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Abstract

In this paper, we present an improvement of the modeling of collisional
operators introduced in [8] and [7], which are devoted to the modeling of
the interaction between macroscopic dust particles and molecules of a
rarefied gas. The model developed in [8] is based on the hypothesis that
collisions between dust particles and gas molecules are inelastic and are
given by a diffuse reflexion mechanism on the surface of dust particles. In
the present work, we propose a model which preserves the total energy by
introducing a new variable in the density function of macroscopic parti-
cles. We then write the equations in non-dimensional form, and establish,
like in [12], a formal asymptotics to the Vlasov-Euler equation of com-
pressible fluid when two small parameters tend to zero, namely the ratio
of masses between gas molecules and dust particles on the one hand, and
the Knudsen number of the gas on the other hand.

1 Introduction

Sprays are complex flows consisting of droplets or dust specks in suspension in a
surrounding gas. They can be modeled by different types of equations (cf. [9]),
including coupled systems of Euler-like equations (Eulerian-Eulerian modeling,
cf. [15]), and fluid-kinetic couplings (Eulerian-Lagrangian modeling, cf. [17],
[14] for early works on the subject). This work is devoted to this last type of
modeling. It belongs to a series of papers aiming at linking fluid-kinetic models
(more precisely, models displaying a coupling between a Vlasov equation and an
Euler or Navier-Stokes system through a drag force) with fully kinetic systems
(more precisely, couplings of equations of Boltzmann type). We refer to [10],
[11] and [12] for the cases in which the fluid-kinetic model is respectively the
incompressible Vlasov-Navier-Stokes system, the incompressible Vlasov-Stokes
system, and the compressible Euler system. However, in all those papers, the
temperature of the droplets/dust specks and its evolution (through exchanges
with the temperature of the fluid) is not considered, whereas it constitutes a
significant feature of the fluid-kinetic couplings appearing in engineering issues
(cf. [1, 16] for example). Our intent is to present here a derivation of a typical
fluid-kinetic system (that is, a compressible Vlasov-Euler system) in which the
gas and the disperse phase are coupled not only by the drag force, but also
by the exchange of temperature between the gas and the droplets/dust specks.
This requires the establishment of nonstandard Boltzmann type equations, in



which collisions between molecules and macroscopic objects have an effect on
the internal energy of the objects.

In section 2, we recall the model defined in [8], and propose a modification
of this model in which the evolution of the temperature of the particles is taken
into account. The unknowns of this modified model are the density function
f = f(t,z,w) > 0 of gas molecules which at time ¢ and point x possess the
velocity w, and the density function F(t,z,v,T) > 0 of dust particles which at
time ¢ and point x possess the velocity v and the temperature T. The set of
Boltzmann equations for F' and f writes

or

aq_v'vxF:’D(va)a

o (1)
St w Vol = R(F, ) +C(f),

where C is a collision operator for the molecules, and R, D are operators corre-
sponding to collisions between molecules and dust particles.

In subsection 3.1, we present a non-dimensional version of those equations,
which leads to the system

oF 1
E + - VIF = HDn(F,fL

of

1
o7 twVaf =Ry (F, )+ 5C(f),

(2)

where 7 is a ratio of mass, J is a Knudsen number related to the molecules, and
Ry, Dy, are non-dimensional versions of the operators R, D. Then we compute
in subsections 3.2 and 3.3 the formal limit of this system when n — 0 and § — 0.

This limit leads to a fluid-kinetic (compressible) Vlasov-Euler system, where
the density function of the dust particles F' is still an unknown, but this time
coupled with macroscopic quantities related to the gas : ng := ny(t,x) the
spatial density, ug := ug(t,x) the macroscopic velocity, and 6, := 0,4(t,x) the
temperature of the gas. The system writes:

OF 0
Sp v VaF = Vo (bF) + o (vF) = 0,

Oing + divg(ngug) = 0,

O¢(ngug) + divy (ngug ® ug + ng% I) = / b(v, T)F(v,T)dvdT,
R

3xR+

nglug? 3 n o ((nalug® 5

= /]R3><R+ {b(v,T) “U—Cp fy(’u,T)} F(v,T)dvdT,

with b and ~ representing the drag and the thermodynamical exchanges between
the disperse phase and the gas.



2 A Boltzmann-type model for macroscopic par-
ticles in a gas

In this section, more precisely in subsection 2.2, we introduce a new fully kinetic
model of Boltzmann type, in which the total energy is conserved, thanks to a
modification of the internal energy of the particles at each collision. This model
is a modification of an older model which is briefly presented in subsection 2.1.

2.1 Model without evolution of the temperature of macro-
scopic particles

We recall that a Boltzmann-type model describing the evolution of aerosols was
proposed in [8]. One assumes there that the particles are solid and spherical,
of identical radius, and that the gas is monoatomic. One denotes by F :=
F(t,x,v) > 0and f := f(t,z,w) > 0 the density functions of dust particles and
of gas molecules at time ¢t € R, at point = € R3, and possessing the velocity
v € R? or w € R3. The model is obtained by coupling two Boltzmann-type
equations :

oF 1

S v VoF =DU(F. ), (a)

o 1 (3)
o Tw Vel =RUE ) +C()- (D)

In (3), C(f) is the classical Boltzmann operator for monoatomic gases, describing
interactions between molecules [6]:

CPw) = [, () fw) = fw)f )] (w = w..n) dnduv.
X
with
(w”,wl!) = (w— [(w —w.,) - n]m, w. + [(w—w.) - n]n). (4)
The nonnegative function ¢ describes the interactions between molecules and
can be written as

w—w
C(w—w*vﬂ)=0gglw—w*|b<lw—w*|7|w_*~n>,
*

where 049 = 47“3, 74 is the radius of a molecule, and b is a dimensionless function.
We recall the properties of C( f) relative to the conservation of mass, momentum
and kinetic energy (see [6]):

1 0
CHw) [ w fdw=|0], ()
- |w[?/2 0
and in case of equilibrium
C(f)ZO@f:M[ngaugagg]v (6)
where — B
ne B lw—ug|?
M[”!ﬂ Ug, 69}(w) = me 2% ) (7)
g



with

ng(t, z) == . ft, z,w)dw, ug(t,x) := ng(llf,:v) . ft, z, w)wdw,
32
b, (t,7) i= %ﬁm [ st =yt

In (7), the constant 3 is defined by

j= \/Z (3)

where my is the mass of a molecule, and kp is the Boltzmann constant.

In gas mixtures, the collision mechanism between two molecules of different
masses can be described, when there is no internal energy or chemical reactions
involved, by elastic collisions (see [5] and [7] for instance). In [8], a novel model
was proposed, where collisions between dust particles and gas molecules are
supposed to be inelastic and given by a diffuse reflexion mechanism on the
surface of dust particles. This collision mechanism allows to take into account
the macroscopic character of dust particles compared to gas molecules. This
model is based on the following assumptions:

Hypothesis 2.1. The total momentum is conserved during collisions between
particles and molecules.

Hypothesis 2.2. In a collision between a particle and a molecule, the post-
collisional relative velocity is picked from a half-Mazwellian distribution at the
temperature of surface of the particle.

This amounts to assume that a molecule touching a particle thermalizes with
the molecules constituting the surface of the particle within a negligible time
with respect to the other characteristic time scales. Then the post-collisional
relative velocity is in the half space delimited by the tangent plane to the surface
of the particle.

Hypothesis 2.3. All dust particles have the same surface temperature, denoted
Tsurs, which is supposed to be a constant.

Hypothesis 2.2 leads to the introduction, for n € S?, of the density of prob-
ability h,, of the post-collisional relative velocities, given by

1 p* _B%w?
hn(v) = gT2 . (n . U) e st ]l{n-vZO}a (9)
sur

where 3 has been defined in (8). One can check that
Vn € S? / by (v)dv = 1. (10)
R3

Hypothesis 2.1 allows to express the post-collisional velocities of a particle v’
and a molecule w’, in terms of z := w’ — v’. Indeed,

(W w') =Ty (v,w,z2), (11)



with

v + nw n
r = - —
d(vvwaz)l 1+7] 1+7] 9 o
v+ nw 1 (12)
1_‘d (’U,’LU,Z)2 = + )

— 2z
147 1+n

where n = % is the ratio of mass between a molecule and a particle. Then
P

the post-collisional velocities can be seen as random variables v/ and w’ given
by (v/,w’) = T4 (v, w,z), where z has the density of probability h,. Variables
that can be seen as random variables (with a certain probability density) are
noted here with bold letters. Moreover, we made the following assumptions on
the collision cross section.

Hypothesis 2.4. The collision cross section between a particle and a molecule
is the hard sphere cross-section.

Under these assumptions, the expressions of these operators D! and R' were
established in [8]. They can be written in the following form (for the sake of
readability, we thereafter omit the ¢ and « variables) :

82|22 B2|v—w|?

[Fuﬂfwﬂeﬂ;ﬁ_quf@”ezgm

_ B lv—w|?
x e Tut ¢(v—w,n)h,(z)dndzdw,

DHE)0) = o |

S2 xR3 xR3

| o

and
1 / ’ 2212 B2lo—w)?
RUEN W) = [ [P — () fw)e | "
_ B2 lv—w|?

x e 2Tut ¢(v—w,n)h,(z)dndzdv,

where the term

s(v—w,n):=[n-(v—w)l  —w>o} (15)
comes from Hypothesis 2.4, and (v',w’) = T'4y(v,w,z). The constant oy, =
(rg 4+ 7p)%, where r, is the radius of a particle and r, the radius of a molecule,

comes from the collision cross section.
We can introduce the transformation

1

v 4 1+n [U+77w - 772]

r, - / —

Tg:{w] — w = ﬁ[v‘ﬂlw -I-Z] (16)
z w— w—

which is an involution. Then we can obtain the following expressions of the
weak forms of D(F, f) and RY(F, f) :

DY(F, f)(v)e(v)dv
]R3

=aw/“ [0(t) — o(0)] F(0) f(w)s (v — w, )y (=)dn dz dw dv,
S2 xR3xR3 xR3
(17)



and

RY(F, f)(w)ip(w)dw

R3

= ng/ [(w") — Y (w)] F(v) f(w)s(v —w,n)h,(2)dndz dv dw,
S2 xR3 xR3 xR3

(18)
for all test functions ¢ and ¥ (¢, € C2(R?)).

Remark 1. In [8], the model is slightly more general since it corresponds to
a mizture of gases and a collection of particles of various radiuses. The den-
sity function of particles writes therefore F := F(t,x,v,r), where the variable
7 € [Fmin, "max] corresponds to the radius of particles. We assume here, for
the sake of simplicity, that all particles have the same radius (this is called
monodispersion in the vocabulary of sprays). However, the model proposed in
Section 2.2 can easily be extended to the case of a density function F depending
on the radius r.

2.2 Model with evolution of the temperature of macro-
scopic particles

The previous model is not completely satisfactory, because the total energy of
the system is not conserved during collisions. Since the post-collision velocities
are determined by the diffuse reflection mechanism described above, it is not
possible to impose conservation of kinetic energy during a collision. However,
dust particles can be seen as macroscopic objects possessing an internal energy
related to their temperature Ty,r. We therefore propose an improvement to the
modelling, based on the modification of Hypothesis 2.3, that allows the total
energy of the system to be conserved and is based on the modification of the
temperature of a dust particle during a collision. To do this, we introduce the
temperature of surface T of dust particles as a variable in the density function
F. Then F(t,z,v,T) represents at time ¢ € RT the number density of dust
particles at point z € R?, possessing the velocity v € R3, and whose surface
temperature is T. We consider that a dust particle of temperature of surface T
has an internal energy, given by

where ¢, corresponds to the specific heat capacity of the material constituting
the particles, and m,, is the mass of a given particle (this amounts to identifying
the temperature of surface of the particles with their mean temperature).

2.2.1 The collisional mechanism

We assume that, during a collision between a dust particle of velocity v and
surface temperature 7" and a molecule of velocity w, Hypothesis 2.1, 2.2 are still
verified, but Hypothesis 2.3 is replaced by the following Assumption:

Hypothesis 2.5. We assume that the temperature of surface of the dust particle
is modified (within a negligible time with respect to the other characteristic time
scales) in such way that the total energy (sum of the kinetic energy of the system
particle-molecule and the internal energy of the particle) is conserved.



Then if we consider a collision between a particle of velocity v, temperature

T, and a molecule of velocity w, we call the postcollisional values v, T”, and

w’ respectively. Hypothesis 2.5 leads to the following relation of conservation of
energy:

/P o+ 26,77 = [of? + nlul® + 26,T. (19)

Proposition 1. Assuming Hypothesis 2.1 and Hypothesis 2.2, the post-collisional
temperature of surface of a particle is given by

T =T+ -———|lv—w]®— v —u?|. (20)
n
Proof. The equation of conservation of momentum

v +nw =v+nw (21)

implies that

! U+77w /'7 / /
v = ———(w' =),
1+n 1+r]( )
1

w =TT (),

1+7 1479

and then
2 2
v/2+nw/2 _ (v +nw) n +772|w/_,v/|2

L+n (1+mn)

1
= o [+ Pl = (jo =P — o = [wl?) + ! — o/
= [of? 4 hwl? + 1 [l =~ o= .
Finally equation (19) implies
26,(T" —T) = v? + qu? —v'? — w'QZL[U—wQ— w' —'?|.
H(T =) " ' = [l =l — ' -

O

We still assume that the post-collisional relative velocity between a molecule
and a particle is picked from a half-Maxwellian distribution at the temperature
of surface of the particle. A natural assumption can then be to suppose that,
analogously to what was proposed in (9), the density of probability of z (the
random variable corresponding to the post-collisional relative velocity) is given,
for T > 0, by

34 32|,|2
hn,T(z) = % (nT2Z) exp <_ﬂ2|;|> ]l{n-zzo}a (22)
where 3 is defined by (8).

Thanks to the conservation of momentum (21), the post-collisional veloci-
ties v/ and w’ are still given by the expressions (11), (12). Moreover, thanks
to Proposition 1, the post-collisional temperature of the particle is a random
variable linked to z by

1
T’:T+—Ln[|vfw|2f 1)2]. (23)



Note that relation (23) allows in principle to get zero or sub-zero post-collisional
temperatures, which is not acceptable from a physical point of view. However,
the following proposition shows that the probability of the post-collision tem-
perature 7" being nonpositive tends towards 0 when 7' > 0 tends towards 0F.
This intuitively means that if the particles initially have strictly positive tem-
peratures, the probability of their temperatures becoming nonpositive is close
to zero.

Proposition 2. Assume that the density of the random variable z is given by

(22), and T is given by (20), with given v € R3, w € R, T > 0. Then

4AnT
P(T' < 0) < — e
B2nlv — w2 +282%¢,(1+n)T

Proof. Thanks to expression (23), we have
1
P(T' <0)=P (|z|2 > v —w|?* + 2cp+"T) ,
n

and the Markov inequality implies that

1 E(|z|?
P (1 > o —ul + 26,207 ) < 2D
7 lv—w|* +2¢,=2T
Moreover, we have (see [7] for details, or (58))
4T
Bllaf) = [ [sPhar(:)ds = .
RS ' B2
which proves the claim. O

Even if the probability of producing negative temperatures with the de-
scribed model is very small, we wish to propose a modified model in which this
probability is 0. We therefore introduce the following modified density:

- 1
hn,v,’w,n,T(Z) = mhan(z)]l{\ng\v7w|2+2c’p%T}(Z)7 (24)
where
Hv7w>77,T = /]R; hn,T(z)1{|z|2§|v7w|2+26pH'TT’T}(z)d’z‘ (25)

(see Subsection 3.2 for an explicite expression of Hy 7). This modified den-
sity is now such that the probability of a particle’s post-collisional temperature
being nonpositive is exactly zero, since a rebound which would lead to a nonpos-
itive temperature is not authorized (because of the indicator function appearing
in the definition of A, 4 u.0.7)-

2.2.2 Construction of the operators

We now construct the collisional operators D(F, f) and R(F, f) associated to
the collision mechanism of density Ay 4, w5 7. We first establish the weak form
of those operators.



Proposition 3. Let ¢ € CO(R3x]0,+oo[) and ¢ € C2(R?) be test functions.
Then

/RSXIMD(F, Hw,T)p(w, T)dvdT = orgp/

S$2 xXR3 xR3 xR3 xR+
(W', T") — (v, T)] F(v, T) f(w)s(v — w,n) 105 7(2)dn dz dw dv dT,
(26)
and
R(F.f)w)(w)dw = oy, [
R3 2 xR3 xR3 XR3 xR+ (27)

[Y(w) = (W) F(o,T) f(w)s(v = w, n)hn v w.n.1(2)dn dz dv dw dT,
where ¢ is defined by (15), (v',w') = Tq(v,w, z), and
L m
T'=T+——"—(Jv—w]*—|2%). 28
+2@1+n(\v wl” —12%) (28)
Proof. Since / P vaomr(2)dz = 1 for all n € S?, the loss term D~ (F, f)(v,T)
R3
can be expressed, like in [8], as

D (F f)(v,T) = agp/ F(v,T)f(w)s(v —w, n)ﬁnyv,wmyT(Z)dn dz dw.
2 xR3 xR3

The gain term can be expressed as

D(F, f)(v,T)

= ng/ F(°,T°) f(w®)s(v® — w®, n)gye we m,re (v, T)dn dw® dv® dT°,
S2 xR3 xR3 xR+

where gyo o 7o is the density of the couple of random variables (v, T) which
corresponds to the velocity and the temperature of surface of a particle after a
collision between a particle of velocity v° and temperature 7° and a molecule
of velocity w°®. We can write (v, T) = Ayo 4o (2z,T°), with

v° 4+ nw° 1 o o
)\vo,wo : (273) — ( d 1 2 S+ 7L(|U —w |2 - |Z2)) ’

1+n 147 20, 141

and where the density of z is hp o wonre. The mapping Ayo 4o is a Ccl-
diffeomorphism between R?® x R and R® x R, and the Jacobian of )\;ol,wo is
3
equal to (HT") . Then, for any given T° > 0, the law of (v, T") = A, (2, T°),
where z has the density %, yo wo 10, is given by
147 3

Guo o n e (0, ) = (n) oo s e (2)670(5), with (z,) = Ao (0. 7).
Moreover, gyo o n,1o(v,T) =0 for T < 0.

Then, using in

/ DH(F, f)(v, T)p(v, T)dvdT
R3 xR+



=0y / . F(°,T°) f(w®)s(v°—w®, n)gye we m,ro (v, T) @(v, T)dn dw® dv® dv dT°dT,
S2xR3 xR3 xR3 xR+ xR+

the change of variables (for given v°, T°, w®)

(Ua T) = )\vo,wo (27 S)a

3
with Jacobian (ﬁ) , we get

/ DH(F, f)(v, T)p(v, T)dvdT
R3 xR+

— ng/ F(v°,T°) f(w®)s(v° — w®, n)hm vo weo n,me (2)070 (S)
SZXREXR3X Do 40 XRE

X (Apo o (2, 8)) dndw® dv® dzdsdT,

where Do yo 1= )\;ol,wo(R?’x]O,—&—oo[) = {(z,8) € R3x Ry, s+ %ﬁ(h}o -
w®|? — |z|?) > 0}. Observing that

hn,To (Z)

Pt o1 (2) = 35
vo,we,n, T

Lz <pon—woj2 426, 170

we finally get

/ DH(F, f) (v, T)p(v, T)dvdT = crgp/
R3 xR+

S2XR3xXR3 xR3 xR+

F(v,T)f(w)s(v —w,n)hnpywnr(2) ¢ (A w(zT))dndwdvdzdT,

which proves the claim (with D =Dt — D).

The establishment of the weak form of R(F, f) is very similar to the case of
the operator R*(F, f) introduced in Section 1. We have (denoting by R* the
gain term corresponding to R)

RT(F, f)(w) = agp/ F(u°,T°) f(w®)s(v°—w®, n)myo yo n(z)dn dw®dv® dT°,
S2 xR3 xR3 xR+

where myo 10 o, corresponds to the density of probability of the post-collisonal
velocity w of a molecule of velocity w® after a collision with a particle of velocity

v° and temperature of surface T°. Since w = (I'g(v°, w°,2))2 = ﬁ(vo +nw° +

z) (I'g has been defined in (12)), where z is a random variable of R* which has
a density of probability h, o wo n1o, We have
Mo 70 wo n(W) = (L4 10)3 w0 o e (14 n)w —v° — nuw°),
and thus the change of variable
(w,v°, T°, w°) = (z,0°,T°,w°), with z = (1 + n)w — v° — nw°
in

[ R (B,

10



leads to

RT(F, f)(w)y(w)dw = O'gp/

S2xR3 XR3 xR3 xR+

F(0°, T°) f(w®)s(v° — w°, 1) Ao o 1o (2) Y(w') dndz dw® dv® dT°,

R3

which allows to obtain expression (27), once the loss term R~ has been taken
into account, and remembering that R = RT — R~. O

Corollary 1. We have the following conservation of mass, momentum and total
energy:

1 1

/ D(F, f)(v,T) v dvdT+ [ R(F, f)(w) nw dw =
o2+ 6T . Dl /2

Proof. Tt is a direct consequence of the relation of conservation of mass, momen-
tum (21), and energy (19), and the weak forms (26) and (27) of the operators
D and R.

O

We now express the operators in strong form.

Proposition 4. Let D(F, f) and R(F, f) be the collision operators given in
weak form by (26) and (27). They can be expressed as (for T > 0)

Blo F, T)f(w') 1 _5, . o
D(F, ) (v, T) = 79?/ [%ﬁe 2 ol
S2 xR3 xR3 v w! n, T’ (30)
F(v, T 1 52
- Wpe—é%lﬂz] Tipso0ys(z,n)s(v — w,n)dndz dw,
and
R(F, f)(w) = Bog FOLTHf') 1 2 wp
L) (w T
27 S2xR3xXR3 xR+ 7'lv’,w’,n,T’ (31)
P D)f(w) 1

32
7 ﬁe_%\z\z} Tirrs0y6(2,n)s(v —w,n)dndz dvdT,
v,w,n,T

where V', w', and T' are given by (11), (12), and (28) respectively.

Proof. We consider in the weak expression of DT (F, f) the following change of
variables:
(v, w,z,T) — (v, w',u,T),

where (v/,w’,u) = Ty4(v,w,z) given by (16), and T" is given by (28). This

11



transformation is involutive and its Jacobian is equal to 1. Then

[ PEN@ D DT
R3 xR+

= ogp/ F,T)f(w)s(v —w,n)hn v wnr(z)e @, T) Lipseydndz dwdv dT,
S2xR3xXR3 xR3 xR+

- ng/ F,T)f(w)s(v —w, n)fzn’v,w,n,T(w’ — ") (v, T") Lirsoydn dudw’ dv’ dT,
S2xR3 xR3 xR3 xR+

= ogp/ FQ\T) f(w)s( —w',n)hno w1 (w =) ¢ (v, T) Ligrsppdn dz dw dv dT,
S2xR3xR3xXR3 xR+

= ng/ FQ\T) f(w)s(w —v', =n)h—pvr w1 (0 —w) @ (0,T) Liprsgydn dz dw dv dT,
S2xR3 xR3 xR3 xR+

and we obtain, since z = w’ — v’ and with the change of variable n — —n,

D+(Fa f)(va T) =0Ogp /82 R F(U/a T’)f(w')c(z, n)ﬁn,v’,w’JhT’ (”U - w) ]l{T/EO}dn dz dwa
X X
with
~ 1
P ot w10 (0 = w) = mhn,’r’ (v— w)ﬂ{\vfwPS\vuw/\2+2c’p1TJT'}'

Moreover, we see from (20) that
/ 1 Ui 2 / /12
T7=T+ ———||lv—w|* = =,
2¢, 1+1
and thus
]1{|v7w\2§\v’fw’|2+2c},#T’} =1yr>03-

Then, for T > 0,

24 / / /
D (E ) T) = T ulCRvAOr ICOMNTS.
2 Jsrxmaxgrs  Hol ',

LI PRI
X ﬁe 2T Lir50ydndz dw,
and finally we get (30). Computations are similar for (31). O

3 Asymptotic expansion

3.1 Dimensionless Boltzmann system

In order to perform the asymptotic analysis of system (3), we first introduce
a dimensionless version of it. As in [12], we assume here that the aerosol is
associated to a length scale L. Moreover, following the approach of [7], we first
make the following scaling hypothesis.

Hypothesis 3.1. We assume that the thermal speed of gas molecules and par-
ticles are of the same order of magnitude, denoted by V.
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We define N, and N, the typical density number per volume unit of gas
molecules and particles respectively (in m=3), and we recall that we denote
Ogg = 412, 0gp = (14 +1p)?, 0pp = 417 the collisional cross sections (up to the
constant ) between species (in m?).

We define a dimensionless position variable & = /L, dimensionless velocity
variables @ = w/V and ¢ = v/V for molecules and particles, a dimensionless
time variable ¢ = tV/L, and a dimensionless temperature variable T = T/Tret-
We then define a dimensionless density function for each species :

A A 1 P 1
F(tvjf'vﬁ7T) = FF(t,J?,U,T), and f(ta'%ﬂb) = Ff(tvmaw)a
with
F° = N and fe= &
T VT e

Then the left-hand side terms of system (3) become

The collision operators D(F, f), R(F, f) and C(f) are scaled in the following
way

D(F,f) = F°f°0,V*D(F,f),
R(F,f) = Fofoang4Tre 72( )
Cf) = (f°) %04V C(f), (32)

where D(F, f), R(F, f) C(f) are the dimensionless versions of D(F, f), R(F, f)
and C(f) (note that 32V? /T, is a dimensionless constant) :

A A R 4v4
D(F, [)(0,T) = o BT /s2 - ¢(2,n)s(d — w,n)

ref

A A A

y [W %e—’iﬁ loca? W;e e 'S‘f} ooy dndZ did,

e P =Pt (o - o~ |P) (33)
2¢, 1+1

with ¢, = ¢, 24,

2 1 B4V4

F’\, ~/ Tl ~/ 1 _52V2 |®7w|2 F ~ T ~ 1 BQVZ |z‘2
X [—(v ) f (@) — € Tret 277 — 7@’ )/ (@) —e Tret 2T } 11{T/>0} dndzdo dT
H’UlﬂvlyﬂyT/ TI2 H'U,w,n T T2

13



and

Wi .
———— n |d.dn.
w

We don’t express here the collision operator B(F) but as in (32), we can
write

B(F) = (F°)%0,)V " Tret B(F)

where B(F) is the dimensionless version of B(F).
We finally obtain the following dimensionless system

OF . o -

ot +0- Vol =04 LNy D(F, f) + 0pp LN, B(F),

of (34)
S Vif = 0gp LN, R(E, f) + 049 LN, C(f).

We study the system in the limit of small mass ratio (that is, n — 0) and in
the fluid limit for the gas. We therefore introduce

1

0= ———
LNgUgg’

(35)

which is a dimensionless number corresponding to the ratio between the chara-
teristic length L and the mean free path (up to a constant) of the gas (taking
into account only the collisions between molecules of the gas). Following [12],
we first make the following assumption:

Hypothesis 3.2. The frequency of collisions between particles is such that
opp LN, < 1,

so that we can formally neglect the term oy, LN, B(F) in system (34).

As in [7], we set 04, LN}, = 1, which corresponds to studying the asymptotic
of the system at the time scale of the collisions between gas molecules and
particles, seen from the point of view of molecules. To express the frequency
of collisions between particles and gas molecules, from the point of view of
particles, we make, like in [12], the following assumption:

Hypothesis 3.3. The ratio of density between particles and molecules is iden-
tical to the mass ratio between molecules and particles, that is

Moreover, we need to make an assumption on the order of magnitude of the
temperature of surface of the dust particles:

14



Hypothesis 3.4. We assume that the ratio between the kinetic temperature of
the gas and the temperature of surface of dust particles is of order 1. We denote
a -V mqV?2
Bim e =

Tref kBTref

the square root of the ratio between these two temperatures, which corresponds
to a dimensionless version of the constant 3.

(36)

Defining
s Bt (n-0) plof?
h,, #(0) == o 72 exp T 16>0y, (37)
we can rewrite
N A\(n 5 il‘mf’(@_w)A N AN IR
D(F. )0.T) = [s(&m) P 1) ()
S2 xR3 X RS o’ w!n, T
R hy () o Ao e
— <0 — ) TF(v,T)f(w)] Loy dnds da,
v,w,n,
(38)
where 1
2 2 n A a2 P
T =T — (o — —
51 P\ A hn,T’(@_w)A A TN YN
R(E, f)() = [P, 1) f (@)
S2xR3xXR3 xR+ v w’ n, T
—¢(d— w,n);,_t"’T()TF(ﬁ,T)f(w)} pjrsgy dndzdodT.
v,w,1n,
(40)

We thus study the asymptotic regime of the following system (where we
drop hats on all dimensionless variables, functions, operators, on ¢, and )
whenn — 0and § — 0 :

%—IZ—}—U-VIF: %DW(F,f), (a)
of ) (41)
o7 tw Vef =Ry(F f) +5C(f), (b)

where D, (F, f) and R, (F, f) are the dimensionless versions of (30) and (31)
given by formulas (38) and (40), which write after all hats are dropped in the

following way:
B, (V —
o) M=) ot ) )
Hv’,w’,n,T’
hn’T(Z)
Hv,w,n,T

DE A1) = [

S2 xR3 xR3
F(v,T)f(w)| Lpr~0y dndz dw,
(42)

—¢(v—w,n)
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B, (v — !t ’
REDw = [ [ p 1))
hn)T(Z)

F(v,T)f(w)| Lypr~0y dzdndvdT,
Hv,w,n,T

(43)
where ¢ is defined by (15), (v',w’) = Tq(v, w, 2) is defined in (12) , 7" is given
by

—s(v—w,n)

L 7
14

and h,, is redefined (dropping hats on j3) as

4, . 20,12
b1 (v) = % (nT;) exp <—ﬂ2|;| ) Linw>0}- (45)

Note also that the weak forms of D(F, f), R(F, f) write, for ¢ € C2(R3x]0, +-o0[))
and 1 € CO(R?)) test functions,

| P el Tydodr
R3 xR+

= / (', T") = @(v, T)] F(v,T) f(w)s(v — w, n)ﬁnw,w,n,T(z)dz dn dwdv dT,
S2xR3xR3xR3 xR+
(46)
and
[ ROy
= / Y(w') — P(w)] F (v, T) f(w)s(v — w, n)hpy 4 .nr(2)dn dz dv dw dT.
S2xR3 xR3xXR3 xR+

(47)

3.2 Limit 5 — 0

We first perform an asymptotic expansion of D, (F, f) (where the subscript n
enhances the dependence of D with respect to 1) according to the mass ratio 7.
We start by showing that & can be replaced by h in formulas (46) and (47),
up to a term in O,_,o(n>°) (short notation for O,_,o(n*) for all k € N).
We recall below the expressions of the densities h, r and ﬁnﬂ,,w,n,T :

Bt (n-2) B2z
hn,T(Z) = % T2 exp 7? ]1{n~220}5
~ 1
hn,v,w,n,T(z) = mhn7T(z)]l{|Z|2S|v7w|2+2€pIT,T’T}(Z)'
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Proposition 5. Letn € S?, (v,w) € R3 x R®, T >0, n > 0. Then

HowaT = /R i 7 ()22 <o wf2-426, 0y (2)d2
B2(Jv — w|? + 26,221 B2(Jv — w|? + 26,22
:1_<1+ (I | =y 1) exp [ - (I | p =y 1) '

27 2T
(48)
Moreover, we have the following bounds, uniformly in (v,w) € R3xR3, T >0 :
22 - 32 -
1 (1 + M) exp (—M> < Hypomr < 1. (49)
n n

Proof. Let C = |v — w|? + 2c},H‘T"T = 2%_”T + |v — w|? + 2¢,T. In spherical
coordinates in an orthonormal basis (n,ns,n3), we have

g B32|=[?
H'U,w,n,T = m - (Tl : Z)+ €Xp | — o7 ]1{|z|2§C}(Z)dZ

64 2 pw/2 p4oo 527"2
= onT2 / / / r cos(0) exp (_2T> ]1{T2<c}7“2 sin(0)drdfde
Q o Jo 0 =
= 34/@1"3 exp —'E2T2 dr
272 J, 2T
p*c iRe)
=1-(1+°2 ey
( T )P\ Tar

Then, we observe that C' > %T for all (v,w) € R® x R3, T > 0, so that

B*C _ Be
2T — 1§
Since the function ¢ defined by ¢(x) = 1 — (1 4+ z)exp(—=z) is increasing on
[0, +00[, we get B
ERe)
¥ n S Hv,w,n,T S 1; (50)
so that estimate (49) holds. O

Proposition 6. The following asymptotic expansion holds:

., 7(2) = b1 (2) + O(1%). (51)

More precisely, the O holds in L*(R3), uniformly with respect to the parameters
n,v,w,T.
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Proof. We can write

hn,v,w,n,T(Z) - hn,T(z)

1 —Hywn,T 1
=— " h,7r(2) — ——hpr(2) (1 =1y, 2)),
Hown, T 7(2) Ho w1 7(2) (1= Tgzp<cy(2)

with C = |v —w|? + 2¢, HT”T > Q%T. Thanks to expression (48), we have

0 < 1— H’u,u)ﬂ%T < (1 + n ) exp ( n

 Hewnr T 1_ (1_|_ BzTc;) exp (_@) =0("), VkeN,

n

where the O is uniform with respect to v,w,T,n,z. For the second term, we
have

gt (n-2) B?|z|?
o< () (L= Lpec,y () _ 2w e P (-5°) Lyszer ()
o Hv,w,n,T Hv,w,n,T

< hnar(2) O(n™),

where the O is uniform with respect to v,w,T,n,z. Since [ps hnr(2)dz = 1
and fR3 hn,2r(2)dz = 1, we can conclude. O

For ¢ € CO(R*x]0,+00[)) and v € C2(R?)) test functions, we can therefore
write

[ DuF D Dpte. Davar
R3 xR+

= / (@, T") = o(v,T)] F(v,T) f(w)s(v — w,n)hy, r(z)dz dn dw dvdT + O(n*>),
S2xR3xR3 xR3 xR+
(52)
and
[ RalP. Dyt
-/ (") — ()] (o, T)f (w)s(v = w,m)h 1 (2)d d do duw dT + O().
S2xR3xR3 xR3 xR+

(53)

Proposition 7. We have

DW(Faf) :na<F’f) +O(7’]2),
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with

a(F, f)(v,T) :=nV, - (F(U,T) /}R3 <|w — |+ ;;T> (v— w)f(w)dw>

where we denote
Irq(t,z,v) ::/ |lw —v|f(t, z,w) dw (54)
RS
and
It s(t,x,v) = / lw — v f(t, ,w) dw. (55)
R3

Proof. Let ¢(v,T)e CL(R?*x]0, +00[)) be a test function. Thanks to the weak
form (52) of D(F, f) and to the asymptotic expansion of ¢,

(", T") =, T) = (v'=v)-Vop(v,T)+(T'=T)0rp(v, T) +o(|v' —v|+|T" = T).

We split the weak form of D,, into two parts :

/ Dy (F, ) (v, T)e(v,T)dvdTl = A+ B,
R3 xR+

where A includes the gradient w.r.t. v, and B includes the derivative w.r.t. T.

Computations for the term A are similar to the asymptotic expansion made
in [8] for the model with a constant temperature of surface of particles. Using
(11) and the following results (see [7]):

a _ VAT
/]R3 hn,r(z)dz =1, /]1@3 zhnr(2)dz = fTﬁn (for T > 0), (56)
/S2 ¢(s,n)dn = =|s|, /S2 ne(s,n)dn = 2%3, (57)

we get

A= / (v =v) - Vyp(v,T)F(v,T) f(w)s(v — w,n)hy r(z) dndv dwdz dT
S2xR3 xR3xR3 xR+

= L/ (w—2v) - Vyp, T)F(v,T)f(w)s(v —w,n)dvdwdndT
L+ 1 Jrs xR3 xRS xR+

S z- Voo, T)F(v,T) f(w)s(v — w,n)hy, r(z)dndvdwdz dT
L+ 7 Js2 xRS xR xR xR+

= mr/]R3 R+VU : / <|w — vl + §ZT> (v —w)f(w)dwF (v, T)| ¢(v,T)dvdT
+O(n?).

For the computation of the term B, we use (28), (56), (57) and

/ 12|?h 1 (2) dz = g (for T > 0), (58)
R? B
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and we get

3}
B= / (T - T)== .4 (v, T)s(v —w,n)hy, 7(2)F(v,T) f(w) dndv dwdzdT
S2 xR3 XR3 xR3 xR+ or
= Bl + BQ,
with
_ O

v —w|*s(v — w,n)h,,

= v, T)F f(w)dndvdwdzdT
2Cp1+77 S2xR3XR3 xR3 xR+ ( )aT( ) ( ) ( )
_ T |35

o (0 D F (v, T) f(w) dvdwdT

2¢p 1+7 ]R3><]R3><R+

_ ;an/n@swg? (/v—w| Flw )dw) o(v,T) dvdT + O(12),

and
e L 1 12260 — w, )k (2) 22 (0, T) P (0, T) f (w) dn do duw dz AT
2¢p 141 Js2 <R3 xR xRE xR+ or
T 2 0|28 (0, ) B (v, T) f(w) do dw dT
cp 141 /psxrsxrt B2 or*"’ ’
_ 2mn 0

= RJXR+8T(TF(UT (/|vw|f( )dw) ©(v,T)dvdT + O(n?).

O

We then obtain a formal limit when n — 0 of equations (41). If we denote
(fom, F%M) a solution of (41), then (formally) (f%7, Fo") — (f°, F%), solution

of
%i; +v-V,F =7V, (F(v,T) /R <v —w|+ §ZT> (v- wﬁ(w)dw)
_ ;;};T ngﬁl(v) - Iﬁg(v)) F(v,T)} =0, (a)
aof 1
5 T w Vel =RIE )+ 50(f). (b)
(59)

with I;; and I; 3 defined by (54) and (55). Moreover, R! writes in weak form
as

RY(F, f)(w)ip(w)dw

]Rf}
Y — Y(w)| F(u, T) f(w)s(v — w, n)hy 7(2) dndz dv dw dT,

(60)
with w'! = lim, o Tg(v,w, 2)2 = v + z (remember that T'y is defined in (12)).

/S2><]R3 XR3xR3 xR+

3.3 Limit 0 — 0

We now pass to the limit when § — 0 in (59) in order to obtain a fluid-kinetic
model (Vlasov-Euler equation) which includes exchanges of internal energy be-
tween the phases. Thanks to property (6), we see that if (f°, F%) is a solution
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of (59), then (at a formal level) 0 — M(ngy,ugy,0,] defined by (7). Like in [12],
we introduce the following notations, for a € R3 :

y|2 dy

qmw—/ka—>m—yw2(ﬁw

/ la — y|ef%m7
)= [ o=l i

The function g can be expressed under the following form (see [12]):

q(a) = aq(|al). (61)

Moreover, we observe that it is possible to write, for some smooth functions ¢g,
637

and

qo(a) = qo(0) + |al* Go(lal), g3(a) = ¢3(0) + |al* Gs(|al), (62)
with

q0(0) = 2\/2, q3(0) = 4 q0(0). (63)

3.3.1 Equation for the particles

We first establish the limit of equation (59)-(a). Straigthforward computations
allow to express the terms involved in (59)-(a) according to the quantities go,
and ¢g. On one hand, we have

04 vV — Ug
/]R3 v —w|(v —w)M(ng, ug, 4] (w)dw = ng@q (W) ) (64)

and

[ (0= Mg Oy = mg v = ), (65)

which allow to express the term “in V,-” in the limit of eq. (59) - (a), thanks

o (61) :
2rT
7T‘/]R3 <|v—w + 33 ) (v — w)M(ng, ug, 0] (w)dw

0 v—u V2T
= Tng/g'gq< 9 ) —|—7rngT(’U _UQ)

VOg/5°
v — Ug ) n \/27TT>

0, .
=7ng (v —u )(\/;<\/W 35

Then, we compute the limit of the term “in a%" in the limit of eq. (59) - (a).
We first observe that

0 v—u
IM[ng»“gﬁg]vl(’U) =Ny 67; do <\/0/752> ) (66)
g
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04 3/2 vV — Ug
IM[nQ,ug,GQ],i‘)(v) =Ny <62> q3 \/W s (67)
g

and then, thanks to (62) and (63) :

T (4T
(g .y
20p <B2 M[”gxugxeg]’l(v) M[”gxuyveg]>3(v)>

o 04

4T v—ug | 979 vV —Ug
g | P\ VamE)  PC\ Ve

™ 0 (T — 9) 2 ug| |U_ug|
T2, ﬂ?[ég\ﬂ g Tl (”( g/ﬂ2> ?’(\/ g/62>>]
)-(a)

l\)

Q

As a consequence, we can express the limit of (59)-(a) when § — 0. It writes

OF
o TU Vel = Vo (0F) + aT (vF) =0, (68)
with
0, UV — Ug V2onT
b(v,T) :=7mng (v —uy) <\/;q<\/m>+ 35 ), (69)
and

0T = o [8\/?9;1” o= S ('ﬁ‘/iﬁ'ﬂ ()

where

S(r) = qs(r) —4,-Go(r).

Expression (69) corresponds to the drag force between the two phases of the
mixture, while expression (70) highlights the energy exchange between those
two phases. We further comment those expressions (and compare them with a
typical macroscopic model) at the end of the paper.

3.3.2 Equations for the gas

By integrating equation (59)-(b) against 1, w and |w|?/2 and taking the limit
17 — 0, we obtain the local (in time and space) conservation laws for the mass,
momentum and kinetic energy :

1 1

8t/ w M(ng, ug,8,)(w)dw + div, / w w M(ng, ug, 84](w)dw
= \lwl?/2 B \|w?/2
1
— [ w R Mg, 0,)) )i
B\ lwl?/2

(71)
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First equation Thanks to the weak form (60) of R!, we first see that

R (F, M[ng,ugy,0]) (w)dw = 0,
R3

which leads to the equation of conservation of mass for the gas
Oing + divg(ngug) = 0. (72)

Second equation We can compute, thanks to (57) and (56), the other inte-
grals :

R (F, Mng, ug,0,]) (w)wdw
R3

/S2><]R3><]R3 XR3 xR+

:7r/ F(v,T)(v—w)|v—wMng, ug, 0] (w) dwdvdT
R3 xR3 xR+

2nT
+ / Tvem F(v,T)Mng,ug,0,4)(w) (v — w) dvdwdT
RIxRIxR+ 30 ‘

]

04/5°

R3 xR+

(v+2z—w) F(v,T)Mng, ug, 04](w)s(v — w,n)hy, () dndz dw dvdT

_ mgﬁ/ Fo.T)q [ 2= ) qvdr +n, V2T VTF(v,T)(v — uy) dvdT
B? Jrs xr+ 35

= / b(v, T)F (v, T)dvdT,
R3 xR+

with b given by (69). We get thus the equation for the evolution of momentum
for the gas:

0
di(ngug) + div, (ngug ® ug +ngﬁ—92 I> = /]R3 R+b(v,T)F(v,T) dvdT. (73)
X

Note that this equation can be easily recovered by using the conservation of
momentum and eq. (68) - (69).

Third equation In order to avoid tedious computations, we start from the
conservation of total energy before passing to the limit when 7,4 — 0, that is

i

/RWPW(F’”(”’T) (2 + cpT> dvdT + n/RS R, (F, f)(w)

2
7|u;| dw = 0.

After passing to the limit 7,6 — 0, we see that

o] jwl?

/ a(F, M[ng, ug,84])(v,T) < + cpT> dvdT+ [ RNF, Mlng, ug,0y])(w)——dw
R3 xR+

2 R3 2

Noticing that

a(F, Mg, 0]) (0, T) = Vo (6 F) = (3 ),
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we see that

|w]?

/‘ RY(F, Mng, g, 0,])(w) =~ dw
R3
[of?

:—/ a(F, Mng,ug,0,4])(v,T) <2+cp ) dvdT
R3xR+
- / [b(u T) v —cp(v, T)} F(v,T) dvdT.
R3 xR+
We thus obtain the equation for the evolution of the total energy of the gas:
nglugl> 3 n ) nglugl* 5 n
3t< 929 +2ﬁ£2]9g>+dlvx (( 929 ,+§B—gﬁg Uy -
- / [b(v T) v — e, y(v, T)} F(u,T) dvdT.
R3 xR+

Finally, by collecting (68), (72), (73) and (74), we end up with an Euler-Vlasov
system, which writes

oF 0
E—i—v V. F -V, (bF)+ 8T('7F)—0 (a),
Oing + divy(ngug) =0 (b),
Or(nguy) + divy (ngug ® ug —&-nge—g I) :/ b(v, T)F (v, T)dvdT (c),
B R3 xR+
”g|ug‘2 § Ng - ng|ug|2 5 ng
0, <2 +2B29g +div, (157 +2520
- / [b(v T v —cp(v, T)} F(u,T)dvdT (@),
R3 xR+
(75)

where b and 7 are given by (69) and (70) respectively.

3.4 Comparison with a typical thin spray model

In this last subsection of the paper, we propose to compare system (75), obtained
by a formal limit from a microscopic model, with a typical thin (that is, when the
volume fraction of the droplets is negligible) spray system used in the modeling
of engines, namely the system used for the Kiva-II numerical code (cf. [1]).

In order to do so, we first provide a version of the energy equation in which
the unknown is the internal energy. We thus replace eq. (75)-(d) by the following
equation (in which we use (75)-(b) and (75)-(c) in order to transform (75) - (d))

3 0, 3 0
8t< n952)+v (27195‘92%)

—ng ZQ divg(ug) + / [b(v, T) - (v—ug)—cpy(v, T)} F(v, T)dvdT.

R3 xR+
(76)
We first observe that system (75)-(a)-(b)-(c), (76) has the same global struc-
ture as the system (25), (2), (3), (5) p. 8 and p.13 of [1], the main difference
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being the extra variables r, y, ¢ used in [1], which model extra physical effects
(vaporization and distortion of droplets) and extra terms which also model extra
physical effects (5° and Q¢ for vaporization and chemical reactions, AoV (2/3pk)
and Agpe for turbulence, V - o and V - J for dissipative effects, pg for gravity,
feoll and £ for collision and breakup of droplets).

We then compare the term of transfer of momentum between the phases
(—b given by (69) in our notations and F' in the notations of [1], described in
eq. (24) p.16 of this reference). We observe that in both cases, the terms are
proportional to ng (ug — v) (in [1], the same quantity, up to a mass factor, is
denoted by p(u+ w — v) , where u’ is related to turbulence). The coefficient
of proportionality is however not identical: the drag coefficient is given by a
complex formula in [1], which uses measured coefficients, while in our case,
it is deduced from the microscopic model of collisions between molecules and
droplets that we considered.

Finally, we compare the term of transfer of energy between the phases (v
given by (70) in our notations and T} in the notations of [1], described in
eq. (41), (42) p.18 of this reference). Here also, in both cases, there is a
term proportional to the difference of temperature 6, — 7' (in [1], the same
quantity is denoted by T — Ty). Once again, the coefficient of proportionality
is not identical. We notice however that in our model, because of the specific
microscopic model of collisions between molecules and droplets that we use, an
extra term proportional to |u, —v|? appears, which has no equivalent in [1] (the
term pgdrr?RL(T;) appearing in eq. (41) p.18 of this reference is related to a
different physical effect, namely vaporization).

Note that, as can be expected, the terms appearing in the right-hand side
of the equations of conservation of momentum for the gas (75)-(c), (76), that is
[[bFand [ [[b-(v—u,)—cyy] F; exactly correspond to the terms F* and Q*
of (46) p.19 in [1], once one discards the extra variables r, y, g, and the terms
fpaArr? R and fpgdrr? R[I(T4) + 5 (v —u)?] which are related to vaporization.

It is also interesting to see how modifications of some of our modeling as-
sumptions could give rise to a larger class of drag and temperature exchange
terms (resp. b and v in our notations), with the hope that extra free parame-
ters could appear and help to get terms closer to those used in the applications
(such as the Kiva code). Note first that changing the collision cross section
in the operator C does not modify our formulas, since what we use about C
(in our computations) is just the formula for the equilibria, like in the Euler
limit of the Boltzmann equation when the Knudsen number tends to 0 (for a
monoatomic rarefied gas). Still like in this limit, we can however obtain slightly
different formulas for « (typically containing one extra free parameter related
to the number of degrees of freedom) if we consider an operator C which takes
into account the internal energy of the molecules (polyatomic case). However,
the term % %Gg (and the term g%ﬁgug) are then also modified, still by the
adjunction of one extra free parameter (cf. [4], [13] and [2] for example), so
that v and those terms cannot be changed independently. Another (maybe
more promising) modification would consist in changing the diffusion reflexion
boundary condition leading to the definition of D and R, for example by replac-
ing it with a boundary condition which mixes diffusion reflexion with specular
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reflexion (cf. [6]). We could indeed expect that the parameter representing the
proportion of each type of reflexion would appear in the formulas for b and ~.
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