Supplementary Information

SI Fig. 1. Excitation spectrum (dashed blue, $\lambda_{em} = 670$ nm) overlapped with the absorption spectrum (cyan) of the BDP-C₆₀-DSBDP triad.

SI Fig. 2. Decay traces of transient absorptions of BDP- C_{60} dyad at specific probe wavelengths in deaerated benzonitrile fitted with a four exponential model

Wavelength (nm) (transient species)	τ1 (ps) [#]	τ2 (ps)	τ3 (ps)	τ4 (ps)
427 (¹ BDP* & ¹ C ₆₀ *)	0.1 (r) [#]	$2.8 (d) \pm 0.3^{b}$	$69 (d) \pm 4^{c}$	591 (d) \pm 62 ^d
490 (GSB)	0.09 (r) [#]	$2.0 (d) \pm 0.1^{b}$	$54 (d) \pm 7^{c}$	$185 (d) \pm 13^{d}$
550 (GSB)	0.6 (r) [#]	$4 (d) \pm 2^{b}$	37 (d) $\pm 3^{c}$	$184 (d) \pm 5.3^{d}$
710 (³ C ₆₀ *)	0.3 (r)#	$11 (r) \pm 1^{b,c}$	$165 (r) \pm 16^{d}$	$1093 (r) \pm 91^{e}$

916 (¹ C ₆₀ */ C ₆₀ ⁻)	0.7 (r) ^{a#}	$12 (r) \pm 1^{b,c}$	233 (r) \pm 12 ^d	$1207 (d) \pm 73^{e}$
1045 (C_{60} ^{-/1} C_{60} *)	0.2 (r) ^{a#}	8 (r) $\pm 1^{b,c}$	$340(r) \pm 33^{d}$	$1000 (d) \pm 95^{e}$
1278 (¹ BDP*)	0.1 (r) [#]	$1.3 (d) \pm 0.5^{b}$	43 (d) $\pm 6^{c}$	$243 (d) \pm 28^{d}$

SI Table 1. Time constants obtained by fitting femtosecond transient absorption kinetics at specific wavelengths s in BDP-C₆₀ dyad, $\lambda_{exc} = 525$ nm. (r): rising time, (d): decay time; ^aultrafast electron transfer from ¹BDP* to C₆₀ from Franck-Condon zone ^bvibrational cooling of C₆₀.⁻ from Franck Condon region, ^cenergy transfer from ¹BDP* to C₆₀, ^d second energy transfer from ¹BDP* to C₆₀, ^eformation of triplet excited state ³C₆₀ by ISC. [#]Note: Time constant of <1 ps could not be retrieved with a precision due to strong signal from benzonitrile.

SI Fig. 3. Nanosecond transient absorption spectra of a. BDP-C₆₀ dyad ($\lambda_{exc} = 525$ nm) and b. DSBDP-C₆₀ dyad (red curve; $\lambda_{exc} = 635$ nm) and the triad (green curve; $\lambda_{exc} = 525$ nm) in deaerated benzonitrile at specified delay times.

SI Fig. 4. Femtosecond transient absorption spectra of DSBDP at specified delay times: a) -0.3 to 0.58 ps; b) 0.58 to 216 ps; and c) 216 to 2500 ps and the fitted kinetic traces at chosen probe wavelengths in deaerated benzonitrile. $\lambda_{exc} = 640$ nm.

SI Fig. 5. Chemical oxidation of DSBDP-C₆₀ dyad using FeCl₃.6H₂O. a. Absorbance of DSBDP-C₆₀ dyad before and after adding the oxidant and b. the difference absorption spectrum of DSBDP⁺ showing the positive band largely absorbing at 687 nm.

Wavelength (nm) (transient species)	τ1 (ps)	τ2 (ps)	τ3 (ps)	τ4 (ps)
455 ¹ DSBDP*	$4.8 \pm 0.2 (d)^{a}$	$80 \pm 2 \ (d)^{b}$	$736 \pm 23 \ (d)^{c}$	
550 ¹ DSBDP*	$6.5 \pm 0.4 \ (d)^{a}$	$72 \pm 7 \ (d)^{b}$	$670 \pm 52 \ (d)^{c}$	
660 GSB	$9 \pm 1 (d)^a$	$95 \pm 14 \ (d)^{b}$	$612 \pm 30 \ (d)^{c}$	
687 DSBDP· ⁺ / ³ C ₆₀ */ ³ DSBDP*	$8 \pm 2 (r)^{a}$	$54 \pm 4 \ (d)^d$	$1096 \pm 54 \ (r)^{e}$	
870 ¹ DSBDP*, ¹ C ₆₀ * & C ₆₀ . ⁻	$14 \pm 3 \ (r)^{a}$	$38 \pm 3 \ (d)^{b, d}$	$2220 \pm 67 \ (d)^{e}$	
970 ¹ DSBDP*, ¹ C ₆₀ * & C ₆₀ . ⁻	$12 \pm 3 \ (r)^{a}$	$46 \pm 5 \ (d)^{b, d}$	$2700 \pm 150 \ (d)^{e}$	
1045 ¹ C ₆₀ *, ³ C ₆₀ * & C ₆₀ ⁻	$9 \pm 2 (r)^{a}$ (C ₆₀ ⁻ rise); CS	$48 \pm 8 (d)^d$ (CR)	$749 \pm 53 \ (r)^{c}$	2600 ± 250 (d) ^e

SI Table 2. Time constants obtained by fitting femtosecond transient absorption kinetics at specific probe wavelengths in the DSBDP-C₆₀ dyad, $\lambda_{exc} = 640$ nm. (r): rising time, (d): decay time; ^{a,d} photoinduced charge transfer and charge recombination of DSBDP and C₆₀* ^benergy transfer from ¹DSBDP* to C₆₀, ^c second energy transfer from ¹DSBDP* to C₆₀, ^e ISC process of ¹C₆₀*.

SI Fig. 6. Time traces of transient absorptions of the DSBDP-C₆₀ dyad at specific probe wavelengths in deaerated benzonitrile fitted with a three exponential model except for 1045 nm which fits with a four exponential model, $\lambda_{exc} = 640$ nm

Wavelength (nm) (transient species)	τ1 (ps) [#]	τ2 (ps)	τ3 (ps)	τ4 (ps)
427 (¹ BDP*/ ¹ DSBDP*)	0.6 (r) [#]	$10 \pm 1 \ (r)^{a}$	$93 \pm 8 \ (d)^d$	$913 \pm 70 \ (d)^{f}$
455 (¹ DSBDP*)	0.3 (r) [#]	$13 \pm 1 \ (r)^{a}$	$152 \pm 10 \ (d)^{c}$	$841 \pm 57 (d)^{f}$
550 (BDP GSB/ ¹ DSBDP*)	0.8 (d)#	$9 \pm 1 (d)^{a}$	$50 \pm 2 \ (d)^d$	$1304 \pm 100 \text{ (d)}^{\text{f}}$
660 (DSBDP GSB)	0.9 (r) [#]	$9 \pm 1 (r)^{a}$	$164 \pm 22 \ (d)^{c}$	$725 \pm 44 \ (d)^{f}$
687 (DSBDP ⁺ / ³ C ₆₀ */ ³ DSBDP*)	0.6 (r) [#]	$14 \pm 1 \ (r)^{b}$	$88 \pm 3 (d)^{e}$	$1328 \pm 124 \ (r)^{g}$
870 (¹ DSBDP*/C ₆₀ ⁻ / ¹ C ₆₀ *)	0.4 (r) [#]	$11 \pm 1 (r)^{a}$	$163 \pm 12 \ (d)^{c}$	$1286 \pm 82 \ (d)^{g}$
970 (¹ DSBDP*/C ₆₀ ⁻ / ¹ C ₆₀ *)	0.4 (r)#	12 ± 1 (r) ^a	$146 \pm 9 (d)^c$	$1300 \pm 82 \ (d)^{g}$
1045 (C_{60} · / $^{1}C_{60}$ *)	0.3 (r) [#]	$13 \pm 1 \ (r)^{b}$	$72 \pm 5 (d)^{e}$	$1491 \pm 102 \ (d)^{g}$
1278 (¹ BDP*/ ¹ DSBDP*)	0.6 (r) [#]	$7 \pm 1 (d)^{a}$	$60 \pm 7 \ (d)^d$	$540 \pm 79 \ (d)^{f}$

SI Table 3. Time constants obtained by fitting femtosecond transient absorption kinetics at specific probe wavelengths in the BDP-C₆₀-DSBDP triad, $\lambda_{exc} = 525$ nm. (r): rising time, (d): decay time; ^a energy transfer from ¹BDP* to DSBDP, ^{b,e}photoinduced charge transfer and charge recombination of DSBDP and C₆₀, ^cenergy transfer from ¹DSBDP* to C₆₀, ^denergy transfer from ¹BDP* to C₆₀, ^fsecond energy transfer from ¹DSBDP* to C₆₀, ^gdecay of ¹C₆₀* and formation of triplet excited states (³C₆₀* and ³DSBDP*). [#]Note: time constant of <1 ps could not be retrieved with precision due to strong signal from benzonitrile.

SI Fig. 7. Decay traces of transient absorptions of BDP-C₆₀-DSBDP dyad at specific wavelengths in deaerated benzonitrile fitted with a four-exponential model, $\lambda_{exc} = 525$ nm

SI Fig. 8. Femtosecond transient absorption spectra of BDP-C₆₀-DSBDP at specified delay times: a. - 0.32 to 0.44 ps; b. 0.44 to 20 ps; c. 20 to 300 ps and d. 300 to 2460 ps in solvent benzonitrile. $\lambda_{exc} = 580$ nm. The dashed grey and black curves in panel (a) represent the respective steady-state absorption (SS abs) and emission (SS em) spectrum of pristine DSBDP

SI Fig. 9. Decay traces of transient absorptions of BDP-C₆₀-DSBDP triad at specific wavelengths in deaerated benzonitrile fitted with a three-exponential model, $\lambda_{exc} = 580$ nm

Wavelength (nm) (transient species)	τ1 (ps)	τ2 (ps)	τ3 (ps)
455 ¹ DSBDP*	$11 \pm 1 \ (d)^{a}$	$84 \pm 5 (d)^{b}$	$731 \pm 22 \ (d)^{c}$
551 1DSBDP*	$6.8 \pm 0.6 \ (d)^a$	75 ± 7 (d) ^b	667 ± 28 (d) ^c
660 GSB	$14 \pm 3 (d)^a$	87 ± 17 (d) ^b	$595 \pm 26 (d)^{c}$
687 DSBDP· ⁺ / ³ C ₆₀ */ ³ DSBDP*	$7.4 \pm 0.3 \ (r)^{a}$	$67 \pm 3 \ (d)^d$	$1365 \pm 67 (r)^{e}$
870 ¹ DSBDP*, ¹ C ₆₀ *& C ₆₀ -	$8 \pm 2 (r)^{a}$	$72 \pm 6 \ (d)^{b, d}$	$1354 \pm 87 \ (d)^{e}$
978 ¹ DSBDP*, ¹ C ₆₀ *& C ₆₀ -	$7.6 \pm 0.8 \ (r)^{a}$	$71 \pm 5 (d)^{b, d}$	$1392 \pm 87 (d)^{e}$
1040 ¹ C ₆₀ *, ³ C ₆₀ * & C ₆₀ ⁻	$\begin{array}{l} 7.7 \pm 0.6 \ (r)^{a} \\ (C_{60} \ rise) \ ; \ CS \end{array}$	$63 \pm 4 (d)^d$ (CR)	2311 ± 271 (d) ^e

SI Table 4. Time constants obtained by fitting femtosecond transient absorption kinetics at specific probe wavelengths in BDP-C₆₀-DSBDP triad, $\lambda_{exc} = 580$ nm. (r): rising time, (d): decay time; ^{a,d} photoinduced charge transfer and recombination from ¹DSBDP* to C₆₀, ^bphotoinduced energy transfer from ¹DSBDP* and C₆₀, ^csecond energy transfer from ¹DSBDP* to C₆₀, ^eISC process of ¹C₆₀*.

SI Fig. 10. Global fit of kinetic traces using a four exponential model and b. decay associated difference spectra (DADS) obtained by global fit of femtosecond transient spectra of the BDP-C₆₀-DSBDP triad ($\lambda_{exc} = 580$ nm).