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Abstract
In this paper, we present an improvement of the modeling of collisional

operators introduced in [6] and [5], which are devoted to the modeling of
the interaction between macroscopic dust particles and molecules of a
rarefied gas. The model developed in [6] is based on the hypothesis that
collisions between dust particles and gas molecules are inelastic and are
given by a diffuse reflexion mechanism on the surface of dust particles. In
the present work, we propose a model which preserves the total energy by
introducing a new variable in the density function of macroscopic parti-
cles. We then write the equations in non-dimensional form, and establish,
like in [10], a formal asymptotics to the Vlasov-Euler equation of com-
pressible fluid when two small parameters tend to zero, namely the ratio
of masses between gas molecules and dust particles on the one hand, and
the Knudsen number of the gas on the other hand.

1 Introduction
Sprays are complex flows consisting of droplets or dust specks in suspension in a
surrounding gas. They can be modeled by different types of equations (cf. [7]),
including coupled systems of Euler-like equations (Eulerian-Eulerian modeling,
cf. [12]), and fluid-kinetic couplings (Eulerian-Lagrangian modeling, cf. [14],
[11] for early works on the subject). This work is devoted to this last type of
modeling. It belongs to a series of papers aiming at linking fluid-kinetic models
(more precisely, models displaying a coupling between a Vlasov equation and an
Euler or Navier-Stokes system through a drag force) with fully kinetic systems
(more precisely, couplings of equations of Boltzmann type). We refer to [8],
[9] and [10] for the cases in which the fluid-kinetic model is respectively the
incompressible Vlasov-Navier-Stokes system, the incompressible Vlasov-Stokes
system, and the compressible Euler system. However, in all those papers, the
temperature of the droplets/dust specks and its evolution (through exchanges
with the temperature of the fluid) is not considered, whereas it constitutes a
significant feature of the fluid-kinetic couplings appearing in engineering issues
(cf. [1, 13] for example). Our intent is to present here a derivation of a typical
fluid-kinetic system (that is, a compressible Vlasov-Euler system) in which the
gas and the disperse phase are coupled not only by the drag force, but also
by the exchange of temperature between the gas and the droplets/dust specks.
This requires the establishment of nonstandard Boltzmann type equations, in
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which collisions between molecules and macroscopic objects have an effect on
the internal energy of the objects.

In section 2, we recall the model defined in [6], and propose a modification
of this model in which the evolution of the temperature of the particles is taken
into account. The unknowns of this modified model are the density function
f := f(t, x, w) ≥ 0 of gas molecules which at time t and point x possess the
velocity w, and the density function F (t, x, v, T ) ≥ 0 of dust particles which at
time t and point x possess the velocity v and the temperature T . The set of
Boltzmann equations for F and f writes

∂F

∂t
+ v · ∇xF = D(F, f),

∂f

∂t
+ w · ∇xf = R(F, f) + C(f),

(1)

where C is a collision operator for the molecules, and R, D are operators corre-
sponding to collisions between molecules and dust particles.

In subsection 3.1, we present a non-dimensional version of those equations,
which leads to the system

∂F

∂t
+ v · ∇xF = 1

η
Dη(F, f),

∂f

∂t
+ w · ∇xf = Rη(F, f) + 1

δ
C(f),

(2)

where η is a ratio of mass, δ is a Knudsen number related to the molecules, and
Rη, Dη are non-dimensional versions of the operators R, D. Then we compute
in subsections 3.2 and 3.3 the formal limit of this system when η → 0 and δ → 0.

This limit leads to the following fluid-kinetic (compressible) Vlasov-Euler
system:

∂F

∂t
+ v · ∇xF −∇v · (bF ) + ∂

∂T
(γF ) = 0,

∂tng + divx(ngug) = 0,

∂t(ngug) + divx
(
ngug ⊗ ug + ng

θg
β2 I

)
=
¨

b(v, T )F (v, T ) dv dT,

∂t

(
ng|ug|2

2 + 3
2
ng
β2 θg

)
+ divx

((
ng|ug|2

2 + 5
2
ng
β2 θg

)
ug

)
=
¨ [

b(v, T ) · v − cp γ(v, T )
]
F (v, T ) dv dT,

with b and γ representing the drag and the thermodynamical exchanges between
the disperse phase and the gas.

2 A Boltzmann-type model for macroscopic par-
ticles in a gas

In this section, more precisely in subsection 2.2, we introduce a new fully kinetic
model of Boltzmann type, in which the total energy is conserved, thanks to a
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modification of the internal energy of the particles at each collision. This model
is a modification of an older model which is briefly presented in subsection 2.1.

2.1 Model without evolution of the temperature of macro-
scopic particles

We recall that a Boltzmann-type model describing the evolution of aerosols was
proposed in [6]. One assumes there that the particles are solid and spherical,
of identical radius, and that the gas is monoatomic. One denotes by F :=
F (t, x, v) ≥ 0 and f := f(t, x, w) ≥ 0 the density functions of dust particles and
of gas molecules at time t ∈ R+, at point x ∈ R3, and possessing the velocity
v ∈ R3 or w ∈ R3. The model is obtained by coupling two Boltzmann-type
equations : 

∂F

∂t
+ v · ∇xF = D1(F, f), (a)

∂f

∂t
+ w · ∇xf = R1(F, f) + C1(f). (b)

(3)

In (3), C1(f) is the classical Boltzmann operator for monoatomic gases, describ-
ing interactions between molecules [4]:

C1(f)(w) =
ˆ
R3

ˆ
S2

[f(w′′)f(w′′∗ )− f(w)f(w∗)] c
(
|w − w∗|,

w − w∗
|w − w∗|

· σ
)
dw∗dσ,

with
(w′′, w′′∗ ) =

(
w + w∗

2 + |w − w∗|2 σ,
w + w∗

2 − |w − w∗|2 σ

)
. (4)

The nonnegative function c describes the interactions between molecules and
can be written as

c

(
|w − w∗|,

w − w∗
|w − w∗|

· ω
)

= σgg |w − w∗| b
(
|w − w∗|,

w − w∗
|w − w∗|

· σ
)
,

where σgg = 4r2
g , rg is the radius of a molecule, and b is a dimensionless function.

We recall the properties of C1(f) relative to the conservation of mass, momentum
and kinetic energy (see [4]):

ˆ
R3
C1(f)(w)

 1
w

|w|2/2

 dw =

0
0
0

 , (5)

and the case of equality in Boltzmann’s H-theorem:

C1(f) = 0⇔ f =M[ng, ug, θg], (6)

where
M[ng, ug, θg](w) := ngβ̄

3

(2πθg)3/2 e
− β̄

2|w−ug|2

2θg , (7)

with

ng(t, x) :=
ˆ
R3
f(t, x, w)dw, ug(t, x) := 1

ng(t, x)

ˆ
R3
f(t, x, w)wdw,
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θg(t, x) := β̄2

3ng(t, x)

ˆ
R3
f(t, x, w)|w − ug(t, x)|2dw.

In (7), the constant β̄ is defined by

β̄ :=
√
mg

kB
, (8)

where mg is the mass of a molecule, and kB is the Boltzmann constant.

In gas mixtures, the collision mechanism between two molecules of different
masses can be described, when there is no internal energy or chemical reactions
involved, by elastic collisions (see [3] and [5] for instance). In [6], a novel model
was proposed, where collisions between dust particles and gas molecules are
supposed to be inelastic and given by a diffuse reflexion mechanism on the
surface of dust particles. This collision mechanism allows to take into account
the macroscopic character of dust particles compared to gas molecules. This
model is based on the following assumptions:

Hypothesis 2.1. The total momentum is conserved during collisions between
particles and molecules.

Hypothesis 2.2. In a collision between a particle and a molecule, the post-
collisional relative velocity is picked from a half-Maxwellian distribution at the
temperature of surface of the particle.

This amounts to assume that a molecule touching a particle thermalizes with
the molecules constituting the surface of the particle within a negligible time
with respect to the other characteristic time scales. Then the post-collisional
relative velocity is in the half space delimited by the tangeant plane to the
surface of the particle.

Hypothesis 2.3. All dust particles have the same surface temperature, denoted
Tsurf, which is supposed to be a constant.

Hypothesis 2.2 leads to the introduction, for n ∈ S2, of the density of prob-
ability hn of the post-collisional relative velocities, given by

hn(v) = 1
2π

β̄4

T 2
surf

(n · v) e−
β̄2|v|2
2Tsurf 1{n·v≥0}, (9)

where β̄ has been defined in (8). One can check that

∀n ∈ S2
ˆ
R3
hn(v)dv = 1. (10)

Hypothesis 2.1 allows to express the post-collisional velocities of a particle v′
and a molecule w′, in terms of z := w′ − v′. Indeed,

(v′, w′) = Γd (v, w, z) , (11)

with 
Γd (v, w, z)1 := v + ηw

1 + η
− η

1 + η
z,

Γd (v, w, z)2 := v + ηw

1 + η
+ 1

1 + η
z,

(12)
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where η = mg
mp

is the ratio of mass between a molecule and a particle. Then the
post-collisional velocities can be seen as random variables v′ and w′ given by
(v′,w′) = Γd (v, w, z), where z has the density of probability hn. Moreover, we
made the following assumptions on the collision cross section.

Hypothesis 2.4. The collision cross section between a particle and a molecule
is the hard sphere cross-section.

Under these assumptions, the expressions of these operators D1 and R1 were
established in [6]. They can be written in the following form (for the sake of
readability, we thereafter omit the t and x variables) :

D1(F, f)(v) = σgp

ˆ
R3

ˆ
R3

ˆ
S2

[
F (v′)f(w′)e

β̄2|v′−w′|2
2Tsurf − F (v)f(w)e

β̄2|v−w|2
2Tsurf

]
× e−

β̄2|v−w|2
2Tsurf ς(v − w, n)hn(z)dndz dw,

(13)
and

R1(F, f)(w) = σgp

ˆ
R3

ˆ
R3

ˆ
S2

[
F (v′)f(w′)e

β̄2|v′−w′|2
2Tsurf − F (v)f(w)e

β̄2|v−w|2
2Tsurf

]
× e−

β̄2|v−w|2
2Tsurf ς(v − w, n)hn(z)dndz dv,

(14)
where the term

ς(v − w, n) := [n · (v − w]1{n·(v−w)≥0} (15)

comes from Hypothesis 2.4, and (v′, w′) = Γd(v, w, z). The constant σgp =
(rg + rp)2, where rp is the radius of a particle and rg the radius of a molecule,
comes from the collision cross section.

We can introduce the transformation

Γ̃d :

vw
z

→
 v′

w′

w − v

 =


1

1+η [v + ηw − ηz]
1

1+η [v + ηw + z]
w − v

 (16)

which is an involution. Then we can obtain the following expressions of the
weak forms of D1(F, f) and R1(F, f) :

ˆ
R3
D1(F, f)(v)ϕ(v)dv

= σgp

˘
[ϕ(v′)− ϕ(v)]F (v)f(w)ς(v − w, n)hn(z)dz dndw dv,

(17)

and ˆ
R3
R1(F, f)(w)ψ(w)dw

= σgp

˘
[ψ(w′)− ψ(w)]F (v)f(w)ς(v − w, n)hn(z)dz dndv dw,

(18)

for all test functions ϕ and ψ (ϕ,ψ ∈ Cc(R3)).
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Remark 1. In [6], the model is slightly more general since it corresponds to
a mixture of gases and a collection of particles of various radiuses. The den-
sity function of particles writes therefore F := F (t, x, v, r), where the variable
r ∈ [rmin, rmax] corresponds to the radius of particles. We assume here, for
the sake of simplicity, that all particles have the same radius (this is called
monodispersion in the vocabulary of sprays). However, the model proposed in
Section 2.2 can easily be extended to the case of a density function F depending
on the radius r.

2.2 Model with evolution of the temperature of macro-
scopic particles

We propose here an improvement of the modeling, based on the modification
of Hypothesis 2.3. We introduce the temperature of surface T of dust particles
as a variable in the density function F . Then F (t, x, v, T ) represents at time
t ∈ R+ the number density of dust particles at point x ∈ R3, possessing the
velocity v ∈ R3, and whose surface temperature is T . We consider that a dust
particle of temperature of surface T has an internal energy, given by

e := c̄pmpT = mg

η
c̄pT,

where c̄p corresponds to the thermal capacity of the material constituting the
particles, and mp is the mass of a given particle (this amounts to identifying
the temperature of surface of the particles with their mean temperature).

2.2.1 The collisional mechanism

We assume that, during a collision between a dust particle of velocity v and
surface temperature T and a molecule of velocity w, Hypothesis 2.1, 2.2 are still
verified, but Hypothesis 2.3 is replaced by the following Assumption:

Hypothesis 2.5. We assume that the temperature of surface of the dust particle
is modified (within a negligible time with respect to the other characteristic time
scales) in such way that the total energy (sum of the kinetic energy of the system
particle-molecule and the internal energy of the particle) is conserved.

Then if we consider a collision between a particle of velocity v, temperature
T , and a molecule of velocity w, we call the postcollisional values v′, T ′, and
w′ respectively. Hypothesis 2.5 leads to the following relation of conservation of
energy:

|v′|2 + η|w′|2 + 2c̄pT ′ = |v|2 + η|w|2 + 2c̄pT. (19)

Proposition 1. Assuming Hypothesis 2.1 and Hypothesis 2.2, the post-collisional
temperature of surface of a particle is given by

T ′ = T + 1
2c̄p

η

1 + η

[
|v − w|2 − |v′ − w′|2

]
. (20)

Proof. The equation of conservation of momentum

v′ + ηw′ = v + ηw (21)
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implies that 
v′ = v + ηw

1 + η
− η

1 + η
(w′ − v′),

w′ = v + ηw

1 + η
+ 1

1 + η
(w′ − v′),

and then

v′2 + ηw′
2 = (v + ηw)2

1 + η
+ η2 + η

(1 + η)2 |w
′ − v′|2

= 1
1 + η

[
|v|2 + η2|w|2 − η

(
|v − w|2 − |v|2 − |w|2

)
+ η|w′ − v′|2

]
= |v|2 + η|w|2 + η

1 + η

[
|w′ − v′|2 − |v − w|2

]
.

Finally equation (19) implies

2c̄p(T ′ − T ) = v2 + ηw2 − v′2 − ηw′2 = η

1 + η

[
|v − w|2 − |w′ − v′|2

]
.

Moreover, we still assume that the collisional mechanism follows Hypothe-
sis 2.2. We now denote, for T > 0,

hn,T (v) = β̄4

2π
(n · v)
T 2 exp

(
− β̄

2|v|2

2T

)
1{n·v≥0}, (22)

where β̄ is defined by (8), the density of probability of the random variable z cor-
responding to the post-collisional relative velocity. Thanks to the conservation
of momentum (21), the post-collisional velocities v′ and w′ are still given by the
expressions (11), (12). Moreover, thanks to Proposition 1, the post-collisional
temperature of the particle is a random variable linked to z by

T′ = T + 1
2c̄p

η

1 + η
[|v − w|2 − |z|2]. (23)

Note that relation (23) allows in principle to get zero or sub-zero post-collisional
temperatures, which is not acceptable from a physical point of view. The prob-
ability for a particle to have a temperature which becomes negative is however
small, indeed when the temperature of surface of a particle approaches zero, the
probability that the temperature will decrease further is close to zero, as shown
by the following Proposition:

Proposition 2. Let ∆T = T′ − T be the difference between the post and pre-
collisional temperatures of surface of the particle during a collision. We assume
that v 6= w. Then we have

lim
T→0+

P(∆T < 0) = 0.

Proof. Thanks to expression (23), we have

P(∆T < 0) = P(|z|2 > |v − w|2),
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and the Markov inequality implies that

P(|z|2 > |v − w|2) ≤ E(|z|2)
|v − w|2

.

Moreover, we have (see [5] for details, or (51))

E(|z|2) =
ˆ
R3
|z|2hn,T (z)dz = 4T

β̄2
,

which proves the claim.

Remark 2. The Hypothesis v 6= w in Proposition 2 is reasonable since ς(v −
w, n) = 0 when v = w, so that the probability of collision between a particle and
a molecule of same velocity is equal to zero.

2.2.2 Construction of the operators

We now construct the collisional operators D(F, f) and R(F, f) associated to
this collisional mechanism. We first establish the weak form of those operators.

Proposition 3. Let ϕ and ψ be test functions. Then
¨
D(F, f)(v, T )ϕ(v, T )dv dT

= σgp

ˆ̆
[ϕ(v′, T ′)− ϕ(v, T )]F (v, T )f(w)ς(v − w, n)hn,T (z)dz dn dw dv dT,

(24)
andˆ

R(F, f)(w)ψ(w)dw

= σgp

ˆ̆
[ψ(w′)− ψ(w)]F (v, T )f(w)ς(v − w, n)hn,T (z)dz dn dv dw dT,

(25)
where ς is defined by (15), (v′, w′) = Γd(v, w, z), and

T ′ = T + 1
2c̄p

η

1 + η
(|v − w|2 − |z|2). (26)

Proof. Since
ˆ
R3
hn,T (v)dv = 1 for all n ∈ S2, the loss term D−(F, f)(v, T ) can

be expressed, like in [6], as

D−(F, f)(v, T ) = σgp

˚
F (v, T )f(w)ς(v − w, n)hn,T (z)dz dn dw.

The gain term can be expressed as

D+(F, f)(v, T )

= σgp

˘
F (v◦, T ◦)f(w◦)ς(v◦ − w◦, n)gv◦,w◦,n,T◦(v, T )dndw◦ dv◦ dT ◦

,

where gv◦,w◦,n,T◦ is the density of the couple of random variables (v,T) which
corresponds to the velocity and the temperature of surface of a particle after a
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collision between a particle of velocity v◦ and temperature T ◦ and a molecule
of velocity w◦. The expressions of v and T are

v = (Γd(v◦, w◦, z))1 = v◦ + ηw◦

1 + η
− η

1 + η
z,

T = T ◦ + 1
2c̄p

η

1 + η
(|v◦ − w◦|2 − |z|2),

(27)

where Γd is defined in (12) and where z is a random variable of R3 which has a
density of probability hn,T◦ . Let v◦ ,w◦, n and T ◦ be fixed and let’s determine
gv◦,w◦,n,T◦ . We can write (v,T) = λv◦,w◦(z, T ◦), with

λv◦,w◦ : (z, s) 7→
(

(Γd(v◦, w◦, z)1, s+ 1
2c̄p

η

1 + η
(|v◦ − w◦|2 − |z|2)

)
,

and where the density of z is hn,T◦ . The mapping λv◦,w◦ is a C1-diffeomorphism,

and the Jacobian of λ−1
v◦,w◦ is equal to

(
1+η
η

)3
. Then

gv◦,w◦,n,T◦(v, T ) =
(

1 + η

η

)3
hn,T◦(z)δT◦(s), with (z, s) = λ−1

v◦,w◦(v, T ).

Then, using in ¨
D+(F, f)(v, T )ϕ(v, T )dv dT

the change of variables

(v, T, v◦, T ◦, w◦)→ (z, s, v◦, T ◦, w◦), with (z, s) = λ−1
v◦,w◦(v, T ),

of Jacobian equal to
(

η
1+η

)3
, we get

¨
D+(F, f)(v, T )ϕ(v, T )dv dT

= σgp

ˆ̆̂
F (v◦, T ◦)f(w◦)ς(v◦ − w◦, n)hn,T◦ (z) δT◦ (s)

× ϕ (λv◦,w◦(z, s)) dw◦ dv◦ dn dT ◦ dz ds

= σgp

ˆ̆
F (v, T )f(w)ς(v − w, n)hn,T (z)ϕ (λv,w(z, T )) dndw dv dz dT,

which proves the claim.

The establishment of the weak form of R(F, f) is very similar to the case of
the operator R1(F, f) introduced in Section 1. We have

R+(F, f)(w) = σgp

˘
F (v◦, T ◦)f(w◦)ς(v◦−w◦, n)mv◦,w◦,n(z)dw◦dv◦ dndT ◦,

wheremv◦,T◦,w◦,n corresponds to the density of probability of the post-collisonal
velocity w of a molecule of velocity w◦ after a collision with a particle of velocity
v◦ and temperature of surface T ◦. Since w = (Γd(v◦, w◦, z))2 = 1

1+η (v◦+ηw◦+
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z) (Γd has been defined in (12)), where z is a random variable of R3 which has
a density of probability hn,T◦ , we have

mv◦,T◦,w◦,n(w) = (1 + η)3hn,T◦ ((1 + η)w − v◦ − ηw◦) ,

and thus the change of variable

(w, v◦, T ◦, w◦)→ (z, v◦, T ◦, w◦), with z = (1 + η)w − v◦ − ηw◦

in ˆ
R3
R+(F, f)(w)ψ(w)dw,

leads toˆ
R3
R+(F, f)(w)ψ(w)dw

= σgp

ˆ̆
F (v◦, T ◦)f(w◦)ς(v◦ − w◦, n)hn,T◦(z)ψ(w′) dz dn dw◦ dv◦ dT ◦,

which allows to obtain expression (25).

Corollary 1. We have the following conversation of mass, momentum and total
energy:

¨
D(F, f)(v, T )

 1
v

|v|2/2 + c̄pT

 dv dT+
ˆ
R(F, f)(w)

 1
ηw

η|w|2/2

 dw =

0
0
0

 .

(28)

Proof. It is a direct consequence of the relation of conservation of mass, momen-
tum (21), and energy (19), and the weak forms (24) and (25) of the operators
D and R.

We now express the operators in strong form.

Proposition 4. Let D(F, f) and R(F, f) be the collision operators given in
weak form by (24) and (25). They can be expressed as

D(F, f)(v, T ) = β̄4σgp
2π

˚
ς(z, n)ς(v − w, n)

×
[
F (v′, T ′)f(w′) 1

T ′2
e−

β̄2
2T ′ |v−w|

2
− F (v, T )f(w) 1

T 2 e
− β̄

2
2T |v

′−w′|2
]
dz dndw,

(29)
and

R(F, f)(w) = β̄4σgp
2π

˘
ς(z, n)ς(v − w, n)

×
[
F (v′, T ′)f(w′) 1

T ′2
e−

β̄2
2T ′ |v−w|

2
− F (v, T )f(w) 1

T 2 e
− β̄

2
2T |v

′−w′|2
]
dz dn dv dT,

(30)
where v′, w′, and T ′ are given by (11), (12), and (26) respectively.
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Proof. We consider in the weak expression of D+(F, f) the following change of
variables:

(v, w, z, T )→ (v′, w′, u, T ′),

where (v′, w′, u) = Γ̃d(v, w, z) given by (16), and T ′ is given by (26). This
transformation is involutive and its Jacobian is equal to 1. Then
¨
D+(F, f)(v, T )ϕ(v, T )dv dT

= σgp

ˆ̆
F (v, T )f(w)ς(v − w, n)hn,T (z)ϕ (v′, T ′) dndz dw dv dT,

= σgp

ˆ̆
F (v, T )f(w)ς(v − w, n)hn,T (w′ − v′)ϕ (v′, T ′) dn dudw′ dv′ dT ′,

= σgp

ˆ̆
F (v′, T ′)f(w′)ς(v′ − w′, n)hn,T ′ (w − v)ϕ (v, T ) dn dz dw dv dT,

= σgp

ˆ̆
F (v′, T ′)f(w′)ς(w′ − v′,−n)h−n,T ′ (v − w)ϕ (v, T ) dndz dw dv dT,

and we obtain, since z = w′ − v′ and with the change of variable n 7→ −n,

D+(F, f)(v, T ) =σgp
˚

F (v′, T ′)f(w′)ς(z, n)hn,T ′ (v − w) dndz dw,

and finally we get (29). Computations are similar for (30).

3 Asymptotic expansion
3.1 Dimensionless Boltzmann system
In order to perform the asymptotic analysis of system (3), we first introduce
a dimensionless version of it. As in [10], we assume here that the aerosol is
associated to a length scale L. Moreover, following the approach of [5], we first
make the following scaling hypothesis.

Hypothesis 3.1. We assume that the thermal speed of gas molecules and par-
ticles are of the same order of magnitude, denoted by V .

We define Ng and Np, the typical density number per volume unit of gas
molecules and particles respectively (in m−3), and we recall that we denote
σgg = 4r2

g , σgp = (rg + rp)2, σpp = 4r2
p the collisional cross sections (up to the

constant π) between species (in m2).
We define a dimensionless position variable x̂ = x/L, dimensionless velocity

variables ŵ = w/V and v̂ = v/V for molecules and particles, a dimensionless
time variable t̂ = tV/L, and a dimensionless temperature variable T̂ = T/Tref .
We then define a dimensionless density function for each species :

F̂ (t̂, x̂, v̂, T̂ ) = 1
F ◦

F (t, x, v, T ), and f̂(t̂, x̂, ŵ) = 1
f◦
f(t, x, w),

with
F ◦ = Np

V 3Tref
, and f◦ = Ng

V 3 .
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Then the left-hand side terms of system (3) become

∂F

∂t
+ v · ∇xF = F ◦V

L

(
∂F̂

∂t̂
+ v̂ · ∇x̂F̂

)
,

∂f

∂t
+ w · ∇xf = f◦V

L

(
∂f̂

∂t̂
+ ŵ · ∇x̂f̂

)
.

The collision operators D(F, f), R(F, f) and C(f) are scaled in the following
way

D(F, f) = F ◦f◦σgpV
4 D̂(F̂ , f̂),

R(F, f) = F ◦f◦σgpV
4Tref R̂(F̂ , f̂),

C(f) = (f◦)2σggV
4 Ĉ(f̂), (31)

where D̂(F̂ , f̂), R̂(F̂ , f̂), Ĉ(f̂) are the dimensionless versions of D(F, f), R(F, f)
and C(f) (note that β̄2V 2/Tref is a dimensionless constant) :

D̂(F̂ , f̂)(v̂, T̂ ) = 1
2π

β̄4V 4

T 2
ref

˚
ς(ẑ, n)ς(v̂ − ŵ, n)

×
[
F̂ (v̂′, T̂ ′)f̂(ŵ′) 1

T̂ ′2
e
− β̄

2V 2
Tref

|v̂−ŵ|2

2T̂ ′ − F̂ (v̂, T̂ )f̂(ŵ) 1
T̂ 2
e
− β̄

2V 2
Tref

|v̂′−ŵ′|2

2T̂

]
dẑ dndŵ,

where
T̂ ′ = T̂ + 1

2ĉp
η

1 + η
(|v̂ − ŵ|2 − |ẑ|2) (32)

with ĉp = c̄p
Tref
V 2 ,

R̂(F̂ , f̂)(ŵ) = 1
2π

β̄4V 4

T 2
ref

˘
ς(ẑ, n)ς(v̂ − ŵ, n)

×
[
F̂ (v̂′, T̂ ′)f̂(ŵ′) 1

T̂ ′2
e
− β̄

2V 2
Tref

|v̂−ŵ|2

2T̂ ′ − F̂ (v̂, T̂ )f̂(ŵ) 1
T̂ 2
e
− β̄

2V 2
Tref

|v̂′−ŵ′|2

2T̂

]
dẑ dndv̂ dT̂ ,

Ĉ(f̂)(ŵ) =
ˆ
R3

ˆ
S2

[
f̂(ŵ′′)f̂(ŵ′′∗ )− f̂(ŵ)f̂(ŵ∗)

]
|ŵ−ŵ∗|b

(
|ŵ−ŵ∗|,

ŵ − ŵ∗
|ŵ − ŵ∗|

)
dŵ∗dσ.

We don’t express here the collision operator B̂(F̂ ) but as in (31), we can
write

B(F ) = (F ◦)2σppV
4Tref B̂(F̂ )

where B̂(F̂ ) is the dimensionless version of B(F ).
We finally obtain the following dimensionless system

∂F̂

∂t̂
+ v̂ · ∇x̂F̂ = σgp LNg D̂(F̂ , f̂) + σpp LNp B̂(F̂ ),

∂f̂

∂t̂
+ ŵ · ∇x̂f̂ = σgp LNp R̂(F̂ , f̂) + σgg LNg Ĉ(f̂).

(33)

We study the system in the limit of small mass ratio (that is, η → 0) and in
the fluid limit for the gas. We therefore introduce

δ := 1
LNgσgg

, (34)
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which is a dimensionless number corresponding to the ratio between the chara-
teristic length L and the mean free path (up to a constant) of the gas (taking
into account only the collisions between molecules of the gas). Following [10],
we first make the following assumption:

Hypothesis 3.2. The frequency of collisions between particles is such that

σpp LNp � 1,

so that we can formally neglect the term σpp LNp B̂(F̂ ) in system (33).

As in [5], we set σgp LNp = 1, which corresponds to studying the asymptotic
of the system at the time scale of the collisions between gas molecules and
particles, seen from the point of view of molecules. To express the frequency
of collisions between particles and gas molecules, from the point of view of
particles, we make, like in [10], the following assumption:

Hypothesis 3.3. The ratio of density between particles and molecules is iden-
tical to the mass ratio between molecules and particles, that is

Np
Ng

= η.

Moreover, we need to make an assumption on the order of magnitude of the
temperature of surface of the dust particles:

Hypothesis 3.4. We assume that the ratio between the kinetic temperature of
the gas and the temperature of surface of dust particles is of order 1. We denote

β̂ := β̄
V√
Tref

=

√
mgV 2

kBTref
, (35)

the square root of the ratio between these two temperatures, which corresponds
to a dimensionless version of the constant β̄.

Defining

hn,T (v) := β̂4

2π
(n · v)
T 2 exp

(
− β̂

2|v|2

2T

)
1{n·v≥0}, (36)

we can rewrite

D̂(F̂ , f̂)(v̂, T̂ ) =
˚ [

ς(ẑ, n)hn,T̂ ′(v̂ − ŵ)F̂ (v̂′, T̂ ′)f̂(ŵ′)

− ς(v̂ − ŵ, n)hn,T̂ (ẑ)F̂ (v̂, T̂ )f̂(ŵ)
]
dẑ dndŵ,

(37)

where
T̂ ′ = T̂ + 1

2ĉp
η

1 + η
(|v̂ − ŵ|2 − |ẑ|2), (38)

R̂(F̂ , f̂)(ŵ) =
˘ [

ς(ẑ, n)hn,T̂ ′(v̂ − ŵ)F̂ (v̂′, T̂ ′)f̂(ŵ′)

− ς(v̂ − ŵ, n)hn,T̂ (ẑ)F̂ (v̂, T̂ )f̂(ŵ)
]
dẑ dndv̂ dT̂ .

(39)
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We thus study the asymptotic regime of the following system (where we
drop hats on all dimensionless variables, functions, operators, on ĉp and β̂)
when η → 0 and δ → 0 :

∂F

∂t
+ v · ∇xF = 1

η
Dη(F, f), (a)

∂f

∂t
+ w · ∇xf = Rη(F, f) + 1

δ
C(f), (b)

(40)

where Dη(F, f) and Rη(F, f) are the dimensionless versions of (29) and (30)
given by formulas (37) and (39), which write after all hats are dropped in the
following way:

D(F, f)(v, T ) =
˚ [

ς(z, n)hn,T ′(v − w)F (v′, T ′)f(w′)

− ς(v − w, n)hn,T (z)F (v, T )f(w)
]
dz dndw,

(41)

R(F, f)(w) =
˘ [

ς(z, n)hn,T ′(v − w)F (v′, T ′)f(w′)

− ς(v − w, n)hn,T (z)F (v, T )f(w)
]
dz dndv dT,

(42)

where ς is defined by (15), (v′, w′) = Γd(v, w, z) is defined in (12) , T ′ is given
by

T ′ = T + 1
2cp

η

1 + η
(|v − w|2 − |z|2), (43)

and hn is redefined (dropping hats on β) as

hn,T (v) = β4

2π
(n · v)
T 2 exp

(
−β

2|v|2

2T

)
1{n·v≥0}. (44)

Note also that the weak forms of Dη(F, f), Rη(F, f) write, for ϕ and ψ test
functions,
ˆ +∞

0

ˆ
R3
Dη(F, f)(v, T )ϕ(v, T )dv dT

=
ˆ̆

[ϕ(v′, T ′)− ϕ(v, T )]F (v, T )f(w)ς(v − w, n)hn,T (z)dz dndw dv dT,
(45)

andˆ
R3
Rη(F, f)(w)ψ(w)dw

=
ˆ̆

[ψ(w′)− ψ(w)]F (v, T )f(w)ς(v − w, n)hn,T (z)dz dn dv dw dT.
(46)

3.2 Limit η → 0
We first perform an asymptotic expansion of Dη(F, f) according to the mass
ratio η.

14



Proposition 5. We have

Dη(F, f) = η a(F, f) + O(η2),

with

a(F, f)(v, T ) :=π∇v ·
(
F (v, T )

ˆ
R3

(
|w − v|+

√
2πT
3β

)
(v − w)f(w)dw

)

+ π

2cp
∂

∂T

[(
4T
β2 If,1(v)− If,3(v)

)
F (v, T )

]
,

where we denote

If,1(t, x, v) :=
ˆ
R3
|w − v|f(t, x, w) dw (47)

and
If,3(t, x, v) :=

ˆ
R3
|w − v|3f(t, x, w) dw. (48)

Proof. Let ϕ(v, T ) be a test function. Thanks to the weak form (45) of D(F, f)
and to the asymptotic expansion of ϕ,

ϕ(v′, T ′)−ϕ(v, T ) = (v′−v)·∇vϕ(v, T )+(T ′−T )∂Tϕ(v, T )+o(|v′−v|+|T ′−T |).

We split the weak form of Dη into two parts :
¨
Dη(F, f)(v, T )ϕ(v, T )dv dT = A+B,

where A includes the gradient w.r.t. v, and B includes the derivative w.r.t. T .
Computations for the term A are similar to the asymptotic expansion made

in [6] for the model with a constant temperature of surface of particles. Using
(11) and the following results (see [5]):

ˆ
R3
hn,T (z) dz = 1,

ˆ
R3
zhn,T (z) dz =

√
πT√
2β

n, (49)

ˆ
S2
ς(s, n)dn = π|s|,

ˆ
S2
nς(s, n)dn = 2π

3 s, (50)

we get

A =
ˆ̆

(v′ − v) · ∇vϕ(v, T )F (v, T )f(w)ς(v − w, n)hn,T (z) dv dw dz dndT

= η

1 + η

˘
(w − v) · ∇vϕ(v, T )F (v, T )f(w)ς(v − w, n) dv dw dndT

− η

1 + η

ˆ̆
·∇vϕ(v, T )F (v, T )f(w)ς(v − w, n)hn,T (z) dv dw dz dndT

= ηπ

¨
∇v ·

[ˆ (
|w − v|+

√
2πT
3β

)
(v − w)f(w)dwF (v, T )

]
ϕ(v, T )dvdT

+ O(η2).
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For the computation of the term B, we use (26), (49), (50) and
ˆ
R3
|z|2hn,T (z) dz = 4T

β2 , (51)

and we get

B =
ˆ̆

(T ′ − T )∂ϕ
∂T

(v, T )ς(v − w, n)hn,T (z)F (v, T )f(w) dv dw dz dn dT

= B1 +B2,

with

B1 := 1
2cp

η

1 + η

ˆ̆
|v − w|2ς(v − w, n)hn,T (z)∂ϕ

∂T
(v, T )F (v, T )f(w) dv dw dz dndT

= π

2cp
η

1 + η

˚
|v − w|3 ∂ϕ

∂T
(v, T )F (v, T )f(w) dv dw dT

= −πη2cp

¨
∂F

∂T
(v, T )

(ˆ
|v − w|3f(w)dw

)
ϕ(v, T ) dv dT + O(η2),

and

B2 := −1
2cp

η

1 + η

ˆ̆
|z|2ς(v − w, n)hn,T (z)∂ϕ

∂T
(v, T )F (v, T )f(w) dv dw dz dndT

= −π
cp

η

1 + η

˚ 2T
β2 |v − w|

∂ϕ

∂T
(v, T )F (v, T )f(w) dv dw dT

= 2πη
cpβ2

¨
∂

∂T
(TF (v, T ))

(ˆ
|v − w|f(w)dw

)
ϕ(v, T ) dv dT + O(η2).

We then obtain a formal limit when η → 0 of equations of (40). If we denote
(fδ,η, F δ,η) a solution of (40), then (formally) (fδ,η, F δ,η) → (fδ, F δ), solution
of

∂F

∂t
+ v · ∇xF − π∇v ·

(
F (v, T )

ˆ (
|v − w|+

√
2πT
3β

)
(v − w)f(w)dw

)

− π

2cp
∂

∂T

[(
4T
β2 If,1(v)− If,3(v)

)
F (v, T )

]
= 0, (a)

∂f

∂t
+ w · ∇xf = Rl(F, f) + 1

δ
C(f), (b)

(52)
with If,1 and If,3 defined by (47) and (48). Moreover, Rl writes in weak form
as ˆ

R3
Rl(F, f)(w)ψ(w)dw

=
˘ [

ψ(w
′l)− ψ(w)

]
F (v, T )f(w)ς(v − w, n)hn,T (z) dz dndv dw,

(53)

with w′l = limη→0 Γd(v, w, z)2 = v + z (remember that Γd is defined in (12)).
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3.3 Limit δ → 0
We now pass to the limit when δ → 0 in (52) in order to obtain a fluid-kinetic
model (Vlasov-Euler equation) which includes exchanges of internal energy be-
tween the phases. Thanks to property (6), we see that if (fδ, F δ) is a solution
of (52), then (at a formal level) fδ →M[ng, ug, θg] defined by (7). Like in [10],
we introduce the following notations, for a ∈ R3 :

q(a) :=
ˆ
R3

(a− y)|a− y|e−
|y|2

2
dy

(2π)3/2 ,

q0(a) :=
ˆ
R3
|a− y|e−

|y|2
2

dy

(2π)3/2 ,

and
q3(a) :=

ˆ
R3
|a− y|3e−

|y|2
2

dy

(2π)3/2 .

The function q can be expressed under the following form (see [10]):

q(a) = a q̃(|a|). (54)

Moreover, we observe that it is possible to write, for some smooth functions q̃0,
q̃3,

q0(a) = q0(0) + |a|2 q̃0(|a|), q3(a) = q3(0) + |a|2 q̃3(|a|), (55)

with

q0(0) = 2
√

2
π
, q3(0) = 4 q0(0). (56)

3.3.1 Equation for the particles

We first establish the limit of equation (52)-(a). Straigthforward computations
allow to express the terms involved in (52)-(a) according to the quantities q0,
and q. On one hand, we have

ˆ
|v − w|(v − w)M[ng, ug, θg](w)dw = ng

θg
β2 q

(
v − ug√
θg/β2

)
, (57)

and ˆ
(v − w)M[ng, ug, θg](w)dw = ng(v − ug), (58)

which allow to express the term “in ∇v·” in the limit of eq. (52) - (a), thanks
to (54) :

π

ˆ (
|v − w|+

√
2πT
3β

)
(v − w)M[ng, ug, θg](w)dw

= πng
θg
β2 q

(
v − ug√
θg/β2

)
+ πng

√
2πT
3β (v − ug)

= πng (v − ug)
(√

θg
β2 q̃

(∣∣∣∣∣ v − ug√
θg/β2

∣∣∣∣∣
)

+
√

2πT
3β

)
.

17



Then, we compute the limit of the term “in ∂
∂T ” in the limit of eq. (52) - (a).

We first observe that

IM[ng,ug,θg],1(v) = ng

√
θg
β2 q0

(
v − ug√
θg/β2

)
, (59)

IM[ng,ug,θg ],3(v) = ng

(
θg
β2

)3/2
q3

(
v − ug√
θg/β2

)
, (60)

and then, thanks to (55) and (56) :

− π

2cp

(
4T
β2 IM[ng,ug,θg],1(v)− IM[ng,ug,θg],3(v)

)
= − π

2cp
ng

√
θg
β2

[
4T
β2 q0

(
v − ug√
θg/β2

)
− θg
β2 q3

(
v − ug√
θg/β2

)]

= − π

2cp
ng

√
θg
β2

[
8
√

2
π

(T − θg)
β2 + |v − ug|2

(
4T
θg
q̃0

(
|v − ug|√
θg/β2

)
− q̃3

(
|v − ug|√
θg/β2

))]
As a consequence, we can express the limit of (52)-(a) when δ → 0. It writes

∂F

∂t
+ v · ∇xF −∇v · (bF ) + ∂

∂T
(γF ) = 0, (61)

with

b(v, T ) := πng (v − ug)
(√

θg
β2 q̃

(∣∣∣∣∣ v − ug√
θg/β2

∣∣∣∣∣
)

+
√

2πT
3β

)
, (62)

and

γ(v, T ) := π

2cp
ng

√
θg
β2

[
8
√

2
π

(θg − T )
β2 + |v − ug|2S

(
|v − ug|√
θg/β2

)]
, (63)

where
S(r) := q̃3(r)− 4 T

θg
q̃0(r).

Expression (62) corresponds to the drag force between the two phases of the
mixture, while expression (63) highlights the energy exchange between those
two phases. We further comment those expressions (and compare them with a
typical macroscopic model) at the end of the paper.

3.3.2 Equations for the gas

By integrating equation (52)-(b) against 1, w and |w|2/2 and taking the limit
η → 0, we obtain the local (in time and space) conservation laws for the mass,
momentum and kinetic energy :

∂t

ˆ
R3

 1
w

|w|2/2

M[ng, ug, θg](w)dw + divx

ˆ
R3
w

 1
w

|w|2/2

M[ng, ug, θg](w)dw


=
ˆ
R3

 1
w

|w|2/2

Rl (F,M[ng, ug, θg]) (w)dw.

(64)
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First equation Thanks to the weak form (53) of Rl, we first see that
ˆ
R3
Rl (F,M[ng, ug, θg]) (w)dw = 0,

which leads to the equation of conservation of mass for the gas

∂tng + divx(ngug) = 0. (65)

Second equation We can compute, thanks to (50) and (49), the other inte-
grals :
ˆ
R3
Rl (F,M[ng, ug, θg]) (w)wdw

=
ˆ̆

(v + z − w)F (v, T )M[ng, ug, θg](w)ς(v − w, n)hn,T (z) dz dn dv dT dw

= π

¨
F (v, T )

ˆ
(v − w) |v − w|M[ng, ug, θg](w) dw dv dT

+ π
√

2πT
3β

˚
F (v, T )M[ng, ug, θg](w) (v − w) dv dT dw

= πng
θg
β2

¨
F (v, T )q

(
v − ug√
θg/β2

)
dv dT + ng

π
√

2πT
3β

¨
F (v, T )(v − ug) dv dT

=
¨

b(v, T )F (v, T ) dv dT,

with b given by (62). We get thus the equation for the evolution of momentum
for the gas:

∂t(ngug) + divx(ngug ⊗ ug + ng
θg
β2 I) =

¨
b(v, T )F (v, T ) dv dT. (66)

Note that this equation can be easily recovered by using the conservation of
momentum and eq. (61) - (62).

Third equation In order to avoid tedious computations, we start from the
conservation of total energy before passing to the limit when η, δ → 0, that is
¨
Dη(F, f)(v, T )

(
|v|2

2 + cpT

)
dv dT + η

ˆ
Rη(F, f)(w) |w|

2

2 dw = 0.

After passing to the limit η, δ → 0, we see that
¨

a(F,M[ng, ug, θg])(v, T )
(
|v|2

2 + cpT

)
dv dT+

ˆ
Rl(F,M[ng, ug, θg])(w) |w|

2

2 dw = 0.

Noticing that

a(F,M[ng, ug, θg])(v, T ) = ∇v · (b F )− ∂

∂T
(γ F ),
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we see that
ˆ
Rl(F,M[ng, ug, θg])(w) |w|

2

2 dw

= −
¨

a(F,M[ng, ug, θg])(v, T )
(
|v|2

2 + cpT

)
dv dT

=
¨ [

b(v, T ) · v − cp γ(v, T )
]
F (v, T ) dv dT.

We thus obtain the equation for the evolution of the total energy of the gas:

∂t

(
ng|ug|2

2 + 3
2
ng
β2 θg

)
+ divx

((
ng|ug|2

2 + 5
2
ng
β2 θg

)
ug

)
=
¨ [

b(v, T ) · v − cp γ(v, T )
]
F (v, T ) dv dT.

(67)

Finally, by collecting (61), (65), (66) and (67), we end up with an Euler-Vlasov
system, which writes

∂F

∂t
+ v · ∇xF −∇v · (bF ) + ∂

∂T
(γF ) = 0 (a),

∂tng + divx(ngug) = 0 (b),

∂t(ngug) + divx
(
ngug ⊗ ug + ng

θg
β2 I

)
=
¨

b(v, T )F (v, T ) dv dT (c),

∂t

(
ng|ug|2

2 + 3
2
ng
β2 θg

)
+ divx

((
ng|ug|2

2 + 5
2
ng
β2 θg

)
ug

)
=
¨ [

b(v, T ) · v − cp γ(v, T )
]
F (v, T ) dv dT (d),

(68)
where b and γ are given by (62) and (63) respectively.

3.4 Comparison with a typical thin spray model
In this last subsection of the paper, we propose to compare system (68), obtained
by a formal limit from a microscopic model, with a typical thin (that is, when the
volume fraction of the droplets is negligible) spray system used in the modeling
of engines, namely the system used for the Kiva-II numerical code (cf. [1]).

In order to do so, we first provide a version of the energy equation in which
the unknown is the internal energy. We thus replace eq. (68)-(d) by the following
equation (in which we use (68)-(b) and (68)-(c) in order to transform (68) - (d))

∂t

(
3
2 ng

θg
β2

)
+∇x ·

(
3
2 ng

θg
β2 ug

)
= −ng

θg
β2 divx(ug) +

¨ [
b(v, T ) · (v − ug)− cp γ(v, T )

]
F (v, T ) dv dT.

(69)

We first observe that system (68)-(a)-(b)-(c), (69) has the same global struc-
ture as the system (25), (2), (3), (5) p. 8 and p.13 of [1], the main difference
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being the extra variables r, y, ẏ used in [1], which model extra physical effects
(vaporization and distortion of droplets) and extra terms which also model extra
physical effects (ρ̇s and Q̇c for vaporization and chemical reactions, A0∇(2/3ρk)
and A0ρε for turbulence, ∇ · σ and ∇ · J for dissipative effects, ρg for gravity,
ḟ coll and ḟ bu for collision and breakup of droplets).

We then compare the term of transfer of momentum between the phases
(−b given by (62) in our notations and F in the notations of [1], described in
eq. (24) p.16 of this reference). We observe that in both cases, the terms are
proportional to ng (ug − v) (in [1], the same quantity, up to a mass factor, is
denoted by ρ (u + u′ − v) , where u′ is related to turbulence). The coefficient
of proportionality is however not identical: the drag coefficient is given by a
complex formula in [1], which uses measured coefficients, while in our case,
it is deduced from the microscopic model of collisions between molecules and
droplets that we considered.

Finally, we compare the term of transfer of energy between the phases (γ
given by (63) in our notations and Ṫd in the notations of [1], described in
eq. (41), (42) p.18 of this reference). Here also, in both cases, there is a
term proportional to the difference of temperature θg − T (in [1], the same
quantity is denoted by T − Td). Once again, the coefficient of proportionality
is not identical. We notice however that in our model, because of the specific
microscopic model of collisions between molecules and droplets that we use, an
extra term proportional to |ug−v|2 appears, which has no equivalent in [1] (the
term ρd4πr2RL(Td) appearing in eq. (41) p.18 of this reference is related to a
different physical effect, namely vaporization).

Note that, as can be expected, the terms appearing in the right-hand side
of the equations of conservation of momentum for the gas (68)-(c), (69), that is´ ´

b F and
´ ´

[b · (v−ug)− cpγ]F ; exactly correspond to the terms F s and Q̇s
of (46) p.19 in [1], once one discards the extra variables r, y, ẏ, and the terms
fρd4πr2Rv and fρd4πr2R[Il(Td)+ 1

2 (v−u)2] which are related to vaporization.
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