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THERMODYNAMICS OF NONEQUILIBRIUM DRIVEN

DIFFUSIVE SYSTEMS IN MILD CONTACT WITH BOUNDARY

RESERVOIRS.

ANGÈLE BOULEY AND CLAUDIO LANDIM

Abstract. We consider macroscopic systems in mild contact with boundary
reservoirs and under the action of external fields. We present an explicit for-

mula for the Hamiltonian of such systems, from which we deduce the equation

of motions, the action functional, the hydrodynamic equation for the adjoint
dynamics, and a formula for the quasi-potential.

We examine the case in which the external forcing depends on time and

drives the system from one nonequilibrium state to another. We extend the re-
sults presented in [8] on thermodynamic transformations for systems in strong

contact with boundary reservoirs to the present situation.

In particular, we propose a natural definition of renormalized work, and
show that it satisfies a Clausius inequality, and that quasi-static transforma-

tions minimize the renormalized work. In addition, we connect the renormal-
ized work to the quasi-potential describing the fluctuations in the stationary

nonequilibrium ensemble.

1. Introduction

After the recent articles [16, 12], where a formula for the quasi-potential has been
derived for one-dimensional exclusion processes in mild contact with reservoirs, the
purpose of this article is to extend to driven diffusive systems in mild contact
with boundary reservoirs the nonequilibrium thermodynamical theory developed
in [8, 9, 7] for systems in strong interaction with reservoirs.

The macroscopic evolution of systems in mild contact with reservoirs differs
substantially from the one observed when the system strongly interacts with the
reservoirs. With strong interactions, at the level of large deviations, a density
fluctuation at the boundary is too costly and not observed. In contrast, for mild
boundary interactions, any smooth trajectory has a finite cost. In consequence,
the associated Hamiltonian carries a term which takes into account the boundary
fluctuations. We investigate in this article the consequences to the thermodynamical
theory of the additional boundary Hamiltonian term.

In Section 2, we introduce a class of stochastic lattice gases, which includes
exclusion, zero-range and KMP models. We define in this framework a boundary
Hamiltonian, derived rigorously in [20, 12] for one-dimensional, symmetric exclusion
processes in mild contact with reservoirs, and record some of its properties. For
the readers convenience, these dynamics are reviewed in the appendices, where
explicit formulas for the Hamiltonians and the quasi-potentials are presented. We

Key words and phrases. Nonequilibrium stationary states, Robin boundary conditions, Quasi-
potential, Thermodynamic transformations, Clausius inequality, Large deviations.
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also provide a microscopic dynamics not covered by this theory, as the stationary
states of the boundary dynamics are different from the bulk ones.

In Section 3, supported by the models presented in the previous section, we
introduce the main object of this article, a Hamiltonian composed of a bulk part
and the boundary part already put forward. The bulk part coincides with the
Hamiltonian of systems in strong interaction with the reservoirs, and is expressed
in terms of two thermodynamics quantities, the diffusivity and the mobility. The
boundary Hamiltonian, instead, the main novelty of this article, is expressed in
terms of a measure which depends on the chemical potential of the reservoirs and
on the density profile at the boundary. We present in Section 3 several proper-
ties of this Hamiltonian and deduce from its form the equation of motions, the
action functional, the quasi-potential, the adjoint thermodynamical quantities and
formulas for the currents.

In Section 4, we derive a differential equation for the quasi-potential. This equa-
tion has been obtained by Derrida, Hirschberg and Sadhu [16] for one-dimensional
symmetric exclusion processes, expressing the stationary state of the system as a
product of matrices. For zero-range processes it can be obtained by direct com-
putations because the stationary state is a product measure. For KMP models,
the equation is new and has not yet been derived rigorously. In this model, the
boundary conditions, displayed in equations (C.4) and (C.5), do not coincide with
the boundary conditions for stationary density profile (see equation (3.11)), in con-
trast to the case of strong boundary interactions and of exclusion and zero-range
dynamics in mild interaction. See Remarks 4.1 and 4.2.

Section 5 provides a dynamic derivation of the second law of thermodynamics
as expressed by a Clausius inequality for the energy exchanged between the system
and the external reservoirs and fields. The results and the reasoning presented in
this section and the next one follow closely [8, 9].

In Section 6, we examine transformations along equilibrium states. According
to the standard thermodynamic theory, a transformation is reversible if the energy
exchanged between the system and the environment is minimal. A thermodynamic
principle asserts that reversible transformations are accomplished by a sequence
of equilibrium states and are well approximated by quasi-static transformations in
which the variations of the environment are very slow. By an explicit construction
of quasi-static transformations, we show that this principle can be derived for driven
diffusive systems in mild interaction with boundary reservoirs.

Fix two equilibrium states and a transformation which drives the system from
the first to the second one. The excess work of this transformation is defined as the
total work minus the minimal work needed to bring the system from the first to the
second equilibrium state. We show in Section 6 that the quasi-potential coincides
with the excess work of the relaxation path from the first equilibrium state to the
second.

In Section 7, these results are extended to transformations along nonequilibrium
states. However, nonequilibrium states are characterized by the presence of a non
vanishing current in the stationary density profile. Therefore, to maintain such
states one needs to dissipate a positive amount of energy per unit of time. If we
consider a transformation between nonequilibrium stationary states, the energy dis-
sipated along such transformation will necessarily include the contribution needed
to maintain such states.
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To take into account this amount of energy, following [25], we introduce the
renormalized work, and extend the results of the two previous sections to transfor-
mations along nonequilibrium states. In contrast with systems in strong interaction
with the reservoirs, the symmetric and the anti-symmetric currents are not orthog-
onal (cf. the discussion at the end of Section 3). In consequence, the definition
of the renormalized work proposed here is new and involves a boundary functional
which takes into account the interaction of the system with the reservoirs.

The Hamiltonian appearing in this article is the action functional of the dynam-
ical large deviations principle (DLDP) for the empirical measure. A dynamical
large deviations principle for systems in mild contact with reservoirs has only been
derived rigorously for one-dimensional symmetric exclusion processes [20, 12]. We
believe that a DLDP for systems in mild contact with reservoirs can also be de-
rived for gradient exclusion processes in any dimension. For zero-range and KMP
processes, however, a rigorous proof is still out of reach due to a lack of exponential
moments [10].

A formula for the Hamiltonian, as explained in Section 2 (cf. equation (2.4) and
(3.2)), can be easily obtained from the generator of the boundary dynamics and
the stationary state of the bulk dynamics.

A large deviations principle for the empirical measure under nonequilibrium
states for systems in mild contact with reservoirs is more demanding and has not
yet been proved. A formula for the rate functional (the quasi-potential) for one-
dimensional symmetric exclusion processes is presented in [16, 12]. For zero-range
processes, as the nonequilibrium states are product measures, it is easy to derive
it. For all other models, it is still an open problem.

In conclusion, in this article we extend the thermodynamic theory resulting from
the Macroscopic Fluctuation Theory (MFT) to systems in mild contact with reser-
voirs. We introduce a Hamiltonian with an additional term coming from the mild
interactions of the system with reservoirs and propose a definition of renormalized
work. We prove the validity of a Clausius inequality for transformations along equi-
librium and nonequilibrium states in this framework and we show that the excess
of work along the relaxation path is given by the quasi-potential, for equilibrium
and nonequilibrium states.

2. Microscopic dynamics

In this section, we introduce the boundary Hamiltonian from an underlying
microscopic dynamics. The evolution induced by this Hamiltonian together with
the bulk Hamiltonian arising from locally conservative dynamics will be examined
in the next sections.

The general framework presented in this section includes the main microscopic
stochastic dynamics, such as the exclusion, zero-range and KMP processes, on
which the Macroscopic Fluctuation Theory (MFT) has been build. For the reader’s
convenience, we reviewed in the appendices the properties of these systems used
below.

Let Ω be the bounded domain of Rd occupied by the system. Fix N ≥ 1, and
denote by ΩN = Ω ∩ (Z/N)d its discretization. Here, Z/N = {k/N : k ∈ Z}.
Elements of Ω are represented by x, y. The boundary of ΩN , denoted by ∂ΩN ,
consists of points in ΩN which have a neighbor not in ΩN :

∂ΩN =
{
x ∈ ΩN : ∃ y ∈ (Z/N)d \ Ω , |y − x| = 1/N

}
,
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where | · | stands for the Euclidian distance.
Let E be a subspace of R which represents the possible values of the spins or

occupation variables. In the case of exclusion processes, E = {0, 1}. For zero-range
processes, E = N ∪ {0}, and for KMP models, E = R+. The elements of E are
denoted by the symbols x, y.

The state space of the microscopic dynamics is represented by ΣN : ΣN = EΩN

and its elements by the Greek letters η = (ηx : x ∈ ΩN ), ξ. Hence, ηx stands for
the value of the occupation variable at x ∈ ΩN for the configuration η.

The microscopic dynamics is composed of two pieces. The first one describes the
evolution in the bulk, while the second one the interaction of the system with the
boundary reservoirs.

We do not discuss here the bulk dynamics nor the derivation of the diffusivity
and mobility. This has already been done in numerous places. We refer to [5], for
example. We concentrate on the boundary dynamics.

The boundary dynamics. The system is in a mild contact with boundary reser-
voirs, characterized by their chemical potentials λ ∈ Λ. The boundary dynamics
corresponds to a continuous-time Markov chain taking values in E. Its generator,
denoted by Lλ, takes the form

(Lλf)(x) =

∫
E

[f(y) − f(x) ] rλ(x, dy) , (2.1)

where rλ(x, · ) are finite positive measures which represent the jump rates.
For exclusion processes, E = {0, 1}, Λ = R, rλ(0, dy) = [ eλ/(1 + eλ) ] δ1(dy),

rλ(1, dy) = [ 1/(1 + eλ) ] δ0(dy), where δa(·) stands for the Dirac measure concen-
trated at a. For zero-range processes, E = {0} ∪ N, Λ = R, the jump rates are
given by rλ(x, dy) = g(x) δx−1(dy) + eλ δx+1(dy), x ∈ E. Finally, for KMP models,
E = R+, Λ = (−∞, 0) and rλ(x, dy) = −λ eλy dy.

Of course, as boundary dynamics one could consider a Markov chain taking
values on larger spaces. For example, E∆ for some finite set ∆. The theory can
easily be extended to this case and this is not an important hypothesis. In Appendix
D we present such a model.

Assume that for all λ ∈ Λ, the E-valued Markov chain induced by the gener-
ator Lλ is ergodic and has a unique stationary state denoted by mλ. Assume,
furthermore, that the measures mλ form an exponential family:

mλ(dx) =
1

Z(λ)
eλ x−H(x) n(dx) (2.2)

for some energy H : E → R. In this formula, Z(λ) is the normalization constant
which turns mλ into a probability measure, and n the counting measure (n(x) = 1
for all x ∈ E if E is discrete or n is the Lebesgue measure if E is continuous). The
function Z(·) is called the partition function.

Denote by c(E) the convex envelope of E. Let R : Λ→ c(E) be the mean of the
measure mλ:

R(λ) =

∫
E

x mλ(dx) . (2.3)

Clearly, by definition of the partition function, R(λ) = (d/dλ) logZ(λ). Taking a
second derivative yields that R′(λ) is the variance of x under mλ. In particular,
R′(λ) is strictly positive and R invertible. Let Ξ: c(E) → Λ be the inverse of R:
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Ξ = R−1. We present in the appendix explicit formulas for Z, R and Ξ in each
model.

The boundary Hamiltonian. Denote by Mbd
λ,ρ : c(E)× R→ R, λ ∈ Λ, ρ ∈ c(E),

the function given by

Mbd
λ,ρ(p) =

∫
E

1

Up
LλUp dmΞ(ρ) , (2.4)

where Up is the function Up(x) = ep x. The function Mbd
λ,ρ may take the value +∞

for certain values of p.
In view of formula (2.1) for the generator,

Mbd
λ,ρ(p) =

∫
E×E

mΞ(ρ)(dx) rλ(x, dy)
[
ep(y−x) − 1

]
. (2.5)

A change of variables y′ = y− x yields that

Mbd
λ,ρ(p) =

∫
E

mΞ(ρ)(dx)

∫
E−

rλ(x, x + dy)
[
epy − 1

]
,

provided E− = {y− x : y , x ∈ E}. Hence, changing the order of integrations,

Mbd
λ,ρ(p) = =

∫
E−

[
epy − 1

]
mλ,ρ(dy) , (2.6)

where

mλ,ρ(dy) =

∫
E

mΞ(ρ)(dx) rλ(x, x + dy) .

Example 2.1. If the generator Lλ induces a Markov chain on N0 := N∪{0} or on
{0, . . . ,M}, M ≥ 1, with nearest-neighbor jumps, (it only jumps from k to k ± 1),
as in the case of zero-range or exclusion processes,

Mbd
λ,ρ(p) = Cλ(ρ) [ep − 1] + Aλ(ρ) [e−p − 1] , (2.7)

where Cλ(ρ), Aλ(ρ) stand for the creation and annihilation rates, respectively:

Cλ(ρ) := EmΞ(ρ)
[ rλ(k, k + 1) ] , Aλ(ρ) := EmΞ(ρ)

[ rλ(k, k − 1) ] .

In this formula, rλ(k, k±1) represents for the rate at which the Markov chain jumps
from k to k ± 1. The variable k is integrated with respected to the measure mΞ(ρ).

For the simple exclusion process, mΞ(ρ) is the Bernoulli measure of parameter ρ,
and rλ(0, 1) = R(λ), rλ(1, 0) = 1−R(λ). Thus,

Mbd
λ,ρ(p) = [1− ρ]R(λ) [ep − 1] + ρ [ 1−R(λ) ] [e−p − 1] .

For the zero-range dynamics, rλ(k, k + 1) = eλ, rλ(k, k − 1) = g(k). Thus,

Mbd
λ,ρ(p) = eλ [ep − 1] + Ξ(ρ) [e−p − 1]

because EmΞ(ρ)
[g(k)] = Ξ(ρ).

The KMP model does not fall in the class described above. Here, mΞ(ρ) is the
exponential measure in R+ with density ρ, and an elementary computation yields
that

Mbd
λ,ρ(p) =

τ

ρ+ τ

( 1

1− τ p
− 1

)
+

ρ

ρ+ τ

( 1

1 + ρ p
− 1

)
, 0 < p < τ−1 ,

where τ = R(λ), and Mbd
λ,ρ(p) = ∞ if p 6∈ (0, τ−1).
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Remark 2.2. The zero-range process is usually parameterized by ϕ = eλ. In the
KMP model, keep in mind that the chemical potential λ, used to parametrize the
exponential distributions, is negative.

Remark 2.3. The reader may have recognized in (2.4) the building block of the
Donsker-Varadhan large deviations rate function:

Mbd
λ,ρ(p) =

∫
E

1

Up
LλUp dmΞ(ρ) ≥ inf

u

∫
E

1

u
Lλu dmΞ(ρ) =: − Iλ(mΞ(ρ)) ,

where the infimum is carried over all positive functions u which belong to the domain
of the generator Lλ. Here, Iλ stands for the Donsker-Varadhan rate functional
of the large deviations principle for the empirical measure of the continuous-time
Markov chain whose generator is Lλ [28].

Remark 2.4. Let (Xt : t ≥ 0) be the continuous-time, E-valued Markov chain
induced by the generator Lλ introduced in (2.1). Assume that the process is re-
versible. As we learned from Donsker and Varadhan [28], to prove a large devia-

tions principle for the empirical measure t−1
∫ t

0
δXs ds, the jump rates rλ needed

to be tilted by a function F : E → R, as rλ,F (x, dy) = rλ(x, dy)e−[F (y)−F (x)]. The
purpose of the tilting is to change the stationary state. In fact, the equilibrium
state of the Markov chain with jump rates rλ,F , denoted by mλ,F , is given by

mλ,F (dx) = (1/Zλ,F ) e2F (x)mλ(dx), where Zλ,F is a normalizing constant.

The cost for the empirical measure t−1
∫ t

0
δXs ds to be close to the measure mλ,F ,

denoted by Iλ(mλ,F ) in Remark 2.3, is given by the relative entropy of the perturbed
dynamics with respect to the original one [28]:

Iλ(mλ,F ) = lim
t→∞

1

t
EF
[

log
dPF
dP

∣∣∣
Ft

]
= −

∫ √
dmλ,F

dmλ
Lλ
√
dmλ,F

dmλ
dmλ .

(2.8)
In this formula, P, PF represent the distribution of the Markov chain with jump
rates rλ, rλ,F , respectively, EF the expectation with respect to PF , and (dPF /dP) |Ft
the Radon-Nikodym derivative of PF with respect to P restricted to the σ-algebra
Ft = σ(X(s) : 0 ≤ s ≤ t).

In the present context, only perturbations F expressed as F (x) = p x appear. This
means that only measures of the form eq xmλ(dx) are accessible. In other words,
only perturbations that change the chemical potential are considered in the definition
of the functional Mbd

λ,ρ. Moreover, and most importantly, in contrast with (2.8),

log(dPF /dP) |Ft is not integrated with respect to the stationary measure induced
by the perturbed dynamics associated the jump rated rλ,F , that is mλ,F , but with
respect to the stationary state induced by the bulks dynamics. This is a consequence
of the fact that the interaction with the boundaries is mild and dominated by the
bulk dynamics.

Hence, the functional Mbd
λ,ρ has to be understood as follows. There is a family

of boundary dynamics indexed by a chemical potential λ. The stationary state is
represented by mλ. The system is perturbed to change its chemical potential from λ
to λ+ q. The cost of this perturbation is not computed with respect to the new state
but the one induced by the prevalent bulk dynamics (The bulk dynamics prevails
over the boundary one because the interaction of the system with the reservoirs is
mild). We shall refer to this cost as the bulk-cost.
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Equilibrium free energy and pressure. In the present context, the equilibrium
free energy takes a simple form. According to the postulates of statistical mechanics
[21], since the equilibrium states are product measure, the pressure, denoted by
p(·), and the free energy per unit of volume, denoted by f(·) and obtained as the
Legendre transform of the pressure, are given by

p(λ) := logZ(λ) , f(ρ) := sup
θ∈Λ

{
θ ρ − p(θ)

}
.

Clearly,

f(ρ) = Ξ(ρ) ρ − p(Ξ(ρ)) , f ′(ρ) = Ξ(ρ) . (2.9)

Fix a reference chemical potential λ, and let

fλ(ρ) := sup
θ∈Λ

{
θ ρ − logEmλ

[
eθ x
] }

.

By definition of f( · ),

fλ(ρ) = f(ρ) − {λ ρ − p(λ) } and f ′′λ (ρ) = f ′′(ρ) . (2.10)

It is well known that fλ(·) is the large deviations rate functional of the sequence
N−1

∑
1≤j≤N xj , where (xj : j ≥ 1) are i.i.d. random variables distributed according

to mλ. The functional fλ is called the equilibrium free energy. By (2.9) and (2.10),

fλ(ρ) =
[

Ξ(ρ) − λ
]
ρ − log

Z(Ξ(ρ))

Z(λ)
and f ′λ(ρ) = Ξ(ρ) − λ .

An identity. We turn to some properties of the functional Mbd
λ,ρ needed in the

next sections. We first claim that for all λ and ρ,

Mbd
λ,ρ( f

′(ρ)− λ ) = 0 . (2.11)

By (2.9), Ξ(ρ) = f ′(ρ). Hence, by (2.4) and (2.2),

Mbd
λ,ρ(p) =

1

Z(f ′(ρ))

∫
E

e−p x ef
′(ρ) x−H(x) (LλUp)(x) n(dx)

for all p. Replacing the first p by f ′(ρ) − λ, the right-hand side becomes

1

Z(f ′(ρ))

∫
E

eλ x−H(x) (LλUp)(x) n(dx) =
Z(λ)

Z(f ′(ρ))

∫
E

(LλUp)(x) mλ(dx) .

The last term vanishes because mλ is the stationary state for the dynamics induced
by the generator Lλ. This proves (2.11).

The functional Aλ. Let Aλ, λ ∈ Λ, be the functional given by

Aλ(ρ, p) := κ
{
Mbd
λ,ρ(p) − Mbd

λ,ρ(0) − p (Mbd
λ,ρ )′(0)

}
. (2.12)

By (2.5), the second term on the right-hand side, Mbd
λ,ρ(0), vanishes. It has been

included to underline that Aλ(ρ, p) is a first order Taylor expansion. By (2.5),

Aλ(ρ, p) = κ

∫
E×E

mΞ(ρ)(dx) rλ(x, dy)
[
ep(y−x) − 1 − p (y− x)

]
≥ 0 .

In particular, in the second variable, the functional Aλ behaves quadratically close
to zero:

Aλ(ρ, p) ≈ p2 , p→ 0 ,
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for all ρ small. On the other hand, under the hypotheses of the Example 2.1, the
functional Aλ takes the form

Aλ(ρ, p) = Cλ(ρ) [ep − 1− p] + Aλ(ρ) [e−p − 1 + p] ,

Boundary condition. By (2.5),

(Mbd
λ,ρ )′ (0) = 〈 1 , Lλ x 〉mΞ(ρ)

, (2.13)

where 〈 · , · 〉ν represents the scalar product in L2(ν).

The reversible case. Up to the end of this section, assume that the operator Lλ is
symmetric in L2(mλ). In other words that, for all λ ∈ Λ, the dynamics induced by
the generator Lλ at the boundary is reversible for the measure mλ. This condition
is fulfilled by the simple exclusion, zero-range and KMP dynamics reviewed in the
Appendices A–C, but not by the exclusion process with non-reversible boundary
conditions presented in Section D.

We derive below three properties of the functional Mbd
λ,ρ under this assumption.

Recall the definition of R(λ) given in (2.3) and that, by (2.9), f ′(ρ) = Ξ(ρ) =
R−1(ρ). By (2.13) and the reversibility of the measure mλ with respect to Lλ,

(Mbd
λ,R(λ) )′ (0) = 〈 Lλ1 , x 〉mλ = 0 . (2.14)

We turn to the reciprocal. We claim that

(Mbd
λ,ρ )′ (0) 6= 0 if f ′(ρ) 6= λ . (2.15)

Indeed, by (2.13) and (2.2), and since Ξ(ρ) = f ′(ρ),

(Mbd
λ,ρ )′ (0) =

Z(λ)

Z(Ξ(ρ))
〈 e(f ′(ρ)−λ)x , Lλ x 〉mλ .

Since the measure mλ is reversible,

(Mbd
λ,ρ )′ (0) = − 1

2

Z(λ)

Z(Ξ(ρ))

∫
E×E

mλ(dx) rλ(x, dy)
{
e(f ′(ρ)−λ)y − e(f ′(ρ)−λ)x

}
(y − x )

= − 1

2

∫
E×E

mΞ(ρ)(dx) rλ(x, dy)
{
e(f ′(ρ)−λ)(y−x) − 1

}
(y − x ) .

Therefore, as z [ez − 1] > 0 for z 6= 0,

[ f ′(ρ)− λ ] (Mbd
λ,ρ )′ (0) < 0 (2.16)

if f ′(ρ) 6= λ. This proves (2.15).

We conclude this section proving a last relation for Mλ,ρ. We claim that

Mλ,ρ

(
f ′(ρ)− f ′(p)

)
= Mλ,ρ

(
f ′(p)− λ

)
(2.17)

for all λ, ρ and p.
Identity (2.17) asserts that the bulk-cost (in the sense of Remark 2.4) of changing

the boundary chemical potential from λ to λ+ 2 [f ′(ρ)− f ′(p)] is equal to the one
of changing it from λ to 2 f ′(p)− λ.

We turn to the proof of (2.17). By the definition (2.4) of Mλ,ρ and since Ξ(ρ) =
f ′(ρ), the left-hand side of (2.17) is equal to

1

Z(f ′(ρ))

∫
E

ef
′(p) x−H(x) (LλUq)(x) n(dx) =

Z(λ)

Z(f ′(ρ))

∫
E

Uq′(x) (LλUq)(x) mλ(dx) ,
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where q = f ′(ρ) − f ′(p), q′ = f ′(p) − λ. As the measure mλ is reversible for the
dynamics induced by Lλ, the previous expression is equal to

Z(λ)

Z(f ′(ρ))

∫
E

Uq(x) (LλUq′)(x) mλ(dx) =

∫
E

Uq′′(x) (LλUq′)(x) mf ′(ρ)(dx) ,

where q′′ = λ− f ′(p) = − q′. This completes the proof of (2.17), as q′ = f ′(p)− λ.
Note that (2.11) follows from (2.17), but we used here the reversibility of mλ,

while this assumption is not needed in the derivation of (2.11) presented above.

3. The Hamiltonian formalism

In this section, we present the thermodynamic description of non-equilibrium
driven diffusive systems in mild contact with reservoirs. The definitions below are
motivated and supported by the microscopic dynamics reviewed in Section 2 and
in the appendices.

Recall that Ω stands for the bounded domain of Rd occupied by the system.
The macroscopic state of the system is described by the local density ρ(x), x ∈ Ω.
At each point x, the density ρ(x) takes value in a subset R of R (the set c(E)
introduced in the previous section). The system is in a mild contact with boundary
reservoirs, characterized by their chemical potentials λ ∈ Λ, and under the action
of an external field E ∈ Rd. The evolution is characterized by an Hamiltonian.

The boundary Hamiltonian. The boundary Hamiltonian Hbd
λ is expressed in

terms of a family mλ,ρ of finite, non-negative measures on R, indexed by the chem-

ical potential λ ∈ Λ and the density ρ ∈ R. Let Mbd
λ,ρ : R → R be the functional

given by

Mbd
λ,ρ( p ) =

∫
R

(
ep x − 1

)
mλ,ρ(dx) . (3.1)

The boundary Hamiltonian reads

Hbd
λ

(
ρ , F

)
:=

∫
∂Ω

Mbd
λ,ρ(F ) κ dS , (3.2)

where κ : Rd → R+ is a continuous, strictly positive function wich represents the
system interaction strength with the boundary, and dS the surface measure. By
(3.2),

δHbd
λ

δF

(
ρ, F )(x) = κ (Mbd

λ,ρ)
′(F (x)) , x ∈ ∂Ω . (3.3)

Remark 3.1. As κ is fixed we omit from the notation the dependence of the bound-
ary Hamiltonian Hbd

λ on κ.

The Hamiltonian. The evolution of the density is described by the Hamiltonian
HE,λ which takes the form

HE,λ(ρ, F ) = Hbulk
E (ρ, F ) + Hbd

λ (ρ, F ) ,

Hbulk
E (ρ, F ) = −

∫
Ω

D(ρ)∇ρ · ∇F dx +

∫
Ω

σ(ρ)
{
E + ∇F

}
· ∇F dx .

(3.4)

The diffusion coefficient D(ρ) and the mobility σ(ρ) are d× d positive, symmetric
matrices. The transport coefficients D and σ satisfy the local Einstein relation

D(ρ) = σ(ρ) f ′′(ρ) (3.5)
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where f is the equilibrium free energy of the homogeneous system. The pair ρ, F
plays the role of position and momenta, respectively, in the Hamiltonian formalism
of classical mechanics.

Remark 3.2. While the bulk Hamiltonian is expressed in terms of two thermody-
namical features, the diffusivity D and the mobility σ, the boundary Hamiltonian is
written by means of a family of measures. In all examples presented at the end of
the article, D and σ are scalars.

Denote by JE(ρ) the current of the density profile ρ, given by

JE(ρ) = −D(ρ)∇ρ + σ(ρ)E , (3.6)

Remark 3.3. In [7], the bulk Hamiltonian is defined by

Hbulk
E (ρ, F ) =

∫
Ω

{
∇F · σ(ρ)∇F − F ∇ · JE(ρ)

}
dx , (3.7)

Of course, one could adopt this formulation, and modify accordingly the boundary
Hamiltonian to take into account the new term resulting from the integration by
parts.

However, if one adopts the definition (3.7), the boundary Hamiltonian will con-
tain terms with the derivative of ρ. This is not the case with the definition adopted
here. The boundary Hamiltonian, given in equation (3.2), only contains terms with
ρ, and not its derivative.

From a microscopic point of view, the definition (3.2) is more natural [20, 12].
Moreover, in the proof of the large deviations, it is possible to show that density
profiles with infinite energy can be discarded, and one can restrict the analysis to
density profiles with generalized derivatives in L2. As these profiles are Lipschitz
continuous in dimension 1, the value of the profile at the boundary is well defined.
In contrast, it is not clear how to define the value of the derivative of a profile at
the boundary.

Properties of the boundary Hamiltonian. We assume that for all λ and ρ,

Mbd
λ,ρ( f

′(ρ)− λ ) = 0 . (3.8)

This is property (2.11) of the previous section. We assume, furthermore, that

δHbd
λ

δρ
(ρ, 0) = 0 for all ρ , [ f ′(ρ) − λ ]

δHbd
λ

δF
(ρ, 0) ≤ 0 ,

and that
δHbd

λ

δF
(ρ, 0) = 0 if and only if f ′(ρ) = λ .

(3.9)

The second and third conditions correspond to (2.14), (2.15) and (2.16) since, by
(3.3), (δHbd

λ /δF )(ρ, 0) = κ (Mbd
λ,ρ)
′(0). Note that the inequality is strict if f ′(ρ) 6= λ

in view of the last property.
We turn to the assertion in (3.9) concerning the derivative δHbd

λ /δρ. By the
definition (3.2) of the boundary Hamiltonian, by equation (2.1) for the generator
and (2.2) for the measure,

δHbd
λ

δρ
(ρ, F ) = κΞ′(ρ)

{〈
x e−p x , Lλ epx

〉
mΞ(ρ)

− A(ρ)
〈
x e−p x , Lλ epx

〉
mΞ(ρ)

}
,

where A(ρ) = Z ′(Ξ(ρ))/Z(Ξ(ρ)) and p has to be replaced by F at the end of the
computation. Hence, at p = F = 0, since Lλ1 = 0, this expression vanishes, as
claimed in (3.9).
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Hamilton’s equation of motion. The evolution of the pair (ρ, F ) is described
by the Hamilton’s equation:

∂tρ =
δHE,λ

δF
, ∂tF = − δHE,λ

δρ
·

The explicit formula for the Hamiltonian (3.4), the divergence theorem and the
symmetry of the matrix D yield the pair of equations{

∂tu = −∇ · JE(u) − 2∇ ·
{
σ(u)∇F

}
,

∂tF = −Tr
[
D(u) HessF

]
− σ′(u)

[
E + ∇F

]
· ∇F .

Here, JE is the current, introduced in (3.6), Hess F stands for the Hessian matrix
of F and TrA for the trace of a matrix A. These equations are complemented with
the boundary conditions

{
JE(u) + 2σ(u)∇F

}
· n = − δHbd

λ

δF
(u, F ) ,

D(u)∇F · n =
δHbd

λ

δρ
(u, F ) ,

where n stands for the outer normal vector to ∂Ω.
These equations are derived by taking the time derivative of the equation HE,λ(ut, Ft) =

C0 and integrating by parts. By (3.9), the pair (u(t), 0) is a solution for Hamilton’s
equation of motion provided u solves the hydrodynamic equation

∂tu + ∇ · JE(u) = 0 ,

JE(u) · n = − δHbd
λ

δF
(u, 0)

(
= −κ (Mbd

λ,u)′(0)
)
.

(3.10)

The last identity follows from (3.3).

Remark 3.4. Letting κ→ 0, +∞ yield to Neumann boundary conditions, JE(u) ·
n = 0, and Dirichlet boundary conditions, (Mbd

λ,u)′(0) = 0, respectively.

Remark 3.5. Equation (2.13) provides an alternative formula for the current at
the boundary for the solutions of the hydrodynamic equation (3.10). By (3.3) and
(2.13),

δHbd
λ

δF

(
ρ, 0) = κ 〈 1 , Lλ x 〉mΞ(ρ)

.

By (3.10), the left-hand side of this equation (with a minus sign) is equal to the
value of the current at the boundary. Therefore, the current at the boundary of the
solutions of the hydrodynamic equation can also be written as −κ 〈 1 , Lλ x 〉mΞ(ρ)

.

Assume that equation (3.10) admits a unique stationary solution, denoted by
ρ̄E,λ. It solves the elliptic equation

∇ · JE(ρ) = 0 ,

JE(ρ) · n = − δHbd
λ

δF
(ρ, 0) .

(3.11)

Assume, furthermore, that ρ̄E,λ is an attractor for the dynamical system induced

by (3.10). Therefore, if u(ρ)(t) represents the solution of the hydrodynamic equation
(3.10) with initial condition ρ, u(ρ)(0, ·) = ρ(·), for every density profile γ,

lim
t→∞

u(γ)(t) = ρ̄E,λ . (3.12)
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The action functional. Denote by LE,λ the Lagrangian associated to the Hamil-
tonian HE,λ: For a density profile ρ and a function G,

LE,λ(ρ,G) = sup
F

{ ∫
Ω

GF dx − HE,λ(ρ, F )
}
. (3.13)

The action functional on an interval [T1, T2], denoted by IE,λ[T1,T2], is given by

IE,λ[T1,T2](u) =

∫ T2

T1

LE,λ(u(t), ∂tu(t)) dt , (3.14)

for a trajectory u(t) (for each t ≥ 0, u(t) is a density profile). The action functional
indicates the cost of a path u(t) in a time interval.

The quasi-potential. The quasi-potential associated to the Hamiltonian HE,λ,
represented by VE,λ, is given by

VE,λ(γ) = inf
u
IE,λ(−∞,0](u) , (3.15)

where the infimum is carried over all paths u(t) starting from the attractor ρ̄E,λ and
ending at γ: limt→−∞ u(t) = ρ̄E,λ, u(0) = γ. The quasi-potential VE,λ(γ) measures
the minimal cost to produce a density profile γ starting from the stationary profile
ρ̄E,λ.

Hamilton-Jacobi equation. Classical arguments in mechanics [1] imply that the
quasi-potential VE,λ solves the Hamilton-Jacobi equation

HE,λ

(
ρ ,
δVE,λ
δρ

(ρ)
)

= 0 . (3.16)

The equilibrium quasi-potential. A state (E, λ) is said to be an equilibrium
state if

JE(ρ̄E,λ) = 0 . (3.17)

In this case, by (3.6) and the Einstein relation (3.5), and by (3.11) and (3.9),

E = ∇f ′(ρ̄E,λ) on Ω and f ′(ρ̄E,λ) = λ on ∂Ω . (3.18)

Note that the equilibrium states in the case of strong and mild interactions with
the reservoirs are the same.

Remark 3.6. By (3.11) and (3.9), in non-equilibrium, f ′(ρ̄E,λ) 6= λ at the bound-
ary. This is in sharp contrast with diffusive systems in strong interaction with
reservoirs, where f ′(ρ̄E,λ) = λ at the boundary [6, 8].

We claim that in equilibrium,

δVE,λ
δρ

(ρ) = f ′(ρ) − f ′(ρ̄E,λ) , (3.19)

so that

VE,λ(ρ) =

∫
Ω

{
f(ρ)− f(ρ̄E,λ)− f ′(ρ̄E,λ)

(
ρ− ρ̄E,λ

) }
dx . (3.20)

We turn to the derivation of (3.19). Since JE(ρ̄E,λ) = 0, by (3.18), we may
replace on the right-hand side of (3.4) E by ∇f ′(ρ̄E,λ) to get that

Hbulk
E

(
ρ , f ′(ρ)−f ′(ρ̄E,λ)

)
= −

∫
Ω

D(ρ)∇ρ · ∇F dx +

∫
Ω

σ(ρ)∇f ′(ρ) · ∇F dx ,
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where F = f ′(ρ) − f ′(ρ̄E,λ). By Einstein relation (3.5), we conclude that the
right-hand side vanishes.

On the other hand, by (3.18) and (3.8),

Hbd
λ

(
ρ , f ′(ρ)− f ′(ρ̄E,λ)

)
= Hbd

λ

(
ρ , f ′(ρ)− λ

)
= 0 .

It follows from the two previous displayed equation that f ′(ρ)− f ′(ρ̄E,λ) solves
the Hamilton-Jacobi equation, proving claim (3.19).

The adjoint Hamiltonian. The Hamiltonian introduced at the beginning of this
section derives from an underlying microscopic dynamics. Denote by P∗st the prob-
ability measure describing the stationary evolution of the time-reversed process,
which is still a Markovian dynamics. We refer to P∗st as the adjoint dynamics. The
reader finds in section 1 of [4] a detailed description of the adjoint dynamics of a
Markov process.

Assume that the empirical density of the adjoint dynamics satisfies a large de-

viations principle described by a Hamiltonian H
†
E,λ of the same nature as HE,λ.

Denote by L
†
E,λ the Lagrangian corresponding to the Hamiltonian H

†
E,λ.

Fix T > 0 and a trajectory u(t), 0 ≤ t ≤ T . Let v(t) = u(−t). By equation (2.2)
in [4],

VE,λ(u(0)) +

∫ T

0

L
†
E,λ(u(t) , ∂tu(t) ) dt = VE,λ(u(T )) +

∫ 0

−T
LE,λ( v(t) , ∂tv(t) ) dt .

Dividing this identity by T and letting T → 0 yields that

L
†
E,λ(u(0) , ∂tu(0) ) = LE,λ( v(0) , ∂tv(0) ) +

δVE,λ
δρ

(u(0)) ∂tu(0) .

Since v(0) = u(0) and ∂tv(0) = − ∂tu(0), for all ρ, γ,

L
†
E,λ( ρ, γ ) = LE,λ( ρ,− γ ) +

δVE,λ
δρ

(ρ) γ . (3.21)

As the Hamiltonian is the convex conjugate of the Lagrangian, an elementary
computation yields that

H
†
E,λ( ρ, F ) = HE,λ

(
ρ ,

δVE,λ
δρ

(ρ) − F
)
. (3.22)

This formula coincides with equation (4.15) presented in [7] for the adjoint Hamil-
tonian in the case of strong boundary interactions.

The adjoint Hamiltonian H
†
E,λ plays a central role in the macroscopic fluctuation

theory. It is shown in [12] that the solution of the variational problem (3.15),
which defines the quasi-potential, is the time-reversed trajectory of the Hamilton’s
equation of motion induced by the adjoint Hamiltonian.

Set H
†,bulk
E,λ ( ρ, F ) = Hbulk

E ( ρ , V(ρ) − F ), where V(ρ) = (δVE,λ/δρ)(ρ) and

define H
†,bd
E,λ in a similar way. Note that H

†,bulk
E,λ depends on the chemical potential

λ because so does the quasi-potential VE,λ.

The adjoint current. In view of the definition (3.6) of the current, the bulk
Hamiltonian Hbulk

E can be expressed as

Hbulk
E (ρ, F ) =

∫
Ω

JE(ρ) · ∇F dx +

∫
Ω

∇F · σ(ρ)∇F dx . (3.23)
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By (3.22), with the bulk Hamiltonian instead of the full one,

H
†,bulk
E,λ ( ρ, F ) =

∫
Ω

J†E,λ(ρ) · ∇F dx +

∫
Ω

∇F · σ(ρ)∇F dx

+

∫
Ω

{
JE(ρ) + σ(ρ)∇ δVE,λ

δρ
(ρ)
}
· ∇ δVE,λ

δρ
(ρ) dx ,

provided we set

J†E,λ(ρ) = − JE(ρ) − 2σ(ρ)∇ δVE,λ
δρ

(ρ) · (3.24)

Hence, as a function of the second variable, up to an additive constant, the adjoint
bulk Hamiltonian has the same structure as the original one, provided we replace

the current JE(ρ) by J†E,λ(ρ). As observed before, J†E,λ depends on λ because so
does the quasi-potential VE,λ.

The adjoint hydrodynamic equation. Computing the derivatives of the adjoint
Hamiltonian yields that (u(t), 0) is a solution of the adjoint Hamilton’s equations
provided u(t) solves the equation

∂tu + ∇ · J†E,λ(u) = 0 ,

J†E,λ(u) · n =
δHbd

λ

δF

(
u,
δVE,λ
δρ

(u)
)
,

(3.25)

called, hereafter, the adjoint hydrodynamic equation.

Currents. In view of (3.24), it is natural to define the symmetric and anti-symmetric
currents, denoted by JsE,λ(ρ), JaE,λ(ρ), respectively, as

JsE,λ(ρ) = −σ(ρ)∇δVE,λ
δρ

(ρ) , JaE,λ(ρ) = (1/2)
{
JE(ρ) − J†E,λ(ρ)

}
. (3.26)

The Hamilton-Jacobi equation provides an orthogonality relation between the
symmetric and anti-symmetric currents. In equation (3.23), replace F by δVE,λ/δρ
and recall the definition of the symmetric current to express the second term on the
right-hand side of (3.23) as a function of JsE,λ(ρ). As JE(ρ) = JsE,λ(ρ) + JaE,λ(ρ),

Hbulk
E

(
ρ ,

δVE,λ
δρ

(ρ)
)

= −
∫

Ω

JaE,λ(ρ) · 1

σ(ρ)
JsE,λ(ρ) dx .

In particular, the Hamilton-Jacobi equation (3.16) becomes an orthogonality rela-
tion between the anti-symmetric and the symmetric currents:∫

Ω

JaE,λ(ρ) · 1

σ(ρ)
JsE,λ(ρ) dx = Hbd

λ

(
ρ ,

δVE,λ
δρ

(ρ)
)

=

∫
∂Ω

Mbd
λ,ρ

( δVE,λ
δρ

(ρ)
)
κ dS .

(3.27)

Remark 3.7. In the case of strong boundary interactions, it has been shown that
the symmetric and the asymmetric currents satisfy an orthogonality relation (see
equation (4.5) in [8] and equation (2.22) in [7]). This orthogonality relation is
fundamental in the proof of the Clausius inequality for the renormalized work in
[7].

It would be interesting to obtain a similar relation in the present context. In
order to achieve this, one would need to write the right-hand side of (3.27) as
the scalar product of the symmetric boundary current with the anti-symmetric one.
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This would permit to interpret equation (3.27) as an orthogonality relation between
the symmetric and the anti-symmetric current. We were not able to.

4. A formula for the quasi-potential

In few cases, it is possible to derive an explicit formula for the quasi-potential.
Assume that d = 1 and that there is no external field, E = 0. Then, for each
density ρ,

δVE,λ
δρ

= f ′(ρ) − f ′(F ) (4.1)

is a solution of the Hamilton-Jacobi equation provided F solves the equation∆f ′(F ) +
σ(ρ)− σ(F )

d(ρ)− d(F )
| ∇f ′(F ) |2 = 0 ,

[ d(ρ)− d(F ) ]∇f ′(F ) · n = κMbd
λ,ρ

(
f ′(ρ) − f ′(F )

)
.

(4.2)

In this formula, d is the primitive of D: d′(ρ) = D(ρ).
The proof of this claim is similar to the one presented in [4]. Let Γ = f ′(ρ) −

f ′(F ), recall the definition of the bulk Hamiltonian and the Einstein relation (3.5)
to get that

Hbulk
E

(
ρ , Γ

)
=

∫
Ω

σ(ρ)∇Γ · ∇Γ dx −
∫

Ω

σ(ρ)∇f ′(ρ) · ∇Γ dx

= −
∫

Ω

σ(ρ)∇f ′(ρ) · ∇f ′(F ) dx +

∫
Ω

σ(ρ) | ∇f ′(F ) |2 dx .

By Einstein relation (3.5), and since d is a primitive of D, σ(ρ)∇f ′(ρ) = D(ρ)∇ρ =
∇d(ρ). Therefore, the first term on the right-hand side can be written as

−
∫

Ω

[
∇d(ρ) − ∇d(F )

]
· ∇f ′(F ) dx −

∫
Ω

∇d(F ) · ∇f ′(F ) dx .

By the divergence theorem and since ∇d(F ) = σ(F )∇f ′(F ), this expression is
equal to∫

Ω

[
d(ρ)− d(F )

]
∆f ′(F ) dx −

∫
∂Ω

[
d(ρ)− d(F )

]
∇f ′(F )·n dS −

∫
Ω

σ(F ) | ∇f ′(F ) |2 dx .

By (3.2) and (4.2), the expression appearing in second integral is equal to Hbd
λ ( ρ , f ′(ρ) −

f ′(F ))
Up to this point, we proved that

HE,λ

(
ρ , Γ

)
=

∫
Ω

[
d(ρ) − d(F )

]
∆f ′(F ) dx +

∫
Ω

[
σ(ρ) − σ(F )

]
| ∇f ′(F ) |2 dx .

On the left-hand side, the bulk Hamiltonian appearing at the beginning of the
computation has been replaced by the full one in view of the last observation of the
previous paragraph. The right-hand side vanishes in view of the first equation in
(4.2). This completes the proof of the claim.

It has been proved in [12] that for symmetric exclusion processes in mild contact
with reservoirs the quasi-potential is given by (4.1). For zero-range models, this is
also easy to check since in this case even in nonequilibrium the stationary states
are product measures. Actually, when σ is constant (as in Ginzburg-Landau dy-
namics) or σ = d (as in zero-range dynamics), the first equation in (4.2) becomes
autonomous in F .
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Remark 4.1. For the one-dimensional exclusion process and the zero-range dynam-
ics, the boundary conditions of equation (4.2) coincide with the ones of equation
(3.11). That is, the boundary conditions for the stationary density profile in equa-
tion (3.11) and the ones for the auxiliary function F in equation (4.2) coincide.
This is the also case for interacting particle systems in strong interaction with the
boundary reservoirs, where the boundary conditions are of Dirichlet type [17, 4].

To derive the identity of the boundary conditions, observe that by the Einstein
relation and since JE(F ) = −D(F )∇F , the boundary condition in (4.2) can be
restated as

J(F ) · n = −κ σ(F )

d(ρ)− d(F )
Mbd
λ,ρ

(
f ′(ρ) − f ′(F )

)
.

For zero-range and exclusion dynamics, a computation, presented at the appendix,
yields that for all µ, % and p

σ(p)

d(%)− d(p)
Mbd
µ,%

(
f ′(%) − f ′(p)

)
=
(
Mbd
µ,p

)′
(0) . (4.3)

This proves that the boundary condition in (4.2) and (3.11) coincide in view of
(3.3). Therefore, in these examples equation (4.2) becomes∆f ′(F ) +

σ(ρ)− σ(F )

d(ρ)− d(F )
| ∇f ′(F ) |2 = 0 ,

J(F ) · n = −κ (Mbd
λ,F )′(0) .

(4.4)

Note that the left-hand side of (4.3) depends on %, while the right-hand side does
not.

Remark 4.2. Contrarily, for the KMP model, the boundary conditions of equation
(4.2) are different from the ones of equation (3.11). The equation for the auxiliary
function is presented in (C.4). This is in sharp contrast with the case of strong
interaction with the boundary, where the boundary conditions coincide.

Remark 4.3. Equation (2.17) provides an identity for the term Mbd
µ,%( f

′(%) −
f ′(p) ) which holds under the general hypotheses of Section 2.

Remark 4.4 (Boundary conditions for the quasi-potential). When the system in-
teracts strongly with the boundary reservoirs, the boundary equations for the hydro-
dynamic equation and for the adjoint hydrodynamic equation are of Dirichlet type.
For this reason, one may restrict the investigation of the quasi-potential to density
profiles which satisfy Dirichlet boundary conditions. Since the boundary conditions
for the auxiliary function F , introduced in (4.1), are also of Dirichlet type, in view
of (4.1), one concludes that the functional derivative of the quasi-potential vanishes
at the boundary when computed at a density profile.

For systems in mild interaction with the boundary, the situation is completely
different. The boundary conditions for the hydrodynamic and the adjoint hydrody-
namic equations, equations (3.10) and (3.25), respectively, are different. There are
no reasons to restrict the attention to particular density profiles. But even consid-
ering profiles which satisfy the Robin boundary conditions appearing in (3.10) and
(3.11), we were not able to derive boundary conditions for the functional derivative
of the quasi-potential computed at fixed density profiles. We did not push this in-
vestigation too much as we did not need an equation for the boundary condition of
the functional derivative of the quasi-potential in our analysis.
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In terms of the auxiliary function F , the currents take the form

Js0,λ(ρ) = J(ρ) + σ(ρ)∇f ′(F ) , Ja0,λ(ρ) = −σ(ρ)∇f ′(F ) ,

J†0,λ(ρ) = J(ρ) + 2σ(ρ)∇f ′(F ) .

Orthogonal relation for the currents. Assume that the matrix D(ρ) is a scalar
and that the external field E vanishes. We keep E in the notation though it
vanishes. Recall the representation (4.1) for the quasi-potential. By the Einstein
relation (3.5),

JsE,λ(ρ) = −D(ρ)∇ρ + σ(ρ)∇f ′(F ) = JE(ρ) + σ(ρ)∇f ′(F ) .

Therefore, JaE,λ(ρ) = −σ(ρ)∇f ′(F ). Keep in mind that E = 0 although it remains
in the notation. By this formula for the anti-symmetric current and the second
equation in (4.2) the orthogonality relation (3.27) can be written as∫

Ω

JaE,λ(ρ) · 1

σ(ρ)
JsE,λ(ρ) dx +

∫
∂Ω

d(ρ)− d(F )

σ(ρ)
JaE,λ(ρ) · n dS = 0 . (4.5)

5. A Clausius inequality

Fix a time-dependent chemical potential λ(t, x) and external field E(t, x). For a
density profile ρ, let u(t, x) be the solution of

∂tu + ∇ · JE(t)(u) = 0 ,

JE(t)(u) · n = −
δHbd

λ(t)

δF
(u, 0) ,

u(0, ·) = ρ(·) ,

(5.1)

where JE(t)(u) is given by (3.6) with u(t), E(t) replacing ρ, E, respectively.
The energy exchanged between the system and the external reservoirs and fields

in the time interval [0, T ] is given by

W[0,T ](λ(·), E(·), ρ)

:=

∫ T

0

{
−
∫
∂Ω

λ(t, x) j(t, x) · n(x) dS(x) +

∫
Ω

j(t, x) · E(t, x) dx
}
dt ,

where j(t, x) = JE(t)(u(t)) (x) is the current of profile u(t, ·). The first term on
the right-hand side is the energy provided by the reservoirs while the second is the
energy provided by the external field. We claim that

W[0,T ](λ(·), E(·), ρ) ≥ F (u(T )) − F (ρ) , (5.2)

where F is the equilibrium free energy functional defined by

F (ρ) :=

∫
Ω

f(ρ(x)) dx . (5.3)

Indeed, dropping from the notation the dependence on x, adding and subtracting
f ′(u(t)) in the boundary term, rewrite the energy exchanged as

W[0,T ](λ(·), E(·), ρ) = −
∫ T

0

dt

∫
∂Ω

[λ(t)− f ′(u(t))] j(t) · n dS

+

∫ T

0

dt
{
−
∫
∂Ω

f ′(u(t)) j(t) · n dS +

∫
Ω

j(t) · E(t) dx
}
.
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By the divergence theorem, the right-hand side is equal to

−
∫ T

0

dt

∫
∂Ω

[λ(t)− f ′(u(t))] j(t) · n dS

+

∫ T

0

dt

∫
Ω

{
−∇ ·

[
f ′(u(t)) j(t)

]
+ j(t) · E(t)

}
dx .

(5.4)

Recall from (2.12) the definition of the functional Aλ(ρ, · ), copied here for the
reader’s convenience:

Aλ(ρ, p) = κ
{
Mbd
λ,ρ(p) − Mbd

λ,ρ(0) − p (Mbd
λ,ρ )′(0)

}
. (5.5)

It has been shown in Section 2 that Aλ is positive and that close to zero it behaves
quadratically in the second variable:

Aλ(ρ, p) ≥ 0 , Aλ(ρ, p) ≈ p2 , p → 0 , (5.6)

for all ρ.
By the boundary conditions in (5.1) and (3.3),

− [λ(t) − f ′(u(t)) ] j(t) · n = κ [λ(t) − f ′(u(t)) ] (Mbd
λ(t),u(t) )′(0) .

Since Mbd
λ,ρ(0) = 0 and, by (3.8), Mbd

λ,ρ( f
′(ρ) − λ ) = 0 this expression is equal to

κ
{
Mbd
λ(t),u(t)(p) − Mbd

λ(t),u(t)(0) − p (Mbd
λ(t),u(t) )′(0)

}
= Aλ(t)(u(t), p) ,

for p = f ′(u(t)) − λ(t). Therefore, the first term in (5.4) can be written as∫ T

0

dt

∫
∂Ω

Aλ(t)(u(t) , f ′(u(t))− λ(t) ) dS .

By (5.6), this expression is positive. On the other hand, the second term of (5.4)
is equal to∫ T

0

dt

∫
Ω

[
− f ′(u(t))∇ · j(t) − f ′′(u(t))∇u(t) · j(t) + j(t) · E(t)

]
dx

=

∫ T

0

dt
d

dt

∫
Ω

f(u(t)) dx +

∫ T

0

dt

∫
Ω

j(t) · σ(u(t))−1j(t) dx ,

where we used the Einstein relation (3.5), and the definition (3.6) of the current
j(t) = JE(t)(u(t)). In conclusion, we proved that

W[0,T ](λ(·), E(·), ρ) = F (u(T ))− F (ρ) +

∫ T

0

dt

∫
Ω

j(t) · σ(u(t))−1j(t) dx

+

∫ T

0

dt

∫
∂Ω

Aλ(t)(u(t) , f ′(u(t))− λ(t) ) dS .

(5.7)

Since the last two term are positive, inequality (5.2) follows.
This argument provides a dynamic derivation of the second law of thermodynam-

ics as expressed by the Clausius inequality (5.2). The key ingredients have been the
assumption of local equilibrium together with the local Einstein relationship (3.5).

6. Transformation along equilibrium states

In this section, we examine transformations along equilibrium states. Recall
from (3.17) that equilibrium states are characterized by the absence of current at
stationarity: J(ρ̄E,λ) = 0.
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Reversible and quasi static transformations. Fix T > 0, and two equilibrium
states (E0, λ0), (E1, λ1) so that

J(ρ̄E0,λ0) = J(ρ̄E1,λ1) = 0 . (6.1)

Consider a system initially in the state ρ̄0 = ρ̄E0,λ0 which is driven to a new
state ρ̄1 = ρ̄E1,λ1 by changing the chemical potential and the external field in
time in a way that (E(t), λ(t)) = (E0, λ0) for t ≤ 0 and (E(t), λ(t)) = (E1, λ1)
for t ≥ T . This transformation from ρ̄0 to ρ̄1 is called reversible if the energy
exchanged with the reservoirs is minimal. A basic thermodynamic principle asserts
that reversible transformation are accomplished by a sequence of equilibrium states
and are well approximated by quasistatic transformations, transformations in which
the variation of the thermodynamical variables is very slow so that the density
profile at time u(t) is very close to the stationary profile ρ̄E(t),λ(t).

Let u(t, x), t ≥ 0, x ∈ Ω, be the solution of (5.1) with initial condition ρ = ρ̄0.
Recall that we denote by j(t) the current at time t of the density profile u(t): j(t) =
JE(t)(u(t)). Since the thermodynamical variables are equal to (E1, λ1) for t ≥ T ,
as t → ∞, u(t) and the current j(t) relax exponentially fast to ρ̄1 and JE1

(ρ̄1),
respectively. By (6.1), JE1(ρ̄1) = 0, and, by (3.18) and (5.5), Aλ1( ρ̄1 , f

′(ρ̄1) −
λ1 ) = Aλ1( ρ̄1 , 0 ) = 0. Therefore, the integrals in (5.7) are finite as T →∞ and

W (λ(·), E(·), ρ̄0) = F (ρ̄1) − F (ρ̄0) +

∫ ∞
0

dt

∫
Ω

j(t) · σ(u(t))−1j(t) dx

+

∫ ∞
0

dt

∫
∂Ω

Aλ(t)(u(t) , f ′(u(t))− λ(t) ) dS

≥ F (ρ̄1) − F (ρ̄0) .

(6.2)

Last inequality follows from (5.6). Note that we did not assume any regularity of
the thermodynamical variables in time so that they can also be discontinuous.

It remains to show that in the quasistatic limit equality is achieved in (6.2).
That is the thermodynamic relation

W = ∆F (6.3)

holds, where ∆F = F (ρ̄1) − F (ρ̄0) is the variation of the free energy. If this is
the case, by running the transformation backward in time, we can return to the
original state exchanging the energy −∆F . For this reason the transformations for
which (6.2) becomes an equality are called reversible.

However, for any fixed transformation the inequality in (6.2) is strict because the
last two terms on the right-hand side of the identity in (6.2) are strictly positive.
The second one is strictly positive in view of the last assertion of (3.9). Hence,
reversible transformations cannot be achieved exactly. We can however exhibit a
sequence of transformations for which these strictly positive terms can be made
arbitrarily small. This sequence of transformations is what is called quasistatic
transformations.

Fix smooth functions λ(t), E(t) such that (λ(0), E(0)) = (λ0, E0), (λ(t), E(t)) =
(λ1, E1) for t ≥ T . Assume that (λ(t), E(t)) are equilibrium states for all t ≥ 0.
This means that J(ρ̄λ(t),E(t)) = 0 for all t ≥ 0. Given δ > 0, set λδ(t) = λ(δt),
Eδ(t) = E(δt). The sum of the last two terms on the right-hand side of (6.2) is
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given by∫ ∞
0

dt

∫
Ω

{∇f ′(uδ(t)) − Eδ(t) } · σ(uδ(t)) {∇f ′(uδ(t)) − Eδ(t) } dx

+

∫ ∞
0

dt

∫
∂Ω

Aλδ(t)(uδ(t) , f
′(uδ(t))− λδ(t) ) dS ,

where uδ is the solution to (5.1) with initial condition ρ̄0 and parameters λδ(t),
Eδ(t).

Recall that ρ̄λδ(t),Eδ(t) is the equilibrium state associated to the thermodynamical
variables λδ(t), Eδ(t). Since J(ρ̄λ(t),E(t)) = 0, Eδ(t) = ∇f ′(ρ̄λδ(t),Eδ(t)). Therefore,
the previous expression is equal to∫ ∞

0

dt

∫
Ω

{∇f ′(uδ(t)) − ∇f ′(ρ̄λδ(t),Eδ(t)) } · σ(uδ(t)) {∇f ′(uδ(t)) − ∇f ′(ρ̄λδ(t),Eδ(t)) } dx

+

∫ ∞
0

dt

∫
∂Ω

Aλδ(t)(uδ(t) , f
′(uδ(t))− λδ(t) ) dS ,

The difference between the solution of the hydrodynamic equation uδ(t) and the
stationary profile ρ̄λδ(t),Eδ(t) is of order δ uniformly in time, and so is the differences
f ′(uδ(t))− f ′(ρ̄λδ(t),Eδ(t)). As the integration over time essentially extends over an

interval of length δ−1, the first term of the previous expression vanishes for δ → 0.
Similarly, by (5.6), Aλδ(t)(uδ(t) , f

′(uδ(t)) − λδ(t) ) is bounded by C0[ f ′(uδ(t)) −
λδ(t) ]2 = C0[ f ′(uδ(t))− f ′(ρ̄λδ(t),Eδ(t)) ]2. Hence, the second term of the previous
expression also vanishes as δ → 0.

This implies that equality in (6.2) is achieved in the limit δ → 0. Note that in the
previous argument we did not use any special property of the path λ(t) besides its
smoothness in time. Otherwise, the trajectory (E(t), λ(t)) from (E0, λ0) to (E1, λ1)
can be arbitrary along equilibrium states.

Excess work. Consider a transformation (E(t), λ(t)), t ≥ 0, and an initial density
profile ρ. Assume that (E(t), λ(t)) → (E1, λ1), as t → +∞ fast enough, where
(E1, λ1) defines an equilibrium state (that is J(ρ̄E1,λ1

) = 0). The excess work
Wex = Wex(λ(·), E(·), ρ) is defined as the difference between the energy exchanged
between the system and the external driving and the work involved in a reversible
transformation from ρ to ρ̄1, namely

Wex = W − minW =

∫ ∞
0

dt

∫
Ω

j(t) · σ(u(t))−1j(t) dx

+

∫ ∞
0

dt

∫
∂Ω

Aλ(t)(u(t) , f ′(u(t))− λ(t) ) dS ,

(6.4)

where we used (6.2) as well as the fact that the minimum of W is given by the right-
hand side of (6.3). Observe that Wex is a positive functional of the transformation
(E(t), λ(t)) and the initial condition ρ. Of course, by taking a sequence of quasi-
static transformations Wex can be made arbitrarily small.

Relaxation path and availability. Consider an equilibrium system in the state
ρ̄0, characterized by a chemical potential λ0 and an external field E0. This system is
put in contact with reservoirs at constant chemical potential λ1 and an external field
E1, different from the chemical potential λ0 and the external field E0 associated to
ρ̄0. Assume that (E1, λ1) is an equilibrium state. For t > 0 the system thus evolves
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according to the hydrodynamic equation (5.1) with initial condition ρ̄0, external
field E1, and boundary condition λ1.

When t → +∞ the system relaxes to the equilibrium state ρ̄1. As the path
(E(·), λ(·)) is constant in time, the excess work is a function of (E1, λ1) and ρ̄0 and
we denote Wex(E(·), λ(·), ρ̄0) simply by Wex(E1, λ1, ρ̄0).

In view of (6.4), the constitutive equation (3.6) and (6.2), the excess work along
such a path is given by

Wex(E1, λ1, ρ̄0) =−
∫ ∞

0

dt

∫
Ω

[
∇f ′(u(t))− E1

]
· j(t) dx

+

∫ ∞
0

dt

∫
∂Ω

Aλ1(u(t) , f ′(u(t))− λ1 ) dS .

Since (E1, λ1) is an equilibrium state, J(ρ̄1) = 0, so that ∇f ′(ρ̄1) = E1. We may
thus replace E1 by ∇f ′(ρ̄1) in the previous equation. After an integration by parts,
since f ′(ρ̄1) = λ1, in view of the boundary conditions of (5.1) and the definition
(5.5) of Aλ, the right-hand side becomes∫ ∞

0

dt

∫
Ω

[
f ′(u(t)) − f ′(ρ̄1)

]
∇ · j(t) dx .

By (5.1) this expression is equal to

−
∫ ∞

0

dt

∫
Ω

[
f ′(u(t))− f ′(ρ̄1)

]
∂tu(t) dx .

We have therefore shown that

Wex(E1, λ1, ρ̄0) =

∫
Ω

[
f(ρ̄0)− f(ρ̄1)− f ′(ρ̄1)

(
ρ̄0 − ρ̄1

)]
dx = VE1,λ1

(ρ̄0) , (6.5)

where the last identity follows from (3.20).
Note that the excess work Wex is not the difference of a thermodynamic potential

between the states ρ̄0 and ρ̄1. We refer to [8] and [26, Ch. 7] for a connection of this
result with availability and the maximal useful work that can be extracted from
the system.

7. Transformation along nonequilibrium states

Nonequilibrium states are characterized by the presence of a non vanishing cur-
rent in the stationary density profile. Therefore, to maintain such states one needs
to dissipate a positive amount of energy per unit of time. If we consider a trans-
formation between nonequilibrium stationary states, the energy dissipated along
such transformation will necessarily include the contribution needed to maintain
such states. The arguments of the previous section have therefore to be modified
in order to take into account this amount of energy. This issue, first raised in [25],
has been more recently considered e.g. in [2, 11, 23, 24, 8, 9].

The appropriate definition of thermodynamic functionals for nonequilibrium sys-
tems is a central but difficult topic. Our starting point is the formula (5.7) for the
energy exchanged in the time interval [0, T ] between the system and the external
reservoirs and fields.
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Towards a definition. Fix T > 0 and a nonequilibrium state (E, λ) so that
JE(ρ̄E,λ) 6= 0 and f ′(ρ̄E,λ) 6= λ. Let (E(t), λ(t)) = (E, λ), 0 ≤ t ≤ T . By (5.7),

W[0,T ](λ(·), E(·), ρ̄E,λ) = T

∫
Ω

JE(ρ̄E,λ) · σ(ρ̄E,λ)−1JE(ρ̄E,λ) dx

+ T

∫
∂Ω

Aλ( ρ̄E,λ , f
′(ρ̄E,λ) − λ ) dS .

Note that both terms on the right-hand side are strictly positive. The second one
is strictly positive in view of the last assertion of (3.9) and because f ′(ρ̄E,λ) 6= λ
at the boundary in nonequilibrium states.

To justify the definition of renormalized work proposed below, we turn back to
formula (5.7) for the work. Assume that the transformation is performed along
equilibrium states: JE(t)(ρ̄E(t),λ(t)) = 0 for all 0 ≤ t ≤ T .

Since, in equilibrium, the current is equal to its symmetric part, in (5.7), j(t) =
JE(t)(u(t)) = JsE(t),λ(t)(u(t)). On the other hand, in equilibrium, by equation (3.19),

(δVE,λ/δρ)(ρ) = f ′(ρ)−λ. Therefore, for transformations along equilibrium states,
we may rewrite the work as

F (u(T )) − F (ρ) +

∫ T

0

dt

∫
Ω

JsE(t),λ(t)(u(t)) · σ(u(t))−1JsE(t),λ(t)(u(t)) dx

+

∫ T

0

dt

∫
∂Ω

Aλ(t)

(
u(t) ,

δVE(t),λ(t)

δρ
(u(t))

)
dS .

(7.1)

Fix an equilibrium state (E, λ) and consider a constant transformation (E(t), λ(t)) =
(E, λ), 0 ≤ t ≤ T , starting from the density profile ρ̄E,λ. Since ρ̄E,λ minimizes the
quasi-potential VE,λ, (δVE,λ/δρ)(ρ̄E,λ) = 0. Hence, by the definition (5.5) of Aλ,

Aλ( ρ̄E,λ , (δVE,λ/δρ) (ρ̄E,λ) ) = H
(3)
λ ( ρ̄E,λ , 0 ) = 0. On the other hand, by (3.26),

JsE,λ(ρ̄E,λ) = 0. This shows that both integrals in the previous displayed equation
vanish.

This property extends to non-equilibrium states (E, λ). Indeed, since the quasi-
potential VE,λ is minimal at the stationary profile, (δVE,λ/δρ) (ρ̄E,λ) = 0. Hence,
by (3.26), JsE,λ(ρ̄E,λ) = 0, and by the reasons presented in the previous paragraph,

Aλ( ρ̄E,λ , 0 ) = 0.

Renormalized work. The previous arguments support the following definition
or renormalized work. Fix T > 0, a density profile ρ, and space-time dependent
chemical potentials λ(t) = λ(t, x) and external field E(t) = E(t, x), 0 ≤ t ≤ T ,
x ∈ Ω. Let u(t) = u(t, x), j(t) = JE(t)(u(t, x)), t ≥ 0, x ∈ Ω, be the solution of the
hydrodynamic equation (5.1) with initial condition ρ. Define the renormalized work
W ren

[0,T ] = W ren
[0,T ](E(·), λ(·), ρ) performed by the reservoirs and the external field in

the time interval [0, T ] as

W ren
[0,T ] := F (u(T )) − F (ρ)

+

∫ T

0

dt

∫
Ω

JsE(t),λ(t)(u(t)) · σ(u(t))−1JsE(t),λ(t)(u(t)) dx

+

∫ T

0

dt

∫
∂Ω

Aλ(t)

(
u(t) ,

δVE(t),λ(t)

δρ
(u(t))

)
dS .

(7.2)
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Remark 7.1. In [8], the renormalized work is defined by subtracting some quanti-
ties from the work. Then, taking advantage of the orthogonality between the sym-
metric and the anti-symmetric currents, a formula for the renormalized work sim-
ilar to (7.2) is derived.

Here, instead of subtracting a quantity we rather replaced in the formula of the
work the equilibrium quasi-potential by the nonequilibrium one and the current by
the symmetric current.

As observed in the previous subsection, the above definition of renormalized work
coincides with the one of work when the states (E(t), λ(t)), 0 ≤ t ≤ T , are all
equilibrium states.

Assume that λ(t), E(t) converge to λ1, E1 as t → +∞ fast enough. Let ρ̄1 =
ρ̄E1,λ1 be the stationary profile associated to the pair (E1, λ1). Since u(T ) con-
verges to ρ̄1, the symmetric part of the current, JsE(T ),λ(T )(u(T )), relaxes as T →
∞ to JsE1,λ1

(ρ̄1) = 0 fast enough. Similarly, [ δVE(T ),λ(T )/δρ] (u(T )) converges

to [ δVE1,λ1
/δρ ] (ρ̄1) = 0. Hence, since, by (5.6), Aλ is quadratic in the sec-

ond variable, Aλ(T )(u(T ) , [ δVE(T ),λ(T )/δρ] (u(T )) ) relaxes quickly to Aλ1
(u(T ),

[ δVE1,λ1
/δρ ] (ρ̄1) ) = Aλ1

(u(T ) , 0 ) = 0.
Therefore, the two integrals in the previous formula are convergent as T → ∞

and

W ren
[0,T ] = F (ρ̄1) − F (ρ) +

∫ ∞
0

dt

∫
∂Ω

Aλ(t)

(
u(t) ,

δVE(t),λ(t)

δρ
(u(t))

)
dS

+

∫ ∞
0

dt

∫
Ω

JsE(t),λ(t)(u(t)) · σ(u(t))−1JsE(t),λ(t)(u(t)) dx . (7.3)

Since, by (5.6), Aλ(a, p) ≥ 0,

W ren(E(·) , λ(·) , ρ ) ≥ F (ρ̄1) − F (ρ) . (7.4)

The previous equation states that the Clausius inequality holds for the renormalized
work, see [23, 8].

Quasi-static transformations. As for transformations of equilibrium states, we
show that, given two nonequilibrium states, there exists a sequence of transforma-
tions from the first to the second for which the last two terms on the right-hand of
(7.3) can be made arbitrarily small.

Fix (E0, λ0) and assume that the initial profile ρ is the stationary profile asso-
ciated to this pair: ρ = ρ̄E0,λ0

. Fix T > 0 and choose smooth functions λ(t), E(t),
0 ≤ t ≤ T , such that (E(0), λ(0)) = (E0, λ0), (E(T ), λ(T )) = (E1, λ1). For δ > 0,
let (Eδ(t), λδ(t)) = (E(δt), λ(δt)), and uδ(t) be the solution of (5.1) with initial
condition ρ̄0 = ρ̄E0,λ0 , external field Eδ(t), and chemical potential λδ(t). Set
jδ(t) = JEδ(t)(uδ(t)). The last term on the right-hand side of (7.3) is given by∫ ∞

0

dt

∫
Ω

JsEδ(t),λδ(t)(uδ(t)) · σ(uδ(t))
−1JsEδ(t),λδ(t)(uδ(t)) dx .

For each fixed t, let ρ̄δ(t) = ρ̄Eδ(t),λδ(t) be the stationary profile associated to the
driving Eδ(t), λδ(t) with frozen t. Since JsEδ(t),λδ(t)(ρ̄δ(t)) = 0, we can rewrite the

previous integral as ∫ ∞
0

dt

∫
Ω

Ĵδ(t) · σ(uδ(t))
−1Ĵδ(t) dx ,
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where Ĵδ(t) = JsEδ(t),λδ(t)(uδ(t)) − JsEδ(t),λδ(t)(ρ̄δ(t)).

The difference between the solution of the hydrodynamic equation uδ(t) and
the stationary profile ρ̄δ(t) is of order δ uniformly in time, and so is the differ-
ence JsEδ(t),λδ(t)(uδ(t)) − J

s
Eδ(t),λδ(t)

(ρ̄δ(t)). As the integration over time essentially

extends over an interval of length δ−1, the previous expression vanishes for δ → 0.
A similar argument can be carried out to the first integral in (7.3) because uδ(t)

is close to ρ̄δ(t), [ δVEδ(t),λδ(t)/δρ ] (ρ̄δ(t)) = 0, Aλδ(t)(uδ(t) , 0 ) = 0, and Aλ is
quadratic in the second variable. This implies that equality in (7.4) is achieved in
the limit δ → 0. In this argument we did not use any special property of the path
(E(t), λ(t)) besides its smoothness in time, the trajectory (E(t), λ(t)) from (E0, λ0)
to (E1, λ1) can be otherwise arbitrary.

Quasi static transformations thus minimize asymptotically the renormalized work
and in the limit δ → 0 we obtain the nonequilibrium version of the thermodynamic
relation (6.3), that is

W ren = ∆F , (7.5)

where ∆F represents the variation of the equilibrium free energy functional, ∆F =
F (ρ̄1)− F (ρ̄0).

It is remarkable that the Clausius inequality and the optimality of quasi-static
transformations, basic laws of equilibrium thermodynamics, admit exactly the same
formulation for nonequilibrium states with the definition proposed in (7.2). By
Remark 7.1, (7.4), (7.5) contain the equilibrium situations as a particular case.

Relaxation path: excess work and quasi potential. Consider at time t = 0 a
stationary nonequilibrium profile ρ̄0 corresponding to some driving (E0, λ0). This
system is put in contact with new reservoirs at chemical potential λ1 and a new
external field E1. For t > 0 the system evolves according to the hydrodynamic
equation (5.1) with initial condition ρ̄0, time independent boundary condition λ1

and external field E1. In particular, as t→∞ the system relaxes to ρ̄1.
Along such a path, in view of the orthogonality relation (3.27), writing Js as

J − Ja, the excess work is given by

Wex(E1, λ1, ρ̄0) :=

∫ ∞
0

dt

∫
∂Ω

Aλ1

(
u(t) ,

δVE1,λ1

δρ
(u(t))

)
dS

+

∫ ∞
0

dt

∫
Ω

JE1(u(t)) · σ(u(t))−1JsE1,λ1
(u(t)) dx

−
∫ ∞

0

dt

∫
∂Ω

Mbd
λ1,u(t)

( δVE1,λ1

δρ
(u(t))

)
κ dS .

By definition (3.26) of the symmetric part of the current, by an integration by
parts, and by (5.1), (3.3), the second term on the right-hand side is equal to∫ ∞

0

dt

∫
Ω

∇ · JE1
(u(t))

δVE1,λ1

δρ
(u(t)) dx

+

∫ ∞
0

dt

∫
∂Ω

δVE1,λ1

δρ
(u(t)) (Mbd

λ1,u(t))
′(0)κ dS .

By (5.1),∫ ∞
0

dt

∫
Ω

∇ · JE1(u(t))
δVE1,λ1

δρ
(u(t)) dx = −

∫ ∞
0

dt

∫
Ω

∂tu(t)
δVE1,λ1

δρ
(u(t)) dx .

The right-hand side is equal to VE1,λ1
(ρ̄0)− VE1,λ1

(ρ̄1) = VE1,λ1
(ρ̄0).
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In conclusion, as Mbd
λ1,u(t)(0) = 0, in view of the definition (5.5) of Aλ1

,

Wex(E1, λ1, ρ̄0) = VE1,λ1
(ρ̄0) +

∫ ∞
0

dt

∫
∂Ω

Aλ1

(
u(t) ,

δVE1,λ1

δρ
(u(t))

)
dS

−
∫ ∞

0

dt

∫
∂Ω

Aλ1

(
u(t) ,

δVE1,λ1

δρ
(u(t))

)
dS , (7.6)

so that

Wex(E1, λ1, ρ̄0) = VE1,λ1(ρ̄0) .

This identity extends to nonequilibrium states the relation (6.5) between the excess
work and the quasi potential.

Remark 7.2. As observed in [8], the previous identity provides a characterization
of the quasi-potential which does not involve large deviations.

Appendix A. Zero range dynamics

Recall the notation introduced in Section 2. In this section, E = N∪ {0} so that
c(E) = [0,∞). The dynamics can be informally described as follows. At each site,
independently from the others, particles wait exponential times, whose parameter
depends only on the number of particles at that site, and then jumps to a nearest
neighboring site according to the transition probability of some random walk on
ΩN . Superimposed to this bulk dynamics, to model the effect of the reservoirs,
we have creation and annihilation of particles, according to some birth and death
process, at the boundary of ΩN .

Fix a time-dependent external field E : R+ × Ω → Rd and chemical potential
λ : R+ × ∂Ω→ R+. The generator Lt,N of the zero range process is given by

Lt = Lbulk
t,N + Lbd

t,N ,

where Lbulk
t,N describes the bulk dynamics and Lbd

t,N the boundary dynamics at time
t. The generator of the bulk dynamics is given by

(Lbulk
t,N f)(η) = N2

∑
x∈ΩN

∑
y∈ΩN
|y−x|=εN

g(ηx) e(1/2)E(t,x)·(y−x)
[
f(σx,yη)− f(η)

]
.

In this formula, εN = 1/N and σx,yη is the configuration obtained from η by moving
a particle from x to y:

(σx,yη)z =

 ηz if z 6= x, y
ηz − 1 if z = x
ηz + 1 if z = y .

(A.1)

The generator of the boundary dynamics is given by

(Lbd
t,Nf)(η) = N

∑
x∈ΩN

∑
y 6∈ΩN
|y−x|=εN

g(ηx) e(1/2)E(t,x)·(y−x)
[
f(σx,−η)− f(η)

]
+ N

∑
x∈ΩN

∑
y 6∈ΩN
|y−x|=εN

eλ(t,y) e(1/2)E(t,y)·(x−y)
[
f(σx,+η)− f(η)

]
.
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In this formula, σx,+η, σx,−η are the configurations obtained from η by removing,
adding a particle at x, respectively:

(σx,±η)z

{
ηz if z 6= x

ηz ± 1 if z = x .
(A.2)

Note that the bulk dynamics has been speeded-up by N2, while the boundary
dynamics by N . Denote by ηN (t) the continuous-time Markov chain on ΩN induced
by the generator Lt,N and by Pλ,Eη , η ∈ ΩN , the distribution of the process ηN (·)
when its initial state is η.

Stationary states. Consider the case in which the driving (λ,E) does not depend
on time. As the Markov chain is irreducible, there exists a unique invariant measure,

denoted by µλ,EN . It is remarkable that such invariant measure can be constructed
explicitly and it is product, see [13] for the one dimensional case.

Denote by λc ∈ R the radius of convergence of the series

Z(λ) = 1 +
∑
k≥1

eλk

g(1) · · · g(k)
(A.3)

For λ < λc, let mλ be the probability measure on N given by

mλ(k) =
1

Z(λ)

eλk

g(1) · · · g(k)
, k ∈ N ∪ {0} . (A.4)

Let φN = φλ,EN : ΩN → R+ be the unique solution of the elliptic equation

N2
∑
y∈ΩN
|y−x|=εN

{
φN (y) e(1/2)E(y)·(x−y) − φN (x) e(1/2)E(x)·(y−x)

}

+ N
∑
y 6∈ΩN
|y−x|=εN

{
φN (y) e(1/2)E(y)·(x−y) − φN (x) e(1/2)E(x)·(y−x)

}
= 0 , x ∈ ΩN ,

φN (z) = eλ(z) , z 6∈ ΩN .

The stationary state µλ,EN is the product measure on ΩN whose marginals are
given by

µλ,EN {η : ηx = k} = mλN (x)(k) , x ∈ ΩN , k ≥ 0 , where λN (x) = log φN (x) .

In the homogeneous equilibrium state, E = 0 and λ constant, the solution of the
elliptic equation is given by φN = exp{λ} so that the invariant measure is Gibbs
with Hamiltonian

HN (η) =
∑
x∈ΩN

ηx∑
k=1

log g(k) .

Bulk Hamiltonian. Recall the definition of the function R its inverse Ξ = R−1,
and the equilibrium free energy, introduced in (2.3) and below. By [5], the diffusivity
and the mobility are respectively given by

D(ρ) = Φ′(ρ) , σ(ρ) = Φ(ρ) , where Φ(ρ) = eΞ(ρ) .
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An elementary computation yields that the Einstein relation (3.5) is fulfilled and
that f ′(ρ) = log Φ(ρ). By (3.4), the bulk Hamiltonian is given by

Hbulk
E (ρ, F ) = −

∫
Ω

Φ′(ρ)∇ρ · ∇F dx +

∫
Ω

Φ(ρ)
{
E + ∇F

}
· ∇F dx , (A.5)

Boundary Hamiltonian. In view of the definition of the generator Lbd
t,N , in the

context of the zero-range process, the boundary generator Lλ, λ < λc, introduced
in (2.1), is given by

(Lλf)(x) = g(x) [ f(x− 1) − f(x) ] + eλ [ f(x + 1) − f(x) ] .

The boundary Hamiltonian, Mbd
λ : (0,∞)×R→ R, introduced in (2.4), is given

by

Mbd
λ,a(p) = eλ [ep − 1] + eΞ(a) [e−p − 1] . (A.6)

Quasi-potential. Assume that the external field vanishes and fix a chemical po-
tential λ. Recall the definition of the variable d(·) introduced below (4.2). In the
context of zero-range processes, d(ρ) = Φ(ρ) = σ(ρ).

We claim that
δV0,λ

δρ
(ρ) = f ′(ρ) − f ′(ρ̄0,λ) , (A.7)

where ρ̄0,λ the solution of (3.11). In particular, for zero-range processes, the quasi-
potential has an explicit formula.

To prove (A.7), we first claim that identity (4.3) holds for zero-range processes.
Since d(ρ) = σ(ρ) = Φ(ρ), and f ′(ρ) = log Φ(ρ), the left-hand side of (4.3) can be
written as

Φ(ρ)

Φ(ρ)− Φ(F )

{
eλ
[ Φ(ρ)

Φ(F )
− 1

]
+ Φ(ρ)

[ Φ(F )

Φ(ρ)
− 1

]}
= eλ − Φ(F ) .

The right-hand side is equal to (Mbd
λ,F )′(0), proving (4.3).

Since d(ρ) = σ(ρ), by Remark 4.1 and (4.4), in the context of zero-range pro-
cesses, equation (4.2) becomes{

∆f ′(F ) + ‖∇f ′(F ) ‖2 = 0 ,

J(F ) · n = −κ (Mbd
λ,F )′(0) .

A simple algebra based on Einstein relation and the relations between mobility,
diffusivity and Φ permits to rewrite the previous equation as{

∇ · J(F ) = 0 ,

J(F ) · n = −κ (Mbd
λ,F )′(0) .

(A.8)

This equation corresponds to the stationary equation (3.11). Hence, by (4.1), for
zero-range dynamics, the quasi-potential is given by (A.7).

Appendix B. Exclusion processes

Recall the notation introduced in Section 2. In the context of exclusion processes,
E = {0, 1} so that c(E) = [0, 1]. The dynamics can be informally described as
follows. Particles are distributed on ΩN in such a way that, at each site, there is at
most one particle. Each particle, independently from the others, wait a mean-one
exponential random time, and then jumps to a nearest neighboring site according
to the transition probability of some random walk on ΩN . If the chosen site is
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occupied by another particle, the jumps is suppressed. Superimposed to this bulk
dynamics, to model the effect of the reservoir, at the boundary of ΩN , particles are
created and annihilated according to some birth and death process.

Fix a time-dependent external field E : R+ × Ω → Rd and chemical potential
λ : R+ × ∂Ω→ R+. The generator Lt,N of the exclusion process is given by

Lt,N = Lbulk
t,N + Lbd

t,N , (B.1)

where Lbulk
t,N describes the bulk dynamics and Lbd

t,N the boundary dynamics at time
t. The generator of the bulk dynamics is given by

(Lbulk
t,N f)(η) = N2

∑
x∈ΩN

∑
y∈ΩN
|y−x|=εN

ηx [ 1− ηy ] e(1/2)E(t,x)·(y−x)
[
f(σx,yη)− f(η)

]
,

where εN = 1/N and σx,yη have been introduced in (A.1).
The generator of the boundary dynamics is given by

(Lbd
t,Nf)(η) = N

∑
x∈ΩN

∑
y 6∈ΩN
|y−x|=εN

ηx
1

1 + eλ(t,y)
e(1/2)E(t,x)·(y−x)

[
f(σx,−η)− f(η)

]

+ N
∑
x∈ΩN

∑
y 6∈ΩN
|y−x|=εN

[ 1 − ηx ]
eλ(t,y)

1 + eλ(t,y)
e(1/2)E(t,y)·(x−y)

[
f(σx,+η)− f(η)

]
,

where the configuration σx,±η has been introduced in (A.2).
Note that the bulk dynamics has been speeded-up by N2, while the boundary

dynamics by N . Denote by ηN (t) the continuous-time Markov chain on ΩN induced
by the generator Lt,N and by Pλ,Eη , η ∈ ΩN , the distribution of the process ηN (·)
when its initial state is η.

Stationary states. Consider the case in which the driving (λ,E) does not depend
on time. As the Markov chain is irreducible, there exists a unique invariant measure,

denoted by µλ,EN . In contrast with the zero-range process, beyond the equilibrium

case where the current vanishes, the stationary state µλ,EN is not a product measure
and exhibits long range correlations [27]. In the special case E = 0, λ, the measure

µλ,EN is the product measure with Bernoulli marginals of density eλ/(1 + eλ).

Bulk Hamiltonian. By [5], the diffusivity and the mobility are respectively given
by

D(ρ) = 1 , σ(ρ) = ρ (1− ρ) .

An elementary computation yields that the Einstein relation (3.5) is fulfilled. By
(3.4), the bulk Hamiltonian is given by

Hbulk
E (ρ, F ) = −

∫
Ω

∇ρ · ∇F dx +

∫
Ω

ρ (1− ρ)
{
E + ∇F

}
· ∇F dx , (B.2)

Boundary Hamiltonian. In view of the definition of the generator Lbd
t,N , in the

context of the exclusion process, the boundary generator Lλ, introduced in (2.1),
is given by

(Lλf)(0) =
eλ

1 + eλ
[ f(1) − f(0) ] , (Lλf)(1) =

1

1 + eλ
[ f(0) − f(1) ] .
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The boundary Hamiltonian, Mbd
λ : [0, 1] × R → R, introduced in (2.4), is given

by
Mbd
λ,ρ(p) = [1− ρ]R(λ) [ep − 1] + ρ [ 1−R(λ) ] [e−p − 1] , (B.3)

where R(λ) is the mean of the measure mλ and has been introduced in (2.3).

Quasi-potential. Assume that d = 1, Ω = (0, 1), and recall the definition of the
function d(·) introduced below (4.2). For exclusion processes, d(ρ) = ρ, f ′(ρ) =
log[ρ/(1 − ρ)]. By (B.3), equation (4.3) is satisfied, and equation (4.4) takes the
form ∆F = ( ρ − F )

(∇F )2

F (1− F )
,

F ′ · n = κ [ %(λ)− F ] at x = 0 , x = 1 ,

(B.4)

where %(λ) = eλ/(1 + eλ). It has been shown in [12] that equation (B.4) has a
unique solution. Hence, by (4.1), in dimension 1 with no external field,

δV0,λ

δρ
(ρ) = f ′(ρ) − f ′(F ) .

Appendix C. KMP model

Recall the notation introduced in Section 2. This time E = c(E) = R+, and ηx,
x ∈ ΩN , represents the energy at site x for the configuration η. The bulk dynamics
can be informally described as follows. At each bond (x, y) in ΩN , at exponential
times, the energy of the two vertices is added and then redistributed according to
a uniform measure.

Fix a time-dependent chemical potential λ : R+ × Rd → R−. Note that λ takes
negative values. We adopted this convention, which might be slightly confusing, to
uniformize the notation of all three models. Moreover, there is no external field.
The generator Lt,N of the KMP process is given by

Lt = Lbulk
t,N + Lbd

t,N ,

where Lbulk
t,N describes the bulk dynamics and Lbd

t,N the boundary dynamics at time
t. The generator of the bulk dynamics is given by

(Lbulk
t,N f)(η) = N2

∑
(x,y)∈ΩN

∫ 1

0

[
f(σx,yr η)− f(η)

]
dr .

In this formula, the sum is performed over all unordered edges of ΩN and σx,yr η is
the configuration obtained from η by replacing ηx, ηy by r(ηx+ηy), (1−r)(ηx+ηy),
respectively:

(σx,yr η)z =

 ηz if z 6= x, y
r(ηx + ηy) if z = x

(1− r)(ηx + ηy) if z = y .

The generator at the boundary is given by

(Lbd
t,Nf)(η) = N

∑
x∈ΩN

∑
y 6∈ΩN
|y−x|=εN

∫ ∞
0

−λ(t, y) eλ(t,y)r
[
f(σxr η)− f(η)

]
dr ,

where σxr η is the configuration obtained from η by replacing ηx by r:

(σxr η)z =

{
ηz if z 6= x
r if z = x .
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The stationary states. Denote by mλ, λ < 0, the distribution of an exponential
random variable with mean τ(λ) = −λ−1. Denote by µλN the product measure on
ΣN whose marginals are given by∫

ΣN

F (ηx) µλN (dη) =

∫
R+

F (x) mλ(dx) , x ∈ ΩN , F ∈ Cb(R) .

An elementary computation shows that µλN is a stationary state (actually, re-
versible) for the KMP dynamics when λ(t, x) is constant and equal to λ. Ergodicity
yields that it is the unique one.

Bulk Hamiltonian. By [5], the diffusivity and the mobility of the KMP models
are given by

D(ρ) = 1 , σ(ρ) = ρ2 . (C.1)

Therefore, by (3.4), the bulk Hamiltonian is given by

Hbulk(ρ, F ) = −
∫

Ω

∇ρ · ∇F dx +

∫
Ω

ρ2∇F · ∇F dx . (C.2)

Boundary Hamiltonian. For KMP dynamics, the boundary generator Lλ, λ < 0,
introduced in (2.1), is given by

(Lλf)(x) = (−λ)

∫
R+

[ f(y) − f(x) ] eλy dy .

The boundary Hamiltonian, Mbd
λ,ρ : (0, τ−1)→ R, introduced in (2.4), is given by

Mbd
λ,ρ(p) =

τ

ρ+ τ

( 1

1− τ p
− 1

)
+

ρ

ρ+ τ

( 1

1 + ρ p
− 1

)
. (C.3)

Quasi-potential. Assume that d = 1, Ω = (0, 1), and recall the definition of the
function d(·) introduced below (4.2). For KMP dynamics, d(ρ) = ρ, f ′(ρ) = −(1/ρ),
and equation (4.2) takes the form

∆F + ( ρ − F )
(∇F )2

F 2
= 0 ,

∇F · n = κF 2 τ − F
ρF − τρ+ τF

.

(C.4)

In terms of the variables G = f ′(F ), γ = f ′(ρ), λ = f ′(τ), the equation reads
∆G −

( 1

γ
+

1

G

)
(∇G)2 = 0 ,

∇G · n = κ γ
G− λ

G− λ− γ
.

(C.5)

Uniqueness of solutions of equation (C.4) has still to be proven. It has been done
in [10] if the boundary conditions are replaced by Dirichlet ones. If uniqueness holds,
by (4.1), the quasi-potential of the KMP model is given by

δV0,λ

δρ
(ρ) = f ′(ρ) − f ′(F ) =

1

F
− 1

ρ
·
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Appendix D. Exclusion process with non-reversible boundary
conditions

Inspired by the model introduced in [14, 15], and the works [19, 18], in this
section, we present a model which do not satisfy (3.8), (3.9). This is a consequence
from the fact that the stationary state induced by the boundary dynamics does not
coincide with the one induced by the bulk dynamics. To concentrate on the source
of the differences, we assume that there is no external field and we set d = 1.

Let Ω = (0, 1) so that ΩN = {εN , . . . , 1−εN}, where, recall, εN = 1/N . The state
space and the bulk dynamics are the ones introduced in Section B with Ω = (0, 1)
and E = 0. To define the boundary dynamics we introduce a set of jump rates.
Fix ` ≥ 1, and let cRj : {0, 1}{−`,...,−1} → R+, cLj : {0, 1}{1,...,`} → R+, 1 ≤ j ≤ ` be
nonnegative functions.

The generator of the boundary dynamics is given by

(Lbd
t,Nf)(η) = N

∑̀
j=1

cRj (τNη)
[
f(σN−jη)−f(η)

]
+ N

∑̀
j=1

cLj (η)
[
f(σjη)−f(η)

]
.

In this formula, τNη is the configuration η translated by N so that (τNη)j = ηN+j ,
j ∈ Z. Moreover, the configuration σkη stands for

(σkη)j

{
ηj if j 6= k

1− ηk if j = k .

The generator LN of the dynamics is given by (B.1), and does not depend on time.
The model introduced above embraces the exclusion process introduced in Sec-

tion B with no external field (to incorporate the chemical potential, it is enough

to let the jump rates cR,Lj to depend on λ). It also encompasses the current reser-

voir model considered by De Masi et al. [14, 15] and the exclusion models with
nonreversible boundary dynamics examined in [19, 18].

Bulk × Boundary dynamics. In contrast with the previous models, here par-
ticles are created and annihilated at more than one site in the bulk of ΩN , and
according to different rates which depend on the environment. For this reason, the
boundary dynamics can not be represented by a one-site dynamics as in (2.1). The
state space is here {0, 1}{1,...,`} instead of {0, 1} as in the exclusion dynamics of
Section B.

Consider a neighborhood {N−k, . . . , N−1} of the right boundary. The station-
ary state of the bulk dynamics restricted to this set (we forbid exchange of particles
between N − k− 1 an N − k) is the uniform measure over all configurations with a
fixed number of particles. For k large, by the equivalence of ensembles, locally this
measure is close to a Bernoulli product measure with some fixed density.

Unless in very special cases, the stationary state on {N − `, . . . , N − 1} induced
by the generator Lbd

t,N introduced above is not a Bernoulli product measure. When
this does not happen, there is a conflict between the bulk dynamics, which drives
the system towards a Bernoulli product measure, and the bulk dynamics, which
propels the system to another stationary state. As the bulk dynamics is acceler-
ated by N2, while the boundary dynamics is speeded-up by N , the bulk dynamics
wins and the state of the system at the boundary is close the a Bernoulli product
measure. In particular, local equilibrium occurs and the entropy method to derive
the hydrodynamic behavior can be applied [18].
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One can also, up to technical obstacles, prove a large deviations principle and
derive a formula for the Hamiltonian. A rigorous proof of this statement is not yet
available.

Stationary states. Assume that the Markov chain induced by the generator LN
is irreducible. This is the case, for example, if one of the jump rates of each side of
the set ΩN is strictly positive. In this case, there exists a unique invariant measure,
denoted by µN . Except in exceptional cases, the stationary state is not a product
measure and not known explicitly.

Bulk Hamiltonian. The bulk Hamiltonian is the one presented in (B.2).

Boundary Hamiltonian. Since the boundary of Ω consists of two points, ∂Ω =
{0, 1}, the surface integral becomes a sum and the boundary Hamiltonian reads

Hbd
(
ρ , F

)
:= Mbd,0

ρ (F ) κ(0) + Mbd,1
ρ (F ) κ(1) ,

where

Mbd,1
ρ (p) =

∑̀
j=1

Eνρ

[
cRj (η)

[
ep(1−2η−j) − 1

] ]
,

Mbd,0
ρ (p) =

∑̀
j=1

Eνρ

[
cLj (η)

[
ep(1−2ηj) − 1

] ]
.

In this formula, νρ represents the Bernoulli product measure with density ρ. These
expressions can be written as in (B.3). For k = 0, 1,

Mbd,k
ρ (p) = [1− ρ]R+

k (ρ) [ep − 1] + ρR−k (ρ) [e−p − 1] , (D.1)

where

R+
1 (ρ) =

∑̀
j=1

Eνρ
[
cR+,j(η)

]
, R−1 (ρ) =

∑̀
j=1

Eνρ
[
cR−,j(η)

]
.

Here, cR±,j(η) = cRj (η±,−j), and η±,−j is the configuration which coincides with η

at all sites but −j, and at −j takes the value [1 − (±1)]/2: (η−,−j)−j = 1 and
(η+,−j)−j = 0. A similar formula holds for R±0 (ρ).

What does not hold for this model. The proof of (3.8) presented in Section 2
requires the boundary dynamics to be stationary with respect the measure induced
by the bulk dynamics, a property which does not hold here. In consequence, the
arguments presented in Section 3 to show that in equilibrium the boundary density
satisfies the identity f ′(ρ) = λ do not apply. Relation (3.8) is also used below
(5.6) to rewrite the boundary term in (5.4) as an integral of the functional Aλ. In
particular, the proof of Clausius inequality does not apply to this model.

This means that few assertions made in this article remain valid for this model
which deserves further investigations.



SYSTEMS IN MILD CONTACT WITH BOUNDARY RESERVOIRS 33

Quasi-potential. An explicit formula for the quasi-potential, similar to (B.4), is
an open problem for this model.

Remark D.1. The equilibrium stationary states of the microscopic dynamics pre-
sented in these appendices are all product measures. It should be possible to extend
this theory to one-dimensional Ising models under the Kawasaki dynamics in mild
contact with boundary reservoirs. The technical difficulty lies in the fact that these
models are non-gradient [22, Chapter 7].
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F76801 Saint-Étienne-du-Rouvray, France.

Email address: angele.bouley@univ-rouen.fr

Claudio Landim

IMPA

Estrada Dona Castorina 110,
J. Botanico, 22460 Rio de Janeiro, Brazil

and

CNRS UMR 6085, Université de Rouen,
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