — & /R (G, ()] 2w () da.
Consequently, using Lemmata 2.10 and 2.11, there is C' > 0 such that, for any 5> 0, it holds

that

3

k = 2C
<— 1 Cyl 10?57‘) HG,ywk”QH < _(“v - 20\/5)”(;,71“%%”%2 +

S_% .

8

Recalling that lim.,_.g K, = 1, we can fix 7, small enough (up to reducing our previous +,) and

0 > 0 such that x., — 2C V5 > 3 for any v € (0,7,) and conclude that

9 2C

k 2
<§ -7~ 10g7|> |G- awg]|7 < 5

Finally, since % — % > % — % > 0, up to taking ~, still smaller, one has % — % — Cv|log~| >

% — % — Cv|log~y| > 0 for any v € (0,~,) and thus

sup (|G [| 2w,y < C,
Y€E[0,74)

for some constant C' independent of k.
For the L' estimate on the gradient, return to equation (2.25), multiply it by sign(ny) and
integrate to obtain that

1 / / / . !
116 = /R (Q,(G. G + O, (G, G.))sign(G) da
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To estimate the right-hand side, one simply notices from the weak-form (1.11) that

/ (2(G. G)) + (G, Gy))sign(G)) dz < 3/ Sy () |G (y)] dy.
R R

According to Jensen’s inequality

Y

E'y(y) = /]R |z — ypry("E) dzr < ‘Z/ - /RxGw(x) dz| <ly|”, Vy € R, (2.29)

from which

[ (06,6 + 0,6, G ))sien(@) s <3 [ W16 )]y

/ |y|2’y %
<31 2w ( /R T dy) .

The last integral is finite for v € [0, %) and can be estimated uniformly with respect to v for, say,
7 € [0, 3). Then, from the first part of the proof, since SUDye(0,7,) |G I 12 () < 00, we deduce
that

1
ZHG;HLl < 007 V’Y € (07/7*)
which proves the W' estimate. n

Since, according to Theorem 2.12, the family {G.,},¢(0,+,) is bounded in H*(R), we get im-
mediately the following corollary.

Corollary 2.13. Under the assumption of Theorem 2.12 there exists some positive constant C' > 0
such that

1
s(up | |Gy~ <C |G~ (z) — G4 (y)| < Clz —ylz, Va,y € R. (2.30)
YE(0, 7%

One has the following estimate for differences of two equilibrium solutions.

Lemma 2.14. Let § > 0 and v, € (0, 1) given by Corollary 2.9. Lety € (0,7,) and G,ly, G% € &y
be given. For any 2 < k < 3 — y — 0, there exists v,(k) > 0 and Cy, > 0 such that

IG5 = Gl ) < CHllG — G?yHLl(ww%k) vy € (0,74(K))-

Proof. The proof follows the argument of the proof of Lemma 2.6. Let 7, € (0,1) given in
Theorem 1.4 and y € (0,7, ). We introduce g, = G?Y — G,ly and observes that

102 (20,(2)) = 442, G) + (Gl g5). @31)
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We multiply then (2.31) by sign(g,)|z|* and integrate over R to deduce

My (g]) = /R [0,(9,.G2) + Q,(GY, 9,)] sign(g, (z))]al* dx

4
s (o (:3)

—sign(g, (2)) [/ — sign(g, (y))Iyl*] dwdy

<= [ e @lo@llal do+ [ o, @] S0l ~ o lyl* dydo

a:—l—yk
2

Tty b

2 [ lor(a) S, ke — P i dy

where
1
$=3 (G 4G, o) = /RSV(ZJ)!w—yW dy, wz€eR
Arguing exactly as in Lemma 2.6, one deduces without difficulty that

- M (g]) < ~(1-27) [ o3 (@)lgy (@) ol do
R

4
+ (1+2'7) [V (19, DMr(S5) + Mo(lgs ) Mi4+(S5)]
+6 [ M, 20 (19, DM (S,) + M (19 )M . (S,)
M, (I9,)) M (S,) + M (19, ) M, (S5)]
One deduces from Theorem 1.4 that there exists C' > 0 independent of £ such that ||.S, || 1w, ) S
C forany v € (0,7,) and k + v € (0,3 — 0). Using this bound and estimating every moment of
19710y 19yl sy - Vields

k -
=M (lg ) + (1= 21 ’“)/Jw(sv)lgw(:v)llwlkdw<C’Ilgwllu(w 2)
R T

for some suitable C’ > 0 depending neither on k nor on . Of course, one checks easily that o,
satisfies a bound as in Lemma 2.5, i.e.

03 (1) = Ty wy(y) — (1 — §7) — V231, 1, v e (0,1)
for some explicit &, withlim,_,o %, = 1. Of course, according to Theorem 1.4, Sup, (g ~,) [1S4 |2 <

C. We can then, as in Lemma 2.6, fix ¢ > 0 and choose v small enough and § small enough so
that 1 — 87 + V/25||S, || .2 < ¢ and then, for a suitable choice of 7, (k) such that

k g (%
By (1—2"F- — =) >F Vv € (0,7 (k
= E-s)>F We0ann)
withop : =1 — ol—k _ % > 0. This gives then, as in Lemma 2.6,

el
97121 (a1 0) < U—ngwHLl(ww%) vy € (0,7 (k))
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which is the desired estimate with C), = & O

O
3. STABILITY AND UNIQUENESS

We are now in position to quantify first the stability of the profile Gy in the limit v — 0%
and deduce from this the uniqueness of the steady profile G, € &, for v small enough.

3.1. Stability of the profile — upgrading the convergence. The results of Section 2 ensure the
convergence (in a weak-x sense) of G, towards Gp as v — 0. We upgrade here the convergence
to the (strong) L' (w,) topology and, more importantly, provide also a quantitative estimate of
|G+ —Goll 11 (w,)- To do so, we will resort to a comparison between the collision operator Q., and
the operator Q (corresponding to Maxwellian interactions) given in Proposition B.3 in Appendix
B.

Let us denote by Ny(f) the self-similar operator associated to the Maxwellian case v = 0,
that is

1
No(f) = = 8:(af) + Qo(f, f)-
Let us denote by V., (f) the self-similar operator associated to the general case y > 0, that is

N () = = 0:(20) + Q4 (7 )

Lemma 3.1. Let2 < a < 3 and d > 0 such thata < 3— 4. Lety, € (0, 1) be defined in Corollary
2.9 (notice vy, depends on ¢ and thus on a). Forany~ € (0,7), s > 0 satisfying s +v+a < 3 -9,
there exists Co > 0 depending only on s such that, for any profile G, € &,

INO(G)l21(wy < Cor™T (1+ [log ).
Proof. Since N (G~) = 0, one has
IN(G) It (wa) = INO(Gr) = Ny (G| L1 (aw)
< ||Q0(ny, G'y) - Q“/(Gw G“/)HLl('wa)

Noticing that, according to (1.19) and (2.22), there exists C' > 0 such that, for any vy € (0,74),s >
0 satisfying s +v+a < 3 — 4,

max (G|t Gl 1)) <€ and Gy 2, < G,
the result then follows from Proposition B.3. g

We introduce here the following steady state of N with the same mass, momentum and
energy of G, namely

1
h =H =ANMH(Mzx), Ay = , € (0,1).
w(ﬂj) An,(fﬂ) 0% ( WZU) 0% MQ(G-Y) v €(0,1)
Since
lim Ma(G.) :/Go(az)|az|2daz
y—0T R
we have
lim A, = A
ﬁ/i{g* K 0

and, noticing that
|y (2) — Go(2)] < C|Ay — Ao| Go(@),
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for some C that can be made independent on vy, we have
1Py = Gollr(w,) < CalAy = Aol Va € (0,3). (3.1)
To compare then G to G, it is enough to compare G to h,. This is the object of the following

Proposition 3.2. Let 2 < a < 3. There exist v, € (0,1) and an explicit function n = n(~)
depending on a, withlim,_,o+ n(y) = 0, such that, for any vy € (0,7 ), any G, € &,

”G’Y - hv”Ll(wa) <n(v)-
Proof. Let us denote by g(¢, ) the solution to (4.1) with initial condition G. Then, for every
t>0,
1Gy = oyl w,) < NGy = 9D L1 ) + 190) = PallLr w,)- (32)

In order to obtain a bound for ||g() — R || 1 (a,), We shall use the convergence of g(t) towards
h. ast — oo given in Fourier norm by Theorem 4.1 (see also Remark 4.2). Choosing

2(ax —a)
2a, +1
it follows from Lemmas A.4 and A.3 that, forany > 0and 0 < r < 1,

l9(t) = allzs ) < Cllglt) = by 52 (Hg( >HL1(wa 1l )

ax > a, O0<a<

)

< Crpal[ " (eIt + s l56, )
< (lg@ s + 1y gar + g ()]s + \IhwlerN)a (33)
for some explicit constant C). g , depending on o, r, 3 and where M = (l_r) , N = M +

(17’%& > M. Notice that, choosing 7 as close as desired from 1, we can assume N <
Observing that

m _ 2
o [2m = /R (L4 €)™ (1 + A2 1)¢))% exp <‘A7‘§’> a¢

where ), is bounded from below for 7 small enough (recall that lim,_,5+ A, = Ag), one easily
checks that
sup |[hy|[gm < o0
v€(0,7%)
for any m € R* whereas, for a. < 3, sup,e(g1,) 1Pl (w,,) < 00. So that there is Cp > 0
(depending on r, o, 8 and a, but not on ) such that

l9(8) ~ ol < ol [50) |7 (1 I )) (1 loDl) G

where we recall that NV > M. Let § > 0 such that a, < 3 — . Let 4 be such that the results of
Theorem 1.4, Corollary 2.9 and Theorem 2.12 hold and such that a 4+ v, < 3 — J. Now, by virtue
of Theorem 2.12, the initial datum g(0) = G, is such that (recall that N < 1),

sup ||G,|lgy < o0 as well as ‘é;(ﬁ)‘ <4 Ept £eR
7€(0,7+)

which, according to Theorem 4.12 implies that there exists C' > 0 such that
lg@Ollv < C VE=0, v € (0,%).
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Let us now show that we also have a uniform bound with respect to ¢ and v for ||g(¢)|| 11 (., ) -
First, for 2 < k < 3, one has

d k +
il / alfg(ta)de + (1% / 2l g(t, z) da — / ot 2)g(t,y) |2l

We then deduce from (2.14) that

k
/\x!k (t,z) dx+< — 2! k)/\x]kg(t,x)dw
R

<3 x 27k /Rg(t,w)lwlzif dﬂﬁ/Rg(t,y)lyll§ dy < 3 x 270y (G,)?,

k
dz dy.

since k < 3. It thus follows that, for any ¢ >

1-k
/ |$|k9(t,$)d min /|g;|kG 3 X 2 M2(G ) ‘
R _ Z — 91— k

Consequently, it follows from Theorem 1.4 that there exists C' > 0 such that, for 2 < a < a, <
3—06

g1 (w,,) < C vE=0,  v€(0,%).
We deduce then from (3.4) and Theorem 4.1, that, for any ¢ > 0

a(l-r)

a

—

9(6) = Byl < Crem2o 011G — R,

< Crem G, — hy 31 (39)

for some positive constants Cy, C} independent of y € (0, v, ) and where we used Lemma A.1 to
o |G ] 0 16 L1 o
Let us now look for a bound of |G, — g(t)|| 1 (w, ). We deduce from (4.1) and (1.10) that
1
Gy — 9)"‘18:0(95((;7 = 9)) = (G4, G4) — Q0(9,9)-

Multiplying the above equation with sgn(G., — g) w, and integrating over R we obtain

d a
16 =9l = § [ oo s (@) = glt.)
<Q4(GH, Gy) = Qo(Gy, Gl L1 (wa) + 1Q0(GHy G) — Qo(9, 9) | L1 (wa)-
Now,

1Q0(G, Gy) — Qo(9, D11 (wa) = 1Q0(Gy — 9, Gy + )|l L1 (w
<26y = 9llprwn) 1Gy + 9l Lt (wa)»
and with Proposition B.3 together with Theorem 1.4 and Corollary 2.9, it implies that, for s > 0
such that s + v, +a < 3 — 9,

d e
E”G” — 9l (wa) < C1Gy = gl 11 (o) TC27 =+ (1 + |log v), v € (0,7),
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with 'y > 0 and C; > 0. Finally, the Gronwall inequality would lead to

e

Finally, (3.2) together with (3.5) and (3.6) gives, for any ¢ > 0,

t>0. (3.6)

Cyy+1 (1 + | log )
Cq

et 4 Crem =G — by 00T (3)

HGV - hv”Ll(wa) YL (wg)

N

Theorem 1.4 further implies

Coy ™1 (1 + |log )

||G~/ - h’“{HLl(wa) < C

eC’lt + Ca,a,re_aa(l_r)t-

Choosing t = (C1 + ac(1 — 1))~ !log CaorC1 ) e get
CZ'Y s+1
3 caf(—l?f) )
> (2 + [log ) == n(7)

1G = Bl (wa) < Caar (m

which proves the result. g
We have now everything in hands to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let 6 and -, be defined as in the proof of Proposition 3.2. For such ¢ and
Y, the results of Theorem 1.4 and Corollary 2.9 hold and a + 7, < 3 — §. From the estimate
Gy — Goll L1 (we) < 1Gy — Pyl (w,) + IRy — Gol| L1 (w,,) and using Proposition 3.2 and (3.1),
we deduce that

Gy = GollL1 (w,) < 1(7) + Ca|Ay = Aol (3.8)

where we recall that Go(z) = Ao H (Aox), hy(z) = A\yH(\yx) where A\, = MQ(GV)_% is such
that [, 2?h.(z) dz = My(G,). It is therefore enough to quantify the rate of convergence of A,
to A\g. Resuming the computations of Lemma 2.7, we see that

1 [z —y| 2. X
Fo(hy, b — H H 2] dzdy = —log —
( v) = X2 (z)H (y)|z — y|*log ——— N edy= 2 %8
where we introduced the notation
/ f@gwle —ylPlogle —yldedy,  fg€ Liw,), s>2,  (39)

and used that .%(H, H) = 2log \g and [, H(z)H (y)|z — y|* dzdy = 2 as established in
Lemma 2.7. We introduce also the notation

#(.9) =7 [ F@atw)le =y (e =y = 1) dady, fo9 € L ()
and recall (see (2.2)) that .Z, (G, G+) = 0. One has then the following
2 Ao
)\—gylog A_,Y = fo(hfy, hfy)

= Jo(hy — Gy by — Gy) + 290 (hy — Gy, G)— I (G, Gy).
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Hence,
2 Ao
v log /\ < Callhy - G’YHLl(wa) (2”GvuL1(wa) + [y — G'yHLl(wa)) + ’jO(GVaG'y)’ )
Y

for 2 < a < 3 and where we used Lemma B.4. We deduce then from Proposition 3.2 and the fact
that sup,c(g 4, |G~ | L1 (w,)< oo that

2 )"Y ?
()] e

(2sup,, |Gyl 11 () +1(7)) — 0asy — 0T is an explicit function.

(v) + [A(G, Gy

where 7(y) = Cyn(y

)
Since .7, (G, G ) 0,

2 )"Y ?
()]

and, using Lemma B.5 together with the estimates in Theorem 1.4 and Corollary 2.9, we obtain
that, for2 < a <3 —0d and s > O such thata + s + v, < 3 — 9,

A 2
-2
e (3)

for some positive constant C' depending on a, s. Noticing that A, — Ag as v — 0, it is bounded
both from above and below for « small enough, we get that there is Cy such that

() + ’jo(GvaG'y) - jv(GvaG'y)’

< 7i(y) + Cy# | log 4/, Vv € (0,7%),

A 5 s
log | < Cp (n('v) + 75+ | log 'Y\) :

Ao

[1—z|
Z max(1,x)’

Since |log x| > there exists C; > 0 such that

Ay = ol < Cu (ﬁ(v) +78+71|10g7|) v e 0.
Introducing the explicit function7j(y) = C,C4 (f](’y) oy | log ’y]) +7(7), this, together with

(3.8), proves the result. O

Remark 3.3. Notice that the constants Cy and C in the above proof depend on upper and lower

bounds on \, = (MQ(G,Y))_% and M>(G,) < %. We describe in Section 3.3 a procedure which
allows to make the function 7j(y) completely explicit.

3.2. Uniqueness. We now establish some stability result for .%.
Lemma 3.4. Let2 < a < 3. There exist v, € (0,1) and a mapping 7 : [0,v.] — RT with
lim 7n(y) =0
Jlim, ()
and such that, for any vy € (0,74), any G1 G2 € &y,

1% (G} = G2) |Ix, < 7(7) |G} - G2

VHXG . (3.10)
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Proof. Let § and ~, be defined as in the proof of Theorem 1.5. For such § and ~,, the results
of Theorem 1.4 and Corollary 2.9 hold and a + v, < 3 — 0. Let vy € (0,7,). Let us consider
G,ly, G% € &,. We introduce the difference

_ 2 1
9y =G5 — G,

which satisfies (2.31). We write this last identity in an equivalent way:

100 (20:(0)) = [Q4(9, G2 — Go) + O, (G — G,y
+[Q4(9v: Go) = Qo(gy, Go)] + [24(Go, gy) — Qo(Go, 94)]
+ Qo(94, Go) + Qo(Go, gy)

which can be written as
—Zo(9y) = Ay + By +Cy
where
Ay = [9,(9y,G3 — Go) + 24(G} — Go, gy)] By = [Q+(gy, Go) — Qo(g, Go)]
and
Cy = [24(Go, 9y) — L0(Go, gy)] -
Therefore,

120 (9 |1 (wa) < AV L1 wa) + B4 1121 (wa) + 1G22 (0)-

One estimates separately the norms || A, || 11 (w,)s [|By |11 (w,) and [|C5 L1 (w,)- Clearly

AN 2t (wa) < Collgy Lt (was) (HG}Y — Gollpi(w,) + 1GE - G0||L1(waﬂ)>

MmNy L1 (wass)

NN

with
m() = Co (G} = Goll(wery + 1G2 = Gollpran, ) ) -
According to Theorem 1.5, the mapping 7; : [0,7,] — R is such that
Ty 1 (7) = 0.

One deduces then from Proposition B.3, with s > 0 such that a + v, +s < 3 —§ and p = 2, that

1Byll 1 () < Cs27T 1108 Y119l 11 () |Gl L1 (a0
+24 541 (HGoIILl(wWﬂ)II%HLl(wa) 9312 oy o) [|Goll 22 () + ||G0”L2<wa>”9’”'”(%)) '

Using the known bounds on G| (in particular Theorem 1.4 and Corollary 2.9), one deduces that
there exists Cs > 0 (independent of ) such that

1Byl (wa) < Csv o1 (L + [log V) (|99t (e e)e 7Y € (0,7%)-

In the same way

1C |21 (wa) < Csv a1 (L + [log V) |97/t (e 0)s 7Y € (0,7%)-
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Gathering all these estimates, we obtain

12009 sy < (1) + 2073 (14 [1011)) ll92 /12 s )

< Cas (M) +20977 (1 + [1og 1)) llg2 111 )

for some suitable choice of s (small enough) where the estimate [|g, |1 (w, , .,) < Ca,sllgy [l L1 (wa)
is a consequence of Lemma 2.14 (for v € (0, §)). This gives the result. g

Combining the above result with Proposition 1.7 allows to show directly that two solutions
to (1.10) with same energy coincide as already explained in the introduction.

In order to extend this line of reasoning to general solutions to (1.10) with different energy,
one somehow follows the same approach but needs a way to compensate the discrepancy of
energies to apply a variant of (1.21). Typically, let us now consider two solutions G,ly, G?Y S

and let g, = G}/ — Gg{. If one is able to construct g, € Y, such that

Z0(9y) = Zo(gy)  and My(3y) =0 (ie gy € Yy) (3.11)
then, as before, one would have
ﬁ\l%llxa < 1209910 = [1%0(9:) Ixa < 7(7) gy llx, - (3.12)
To conclude as before, we also need to check that there is C' > 0 (independent of ) such that
l9y11x. < CllgylIxa (3.13)

from which the identity g, = 0 would follow easily, as in the introduction (see end of Section 1.4)
for solutions with same energy.

Of course, constructing §,, satisfying (3.11) is easy since % is invertible on YO. The difficulty
is to check (3.13). The main tool to achieve this scope is the “linearised dissipation of energy”
functional

Ho(f,Go) = /R2 f(@)Go(y)|lz —y|*log |z —y|dedy,  feL'(wy), s>2.
First, one has the following observations
Lemma 3.5. The function defined by

2 1—3a?

=Ty “€R

go(2)
belongs toY,, and is such that

Z(g0) =0 and Ms(go) = —2.

Moreover,

(g0, H) = —2log2 — 2. (3.14)
Finally, it holds

So(H,H) =2log2+ 1.

Proof. Let g € L'(w,) be such that #(g) = 0 and [ g(z) dz = 0. Setting

P(€) :/Re_igmg(az) dz
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one checks without too many difficulties that (see also (4.36))

e d e =2 <5> P <§> —(€).

4°d¢ 2 2

Direct inspection shows that
vo(€) = l¢*e ™™

is a solution to the above equation, with

o(0) = ¥(0) =0, 9f(0) =2#0. (3.15)
Since moreover e~ ¢l is the Fourier transform of G(z) = m, one deduces that 1)y is the
Fourier transform of

d? 2 1—3z?
90() da? () (14 22)3

Notice that gg € L' (w,) for any 2 < a < 3 and (3.15) shows that gg € Y, with Ms(gg) = —2.
Let us now prove (3.14). Observe that, if g is an eigenfunction of .Z with zero mass, then using
the weak form of the linearised operator .Z,

+ [swonoas e [ [ g (o(*52) - jo - Jol-n) ayas =0

where we used also that H is even. Taking ¢(z) = 2% log |z| = %x2 log 22 as a test-function we
get

1 —yl? _
- / g(x)z0, (2% log 2%) dz + 2/ g(z)H (y) ] log ] dz dy
8 Jr R2 4 2

—/g(a:)x2 log |z|dz =0
R

where we used that [, g(x) dz = 0 while [, H(y) dy = 1. Thus one obtains that any eigenfunc-
tion of . with zero mass is such that

Ao H) = [ a@H @)l =~y logla gl dady

1
= <log2— —>/g(m)x2 dw+/g(m)x2 log |x| dz.
2) Jr R

In particular, for g = gg = —di;gG as defined previously, it holds that

(3.16)

d? 1 d?

2 _ 2 _ 1 2 2
/Rgo(a:)x log || dz = /RG(x) 2 (2% log ||| da 2/RG(JZ) 2 (% log 2] da
= —2/ G(x)log ]w\dx—3/G(m) dz = -3

R R

using [ G(z)dz = 1 and

1 > 1]
/ og || d:EzZ/ o8 dx = 0.
R1—|—ZE2 0 1—1—(132
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Therefore, recalling that Ms(go) = —2, we deduce (3.14). The same idea gives also the expression
of #y(H, H). Indeed, by definition

1
—Z/Ra:H(:n)%qS(a:)dznZ/RQO(HaH)ﬁbdﬂ?

= | H@H({y) [qﬁ <‘"” - y) - ¢<w>} da dy.
R2 2
With ¢(z) = (z)dz = [ Ha?dz =1,
1
—i/x H(x )log\xldw——: / H(2)H (y)|z +y[*log |z + y| dz dy
R
l 2
o8 / H(z)H(y)|z +y[*dzdy — /H x)2? log |z| dx
1 log 2
:ZfO(H,H)— o8 —/H(x):p log |x| dx
R
ie.
Jo(H,H) =2log2—1 +2/ H(z)x?log |z| dx.
R
Using that
/ H(z)z?log|z|dz = 1
R
we deduce the result. 0

Thanks to the above observations, we deduce the following
Lemma 3.6. Let 2 < a < 3. There exists ¢ € Ker(%y) N'Y, such that
M3 (o) # 0 and  Fy(po,Go) # 0.
Proof. Since the function go defined in Lemma 3.5 belongs to the kernel of .Z, one has
wo(x) = go(Mox) € Yo N Ker(%).

Moreover, recalling the definition of .# in (3.9) and since Go(x) = Ao H (Agz), one checks easily
that

1
Ho(wo, Go) = )\3 <f0(go, H) —log )\ /R? go(z)H (y)|x — y|2d:ndy>

)\3 (Ho(g0, H) — log Ao M2(g0))

where we used that gy € Y. In particular since Ms(go) = —2, we deduce that

4
Fol00,Go) = =70 (4 go+H.H) == #0
0

)\3
where we used that .%(go, H) = —2log2 — 5 and % (H, H) = 2log 2 + 1. O

The existence of the above function g implies the following fundamental property of the
linearised dissipation of energy
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Lemma 3.7. Let2 < a < 3. If p € Ker(%) NY, then

Ho(p, Go) =0 = Ma(p) = 0.
In particular, in such a case, p = 0.

Proof. Let ¢ € Ker(.%) NY, be such that #(¢, Gp) = 0. Let

1 Ms(¢)
=9 - MZ(SOO)(’DO'
One has of course Ms(pt) = 0 (ie. ¢ € Y?) and % (¢) = 0 since both ¢ and g belong to
Ker(.%). According to Proposition 1.7, one has ch = 0. Therefore, p = 1\1\4/[2 2((50)) o, so that
Jo(p, Go) = ]\]\{[422(((2)) Jo(po, Go)-
Since, by assumption .%(p, Go) = 0 while .#(¢o, Go) # 0, it must hold that Ms(¢) = 0. In
particular, ¢ € YY and, using Proposition 1.7 again, we deduce that ¢ = 0. O

A final technical Lemma regards the smallness of the linearised energy dissipation functional
for differences of solutions to (1.10)

Lemma 3.8. Let 2 < a < 3. There exist v, € (0,1) and 7jo(y) with

lim 79 ("}/) =0
¥—0

such that, for any y € (0,7), any G}, G2 € &,
|4 (G — G2,Go)| < mo(7) |G — G2Ix,- (3.17)

Proof. Let § and 4 be defined as in the proof of Theorem 1.5. For such § and ~, the results of
Theorem 1.4 and Corollary 2.9 hold and @ + v, < 3 — §. For v € (0,7y), G}Y, Gi € &y, let

Gy = G}Y — G%. One notices that

29(9y,Go) = J0(9v, Go — G'ly) + J0(9y, Go — Ggy) + So(9y, G*ly + Ggy)

= J0(9v, Go — G'ly) + Jo(gy, Go — G»Zy)
+ (]0(9% G}, + G%/) - ]’y(g’ya G»ly + G?y))
since
(G, -GG+ G2 = 7(G),G) - 7(G2,G2) =0

for G,ly, G% € &,. One invokes then Lemma B.4 and B.5 to deduce that, for any s > 0 such that
5+ 7 +a <3 —0,thereare Cy > 0,Cg 52 > 0 such that

|-70(9v: Go)| < Ca (HGO - G}YHXa + HGO - G?YHX(L) ll9+1x.
+ Cas 27 [log 4| |G, + G5 |1, 191,
+ 12’}/H_l <2Hg'}/“xs+w+a”G’ly + G’zyHXa+s+'y + HG})/ + G%”LQ(wa)”gVHXa> *

Using Lemma 2.14 again, for s > 0 small enough and 7 small enough so that v + %(a +s)<a
(that is v + 2 < %), one has [|gy[[x,,,.. < Casllgy]x, and, thanks to the uniform bounds on
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1G! | 12(w,) and |G [Ix,4.s, (i = 1,2) given by Theorem 1.4 and Corollary 2.9 together with
Theorem 1.5, we deduce the result. O

We are in position to prove our main result regarding the steady solution to (1.10) following
the strategy described before.

Proof of Theorem 1.2. Let § and ~, be defined as in the proof of Lemma 3.8. For v € (0,7,),
G,lyilGh% € &y, letg, = G,ly — G%. Since % is invertible on Y, there exists a unique g, € Y°
such that

Z0(3y) = ZLo(gy)-
It remains to prove the estimate (3.13) between ||g,||x, and ||g,||x,. To do so, we actually prove

that g, — g, € Span(yp), more precisely
- 1 -
9y = Gy + 200, 20 = p—ofo(gy — Gy, Go) (3.18)

where pg = H (0, Go). Indeed, writing g, = gy + 200 one sees that, since ¢y € Ker(.%)
Z0(9y) = Z0(3y) = Lo(9+)
while, obviously, the choice of zp implies that
]0@% Go) = ]0(977 Go).

From Lemma 3.7, this implies that M>(g, — gy) = 0 and g, — g, = 0. This proves (3.18).
Consequently,

. . lollxq .
197Ilxca < 19510 + [20l [lollxa < N9yl + ool 70(9y — §v- Go)

~ ©o|X, -
< g, I, + | |;'0'| (1952, Go)| + | 90(, Go)])

by definition of zy. According to Lemma B.4, there is Cy > 0 such that

703+, Go)l < Collgyl1x.-
Therefore, there are C, Ca > 0 (independent of «y) such that

197(1%. < C1llgylIx, + C2[Ho(gy, Go)l - (3.19)
Using now (3.17), we deduce that

lgyllxa < Cillgyllx. + Como(¥)ll9+Ix.
and, since lim,_, 7jo(y) = 0, we can choose 7* > 0 small enough so that Ca7jp(7y) < % for any
v € (0,~7*) so that
1 -
lgnllxa < Cillgyllxes Vv € (0,97).

With the strategy described before, we deduce that the function g, and g, satisfies (3.11)—(3.12)
and (3.13) with C' = 2. In particular, we deduce from (3.12) that

VL gl <) lgnl
C(V) 201 .g’*{ Xa \77 /7 g’Y Xa

and, since lim,_,o 7j(7y) = 0, there exists 4" > 0 small enough so that

971lx0 < llgylIxa
which implies that g, = 0 and proves the result. O
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3.3. Quantitative estimate on 7. In order to make Theorem 1.2 fully exploitable, we need
to be able to quantitatively estimate the threshold parameter 7. From the above proof, this
amounts to some quantitative estimate on the mapping 7(vy). As already observed in Remark
3.3, the only non fully quantitative estimate in the definition of 77(y) comes from the mapping
77(7) in Theorem 1.5. In this subsection, we briefly explain how it is possible to derive such a
quantitative estimate. We keep the presentation slighlty informal here just to stress out the main
steps of the estimates. The crucial point is then to estimate the rate of convergence of

G+ = Goll 1 (w,)

to zero as ¥ — 0. To do so, we briefly resume the main steps in our proof of uniqueness and
introduce, for G, € &,

hy =Gy — G,.
One sees easily that
Zo(hy) = Qo(hy, hy) + [Q4(G, Gy) — Qo(G,, G4)]
which results in
140 (h)l1x, < Collhy I, + Coy+7 (1 + [logn])
for some positive Cp independent of 7y (see Lemma 3.1 for a similar reasoning). Now, as before,
there exists h, € YO such that
vV ~ ~
— < h = .
ciy1lla < 1200n)llx, = 11200, Iz,
Therefore, there is C' > 0 independent of 7y such that
1B, < CllhglE, +Cy7T (14 |log ) (3.20)
and we need to compare again || 1, ||x, to || ||x,. As in Eq. (3.19)
1Py llx, < Cullhsllx, + Ca 7oy, Go) (3.21)
for C'1, C'y independent of . Now, one checks without major difficulty that
29(hy, Go) = Ho(hy, hy) + [75(G, G,) — (G, G,)]

where we used that %(Go, Go) = #, (G, G~) = 0. Thus, with Lemmas B.4, B.5, Theorem 1.4
and Corollary 2.9, we deduce that

| 7o(hy, Go)| < Csllhy 1%, + C3y T (1 + | log )

for some C'3 > 0 independent of y. Summing up this estimate with (3.20) and (3.21) one sees that
there exists a positive constant ¢y > 0 independent of v such that

1 llx. < collhyll, + coy™T (1+ [log 7).

Now, since we know that lim,_,q || ||x, = 0 (without an explicit rate at this stage), there exists
Y0 > 0 (non explicit) such that

V’Y € (07 /70)

N —

collhyllx. <

and therefore .
17y llx, < 2e0v5T (1+]logy]) Vv € (0,7).
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Such an estimate provides actually an explicit estimate for vy since the optimal parameter be-
comes clearly the one for which the two last estimates are identity yielding

1

ST 14 -
2 0+ o) = oo

This provides then an explicit rate of convergence of G, to G as
Gy — Gollx, < 2e077T (1+|lognl) ¥y € (0,70)

for some explicit . This makes explicit the mapping 7j(y) in Theorem 1.5 and, in turns, provides
some quantitative estimates on the parameter 4! in Theorem 1.2.

4. THE CASE OF MAXWELL MOLECULES REVISITED

This whole Section is devoted to the special case of Maxwell molecules, corresponding to
«v = 0, which as already observed, is the pivot case around which our analysis revolves for our
perturbation analysis. We collect here several results, some of them of broader interest than
the mere use we make of them in the previous part of the paper. We begin with revisiting the
exponential convergence to equilibrium obtained in Carrillo & Toscani (2007). Let us recall
that, generally speaking, the analysis of Boltzmann-like models with Maxwellian interaction
essentially renders explicit formulas that allow for a very precise analysis (we refer to Bobylev
(2020) for an extensive study).

More precisely, we consider the following equation already in self-similar variables

1
Org = —Zax(wg) + Qo(9, 9), (4.1)

with initial condition ¢(0,z) = fo(x) which, using Galilean invariance, we will always assume
to be such that

/Rfo(x) dz =1, /wao(x) dz =0, /szfo(w) dz =1. (4.2)

Notice that, as said in the introduction, we chose in (4.1) the parameter ¢ = % which is, in
the special case of Maxwell molecules, the only one which provides energy conservation and, as
such, it holds at least formally that

/Rg(t,w) dz =1, /Rxg(t,x) dz =0, /szg(t,x) de =1. (4.3)

The collision operator for Maxwell molecules is given by

Qf)a) = [ £ (e + %) o (v =4) dv=57) [ atw)dy =500 [ )y
=: Q5 (f.9) — Q (£.9)

Notice that QE]" can be written as

05 (ro)a) = [ 1 (e +%)a(e=5) av=2 [ s+ nata -y

R
o / F)g(@e — y)dy = 2(f * g)(2x).
R
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Alternatively, in weak form we have

[ et awewa= [ [ o (o(*52) - 30 - 3000 ) dedy. @

We will refer to equation (4.1) as the self-similar equation for Maxwell molecules. If we define
the Fourier transform of g as

o(1,€) = /R o(t, )e=" da,

then (¢, £) satisfies

1 N2
Oup(t,€) = 7£0ep(t,€) + o (1,3 ) — w(t.€), (45)
with the initial condition ¢(0 fR fo(x)e ™ dz =: @g. Due to (4.3), ¢ satisfies for all £ > 0
that
p(t,0) =1, Oep(t,0)=0,  Fp(t,0) = -1. (4.6)
In particular,
®(¢) = (1+[¢)e (47)

is a steady solution to (4.5) and this is exactly the Fourier transform of the steady solution H
defined in Theorem 1.1.

4.1. Exponential convergence to equilibrium. We investigate here the convergence to equi-
librium for solutions to (4.1) and show the following

Theorem 4.1. Assume that g = g(t,x) is a nonnegative solution to (4.1) with the normalisation
(4.3), and call p = @(t,&) its Fourier transform in the x variable. Then, for0 < k < 3, and for all
t >0,

-0 : 1 -
o) — @l < e llgo ~ Bll,  with o =1 k- 27F.
In particular, g(t) converges exponentially to H in the k-Fourier norm for any 2 < k < 3.
More generally, forp > 1, % <k<3+ %, and forallt > 0,
—oL . 1 1 1+1 &
llo(t) = @l < P llpo = @Iy, with  oy(p) =1 Tk + w2
In particular, g converges exponentially to H in the k-Fourier norm for any (k, p) such that oy (p) >

0.

Proof. We begin with the first part of the proof, corresponding to the special case p = oc.

e The case p = oo. Assume that g = g(¢,x) is a solution to (4.1) with the normalisation (4.3),
and call ¢ = ¢(t, ) its Fourier transform as before. Then (¢, ) is a solution to (4.5) with the
normalisation (4.6), and we may take the difference with ® given in (4.7)

Y(t,€) = p(t, &) — B(§)
to find that

s(t.6) = 10e0(t.9) + v (.5) (w(15) + 2(5) ) - wie. (48)
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If we call (7'(t)),- the semigroup associated to the operator ¢ 1£0¢1p — 1, given by
T(1)6(€) = e p(¢e),
then by Duhamel’s formula we can write
60 =T+ [ T~ )A0)ds, (49)

where we denote ¢(t) = 9(t,&) and
A(s) = A(s,€) = 1/1(3, g) <cp(s, g) + @(g)) .

Now we notice that, for any h such that ||hl],, is finite,

1y lt
T, = et sup PECN _ a-tbr g MECD] _ oy a10)

40 [€]F 40 |gedt|k
On the other hand,

)

A1 < 2|0 (55)
since [|¢|lco = ||®||oc = 1 (recall that both g and H have unit mass). This implies

3 3
‘¢(37k2)‘ — 21—k sup W(? 2)’
€] e20 |5
Notice that |1 (t, )|, < +oo forall 0 < k < 3, since 1 is a C? function in & with (t,0) =

O(t,0) = 8521/1(15, 0) = 0. Using (4.10) and (4.11) in (4.9) we see that

= 27y (s)l- (4.11)

Al < 2sup
££0

t
rwuwu<WTwwmk+Auwa—@A@wMu
t
<e*P%Wqu+/e*““WﬂWM@Mds
0

t
<yl + 217 [ eIy ds,
0
which immediately gives by Gronwall’s lemma that
—o . 1 _
IOl < e livoll,  witho =1 — 2k — 2175,

We deduce the exponential convergence in Theorem 4.1 with rate 0 > 0 for 2 < k£ < 3.

e The general case p > 1. For 1 < p < oo, we recall that the norms |[-|[;, ,, defined in (1.16), are

given by

WP

Wil = [ e .

and are well-defined if |1)(&)| < min{1, C|¢[?} for some C' > 0 and % <k<3+ %.
With a similar calculation as before,

T @l = e Nl
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with ) )
=1--k+—.
A i
Also,

1_
A, < 272 M)l

so we can repeat the same argument to obtain
t
@k, < NTE ol + /0 IT(t = 5)A(s)]ll, , ds
t
<l + [ A ds

t
< Molly +275F [l 0

Then one concludes as previously using Gronwall’s lemma. g

Remark 4.2 (Invariance by scaling). The above result holds for solutions g to (4.1) satisfying
the normalisation (4.3). Recall that (4.3) is preserved by the nonlinear dynamics (4.1). We explain
briefly how it applies to solutions of (4.1) with positive energy (not necessarily unitary). Namely,
assume that gg is an initial datum such that

/ go(z)dz =1, / go(z)xdz =0, / Go(z)z*dz =E >0
R R R

and let §(t, x) be the associated solution to (4.1). Notice that §(t, x) share the same mass, momentum
and energy of go for anyt > 0. Setting

go(x) = Ago(Ax), A= VE,

one sees that g satisfies (4.3). Denoting by g(t, z) the associated solution to (4.1), the scaling invari-
ance property of Qg implies that

g(t,z) =Ajg(t,\x), A=VE

while Theorem 4.1 asserts that

_ . 1 _
llot) = ®ll, < el — @l with  ox =1 k- 217",

where ¢(t) is the Fourier transform of g and ® that of H. Denoting by ©(t, -) the Fourier transform
of g(t, ), we have

P& =t NE)  and  H\(€) = B(\E),

where ]E\I)\ is the Fourier transform of the steady solution
Hy(x) = \H (\z), A>0

of (4.1) with unit mass, zero momentum and energy E. Since

(EORY:A

| = Allet) - @, vt >0

one sees that

oo ] <=

~ = 1
‘(po—H)\H‘k with Ok ::1—Zk—21_k.
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In other words, for any choice of the initial energy E > 0, solutions to (4.1) relax exponentially fast
— in the |||-|||,, norm — towards the unique steady solution with the prescribed energy E.

4.2. Baseline regularity. Let us concentrate the discussion in proving the propagation of base-
line regularity of solutions, which in Fourier space follows by showing uniform propagation of
decay at infinity. The argument presented here is an alternative to the one in Furioli et al. (2009)
where propagation of uniform regularity for the equation (4.5) has been proved. Here the strat-
egy is direct (no iteration/approximation step required) and based purely on comparison. To this
end we present a series of lemmas with the main purpose of proving a comparison principle and
showing a proper upper barrier for solutions of the rescaled Boltzmann model.

The key argument consists in proving that estimates for low frequencies transfer to large fre-
quencies. We start adopting the following notation:

D=¢0, thus ePlu(é) =u(e'¢), teR. (4.12)

Also, introduce the operators

T (€) = u <§> " (g) and Lu(®) = u (g) . (4.13)

Lemma 4.3. For a given bounded function o((t,-) € L°°(R) (¢t > 0), the unique solution to
Opu — oo(t, ) Lu =0, u(s, s,&) = up, t>s>20 (4.14)

is given by the following evolution family

u(87t>£) = V(S,t)u() = Zﬂj(87t7£)Lju0(£)

=0

where 119(s,t,&) = 1 for any s,t,& and

j—1

£ .

pi(s,t,&) = / LF (o0(sk,*) ds-:/‘ o (sk,— ds;, Jj
Ai(s) H 0 J Ai(s)kl;[o 0 ok J

with Al (s) the simplex

WV

1

A{(s):{sj:(so,...,sj_l), Sgsj'_1<8j_2<...<81<80<t}

and

t S0 Sj—2
/ ~ (Expression) ds; :/ dso/ dsy . / (Expression) ds;_.
Al(s) s s s

Proof. The proof is by direct inspection. Write

(s,t,8) = Zua $,t,&) Lug(£).

7=0
Observe that 119(s,s,&) = 1, p;(s,s,§) = 0for all j > 1 so that v(s, s, ) = ug. On the one
hand,

8tv(37 t, 6) = Z 8t:uj(37 t, g)LJUO(S) = Z 8t:uj+1(37 t, 5)Lj+1u0(§)

j=1 7=0
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since we assumed g to be constant. On the other hand,

Lo(s,t,€) = > L (pj(s,t,§)L7ug) = > L(p;(s,t, )L ug(€)

J=0 J=0

since L(wy we) = L(wy)L(ws) (if one of the w; is bounded at least for the product to make
sense). Therefore, if

Oppuja(s,t,-) = oo(t, ) Lyj(s,t,-)  pjea(s,s,:) =0 j=0
one gets that v(s, t, ) solves (4.14). By induction, since iy = 1, one gets the desired expression
for p;, 7 > 1. O

Remark 4.4. If o is constant say oo(t,&) = a and s = 0, because the volume of the simplex
A = AJ(0) is equal to one gets

o0
t)y .
:E (a. L ug
; J!
j=0

which is exactly the expression e®*Lug of the semigroup generated by the bounded operator a/LL.
Lemma 4.5 (Comparison lemma). Assume continuous functions u,v € [0, 1] satisfying
du+ (—iD+1)u>Tu], (4.15a)
v+ (— 1D+ 1)v <[], (4.15b)
and u(0,-) > v(0,-). Thenu(t,-) = v(t,-) foranyt > 0.

Proof. For such two functions u and v define S(t,&) := (ul(t, § + v(t, §)) € [0,2]. Then, one
concludes for the difference d = d(t, &) := u(t, &) — v(t, &) the relatlon

Ohd+ (—ID— St € L+1)d="RI(t¢E),

where R(t,€) is a nonnegative remainder. One can verify by direct computation that
——’Dt( (t,€) ) ( —1Dt S(t,é)) (e—%Dt L)
= (e 1Pt S(t,6)) (Le 1Y) =: So(t,€) (Le 1PY).

Then, for h = e_%Dtd it follows that

Oih+ (= So(t, &) L+ 1)h = e 1P'R(L,€) .
Using the previous Lemma (with o9 = Sp) and the evolution family {V(s,t)}:>s, one gets after
integrating in time

h(t) = e="V(0,t)ho + / t e~ =)y (s, 1) e~ 1P R(s, &) ds. (4.16)
0

It is clear from the expression of V(s, t) that, since L preserves the positivity and g > 0, V(s, t)
is a nonnegative operator for any 0 < s < ¢, therefore, the second term in (4.16) is nonnegative.
Furthermore, note that A > 0 if and only if d > 0. In particular, the first term in (4.16) is also
nonnegative since dy > 0. In this way h and hence d are nonnegative. g
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Proposition 4.6 (Propagation of strong smoothness). Take ©(t,&) a solution of nonlinear equa-

tion (4.5) with |p(t,&)| < 1 forallt > 0 and £ € R and assume |(0, )| < ®(a &) for somea > 0.
Then,

lo(t, )| < ®(a&) forall t>=0.

Proof. Set v(t, €) = ‘(p (t, g)( for a > 0 and u(t, &) = ®(€). Since vy(&) = |p(0, £)] < B(¢)

and
0=y (0 (8) T o (o)
= if@gv(t,g) +% < < ;) +<,0< ;)) v <t§> —o(t,€)

(05~ () (9

all conditions (inequalities (4.15a) and (4.15b) and initial condition) of Lemma 4.5 are satisfied.
Therefore, v(t, &) < u(t, ) or, equivalently, |p(¢,&)| < ®(af) forall t > 0. O

with

Remark 4.7. Compare this result with (Furioli et al. , 2009, Theorem 4). Interestingly, the result
here is not associated to a physical counterpart g(t, x) since the inverse Fourier transform of ¢ may
not be positive.

Now, we present two lemmas to relax the strong decaying condition on the initial data. For
any 3 > 0, we set

@

Us(r) = (ry =P = (1+T2)_2 , r > 0.
We will use repeatedly that W3(-) is non increasing with moreover
Us(r) < min <1,r_6> vr > 0.
Lemma 4.8 (Short time estimate). Fix 5 > 0. Assume u(t, &) € [0, 1] satisfies the inequality
du+ (—iD+1)u< Iy (4.17)

together with

0 <u(0,8) = uo(§) < Ups([E]) VEER

Assume there is 6 > 0 such that

u(t, &) < Wg(l€]) for €| <48, t=0.

Then, for any 3’ € < ] there exists 7(0, 3, ') > 0 such that

<u(t,§) < Ua(l€]) foranyt € [0,7(5,3,8')], EeR.
The time 7(8, 8, 8') satisfies limg:_,o 7(0, 3, B') = 400 for any fixed § > 0 and 8 > 0.
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Proof. Let U(t) be the semigroup associated to the generator —1D, ie. U(t) f(£) = f(ﬁe_%t).
Setting w(t, &) = e U(t)u(t, &) we write (4.17) as

du+ (—iD+1)ux u(t, g)Lu(t,i)

or equivalently

o <U(u(, g>Lw(t,£)

and denote by (W(s,t)), , the evolution family constructed in Lemma 4.3 with
. 3 _ § 1y
oo(t, &) = [U(t)u(t,2) =u t,2e at ).

< w(t, &) < W0, H)ug(€)

We have

with
o0
W(0, t)uo (& ZyjtﬁLJuo )
7=0

where vy(t,£) = 1 for any ¢, £ and

t 1
I/j(t,f) = /0 U <SQ7 §6_450> Vj—1 <80, g) dsg.

Then
0< et wy(t € eit) ug (ge4> (4.18)
7=0
Since uo(£) < Va(|€]),
tZVJ (t 564 VLW (]5\64 ) =e! Vj(t,ge%t)\llﬁ (2_j\§]eit> .
=0 =0

, it holds that

. 1 .
In addition, since ¥4 is non increasing and 277 |¢| e1? > 27

u(t,€) < —tZujtseu%@ 71El) -

7=0
By assumption u(t,&) € [0, 1], therefore
1 < tj
vj(t,£et’) < T (4.19)
and
0<u(t,§) <e Z ﬁ% 2770el) - (4.20)

Observe that (r)* > (y/ar) forany a > 1 so that for any 8 > 2(3,

Us(|E]) < Wapr ( 35 !5\) Vé e R.
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Consequently,

V(277 [€]) < Popr ( N\ \ﬂ) 2oy <\/ 25" \ﬂ)
28] | B
< 2270w ( 25 >‘I’B'(!§\) €l > 6

Using this estimate in inequality (4.20), it holds

u(t,€) < e Wy (€]) Ve (\/ » 6) > 5 22
= Wy (|E) s (,/%5) TN e 6. (421)

B 1In (( 26’5>)
o2

Thus, choosing

7(6,6,8") =
we have

u(t,§) < Vg (lgl)  for|f>0 and t€[0,7(5,5, )]
Since, by assumption, for |£| < ¢ it holds u(t,£) < ¥g(§) < ¥ (|£|) we deduce that

u(t,€) < Ve (lE])

holds true for any ¢ € R and ¢t € [0,7(5,3,3")]. From the definition of 7, it is clear that
limg/_m 7(6, ,8, ,8/) = +00. O

Lemma 4.9 (Global-in-time estimates). Assume u(t,£) € [0, 1] satisfies the inequality (4.17)
foranyt > 0 withu(0,§) = uo(§) < ¥a(|¢|) forany & € R If

u(t,§) < Vs(lE)  forlél<d4, >0,
forsome 3 > 0, then u(t, &) < Vg(|£]) forall§ € R.

Proof. Inequality (4.17) together with Duhamel’s formula gives that

2
u(t, &) < uo (564 > e+ /t e~ (t=9) [u <s, ge%(t_s)ﬂ ds, t>0.
0

For a given ¢t > 0, recall that ug <§e%t> < ¥g (\5] e%t> < Up([¢]) whereas, if [£] < 8e™ 7 then
@ 19 < 4 forall s € [0, t] which by assumption gives

u <S, gei(t_s)> < \IJB <|2£|e%(t_s)> < \I’B <§> Vs € [O,t]

where we used that Wg(-) is non increasing. Consequently

u(t,€) < (e + 0 ('“) (1—et, 0<lel<set/,
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In particular, setting

4
to :=4log 3
so that || < 6 = [¢] < 8¢t fort € [0,t0], one deduces that
2
u & < wallehe v (B) a-en, ocig<s repul aw)

2
Since W3 (@) < Ug(|¢]) for [£] > V/8, one deduces that,

u(t,€) < Ws(l€)). VB<IEI<6  te(oto]
which, by assumption, yields
u(t, &) < s(l&)) forall0 < [§] <6,  t &[0,
Iterating this process k-times one gets
3 k
wr < v, o<ld<a-(3) . tebul

Since k is arbitrary, we get
u(t,€) <Wg(le),  foralle €R, te0,t).

Since then, for any ¢ > ¢y

t—t 2
u(t7§) < e—(t—to)u (tojfe%(t—to)> i / 0 e_(t—to—S) |:u <S + to, gei(t—to—s)>:| ds
0

one can reproduce the above argument to show that the bound u(t,£) < W¥g(|{|) holds also
on the interval [tg, 2tg]. Iterating the procedure, the bound holds for any time ¢ > 0 and any
e R U

We are in conditions to prove the main result of the section.

Theorem 4.10. Let ¢(t,&) be a solution of the self-similar problem (4.5) satisfying |o(t,&)| < 1
and with initial condition ypq enjoying the regularity

llpo = @lly <00 and  |po(§)] < WalclE])
forsomek € (2,3), ¢ € (0,1], and o > 0. Then,
sup [o(t,§)] < Wa(co &)
>0

for some positive constant co > 0 depending only on «, ¢, and || — @ ||

Proof. Note that U, (c |¢]) < Wg(y/a/Bclé]) for B € (0, c? a]. Hence, choosing 3 = min{1,c? a}
it holds |¢o (&) < ¥5(|£]). Now, Theorem 4.1 states that

o . 1 _
lo®) = @l < e llpo - @I, with — o=1- k- 217> 0.

Therefore, with Cy, := [0 — @4
|(t,€)] < ®(8) + Crlé[*e™
<A+ e)e 4 ople)f veeR; t>o0.

(4.23)
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For any 3 € (0, 1), the mapping F'(r) = (1 +r)e™" + Cpr* — (1 + 7“2)_% is such that
F(0) = F'(0) =0, F'(0)=-1+8<0

from which one sees that there is § > 0 (depending on  and Cj) such that F'(r) < 0 for
r € (0,9), i.e.

(I < Wp(lE]) Vgl <d, =0 (4.24)
For large time, we introduce, for 5 € (0, 1),
Gi(r) = (1+7r)e + CurFe ™ — (1+1)7%,  r>0.
One first observes that
Gi(r)<(1+4r)e " -1+ grz + Ot = (14 r)e” =1+ pr+ Cprt — grz, (4.25)

with
(1+7‘)e_7’—1+57"2<0 for any 0 < r < 4,

e—4

when 8 < %5~ and

1

k—2
Crrt — §r2 <0 forany 0 < r < <%> .

Therefore, if 3 < %, then
Gi(r) <0 foranyt > 0and 0 <7 < rgy,

1

where g, := min { <%> k=2 ,4} > 0. Now, for 751, < r < 4, we have, again with (4.25)

Gi(r) < h(rpp) + Cpdte™",
since hg(r) == (1+r)e™" —1+ grz is decreasing on [rg i, 4] when 5 < % < e~ Note that
hg(rgx) < 0. Choosing t, > =t log (—ﬁhg(r@k)), we obtain that

max Gy¢(r) <0, YVt > t,.
0<r<4

From this we conclude that
lp(t, )] < Wg(l€]), for [£] <4, t>t.. (4.26)

Given the estimate (4.24), we invoke Lemma 4.8 with u(t,&) = |p(¢,€)], 8 € (0,1), and 8’ €

(0, 3/2] sufficiently small such that 7(4, 8, 3") > t. to obtain that

ot Ol < ¥ (lE)), £eR, tel0t].

With this and the estimate (4.26) we use Lemma 4.9 in the interval [t., 00), with u(t, &) = |p(t, )]
and 3 = 3/, to conclude that

lp(t, )| S Ug(€)  forallé €R, t>0. (4.27)

In order to upgrade the decay rate up to o, we can bootstrap the previous estimate after noticing

that, thanks to (4.27),
£\2 €]
= < ’ 2
‘(’D<t’ 2) ‘ < Pap 2
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so that, u(t,&) = |¢(t, )| satisfies dyu+ (— 1D +1)u < Uopr (‘%‘) . Using Duhamel’s formula,
it holds that

)] < max {watcleh s (S)} . ez

Iterating this process, we see that, forany j € N, j > 1,

] < max { ol wan (51 ) oo (551) s ()}

holds for any £ € R and ¢ > 0. Notice that

max {\Ila(c |£|)7 \I’2a (%) 1 qI2J'*104 <%> ) \PZJﬂ/ (%) }

clél €] clél
max {\Pa (F) ,\I’zjﬁl (2_,7 < \Pa 2—] s
as soon as 2/ 3’ > «. Setting

/
co=c27 with j= Lmax <M>J +1
log 2

N

the above condition is satisfied and the result proved. g

Remark 4.11. Compare this result with Theorem 2 in Furioli et al. (2009). Again, the result here
is not associated to a physical counterpart g(t,x), yet it requires boundedness || < 1 linked to the
mass of g(t, x).

It is pointed out in (Furioli et al. , 2009, Lemma 14), if a function 0 < h € L' with unitary norm
satisfies that vVh € H® then |h(€)| < Wq(c|é]) with1/c® = max{2,2°}||V/h| jya-

4.3. Higher regularity norms. Let g be a solution to the Boltzmann problem (4.1)-(4.3) with
initial condition gg. Then, its Fourier transform ¢ is a solution of the self-similar problem (4.5)
with initial condition ¢y = gg. Let us start the discussion by assuming that the initial datum (g
satisfies the baseline regularity

llpo = @I, < oo and po(€)] < Tps(clé])
for some k € (2,3), ¢ € (0,1] and 8 > 0. Then, by Theorem 4.10 it holds that

sup [p(t, &) < Ya(colé]), £ER (4.28)
t=0

for some constant ¢ := ¢o(5, ¢, || o — @||,) > 0. With this estimate at hand we can propagate
higher regularity norms:

Theorem 4.12 (Sobolev norm propagation and relaxation). Let g(t) = g(t,x) be a solution
to the Boltzmann problem (4.1)-(4.3) with initial condition go(z) = g(0, x) satisfying

90(&)] < Wp(clé]),  E€R

forsome 3, ¢ > 0and gy € H'(R) for¢ > 0. Then, for5 < k < 3andany0 < o < %—%k‘—2%_k
one has

o) = Hllzre < e (llgo — Hllge + Co,0.1) oo — Hll oy ) - (429
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Remark 4.13. Compare this result with (Furioli et al. , 2009, Theorem 5). Theorem 4.12 is new, it
proves propagation and convergence in Sobolev norms at the same time with detailed rates. Further-
more, using the interpolation

1 4
lg(t) = Hllzr < CII(L+ [>T (g(t) = H)lI7 llg(t) — HI 52

with k > 0 and Theorem 4.12 with { = O show the exponential relaxation in the L' topology with
%0’ rate assuming the finiteness of the initial datum L? norm. Similarly, the exponential convergence
in L™ with rate o is shown by taking { > % and using Sobolev embedding.

Proof. As before, we call p = p(t, {) the Fourier transform of g. Then (¢, -) is a solution to (4.5)
with the normalisation (4.6) and the difference ¥ (t, &) := ¢(t,&) — ®(§) with ® given in (4.7)
satisfies (4.8). We introduce the notation

Om = ‘§’m¢

for any m > 0 and any mapping ¢ = ¢(£). Multiplying the self-similar equation (4.8) by |£|™
we obtain that the mapping ¥, (¢, &) = |£|™ (¢, &) satisfies

Othym = i € Dethm + 2™y (t, g><p<t, g) n 2%(:5, §)¢m<g) — (1 n %)wm.
We define (7},,(t)),~ the semigroup associated to 160 — (142, ie.
Tu(t)g(§) = e (89 (ceit), 20
and
it = o0 E). e o1 5o ()
so that
U (t) = T ()P (0) + /Ot Trn(t — 8)(Am(s) + Bp(s)) ds. (4.30)
Note that with a similar calculation as before, for any suitable A,
Tl = e lbll,  with g =14+ 725 +

Also,

Ny ST X A
A ()l < 2772 10m () @(lp < 27 2 leom—p(5)lly 05 (5) | ox

m—k+1
and  [|Bm(s)lll, <277 (1Bl oe 1 ()

Observe that Holder’s inequality implies that

_8 B
lom—p(lp < Nm(lle, ™ I, m =8,
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and (4.28) leads to ||¢g(s)||re < ¢y A Consequently, using Young’s inequality we are led to
t
m Ol p < NTon () m (O)ll. ,, + ; 1T (t = 5)(Am(s) + Bi(s)) [, ds
t
< e[ (0l +/0 e (| A ()l + 1B ()l ) s

t
—a —a s C
< e [ (0)ly, +/0 e omr(t= ( o ()., + 1 |||7/)(8)|||k,p) ds,

for a constant that can be taken as C' := ¢, om—k+3)% + 2™ ks ||® || Lo Note that

1
where we recall that oy, (p) = 1— 2k + 4%) — 2% 7% Therefore, thanks to Theorem 4.1 it follows
that

—o(p)t

WV
o

t
e~ mp(t=5) s ds< ——— 0 t
/ Il ds < s IO

As a consequence, calling u(t) := et @)t |4, ()l , we see that

C )y, () ds
E%_l(am,p —ox(p)) +E/O o

which, by Gronwall’s lemma, immediately gives that

u(t) < H‘wm(o)‘”k,p +

(4.31)

Cll(0
n(©lly < 0 (I Ol + i A2_).
e (amp = ok(p))

One chooses p = 2 and m = k so that

4m (Ol = ()22 = llg(t) — HI[r2

thanks to Parseval identity. Moreover, one has, for 2 < k < 3 (see Lemma A.2)
¥ (O)llx2 < Cligo = HI L1 (ay,) -

Consequently, from (4.31) one obtains the exponential relaxation in L?(R) as

- Cllgo — Hl 11 (w 5
lo(0)~ Fl < @O (g = F] o+ S0y ) 2
ep (Oék72 — Uk(2)
More generally, for any ¢ > 0 one can choose m = ¢ + k, p = 2 and use the fact that
er @l 2 = D@12 = llg(t) — Hl e -

Consequently, (4.31) implies that

< k<3 (432

—(o CHQO_HHLl X 5
lg(t) — Hl|ye < e~ (ugo o pa—— (ws) >> o Sk<s
e ?  (augr2 — or(2)

Estimates (4.32)-(4.33) gives the theorem. O
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4.4. Spectral gap in Fourier norms. We prove in this section, that the linearised operator .#
has a spectral gap with respect to the norms |||-[|,, and [[-|[[;, ,- The proof follows exactly the lines
of the proof of the above Theorem 4.1 and turns out to be simpler so we just describe the main
steps of it. We begin with the following

Definition 4.14. We define the linearised operator
f:@(g)CX()%XQ
with the Banach space X defined in (1.17) by

ZLh(x) == —%Z?x(xh) +29y(h, H),
and (L) = {h € Xy ; 0(zh) € Xo}.

The linearised operator .Z corresponds of course to first order expansion, for h small, of the
quantity — 10, (zg) + Qo(g, g) for g = H + h. The existence of a spectral gap is useful for the
study of the linearised equation

Oth = Zh = —iax(mh) +29(h, H), (4.34)
with initial datum h(0,x) = ho(z) = fo(x) — H such that

/Rho(:n) dx:/Rajho(x) d$:/$2ho($) dz =0, (4.35)

R
Our main result is then the following spectral gap estimate in the Fourier norms |-, and [[-[|,, ,,

Theorem 4.15. Assume that h = h(t,z) is a solution to (4.34) with the normalisation (4.35) and
callh = )(t, &) its Fourier transform in the x variable. Then, for0 < k < 3

@l < exp (=owt) llvoll,  VE=>0,
where 1o (£) = ¥(0,€) and o, := 1 — 1k — 2'%_In particular, 1(t) converges exponentially to 0
in the k-Fourier norm for any 2 < k < 3. Moreover, forany 1 < p < 0o,
@l < exp (=ox@)t) llYoll, — VE=>0,

1
where oi(p) =1 — 1k + ﬁ + 2tk

Proof. One directly sees that, under the normalisation (4.35), the equation (4.34) preserves mass,
momentum and energy. Notice also that, for h satisfying (4.35),
2Q0(h, H)(x) =4 (h* H) (2z) — h(z), z €R.

If h is a solution to (4.34) and 1) = v (t, ) is the Fourier transform of h(t, z) in the x variable,
P(t, &) satisfies the equation
1 e (&
which corresponds of course to the linearisation of (4.5) around ®. In much the same way we did

for the nonlinear equation, we can show equation (4.36) converges to equilibrium exponentially
fast: by Duhamel’s formula,

Y(t) = T(t)o + /0 T(t — s)B(s)ds, (4.37)
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where now
B(s) = B(s,€) := 2 (s, g) P (g)
Similarly to our calculation in Section 4.1 we have

" ( §) ' Cso Bl < 27166

Bis.&)l <2 (5.5

and we can use again (4.10) to obtain that

@l < NIT@olly, + /0 It = s)B(s)ll, ds

(-1 b 1ks
< O, + /0 (=109 B(s)]], ds

—a-1 N
< T gy + 21 /0 e~ (=30 s (5)], ds.

With the same argument as in Theorem 4.1 we derive the first result. The obtention of the second
result also follows the same lines as in Theorem 4.1. U

4.5. Spectral gap in smaller spaces. As explained in the Introduction, it is important to obtain
an equivalent of the above Theorem 4.15 in the more tractable space (see Definition 1.6)

vt={retwnl [ fwae= [ef@ar= [ @ as=o}.
R R R
for some a > 0 to be determined. Recalling that Y C X for any a > k and since, by Theorem
4.15, the linearised operator .Z, with domain
9(L) ={f € Yq; Ou(af(x)) € L'(wa)},

has a spectral gap in X for 2 < k£ < 3. Our scope here is to prove that .Z still has a spectral gap
(of comparable size) in the space Y9, namely

Theorem 4.16. Let 2 < a < 3. The operator (£, 7(.Z)) generates a strongly continuous semi-
group (So(t));=o on YO and foranyv € (0,1 — § — 217%), there exists C(v) > 0 such that

IS0 ()2l L1 (a0) < C@)e™ IRl L1 (a0,
forany h € Y? and anyt > 0. Moreover, one has

1L Pl L1 (wa) = foranyh € 2(%).

v
C(V) ||hHL1(wa)a
To prove such a result, as explained already in the Introduction, we resort to results from
Canizo & Throm (2021); Gualdani et al. (2017) and split the linearised operator as
< =A+B,
with
A:Xy—-Y? bounded

and B enjoying some dissipative properties. To this end we introduce some truncation function
and some projection from L!(w,) to YY.
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For R > 1 we consider nonnegative functions pg and 6 € C°>°(R) which are bounded by 1
and satisfy

Or(x) = pr(z) =1 for |z| < g
and
R 2
Or(x) =0 for|z| > 3 +1, pr(x) =0 for|z| > gR.
Let us now introduce the normalised Maxwellian
2
M(z) = % zeR
and
3
a0 = (3-2) M@, Gl =2 M@),  Gle) = (14202 M(a).
We then define a bounded operator P : L(w,) — L'(w,) by
Phia) = (@) [ b dy +Glo) [ Moy dy + @) [ )y dy. @em),
(4.38)
For any f € L'(w,), one easily checks that
f—=P(f) €Y.
Let us split £ as . = A + B with
A=Ay + Ay, and B = B + By + Bs,

where
Aih(z) = 40r(z) ((hpr) * H)(22), Ash = —P(A1h),
Buh(z) = —i@x(a:h) —h, Bsh=P(Ah)
and By = By 1 + Bg 2 with
Bash() = 4(1 — n(x)) ((hpr) « F)(20),  Bash = 4((h(1 — pr)) » FI)(22).
Recalling that
Lh(z) = —i@x(xh(a:)) ~ h(z) + 4 (h+ H) (20)

for any h satisfying (4.35), one sees that, indeed, A+B = A; +As+B1+ By 1+ By o+ B3 = Z.
The main property of B = By + Bg + B3 is established in the following

Proposition 4.17. Let a > 0 satisfying 1 — % — 2174 > 0. Then, forany0 <v < 1— % — 21—,

the operator B + v is dissipative in L (w,), i.e.
/Bh(x)sign(h( ))wg —1// |h(z)|we(z) dz, Vh € 2(&) C L' (w,).
R
This proposition is a direct consequence of the following three lemmas. Let us note that

1—%—21_a>0f0rany2<a<3.
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Lemma 4.18. Foranyh € 2(%) C L'(w,),

x)|we (x) de. (4.39)

/R Buh(x) sign (h(z))w,(z) dz <

Proof. Since B1h = — xc‘) h—— h an integration by parts leads to

/RBlh(ac) sign(h(z)) we(z) dz
= [ @) () + alelaw, 12 d = 3 [ @) wao) o

—/R|h(3:)|wa(:n)dx—|—Z/R|h($)|wa($)dx

since |z|wg—1(7) < wy(z) and (4.39) follows. O

Lemma 4.19. Foranya € (2,3) and anye > 0, there exists R > 1 such that forany h € L'(w,),

/ |B2 1h |’LUa / |h |'wa

/|B2,2h(m)|wa( )do < (21 /|h )| wa (x
R

(4.40)

Proof. We start with Bg 5 and a change of variables leads to

[ Baah(@)wa(w)de =21 [ (01 = pr) « H)@)I(2 + [al)* da
=217 [ (1= pm) « D@)af” d 2 [ (1= pr)+ E) @I (2 [al)* ~[el") d
R R
[ ) Bl 227 [ (11 )+ E@) 2]
R R

(4.41)

On the one hand, since pr € [0, 1], we deduce that

/] (1 —pr))*x H)(x)||z|*dx < //|>R y)|H(x —y) |z|* dy dz .
ly

Now, writing a = pa with @ € (0,1) and p € N, we have

(0%
p
ol = Jo =y P < (l2 — o1+ P = (Z (7 )i y)

J=0

p « p «
<§j<j> =y Jy| J>a=|y|m+§j(j> 2=y fy) 9
=1

=0
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Consequently, recalling a = pa,

/| (1— pr)) « H)(2)| || de < // ()| H(z —y) |yl dy d
5

+Z( )/ /yI>R|h(y)|H($—y)|$—ylja|y|(p_j)°‘dydx.

Since H has mass 1 and R > 2, we obtain

(A1 — ) * ) (@) o

I
<Arh<y>\\yrady+§j(§) g [ [ 2Ll H o ) o - b dyda
< [ 1) bl ay + 21 Z( ) [ wmlay [ F - ple - b a.

Since j < p, ja < aand [z —y[’* < 1+ |z —y|® and for a < 3, H € L'(w,), we conclude that

L1 =gy s @ el o < (1452 ) [lbiran @)

for some constant C' > 0 depending on a and || H || 1 (4, ). Similarly, one has

2-a — * T )¢ dz 2mag, x x =1l qg
o /R [(h(1—pr))<FT) ()] 2+ ]2])* dar < 2 /| /R ()| () (2 la+y])*

and, using that

1 ¢ gat A2+ 1Y) a1 Wal2)wa(y)

2+ |z +y))*™ <
@+ o+ .y 1+ 1y

)
we have

220 /R (B~ pr)) * H)(@)|(2 + |e])* " da

y)|wea(y dy/H Jwg (x) dz <

/|h wa(y) dy. (443)

<
2—|—R 2+R

With this at hands, the second estimate in (4.40) is a consequence of (4.41) together with (4.42)
and (4.43) if we choose R large enough.
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For the first bound in (4.40) we proceed similarly and first change variables and use the prop-
erties of the cutoff functions to get

/R\Bg,lh(ac)]wa(x) de = 2/R\((hpR) « H)(z)| (1 —0Or (g)) wy, (g) dz
2[ [ wlerwHE -9 (14 [3])" dyar

/>R/| , IHOIH(@ = 9) (1o =yl +1y))" dyda
T ly|<%

3

/x>R/ <R Y)|H(x — y)wa(y)we(r — y)dydz.

We next exploit that H € L'(ws4a) fora < 3and |z —y| > |z — |y| > g or |z| > R and
2
ly| < 23—R to deduce

Wass (T — Y)
[ 1Bash@w(oyao <2 / DIH @ = y)wa(y) ————— dyd
lal>R JJyl< (14 o —y|) =
< C(l Y)lwa(y) dy
Since 2 < a < 3, the first estimate in (4.40) follows if we choose R sufficiently large. g

Lemma 4.20. For anya € (2,3) and any e > 0, there exists R > 1 such that
/ | Bsh(x)| wq(z)dz < E/ |h(2)| we(x) dz Vh e 2(Z) C YO. (4.44)
R R

Proof. Recall that Bsh = P(A1h). Let us compute the first moments of A;h. Using that h € Y
and that H has mass 1, momentum 0 and energy 1, one obtains

[ An@yas = 2 [ ne—ypnte =) [ Hon(5) dody
= —2/RQh(x)H( )[1—/}3 < >] dy dz,

/RAlh(x)wdw = 2/Rh(ac—y)pR(x— /— (g) H(y)dzdy
= — [ h(z)H ()[1—;)3 ( )] (z +y)dyde,

R2

/RAlh(a:) 2dr = Q/Rh(a:)pR(:E) é<x2y>293 <“y> H(y)dz dy

and
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Consequently, one easily gets that

<2 ([ 1) |1 im0 [t + ) avan) S )

i=1

since max (1, |2/, (1 + |z[*)) < wy(2) and thus

[Bsh] <2 ( /R b =) H) |1 = pr(e — )6 (5 )| wa(@) dyd:c> Sl
i=1
< Ws

We next use the properties of the cutoff functions # i and pr together with wg(x) (y)ws(z—

y) for s € {a,2} to deduce that

x weo(r — y)wa(y) we(z)
1= ol = 9)0m(5) | wao) < Loy =t T SO+ Loy 5 s

o 2(1—2 1
< W’wa(x —y)we(y) + W'wa(z)
C

< Wwa(x — y)wa(y).

This yields

C 3
1B < 1 g ([ HOP0) [ e~ et~ ardo) 3216

C
< WHhHLl(wa),

for some contant C' > 0 where we also used H € L'(w,). We then deduce that (4.44) holds
provided R is large enough. g

Proof of Proposition 4.17. The proof follows directly from the combination of (4.39)-(4.40)—(4.44)
since it implies that, for any € > 0, one can choose R > 1 large enough so that

/ Bh(x)sign(h(z))w,(z) dz < — (1 - % —gl-e _ 3g> Il — VheD(L)CY
R
which gives the result choosing ¢ > 0 small enough so thatv =1 — § — 2170 _2¢ > 0. g

We establish now the regularising effect of A:
Proposition 4.21. Let2 < a < 3. The operator A : X — Y is bounded.
This proposition follows directly from the following two lemmas.
Lemma 4.22. Let2 < a < 3. There exists some constant C > 0 such that, for any h € X
[AL]| L1 (wa) < ClIRly
forany k > 2.
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66
Proof. First, one observes as before that
x x
2) we(3) e

I4hl13 ) <2 [ [(Chom) (a0 (5
<2 /R (o) H)(@)05 (5) wwalr) o
dz

where we used that w, (%) < wq(x). We then deduce from the Cauchy-Schwarz inequality that
1 1
2
1+ \x!)2X>

AR L1 () < 2 </R\((hpR) + H)(z)[* 0 (%) wa(e)* (1+ [l dw) 2 </]R (

(4.45)
L2

with y > % Thus, it holds
|kl < 2wyl ((hor) 5 H)OR () wasnllze
Z) . jetx
3) 117

< Canl(hpr) + H 12 + Cay ||((hor) « H)OR (

where we used that wg, < Cyy (1 + |- |*1X) for some C,,, > 0 and we also used that || < 1.
Let us first consider the first term in the right-hand side of (4.45). We deduce from the properties
1 o~
[(h* pr) H| 2.

of the Fourier transform that
— 1 e
Rr)* Hl||2 = —= |hpr - H||2 =
V2 (27)3

1
hpr) * H||12 = — ||(h
(hpm) < Hil2 = = 1o
We have [1[* < (€ — 7| + [€])* < wy(§ — n)wy(€). Thus,
[(hx pR)(E] < IRl /R 0" [R(E —m) dn < I7ll, we () 1Pl L () (4:46)
Hence,
1 - —~
[(hpr) * H|[2 < ——5 Al PRI 1 (wy) [[wn () H [ 2 -
(2m)>
Since pr € C*(R) is compactly supported, pp € L'(wy) for any k& > 2. Furthermore,
wp()H(E) = (1 + [¢))FHelél € L2(R) for any k > 2. Consequently, there exists some
constant C'(k, R) > 0 such that
[(hpr) * H| 2 < Ci(k, R)|[ ]l (4.47)

Let us now consider the last term in the right-hand side of (4.45). Set
x
F(x) = ((hpg) + H)(@)0r (3 ) o] = la|™* Fy(a).

1 -~
——|F |2

= ||F =
12 H HL2 \/%

Notice that, as previously,

|(Chom « £ (5) 1- 174

For / € Nand g € L'(wy), we have ;Z\g = i’ Thus, if a + y = 2p with p € N, we have
dz

7] = |4 Fol®)].
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As previously, Fy = (21)2 ((/H * PR) f{\) * O () and we deduce that
T
d2p R 1 ~ X (2p)
@Fo e [((h*PR)H) *OR (5)}
Hence,
——1p)
. 1 ~ By :
_ . |etx < 3 _
[rom 200 (5) 1144, < (e ) B <0 (5
L2
Young’s convolution inequality then implies
— = (2p)
. 1 ~ By :
_ . |etx < 3 _
|((hpr) « HOg () 1+ 1712 < Y ) H| |, |0z (5)
- e [ B e E| 1o ()],
(2m)2 L 2/ 12

Recalling (4.46) we get

| (o)« HOR (5) 1174

1 — .
; <l s ok Bl 1Rl 177602 ()]

(27)? 2

L2
For any 2 < a < 3, we may choose x such that a + xy = 2p = 4. Since g, pr € C>(R) are
compactly supported, pr belongs to L' (wy,) forany k > 2and |-|*05 (5) € L*(R). Finally, H =

(1 + |€])e” 1 and thus H e L' (wy,) for all k € N and there exists some constant Cy(k, R) > 0
such that

o< () 14,

Gathering (4.45), (4.47) and (4.48) completes the proof. O

< Colk, BB, (4.48)

Lemma 4.23. Let 2 < a < 3. There exists some constant C > 0 such that, for any h € X
[A2h| L1 (w,) < ClIAl
forany k > 2.

Proof. Tt follows from the definition (4.38) of P that

bl < 2 [ 1Ah(E)] (1 +a%)do max (Gl

< CllAA] L1 ()

and the result follows from Lemma 4.22. O

Proof of Theorem 4.16. The existence of a spectral gap for .# in Y! is now a direct consequence
of Propositions 4.17 and 4.21 together with (Cafiizo & Throm , 2021, Theorem 5.2). g

We explain now how we can deduce the spectral gap estimate in Proposition 1.7 in the Intro-
duction from Theorem 4.16.
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Proof of Proposition 1.7. We consider a > k and the spaces X and X, defined previously so that
Y% € Xp. Notice that (%) = 2(£) N X, and, since Go(-) = A\gH ()\o-), one checks easily
that, for any test function ¢

/zmmm m~fi/sz A&@dwa/zmnwmmww
R R
where

of(x) = f (%) . seR

This shows that
Lof =12 (nf), Vfe D)
In particular, since Y,, Y¥ are invariant under the action of the bijective transformation 7y and
of course
Range(.%) = Range(.£) = Y
one sees that Yg is a closed linear subspace of X, stable under .%j.
This allows to define in a standard way the restriction % = fg\yg of % to the space Y

o . 0 0
L = $0|Y2 : 9(30) ny, — Y,
and one can deduce then from Theorem 4.16 the result. O
APPENDIX A. PROPERTIES OF THE FOURIER NORM AND INTERPOLATION ESTIMATES
The following lemma is a consequence of (Carrillo & Toscani , 2007, Lemma 2.5).

Lemma A.1. Let2 < k < 3. There exists a constant C' > 0 depending only on k such that

|mm<04a+mﬁmwm

forany € My (R) satisfying

/Ru(da:):/Ra:u(dx):/Rx2u(da:):0. (A1)

Proof. Since p satisfies (A.1), we have i(0) = 0, 4/ (0) = 0 and /2" (0) = 0. Hence, Taylor formula
implies that

s\\w/\W&Mt

We set s = k — 2 € (0, 1). Then, for ¢(r) = r*, we have

= IIJ‘2 X X 0
M~Au+>wwww><

Moreover, ¢ is a strictly increasing function with @ nonincreasing. It follows from (Carrillo &

Toscani , 2007, Lemma 2.5) that
2" (t€)| < 2Map(Jtg]),
where ¥ (y) = [qﬁ(y‘l)]_l = y%. Hence,
2M

1
0 <2M 2+S/ 5 dt <
11 (6)] €| ; S

This proves the result since s + 2 = k and M < [ (1 + [=])" |p|(dz). O

—[¢]>*>. (A2)
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A similar Lemma holds for the more general Fourier norms |-, ,, defined by (1.16). Namely,
one has the following.

Lemma A.2. Let1 < p < oo and 2 < k < 3. There exists a constant C > 0 depending only on k
and p such that

Il < C /R (1 -+ a])* [ul(dz),

forany € My (R) satisfying

/Ru(dw):/Rw,u(dx):/szu(dw):&

A, /| e e [ T ae

Next, for [£| > 1, we simply use the bound |fi(§)| < [p [p1|(d) whereas, for [£] < 1, we use the
bound (A.2). This leads to

- 2prt! ’ _dE
p [
Al , < I </R(1—Hx]) |ul( dx) </ |2l( dx) /5>1 EoF

‘Ek < 0. O

Proof. First, we have

The result then follows since f‘ €>1 T

The following lemma is a consequence of (Carlen et al. , 1999, Theorem 4.1).

Lemma A.3. Fork > 2,8 > 0and0 < r < 1, one has

1712 < B[ A{12 U+ 1r1)

wzthf / f(z)e ¢ dz,

M = 1;7"), N:M+%, C(T,B):<2<1+%>>l_r.

2(ax—a)
7 2ax+1

only on o, a and a, such that, for every f € Ll('wa )N L2,
11121 wa) < CUFIG2 NS N oy

Proof. The Holder inequality with the three exponents p; = a, p2 = 1—, and p3 = 2 leads to

Lemma A4. Leta, > aanda € (0 ) be given. There exists a constant C' > 0 depending

1L (wa) Z/le(:ﬂ)lalf(@ll_“(l [z (L ) 7 Y, (2) da

[e3

(1slel) ¥ ar)

<IAIgNfILe, ( [

2(ax—a) 0

The last integral converges since o < 57—
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APPENDIX B. NONLINEAR ESTIMATES FOR O AND .7,

We gather here nonlinear estimates involving integrals of the collision operator Q., for v > 0
in the spirit of Alonso et al. (2010). The same kind of computations also enables to get nonlinear
estimates of the functional .#, introduced in Section 3.1. We begin with the following easy result

for QS‘ )

Lemma B.1. For any measurable f, g, h, one has

/RQSF(f, g) hdz < V2||h|| 2 min (£l 1 lgllz2, gl lLf 1 z2) -

Proof. There is no loss of generality in assuming f, g, h nonnegative. One has then

/QO .9 hdaz—/ fl <$+y> dz dy.

Given x € R, one deduces from Cauchy-Schwarz inequality that

[Laton (52 av < ahue [ (55 |

from which we get that
/R 0% (,9) e < VI lua gl 2t o

Exchanging the role of g and f, one deduces the result. g

= V2 gl 2 Il 2

We now turn to some L? estimate for Q+ for v > 0:
Proposition B.2. Foranyk > 0, there is C' = C}, , > 0 such that
195 (f; Hwkll2 < [l fwyl[pr [ fwky llz2

and
195 (f, Hwpll 2 < Cmin(|| fwgll o | fwpis 2, (| fwrll 2 [ fwrss |l 2)-

Proof. One has

Q170 = [ #(a+8) 1 (o= 5) ol an O (1.1) = f(a) [ 1wl =yl

and, in particular,

2
195 (G frwelfe < [ 15wt [ / rf<y>uw—ywdy] 0 < || fopan 22 ] fros 21
R R

where we used that |z — y|7 < w,(z)w,(y). For the Q¥ (f, f) term one can for instance use
that

197 (f, Hlwillr: = sup IT(y)
gl 21

/Q+ f, Dwg(x)p(z) dz= /f Y|z -y wy (Jﬁgy)@(ﬂc;y) dz dy.

where
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Since wy, (Z5) < wy,(z)wy(y) one has, with Fj, = | f|wy,

e < [ o= i A@Rwe (T dedy

x —y|?" < |z|” + |y|” so that, with a symmetry argument

re < [

RZ

and, since v € (0, 1),

Frar () Fi ()0 (‘"” . y) dz dy.

One deduces easily by Cauchy-Schwarz inequality that,
7\ 72
-tz
7\ 2
which gives

1% (f, f)wgll e < 2vV2min(|| fwpq |22 | fwl 1, | Fwrsq | | Fwokl p2)
and ends the proof. 0

I () < 2| Friy ll 2| Frll 2 sup
)

‘ =22 s 2 Fell a2
L

We also have

= 2V2|| Pyl o | Bl 2l 22
L

I () < 2/ Fiiq |l o2 | Fll 2 sup
Yy

We establish now some comparison estimates between QV and Qp in the limit v — 0:

Proposition B.3. Let2 < a < 3,p > 1 and~y,s > 0 satisfying s + v + a < 3. There exist some
positive constant C' = Cs,, > 0 depending only on s,p such that, for any f € L'(wsi~14) and
any g € LP(wq) N LY (Ws4~+4q), it holds

1Q0(9: ) = @4(9: NIzt (wa) + 1Q0(f59) = Q4 (F, O L1 (wa)

< Cs pv =t [ Log Y[ f1l 21 (wa) |9l L1 () + 24 75F2 <H9||L1(ws+wa)HfHLl(wa)

1 21w s ) 19121 (o) + 1191 20 () 1 N 21 (a00) + HfHLP(wa)”gHLl(wa)>-

Proof. We prove the result for || Qo(f, 9) — Qy(f, 9)ll ! (w,) only. First a change of variables leads
to

190(7.9) = &, Durgwny < [ [ 1F@llal1L - bo = ol wo (52 ) azay
w [ [1@tani 1o or (252 + 22 ) sy

<2 [ [ 1@l 11~z - Pl walaea(s) i

since w, () < we(z)wa(y) and 3 (wq(2) + wa(y)) < Wa(2)wa(y).

Let0 < § < 1and R > 1. Splitting the above integral according to |x —y| < 0,0 < |z —y| <
Rand |z —y| > R, we get

HQO(fhg) - Q“/(fv g)HLl(wa) <+ 12+ 137
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with
11—2// D9 11— 7 — 5[] wa(2)waly) dz dy
|z— y|<5
12—2// Dlg@)| 11— 7 — 5[ wa()wa(y) de dy
o< |z— y|<R
I =2 / / Dlg@) 1 = 7 — 5[] wa()wa(y) de dy.
|z— y|>R

Since 0 < 1, for |z — y| < ¢, we have |1 — |z —y|7| < 1. We then deduce from Hélder’s
inequality that

ez [ < [ . dy>p71 ([ st an) 7oty

p—1
< 2(20) 7 [lgwallze [l Fll L1 (wa)
for p > 1.

Now, since R > 1, for ]a: y| > R, we have \1 - \x - ym |z —y|7. Moreover
implies that either [z > £ or

|z —y| < 2|x|. Now, if |y| >

a:\ and
% and |z — y| 2|y|. We thus deduce

that
n<2 [ / 1 F@lg)llal wa (@)wa(y) e dy
|z > Z3
ot / / M@ lglwa@ly () dzdy
y
21+'y s
<%/ / | F@lg )] wa()wa(y) de dy
?
21—1—733 s
L] 1@t ) ardy
§
21+'y3s

< (||gup(wsﬂ+a>ufup(wa) 112t e 921 ) ) -
Finally, for 0 < |z —y| < R, we have |1 — |z — y|?| < ymax{|log d|, R log R}. Hence,
o < 2ymae{[log 8| Rlog B} | [ 1f(@)llg)lws (), () docly

< 2ymax{|log 4|, Rlog R}|| £l £t (wa) 191l 21 (we)-
We deduce that

1Q0(f:9) = (f 91 (wa) < CoV Izt () 191 Lt i)

+ (HgHLl(wsﬂﬂ)HfHLl(wa) 1 2t (o) 191 21 (a) + Hg”LP(wa)HfHLl(wa)>
with Cp = Cy(0, R) = 2max {|logd|, Rlog R}, and

C1=Ci1(6,R,p,s) = max{ (25) , 21735 R s} .
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We choose then R, ¢ such that R = 7—3%1 and 20 = 7% from which
Ci =4+ max {2,21773°} < 12y57
since 0 < s, < 1. Now, with such a choice, one sees easily that
Co < Cipy™ #41]log ]
for some positive constant C; j, depending only on s and p. The conclusion follows. g

We recall here some notations introduced in Section 3.1. Namely, set

At0) = [ f@atle=sPholle—ul) dedy. g€ Lw). s>
and

£(5.9) = [ 1@l = yPA, (e =) dod, fog€ L)

where
r’—1
Ao(r) = logr, Ay (r) = — > 0,7 > 0.

One has then the following first basic observation
Lemma B.4. Fora > 2, f,g € L*(w,), one has
[20(f;9)l < Call fllzr wa) 191l 21 (wa)

for some positive constant C, > 0 depending only on a.

Proof. Up to replacing f with | f| and g with |g
both f and g are nonnegative. One has then

Aolfog)| = / F(@)g(y)|x — yl? log |z — y| dzdy

|lx—y|>1

, we may assume without loss of generality that

4 / F(@) gz — yP2|log |z — ]| d dy
lz—y|<1

1
<a [ f@o@le— ol dedy-+ 5| Fluslols
lz—y[>1 €
since there is ¢, > 0 such that logr < ¢,r% 2 forany r > 1 and @ > 2 and 7‘2|10g7“ < 2—16 for
r € (0, 1). This gives the result since [z — y|* < wq(z)w,(y) and || - (1 < || - |21 (w.)- O

Recalling that lim,_,o+ A, (1) = Ag(r) for any r > 0, one has the following estimate for the
difference between .%; and .#,:

Lemma B.5. Let2 < a < 3,p > 1 andy,s > 0 satisfying s + v+ a < 3. There exist some
positive constant C = Cy 5, > 0 depending only on s,p such that, for any f € LY (wsi~+q) and
any g € LP(wg) N LY (Ws4~+4q), it holds

175,(f,9) — Zo(f, 9)| < Carspy 1108 Y| 1|t (w191 Lt uw)

+ 12y5+1 <||9\|L1(wsﬂ+a)||f||L1(wa) + 12 (s s ) 191 21 (0) T HQHLP(wa)HfHLl(wa))-
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Proof. Asbefore, we assume without loss of generality that f, g are nonnegative and observe that

7(.9) = A9 < [ F@ale = o 10,12 = D) = Bole = o)) dady,
Observe that, given r > 0,
d rPlogr? —rf +1
—Ag(r) = 5
ds B
so that
d
0< 5Aa(r) < Ay

since for any z > 0,0 < xlogz — z + 1 < (z — 1)2. Integrating this inequality over 3 € (0,7),
yields

which also reads
0 < Ay(r) = Ao(r) S YA (r)Ao(r) = (7 — 1) Ag(r).
Therefore

7 (Fr9) — Ao, 9) /f Dz =yl ||z — y” — 1 Jog(|z — y))] dz dy

C/f V(1 + |z — gl | [1 = |z — y["| dzdy

where we used that there exists C, > 0 such that r 2logr < Cy (1 +r%) for any a > 2,7 > 0.
Therefore, there exists C;, > 0 such that

7,(f.9) — Ao(f,9)] < Ca / F@)g() 11— |z — 4] wa(x)wa(y) dz dy.

The computations performed in Proposition B.3 give then the result. g

ArPENDIX C. RIGOROUS JUSTIFICATIONS OF L? AND SOBOLEV ESTIMATES

We provide in this Appendix the rigorous justifications of some of the formal estimates de-
rived in Sections 2.4, 2.7 and 2.8 about the regularity of the profile G . We begin with the rigorous
proof of Lemma 2.3.

C.1. Justification of the L? estimates. To justify rigorously the estimates in Section 2.4 we
begin with the following lower bound on the collision frequency

(?J)Z/RGy(w)lw—y\dx, JER.

We point out that, even though such a lower bound is not uniform with respect to v, it will allows
subsequently to derive L2-estimates which are uniform with respect to :

Lemma C.1. Lety € (0,1) and G € &,. There exists a constant ¢, such that
Y(y) = ¢y forally € R.
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Proof. Clearly from the triangle inequality we have
B0) = | Gr@le — ' de > My(Gy) ~ ol
Consequently,

2
On the other hand, for 5 < 1, as in the proof of Lemma 2.5, we have

S0 = [ (lo =01+ 1) Gola) o= [ 1,56 (a)

Yy(y) = —y if |yl < <M>W (C.1)

5
)5”’—/3G7(aj—l—y)d$.

2=

Thus, if |y| > (M” (2G”)) we deduce from the pointwise upper bound (2.7) that

. s : z ) 1
D) 257—0/ #deW— 2C5~ > 6 — 406 <M'Y(G’Y)> K
5z +yl ly| — o 2

1 ( My(Gy) 1 M“/(2G“/)

1 o 1
as soon as § < 3 <T> " Since y < 1, there exists § = 0, < 3 < )7 (depending on

v) for which the above left-hand-side is positive. Recalling (C.1) and introducing
1
M ~ <~ (M B
Cy:mln{@j(;;/_glc(s* <@> W}’

the claim follows. g
Rigorous proof of Lemma 2.3: We introduce the following regularization of G
U, = G, * 0, e>0
where (0. ), is a family of mollifiers
ela)=c"0(Z), weR e>0
where ¢ € ¥°°(R) is nonnegative, compactly supported in the interval [—1, 1], with unit mass
and such that 2:¢'(z) < 0 for any 2 € R (one possible choice being the classical function p(z) =

exp (371) 11 (@)
It is not difficult to check then that U, satisfies
1 d 1d
e (2T = ——
4 dx () 4 dx
Now, as for the proof of (2.10), one sees hat for any nonnegative ¢

[ i@, Gpdn <2 [ (16, G e da
R R
which, in turns, shows that, since o. > 0

[Q7(GH, Gy) * 0] <295 (|- "G, Gy) * 0=

[G'y * ($95)] + Qw(Gw, Gw) * Qe (C.2)
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Now, since
Qf (f,9)(x) = 2(f * g)(2x)
one has
Qf (f.9) % 0:(x) = QF (fog * 8=),  Ge(x) = %@g (2).
Setting then
\I’E =Gy * 0
we further deduce that
[QF(G,, Gy) = 0c] <295 (\ : PGV,\TJE) . (C3)
Notice that o. = g2, and
U, = Uy,

On the other hand, using Lemma C.1 we have
(05(Gy.Gy) v o)(@) = [ Go(2)5,(ecle —2)dz > e Wela)  w€R. (Cd)
v (s Gy e gl gl

In the remainder we follow ideas from (Mischler & Mouhot , 2009, Proposition 2.1) and introduce
for A > 0 the cut-off function
l’2 A2
A@) = Aa(@) = T loca+ (Ax - 7) 1ooa (C.5)
which satisfies A’(z) = min{z, A}, A(z) < 2A'(x) as well as zA'(y) < A(z) + A(y).
We test now (C.2) with A’(¥,) to get

1
195656 s 0N () o 5 [ Vi) aca+ APusnda

1 d . B /
<7 /R 1 (G * (@oe)| A(Te(z)) do + 2/[R oF <| : |vG7,\If€> N(0.)dz.

Notice that di (G * (20:)] = Gy % 0 + G x (x0l) Le.
x

d x x
a [G’Y * (‘Tga)] - \Ila - G'y * hg, hg(x) = —?QI (g) .

Using (C.4) and ¥2(2)1y.<a + A%1y. >4 = min{¥2(z), A%} we can further deduce that

' E min{¥?(x), A%} dz
Cv/R‘I’a(w)A (\I/E)dacJFS/]R {W%(x), A%} d
1 , § B /
< Z/R[\I/e(ﬂf) —Gwsha]A(\Ifg(sc))olgchz/RQgr (\ y GV,\II€>A(\I/€)dx.

Recalling A(z) < zA’(z) we finally get

cy/A(\Ila)dx—i-%/min{\I/?(a:),A2}dx
R R

1 ~
< Z/R[\I’a(x) — G, xh] A’(\IIE(x))dx+2/RQa' (, . WGV,\PQ N (D) dz. (C6)
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Next, we note that

/ of (I-1Gy, 0) N(w2)

\
E
5}
Q
=
)
\
§
7~
S
m
A~
8
+
<@
~——
~——
a.
<

Using A'(z) < x to get

/dx/fﬁa(y)zv( (‘””*y))dy [ [t (‘””*y) dy < 201G, |13, = 2

we obtain together with xA’(y) < A(x) + A(y) that

/Q+ G, V. )A/ / EleNe dx/ (\I/ (y)>+A <\II£ <w;y>> dy

+400!
2/1 2" G () dx/RA (\T/E(y)> +2A (V. (y)) dy +4C0~L (C.7)
With A’(0.) < A, we have furthermore that
! /[R [W.(a) - G+ ho] N (V. (2)) da

4
Notice that the family (h.), is also a family of approximation of identity in particular since
each h. is nonnegative and

T _ / _ _
/Rha(x)dw——ég—zgg(mdx— /Ry@ (y) dy /R@(y)dy 1L,  Ve>0. (C9

Thus

A
< ZH\I’a—G-Y*hEHLL (CS)

Since . also converges to G in L' ase — 0, we deduce from (C.8) that
1
[ 9@ = G < (V) do
R

lim — = 0.
Combining this with (C.6) and (C.7), there exists v4(¢) — 0 fore — 0 and A > 0 fixed such that

e—0

cw/A(\Ife)daH—%/min{\I’?(:p),Az}dx
R R

0
QVA(6)+2/_£|3:|7G7(3:) d:n/RA(\ng(y)) +2A (T (y)) dy + 4COL. (C.10)

Since ¥. — G, in L' as ¢ — 0, there exists a sequence (€k)peny converging to 0 as k — oo
such that ¥., — G and ¥, — G, for a.e. z € Ras k — oo. Moreover, since 0 < A(z) <
Az, we have A(W,,) < AV, and A(V,,) < AT, as well as A(T,,),A(T.,) — A(G,) ae.
on R as k — oo. By a generalised version of Lebesgue’s dominated convergence theorem it
then also follows that A(¥., ), A(¥.,) — A(G,) in L' as k — oc. In the same way, using



78 R. ALONSO, V. BAGLAND, J. A. CANIZO, B. LODS, AND S. THROM

min{¥?(z), A%} < AV (z), we get mln{\Ifak, A%} — min{G,Qy, A%} in L', Thus, restricting to
the sequence (&), in (C.10) and passing to the limit & — oo we get for fixed A > 0 that

cy/ ANGy)dx + < / mln{Gz( ), A%} dz
/ z["G(z da:/ A (G, (y)) dy +4C0O~1. (C.11)
We can choose ¢ > 0 sufficiently small such that 6 f_ 127G (x) de < Cl which implies

/A yda + /mln{G2( ), A%} dx < 4CO

Thus, for A — oo by Fatou we get |G|,z < oo (with of course a non uniform estimate with
respect to 7). Since min{G2, A*} < G2 and A(G,) < G2 we get for A — oo by means of
Lebesgue’s dominated convergence theorem from (C.11) that

1 l
C_v+_)/(;g(x) dz <3/ 2" G () dx/G?Y(y) dy +4C01,
8/ Jr i, R

This fully justifies the estimates in Lemma 2.3. g

Following the same lines of proof, we can rigorously prove the weighted L?-estimates in
Corollary 2.9

Justification of Corollary 2.9: We proceed as in the above proof and introduce, for € > 0,
v, = Gﬁ/ * Qe

and recall that U, satisfies (C.2).
We next introduce ¢, € Cj (R) such that

(2) || ¥ for |z| <
x) = -
s ok + % for |z| >

We use (,0% W, as test function in (C.2) to get
5 [V@ld@) - 2op@e)de + [ [05(656) x 0] @) e)U(o) ds
8 R R
1
< 1 /R [\Ilg(x) -G, * ha} 02 (x)V,(x) da
+ [ 105(6,,6,) + o] (@)b(a)¥e(a) do. (€19

We first note that by means of Cauchy-Schwarz and Young’s inequality we have

1 1
1 [ - 6 ] as < v -
R

< ”‘PZHLMH\I, _

ST

* he LZHG“/HL?HQsHLl
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so that

1

1 [ [3@) = 6 he] @)@ ar < i v, -

el = ve(e) (C.14)

where we also used that ||G,|| .2 is uniformly bounded according to Theorem 1.4 and that ¢ is
bounded by a constant depending on ¢. Thus, as in (C.8) we see that for fixed ¢ > 0, we have
ve(e) = 0ase — 0.
Next, using Lemma 2.5 together with w, > 1, we can bound Q- (G, G) from below as

/R Q5 (Gy. Gy) # 0] (2)R () V. (2) da = /R (G3,) * 0.J? (1) Ve (x) da
>k, /R (Gywy) * 0?0, da — [(1— 57) + V25| G | 2] /R U2 (2) R (x) da
> (1= (1= 8 = V231G, [12) [ W)t a) da

Choosing & = 72, we get, as in the formal proof of Corollary (2.9), that —(1 — §7) ~ 2vylog~y
and /2§ = /2y which yields together with the uniform bound on |G| > from Theorem 1.4

that

[ 105(6,.6) < 0] @)@ ¥elw)do > (v, ~ Collogal) [ B()(a)do. (1)
R R

From (C.12) we obtain

5 [ Bolde) 2@l > 2 [ Red@a. e

Finally, to estimate Q7 (G, G,) we use (C.3) to deduce that

[ 105(6,.6) 0] (@)t ).t
//‘xWG (y)e (aj;y)\lle(x;y>dyda:.

Next, with (C.12) we have ¢(252) < |22 F < 5(|z|* + |y[*) which yields

/R (05(G.G,) * o] () (2) V() da

< [ [1atre@bate (S ) v () dys
o [ [Pl @ () v (Y5 v
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Young’s inequality implies |z|7|y|* < k+y|x|7+k + k+7 ly|F+7 < |z|F7 + |y[F+7 and thus
[ 105(65.6) x o] @)@ (o) do

2 [ [ a6 @ () e (5 ) dyda

+ [ [ G@ll (5 ) v (") ayd.

Using Cauchy Schwarz in the y integral for the first term and in the z integral for the second
term on the right-hand side, we finally conclude

/R (07(G.G,) * o] () (2) V() da

< (M (Gl + Mo (B, 1) [ B@twyae) . (can

From Young’s inequality we get ||¥||;2 < |G| L2 and one has

Mo () = / / G (& — )3 (y) dy do = / / &+ Gy (2) 2 (y) der dy
< 2Me 1<Mk+“/ /’y\kﬂge dy) A Miyy(Gy) +¢), (C18)

where we observe that ¢ has been chosen in such a way that sup.¢ g 1) [ ly[*+75.(y) dy < oo.
Gathering (C.13), (C.14), (C.15), (C.16), (C.17) and (C.18), we get

1k
(1 = Callog |+ ¢ = 7 ) 1Weelfe < vale) + 4(Mpi5(G) + Ol Weipelze. (€C.19)

For fixed ¢ > 0, we have ¢y < C; which together with U, — G, in L? yields || ¢||2 —
|Gl L2 as € = 0. Thus, passing to the limit £ — 0 in (C.19) yields

1k
(1 = Or10g 3]+ 5 = 7)I1GseellEe < 4(Misr (1) + |G pel 2.

Since Ky — lasy — 07, one easily concludes that for some explicit 7, > 0, it holds Ky + % —
—v|log~|C > % for any y € [0, 7,) which implies
1Gyeellrz < 32(Mi44(GH) +¢)  fory <.

The claim then follows by Fatou’s lemma upon passing to the limit £ — oo. g

C.2. Rigorous justification of the Sobolev estimates. We now fully justify the regularity
estimates in Theorem 2.12. For this, we proceed by a series of lemmas.

Lemma C.2. Foreach G, € &, we have QF (G, G,) € L™ (R) N LY (wy,) foranyk € [0,3—7)
||Q;F(G%G“/)HL°°
195 (G Gl 11 (o)

NGl 2w 1G22
2G5 (L1 [eF!

/A N

(Wrt) | (wg)*



ONE-DIMENSIONAL INELASTIC BOLTZMANN EQUATION 81

Proof. Using |y|” = |z 4+ 4+ 4 — 27 < | + §|7 + |2 — 4| since v € (0, 1) together with the
Cauchy Schwarz inequality, we find

QT (G, G,)( /G 42 G,y<:c——) Iyl dy

g/R‘er%( G7<w+§)Gy(x—%> dy—i—/RGV w+%) ‘x——‘ G, (ac——) dy

SAGH |2 G 2

This proves the first claim. For the second claim we use |x — y|7 < |z|” + |y|? for v € (0,1) to
deduce

/%(G%Gw)( 2ywy(x dx—/ G+ (2)G ()l — y wy (%“’) dy dz
R
< [, 6@G 1)l + lo s (o)uwn ) dyd
< 2GS 21wy ) IGA [ 21 () -
and
| 066 )@@ dr = || G ()G ke ol (o) dyda
< [ P wu(e)G, @G, () dy o + /R G, ()wn(a)ly G (y) dy dr
< 2GH 21wy ) IGA [ 11 () -
This concludes the proof. O

Lemma C.3. Foreach o € (0,1) and G, € &, we have

Gy e Lwy) and |- |°G, € LY (wy).

-]
In particular, we have 0,(| - |*G.) € L*(wy).

Proof. To prove the first claim it suffices to show that G.,/| - |* € L! since G, € &, already
implies G, € L' (wy).

We take a differentiable nonnegative approximation v, (x) of ||~ such that v.(z) — |z|~¢
and v/ (r) — —asgn(x)|z|~*"! pointwise as ¢ — 0 and v-(x) < |x|~* for all z € R. Multiply-
ing (1.10) by v., we obtain

1 1

Zﬁx(xGyug) — ZwGVVé =1.9,(G,,G,). (C.20)
Since G satisfies 0, G, = 4Q~(G~, G.) — G in the sense of distributions and the right-hand
side is in L', we have :EGfY € L. Thus, there exists a sequence R,, — oo as n — 0o such that
upon integrating (C.20) we get

Rn Rn,
ixGy(x)yg(x)ﬁ’;%n — i/ 2G (). (z)dz = /—Rn ve(2) Q4 (G, Gy)(x)dz.  (C.21)
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According to (2.7) and v. (z) < ||~ wehave |+ R, G (£R,)v-(£R,)| < R, — 0asn — oc.
Moreover, recalling Lemma C.2, v.(z) < |z|~* and choosing n large enough such that R,, > 1
we have

Rn 1 Ry
/  0)Q, (G0, G)(w) dx < G 1, |G 1 / el et [ 0466 e
C
< 218 o) |G 22 + ClIG L1 1Gr 1

Thus, passing first to the limit n — oo and then to ¢ — 0 in (C.21) we get

a [ Gy(x) C
2 [ S22 a < L5616 12 + G s 16

The first part of the claim then follows from Theorem 1.4 and Corollary 2.9. The second part is
an immediate consequence of (C.20) which can be rewritten as

Low(2)G () =

1
1 —~ G (@)re (@) + 1:Q4(G,, G).

4

From the arguments above together with Theorem 1.4, the right-hand side is in L' (w1 ) uniformly
in e. Thus, we can pass to the limit ¢ — 0 and deduce that #G’V(aj) € L'(w;) for each

a € (0,1) which immediately implies the claim. O

Lemma C.4. Lety € (0,1). For each o € [0,1], for every G, € &,, we have C%Q,JYF(GA,, G,) €
LY (wy) N L2 (w,).

Proof. We argue by density and assume first G, € C°(R). We can thus write
d y y y y
591G 6w = [ (& (s+5)6 (1= 3) 6, (a+5) & (+= 1))l ay

ZQ/RG; (:H%) G, (m—%) |y|vdy:2/RG; (:c+%> G, (m—%) ‘x%—(az—%)‘”dy.

The inequality [|1 — 2|7 — (14 [2|7)| < 22|’ forall 2 € Rand 0 < § < v < 1 implies for 6 =
and z = X/Y that

(X Y| — | X - Y|
<

K(X,Y):= <2 forall X, Y € R. C.23
e XIE[Y]3 e

We thus rewrite (C.22) to get

ol
2

a6 [0 (8o (Dot

Y
2
el bl [o(e e (-5
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Integrating by parts in the last term on the right-hand side, we obtain

e ool Pl bt
/G’ ac+ (m—i)‘x—i-y‘ dy+/G x+2>(GV\.]7)/(x—%>dy.
(C.24)

Together with (C.23) we thus obtain on the one hand

| dec.c

<2 [ W16 WG W, (T3 ) aray

LY (wa
r+y

+ [ P16, WG, @, ( 1) dedyt [ 6 0IG Y @)oo (52 ) dedy

Since wo, (ZY) < wa(2)wq (y), it follows immediately

i i
< 2G| 2111 wa) IGH | - 12121 ()
L(wq)

FNGL P2t wa) |G| 2 (we) + G121 o) G [ 1) 121 () (C-25)
According to Lemma C.3 the right- hand side is uniformly bounded with respect to o and thus,
by density, we have that - LO1(G,, G,) € L' (w,).

To get the L? bound, we proceed similarly. Taking the L2-norm of (C.24), changing variables
in the integrals in the right-hand side and taking also (C.23) into account, we obtain

11 d
5 H@Q;F(Gw(;v)

—H—Q+ 1 Gl 2w

4</sza<x> </R‘G/”(y)'g”(2“‘y>\y!3!2x—y\zdy>2dx>5
+2</R“’2a(az) </R|G;(y)IG,Y(2x — )yl dy>2dx>%
+2</Rw2a($)</ G, (2 = )| (G- [") (y \dy) d:c)é.

By means of Minkowski’s inequality, the change = — x+y and wa, (#

deduce

) < Waa (T)waa (y), we

1, d P! 2
52 9 (G Gl 2y < 2V2UGL] 1Pl () G [ 220
+V2)G 1 wa) 1Gy | 22wa) + V2IGS L2t (Gl 1) |11 () (C26)

Again the right-hand side is uniformly bounded with respect to o due to Corollary 2.9 and
Lemma C.3 from which the claimed L? bound follows by density. g

Lemma C.5. Lety € (0,1). For each o € [0, 1], for every G, € &,, we have G(G~ x| - |7) €
LY (wa) N L (w,).
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Proof. We proceed analogously to the proof of Lemma C.4 and first assume G, € C:°(R). We
have together with (C.23) that

(Gy x| () = /R G ()le — y|" dy = /R G ()lyl¥ 2 K (z,9) dy
+ /R G (v dy + /R G (y)[[" dy

~ [ @WK+ [ 6wl

In the last step we used that [, G’ (y) dy = 0 for G, € C2°(R). Consequently, we get together
with (C.23) that

2 2
IGA(Goy #1172t ) < 2G5 12 Lt o) 1G] 1221wy NG 2t e |G 21 ) -

(C.27)
The first claim thus follows from Lemma C.3 by density. Similarly we get

X X
IGA (G ) [l e2wa) < 2G5 12l a) 1G] 12 L2 wa) + 1G] 1712t wa) | G Il 22 a0

(C.28)
from which the second claim follows again by density taking Corollary 2.9 and Lemma C.3 into
account. O

Lemma C.6. Ify € (0,1) we have for each o € (0,1] that | - |*G. (G, *|-|") € L'(R) for every
G, €é,.

Proof. The claim is an immediate consequence of Lemma C.3. In fact, for v € (0, 1) we have
|z —y|" <|z|” + |y|” and thus

0< (G x| < lal" [ G du+ [ 107G l)dy < ol + G 13
Thus, using Lemma C.3 we have
-1 GGy [ Dl < -G ey + - G e Gl 2
and the right-hand side is bounded according to Lemma C.3. 0
Lemma C.7. For each G, € &, we have G/, € L*(R).

Proof. Taking the distributional derivative of the steady equation (1.10) we get

1d 1 d
Multiplying with |z|* sgn(G”, (x)) for a € (0, 1) gives
1d o l—a, , o d
11 @G ) + — =[2G = 2] sen(G (7)) = (G, Gy)-

Denoting F(x) := |2|*|G’,(z)| and F. = F * g. for a suitable mollifier one can check that F.
satisfies

1d 1— d N , d
T @) + B = —(Fx (we.)) + (Jal sen(G (0) - Q,(G1, G,) ) #
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We test this equation with A’(F.) where A = A 4 is given in (C.5). Together with A(z) < zA/(z)
this yields after straightforward manipulations (similarly as in Section C.1)

11—«

1 /RA(Fa(J})) dz

< [ G5 oV (e + [ (1-17500(G () 5-Q, (6. Gy)) + o (R
(C.30)

By means of Lemma C.3 we can proceed similarly as in Section C.1 to control the first term on
the right-hand side, i.e.with h.(z) = —%¢' (%) we have

/R%(F*(xge))A’( o) dx| <

As in Section C.1, there exists a sequence (£ )en such that (A(F;, (z)))ken converges towards
A(F) in L'. Thus, taking € = ¢}, in (C.30) and passing to the limit £ — oo we obtain

1« / A(F(z)) dz = /R |:n|°‘sgn(Gi/(a:))(%dQﬁ,(Gﬁ,,GA,)A’(F) dz.  (C31)

Using that -3 Q,Y(ny, G,) =4 Q:Y'“(ny, G,)— G (G x| ") =G (Gy*]|-|7), we can rewrite
and estlmate the right-hand side together with A’(F) > 0 as

Al|lF. — F *helpr — 0 as ¢ — 0 for any A > 0.

11—«

/A( (x) dx—/ |2|* sgn (G, (x ))%Qi;(GV,GV)A'(F)da:
/ 2] sgn(G ()G <:c><G»y*|-|V>'<x>A'<F>dw— / 212G ()G *| - ) (@) (F) da

G, G,)

N(F da:+/]a:\ |G (2)(Gy x| - V) (z)|N(F
Thus, by means of Cauchy—Schwarz we get
11—« o
= [ AF@) o < (1175 (G Gl + 117G (G - a2 1N (o

Recalling (C.26) and (C.28) (with @ = 1) and taking | - |* < wq(-) < wi(-) into account, the
right-hand side can be further estimated

11—« bt x
2 [ A @) s < (V24216 F g 16a] -l
+ V2 + DG 7L () |G | 22wy ) + 2V 201Gy | 22 (a0 (G- |V)'||L1(w1)) A" ()l 2
1
Now (A/(F))? < 2A(F) implies that ||A'(F)|| ;2 < V2||A(F)| 2, and we get

11—«

1
2
([ ar@ae)” < s+ 2163 - Bl 1651l

+ @A+ VUG Nt ) Gl 22wy + UG 2 o) (G- 1) 21 -

According to Corollary 2.9 and Lemma C.3 the right-hand side is bounded (independent of o and
A). Thus, we can pass to the limit A — oo and a — 0 which yields |G, || 2 < oc. O
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C.3. Proof of Proposition 1.3. We conclude the paper with the proof of Proposition 1.3 stated
in the Introduction.

Proof of Proposition 1.3. The ideais to apply (Alonso et al. , 2020, Proposition 2.4) to some solution
to the evolution equation d; f = Q(f, f) with some family of approximation of G, as initial
data. We then translate this result in terms of self-similar variables and pass to the limit. First,

we define some variant of the Mehler transform introduced in Lu & Mouhot (2012),

file) =" [ M @=9)G ) dy,  wher M) = s

We then have

[ @i [ G @ [ et = [ 6 @eds

/ fox)r?de = (1 + 6_2")/ G, (z)2* dz, / fouz) |z do < CllGy L1
R R R ’
for some constant depending only on M5(G.,). Moreover, for any ¢ € L>%(R) N C(R),

lim 1/1 ) fo (x dw—/w

n—oo

For every n, we then choose Kn > n such that

/]R (fg(x) — min (/5 (@), Kn) e_fi> ()3 de < -

and we set

22

Ji () = min (f7'(x), Kp) e For
For any ¢ € L°%(R) N C(R), we have

lim ¢ ) f () d:n—/zl)
n—oo

Since fé‘ € ﬂkeNL}C(R), we deduce from (Alonso et al. , 2020, Theorem A.1) that there exists
a unique weak solution ™ € C([0,c0); L3( )) to O:f = Q+(f, f) with initial condition f§.
Moreover, for every t > 0, f"(t) € NkenLi(R) and it satisfies

/f"tacdx—/fo jae, [ Pt [ feed

/f"(t,:n)|:n|kd:c < / @)zl dz forany k > 2
R R
With the scaling

':2) = e " (70 gy ) =<4 (e ).

V(r)=Vy(r) = <1 + %7’)i and T(t) = % <ev7t - 1) ,
LA(R)) to

where

we deduce the existence of a unique weak solution ¢g" € C([0, 00);

1
81&9 = _Zax(l'g) + Q’y(gyg) (C.32)
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with initial condition fé‘ Then,

/Rg"(t,a:)dx:/ngl(x)da:, /Rg (t, = %/fo ) dz,

and, more generally, for any & > 0

/ g (t,z)|z|* dz = et / fr(r(t), z) |z|* dz < oo,
R R

Now, since f"(t) € ﬂkeNL}g(R) for any ¢ > 0, we may deduce from (Alonso et al. , 2020,
Proposition 2.4) the existence, for any k& > 2, of a constant C}; depending only on k, v and
16|l £y such that

n k rn : —k=2 _k
/f (t, @) |z|" dz < C(v, || f¢'l ) min <t vt V), vt > 0.
R

Observing that lim,, Hfg‘HL% = HG,YHL% and setting C,(7y) = sup,>1 Cr(7, ||f0"||L%) < 00,
we get
~ k—2 k
sup/ i (t, z)|z|* dz < Cy(y) min (t_T,t_§) , vt > 0.

n=>1JR

It then follows that, for every n > 1,

/Rg"(t,:n)|:n|k dz < Cr(y )e T min <7’(t)_7,7'(t)_%> , vt > 0.

Our aim is now to pass to the limit n — oo in the above inequality. To this end, we fix 7" > 0 and
we shall prove that (¢"),,>1 is relatively sequentially compact in C([0,T],w — L'(R)), where
C([0,T),w — L'(R)) denotes the space of continuous function from [0, 7] in L!(R) endowed
with its weak topology. Let us first show that, for any ¢t € [0,77], the set {¢"(t),n > 1} is
weakly relatively compact in L*(R). Since G-, € L*(R), a refined version of the de la Vallée
Poussin Theorem ensures the existence of nonnegative convex function ® € C?([0,00)) such

that (0) = 0, ®'(0) = 0, ¢’ is concave, ®'(r) > 0if r > 0,

r—oo T r—00

lim = lim ®'(r) = and / P(G(z))dz < oo.
R
Let us note that ® also satisfies, forr > 0, s > 0,
O(r) < rd'(r), s®'(r) < ®(r) + B(s). (C.33)
Since @ is convex, the Jensen inequality implies that
B(f3(@) < [ B(G )M (€ (@ 1) dy.
and thus,

[ ots@)ar< [ 96 @)

Now, since ® is nondecreasing and fo < fg, we get

/R /R /R (G (x)) da.
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Let us show that sup;e(o 7 5Up,>1 Jp ®(9"(t,2)) dz < oo. Multiplying (C.32) by ®'(g"(t,z))
and integrating by parts, we obtain

%/ﬂ{@(g"(t,x))dx = —l/g”(t,aj)@’(g (’x))deri/Rq)(gn(t#’?))diﬂ
+ [ Qg (0.4" ()@@ (5" t.2)) do

Thanks to (C.33) and the nonnegativity of @', this leads to

cie / 2"t )) dz < / Q (9" (1), ¢" (1)(2) @ (¢" (t, z)) du.

Now, since v € (0, 1), we have |z — y|? < |z|” + |y|” and thus, thanks to symmetry,

d / (" (t,2)) da < 2 / 27 g™ ¢, 2)g" (t, y) @ <g“ (t, “’)) dar dy.
at Ju 2 2

Finally, we deduce from (C.33) that

%/R@(gn(t,x))dx < 2/}1{2 g (t, ) (@(gn(t,y))+<1> <g" <t$;y>>> dz dy

< 4/!w\’*g”(t,x)dw/®(g"(t=y))dy
R R
+ ~

< 4t IRl [ 96" 0.

We thus conclude that

~ n t o 4 .
[ ot enan < [ @i TS < oG ane I
R R R

Therefore, we have proved that

sup sup </ g”(t,x)(l+x2)dx+/@(g”(t,x))dx) < 00,
te[0,7] n>1 \JR R

and we deduce from the Dunford-Pettis Theorem that, for any ¢ € [0, T, the set {¢"(¢),n > 1}
is weakly relatively compact in L!(R). It now suffices to check that the family ¢g” : [0,7] —

L(R) is weakly equicontinuous to conclude that (g"),,>1 is relatively sequentially compact in
C([0,T),w — L'(R)). Let ¢ € CL(R), t1,ts € [0, T]. We infer from (C.32) that

<%/t/ "(s,x)dxds

~X

[ et yde = [ o)ty
+5 /:2 - [z —y["g" (s, 2)g" (s,y) (290( ;y> — () — so(y)> dzdyds| .

Hence, since | — y|? < |z|” + |y|? for v € (0, 1),
12) R
/ Z/ |x| f"(7(s),x) dzds

[ [l . s drdyas|.
t1

1

[ ela)g ) ds = [ pla)g" ta.) da| <

< —Hso\lwm

+ 4lepl| L
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Finally, we have

/R p(@)g" (b1, 2) dz — / o(@)g" (ta, z) da

R
to to
5 s
/ e+ ds / et1ds
t1 t1

where the right-hand side tends to 0 as |t; — t2| tends to 0. Enlarging this result to ¢ € L>®(R) is
classical and uses the uniform bound for moments of order 2 of ¢"(¢) with respect to bothn > 1
and ¢ € [0, T']. It enables to conlude that there exists a nonnegative function g and a subsequence
of (¢")n>1 (not relabelled) such that

g€ L>((0,T);L3(R))  and  ¢" — ginC((0,T],w — L'(R)).

Moreover, for any k > 2,

)

1 . . .
< glellwreellfolzy + 4lpll o= Il foll o l1f0'l

/ g(t,z)|z|* dz < Cr(v) et min (T(t)_L;z,T(t)_%> , vt € (0,T). (C.39)
R

It is easy to check that g is a solution to (C.32) with initial condition G',. By uniqueness of such a
solution (see (Alonso et al. , 2020, Theorem A.1)), we deduce that g(t,-) = G, for any t € [0, T].
It follows from (C.34) that G, € (5o L (R). O
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