
HAL Id: hal-03840366
https://hal.science/hal-03840366

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Longitudinal and transverse coherent waves in media
containing randomly distributed spheres
Francine Luppé, Jean-Marc Conoir, Tony Valier-Brasier

To cite this version:
Francine Luppé, Jean-Marc Conoir, Tony Valier-Brasier. Longitudinal and transverse co-
herent waves in media containing randomly distributed spheres. Wave Motion, 2022, 115,
�10.1016/j.wavemoti.2022.103082�. �hal-03840366�

https://hal.science/hal-03840366
https://hal.archives-ouvertes.fr


Highlights

Longitudinal and transverse coherent waves in media containing

randomly distributed spheres
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Abstract

Multiple scattering effects due to a random distribution of identical spheres

are investigated in the general case of elastic or poroelastic host media, where

both longitudinal and transverse waves may co-exist. Propagation of plane

coherent waves is assumed, and their dispersion equation looked for, as well

as analytic approximations of those particular solutions that are close to the

wavenumbers in the free host, when the product of the concentration with

the scattering cross section of the spheres is low. Under this last condition,

pair-correlation effects are seen to be of second order. Numerical studies

are performed under the hole correction assumption, and compared to ex-

perimental data for tungsten carbide spheres in an epoxy matrix, which is a

rather illustrative situation of how longitudinal and transverse waves partic-

ipate to coherent propagation.
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1. Introduction

Multiple scattering by random arrangements of scatterers is a topic with

an extensive literature that has preoccupied researchers for many years, as

can be seen, for example, from the many references in V.K.Varadan’s et al.

[1], Tsang et al.’s [2] and P. Martin’s [3] books. The T-matrix method is well

suited for the study of scattering by a two or three dimensional object, and

there are basically two different approaches based on it in multiple scattering

problems.

The first approach consists in writing down the multiple scattering equa-

tions and solving the resulting large linear system [4, 5, 6]. Its great advan-

tage is the possibility of considering arbitrary dispersions of scatterers with

any concentration, but its basic disadvantage is that the numerical work in-

volved is computationally challenging, especially for three dimensional prob-

lems [7, 8, 9], even though recent and still ongoing research [10, 11, 12] makes

the calculations faster for larger concentrations of particles. Effective proper-

ties may be deduced from such calculations, but the investigation of the effect

on effective properties of different parameters such as the concentration of

scatterers or their inner properties, is still cumbersome. Although T-matrix

methods have been formulated for elastic wave scattering [13, 14], very lit-

tle work has been reported on simulating full elastic wave propagation in

random particulate systems with mode conversion between longitudinal and

2



rotational (transverse) waves [15].

In the second approach, knowledge of the statistics of the random distri-

bution of scatterers is required and an average value of the scattered field is

sought. Dispersion equations for the effective wavenumbers are looked for,

and analytical formulas for a few approximate solutions can be obtained in

some particular situations (low concentration, or large wavelengths to parti-

cles radius ratii, ..). This is a classic topic with a large literature (see e.g.

Refs. [16, 17]), with modern era dating from the works of Foldy [18], Lax

[19] and Fikioris and Waterman [20]. This approach has the disadvantage

of considering only isotropic random distributions of scatterers and of being

limited in concentration, but has the advantage of producing analytical re-

sults that give insight into the scattering phenomena, and this is the reason

why we chose to work within Fikioris and Waterman’s framework. Again,

elastic host media (vectorial case) have received less attention than the media

where the propagation includes only one type of waves (scalar case).

Performing numerical calculations in order to analyze the propagation

of elastic waves in a medium containing a random distribution of spheres

will still be a challenge for the years to come. This is one of the reasons that

explain the persistent interest of the statistical approach, which is at the heart

of this paper. Not all methods are based on the T-matrix [21, 22, 23, 24], but

the latter has the advantage of dealing with both low and high frequencies

and obtaining closed-form expressions for the wavenumbers of the coherent

waves in all cases. More recently, the authors of Refs.[25, 26], using the

Wiener-Hopf technique, also with no assumptions on the wavelengths, the

particle boundary conditions/size, or the volume fraction, have demonstrated
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the existence of several effective wavenumbers , even in the scalar case, but

this is out of the topic of this paper.

The first paper, to our knowledge, dealing with the propagation of co-

herent waves in an elastic medium using the T-matrix is that of Varadan et

al. [27], although a large part of the results had already been published in

the book edited by V.K.Varadan and V.V.Varadan [1]. The most significant

result was to obtain closed-form expressions for the longitudinal and trans-

verse wavenumbers in the Rayleigh or low-frequency limit, and to show the

excellent agreement between the phase velocity of the longitudinal coherent

wave with Kinra’s experimental data [28].

Neglecting longitudinal waves to keep only transverse waves amounts to

considering the electromagnetic case, as treated in the 80’s by Tsang et Kong

[29] and then by Fikioris et Waterman [30] in a more comprehensive and

clearer way. Unlike in Ref. [27], the extinction theorem is used in Ref. [30]

in order to calculate the reflection and the transmission at the interface be-

tween a homogeneous medium and a multiple scattering one. This leads to

the interesting result that the polarization of a transverse incident wave is

preserved through the transmission process at the interface. This important

point, which is not discussed by Fikioris et Waterman, can be deduced di-

rectly from the comparison of Eqs. (8,41,50) in Ref. [30]. As Varadan et

al [27], both Refs. [29, 30] obtain a closed-form expression of the transverse

wavenumber, but written explicitly in terms of the scattering coefficients of

the T-matrix. The main advantage of a closed-form such as Eq.(57) in Ref.

[29] is to be valid from low to high frequencies ; it is obtained from a first

order asymptotic expansion in concentration, under the assumption of small
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spheres concentration, as in Foldy’s approximation [18].

The elastic case has been considered for an incident longitudinal wave

within the framework of the Quasi Crystalline Approximation in Ref. [31].

As in Ref. [29], closed-form expressions were given for all frequencies. The

asymptotic expansions were performed up to order two in concentration, thus

introducing the products between scattering coefficients and, consequently,

the coupling between longitudinal and rotational waves (c.f. Eqs.(29-32). In

order to do so, all fields were assumed invariant with respect to the azimuth

angle in the plane perpendicular to the direction of propagation of the coher-

ent waves. This is debatable, especially for transverse coherent waves, and

had led to a misuse of the scalar addition theorem all over, even for shear

waves. No such assumption is done here, and Ref. [31] is corrected. The

asymptotic expansions of the effective wavenumbers are also done around

those in the free host, not only at low concentration as in Refs. [31, 32], but

in the more general case of low concentration times scattering, so that the

effect of pair correlation between scatterers appears not only at third order,

but also at second order.

We chose to follow the same steps as the statistical theory developed first

in acoustics [20] and later in electromagnetism [29, 30]: conditional ensemble

averaging, under the quasi-crystalline approximation, of the basic multiple

scattering equations that express the fields outside the particles in the host

medium. These equations are obtained by means of the T-matrix that relates

a scattered wave amplitude to an exciting one, and of an addition theorem

that describes scattered waves from one particle as incident waves on another.

Contrary to other more recent methods developed in the electromagnetic
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case in Refs. [33, 34], the averaged exciting field on any given particle, or the

effective field, is then supposed to be equal to a linear combination of plane

waves propagating in the same direction as the incident plane wave that was

at the origin of the multiple scattering process, and the dispersion equation

that provides the effective wavenumbers is obtained therefrom. In elasticity,

where both longitudinal and transverse waves propagate, both the scalar

and the vectorial addition theorems have to be used, which had not been

done in Ref. [31], but is here. We also consider any isotropic host medium,

whether elastic [35], poroelastic [36, 37] or else, as long as the T-matrix

can be calculated. In short, the developed method generalizes the known

results obtained in electromagnetism to elasticity, in particular for transverse

incident waves which can generate rotational resonances [38], and also takes

into account viscosity and thermal effects. It is also a corrected version of

Ref. [31]. Applications of effective theories in such random media may range

from ultrasonic characterization of suspensions [39] to metamaterials design

[40], even for aqueous suspensions, where the shear waves in an even slightly

viscous fluid can be of noticeable influence in attenuation measurements for

example [41].

This paper is organized as follows: Section 2 deals with the description of the

host medium that contains a random distribution of spheres. The average

fields within Fikioris and Waterman’s framewok are described in Section 3.

The extinction theorem and the Lorentz-Lorenz law are obtained in Section 4.

Section 5 is dedicated to the matrix form of the Lorentz-Lorenz law that leads

to the dispersion equations of the coherent waves. Closed-form expressions

of the effective wavenumbers are given in section 6 when the product of the
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concentration with the scattering cross section is low. The particular case

of elastic media is considered in Section 7, in which numerical results are

compared to experimental data of Simon et al. [42, 38].

2. Description of the host medium

We consider an isotropic medium in which L longitudinal (non rotational)

waves and R rotational (divergence free) ones, may propagate. For example,

L = R = 1 in a viscous fluid or in a (visco)elastic solid, L = 2 and R = 1

in a Biot medium or a heat conducting fluid, and L = R = 2 in a porous

medium saturated with a viscous fluid [43]. This medium hosts, in the z > 0

region, a random array of identical spheres of radius a, and an incident plane

wave propagating in the z direction gives rise to a multiple scattering pro-

cess between all spheres; we look for the dispersion equation of the coherent

waves that may describe the average propagation in the z > 0 region (see,

for example, Ref. [44] for the definition of coherent waves).

We use the same methodology as in Refs. [45, 31] and look again for asymp-

totic expansions of the effective wavenumbers, with no assumptions about

the azimuth dependence of the fields, and using both the scalar addition the-

orem and the vectorial one to express the fields scattered from a sphere as

incident waves upon another, contrary to what was done in Ref. [31].

The displacement field in the host medium is a linear combination of

waves of all possible types,

u⃗ (r⃗) =
L∑

p=1

∇⃗ϕ(p) (r⃗) +
R∑

p=1

∇⃗ ∧ Ψ⃗p (r⃗) , (1)

and, using Debye potentials [46], each potential vector Ψ⃗p is decomposed, in
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any local spherical orthornormal basis {e⃗r, e⃗θ, e⃗ϕ}, as Ψ⃗p (r⃗) = ∇⃗∧(ϕ(L+p)re⃗r)+

(1/kp) ∇⃗ ∧ ∇⃗ ∧ (ϕ(L+p+1)re⃗r). The rotational waves that have a radial com-

ponent of the displacement in a given spherical system may couple to lon-

gitudinal ones through scattering by a target centered at the center of that

coordinate system; they will be termed as ”s-waves”, as in Ref.[46], and those

that may not, as ”t-waves”. For a given rotational wave, there is one ”s” and

one ”t” wave, associated to the same wavenumber, in a given local coordinate

system ; change for another spherical coordinate system leads to a different

mixture of the ”s” and ”t” parts of that same rotational wave.

Letting P = L + 2R denote the number of different types of local polar-

ization (one for each longitudinal wave, two for each rotational wave) in a

given local spherical system, u⃗(p) will stand for the particle displacement

associated to a wave of type p, with p ∈ L ⇔ 1 ≤ p ≤ L for a non-

rotational wave, p ∈ S ⇔ p = L + 1, L + 3, ..., P − 1 for an ”s” one, and

p ∈ T ⇔ p = L+2, L+4, ..., P for a ”t” one. p in S will be the ”s” part of a

rotational wave whose ”t” part is p+1, and, of course, p in T will be the ”t”

part of a rotational wave whose ”s” part is p − 1, in a fixed given spherical

system. Taking the well-known example of a Biot porous medium saturated

with a fluid, u⃗(1) would be associated to the fast compressional wave, u⃗(2)

to the slow one, u⃗(3) to the ”s” part of the first rotational wave, and u⃗(4)

to its ”t” part. and u⃗(5), u⃗(6) to the ”s” and ”t” parts of a potential second

rotational wave [43].

We use non normalized vector spherical harmonics and shorthand nota-
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tions,

Z⃗
(p)

mn(r⃗) =


∇⃗Zmn(kp, r⃗) for p ∈ L,

∇⃗ ∧ ∇⃗ ∧ re⃗rZmn(kp, r⃗) for p ∈ S,

1
kp
∇⃗ ∧ ∇⃗ ∧ ∇⃗ ∧ re⃗rZmn(kp, r⃗) for p ∈ T ,

(2)

with Zmn = Jmn,Hmn, kp+1 = kp when p ∈ S, and

Jmn(kp, r⃗) = jn(kpr)P
m
n

(
cos θ(r⃗)

)
eimϕ(r⃗), Hmn(kp, r⃗) = h(1)

n (kpr)P
m
n

(
cos θ(r⃗)

)
eimϕ(r⃗),

(3)

Pm
n the same associated Legendre function as in Ref. [47], and

∑
n,m

=
+∞∑
n=0

n∑
m=−n

. (4)

3. Average fields in Fikioris and Waterman’s framework

3.1. The multiple scattering equations

Let u⃗
(p)
E (r⃗; r⃗j) denote the displacement field of type p in the spherical co-

ordinate system centered at r⃗j, that, while observed at r⃗, excites a scatterer

centered at r⃗j. As in Ref. [31], we start with the integral equation, obtained

after averaging the fields incident upon one scatterer over all possible loca-

tions of the others under the quasi-crystalline approximation. This integral

equation governs the coherent fields, denoted by brackets, and states that

the p-exciting wave u⃗
(p)
E (r⃗; r⃗1) on a given target centered at r⃗1 is due to the

plane incident wave u⃗
(p)
inc(r⃗; r⃗1) of the same type p, and to all other waves

u⃗
(q)
E (r⃗; r⃗j) of type q scattered by a sphere centered at r⃗j into waves of type u

, thanks to the T (qu)(r⃗j) scattering operator, provided those scattered waves
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represent, in the local system centered at r⃗1, incident waves of type p:

⟨u⃗(p)
E (r⃗; r⃗1)⟩ = u⃗

(p)
inc(r⃗; r⃗1)+

P∑
q=1

P∑
u=1

δkukp

∫
d r⃗j n(r⃗j, r⃗1)G

(up)(r⃗j, r⃗1)T
(qu)(r⃗j)⟨u⃗(q)

E (r⃗; r⃗j)⟩.

(5)

In Eq. (5), as well as in the following equations, except Eq. (24), letters as

superscripts indicate a type of wave, longitudinal, s or t. Those of operators,

fields, and matrices are in parentheses, while they are not for elements of the

latter, in order to distinguish between them more easily. The G(up)(r⃗j, r⃗1) and

T (qu)(r⃗j) operators are defined respectively in Eqs. (14, 11). Transformation

of a scattered u- wave in the spherical system of r⃗j into incident p- waves

in the spherical system of r⃗1 is possible only if kp and ku are equal, and it

is illustrated in Eq. (5) by the δkukpG
(up)(r⃗j, r⃗1) operator defined in Eq.(14),

while scattering of a q - wave into a u - wave at a sphere centered at r⃗j is

illustrated by the T (qu)(r⃗j) scattering operator defined below in Eqs. (11).

Eq. (5) is similar to Eq. (10) in Ref. [29] and Eq.(1) in Ref. [30], with

longitudinal waves added, and the distinction between the ”s” and ”t” parts

of a rotational wave in the spherical systems centered at r⃗j and r⃗1 already

done, while it was done only after decomposing the fields upon spherical

harmonics in Refs. [30, 29].

The integration in Eq. (5) is over the (z > 0) region, n(r⃗j, r⃗1) is the

conditional number density of spheres at r⃗j if one is known to be at r⃗1, and

we assume a constant density n0 of scatterers of radius a, and conditional

number density given by [48, 49, 50]

n(r⃗, r⃗j) =

n0 [1 + U (r, n0)] for r = |r⃗ − r⃗j| > b,

0 otherwise,

(6)
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with b ≥ 2a and the Ursell function U obeying

lim
n0→0

U(r, n0) = lim
r→∞

U(r, n0) = 0. (7)

In the following, harmonic wave motion is supposed with time dependence

exp(−iωt) understood.

The incident plane wave of amplitude a(p) propagates in the z direction ;

in the spherical coordinates system centered on sphere number 1, it is either

a linear combination of spherical harmonics of orders m = 0, if longitudinal,

or m = ±1, if rotational; in that latter case, it is supposed in the following

to be polarized in the y direction as in Ref. [29]:

∀p ∈ L,

u⃗
(p)
inc(r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=0

in(2n+ 1)⃗J
(p)

0n (ρ⃗1) , (8a)

∀p ∈ S

u⃗
(p)
inc(r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=1

in
2n+ 1

2

[
1

n(n+ 1)
J⃗
(p)

1n (ρ⃗1) + J⃗
(p)

−1n (ρ⃗1)

]
,

u⃗
(p+1)
inc (r⃗; r⃗1) = a(p)eikpz1

+∞∑
n=1

in
2n+ 1

2

[
1

n(n+ 1)
J⃗
(p+1)

1n (ρ⃗1)− J⃗
(p+1)

−1n (ρ⃗1)

]
,

(8b)

with zj the z component of vector r⃗j. The displacement fields are expressed

as infinite series of vector spherical harmonics,

⟨u⃗(p)
E (r⃗, r⃗j)⟩ =

∑
n,m

A(p)
mn(r⃗j) J⃗

(p)

mn(ρ⃗j) with ρ⃗j ≡ r⃗ − r⃗j, (9)

and, as there cannot be any monopolar rotational mode,

A
(p)
m0(r⃗j) = 0 if p /∈ L. (10)
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The action of the scattering operators T (qp)(r⃗j) on a spherical harmonic is

defined as

T (qp)(r⃗j) J⃗
(q)

mn(ρ⃗j) = T qp
n H⃗

(p)

nm(ρ⃗j), with, after Eq. (10), (11a)

T qp
0 = 0 if (q, p) /∈ L2, (11b)

and, as ”t” waves are uncoupled from the others [46],

T qu
n = T uq

n = 0 if u ∈ T while q /∈ T . (12)

Eq. 5 can now be expressed with spherical harmonics, using Eqs. (9, 11), as

follows :∑
n,m

A(p)
mn(r⃗1)⃗J

(p)

mn(ρ⃗1) =

u⃗
(p)
inc(r⃗; r⃗1) +

P∑
q=1

P∑
u=1

δkukp
∑
ν,µ

∫
d r⃗j n(r⃗j, r⃗1)A

(q)
µν (r⃗j)T

qu
ν G(up) (r⃗j, r⃗1) H⃗

(u)

νµ (ρ⃗j).

(13)

The action of operator G(up) (r⃗j, r⃗1), that results from the addition theorem,

is defined as follows

G(up) (r⃗j, r⃗1) H⃗
(u)

νµ (ρ⃗j) =
∑
n,m

∑
ℓ

Gup (n,m, ℓ; ν, µ) ei(µ−m)ϕ(r⃗1j)Pµ−m
ℓ (cos θ(r⃗1j)) h

(1)
ℓ (kpr1j) J⃗

(p)

mn (ρ⃗1) ,

(14)

with r⃗1j = r⃗1 − r⃗j.

The Gup (n,m, ℓ; ν, µ) coefficients depend on the types of waves involved (lon-

gitudinal, ”s” or ”t”), and this is the reason why their up subscripts are

identical to the superscripts in parentheses of the corresponding operator ;

their expressions as well as a few of their properties are given in Appendix
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A. The values taken by ℓ in the sum over it depend on u, p, n,m, ν, µ, and

[51, 52] obey

ℓ ≡ n+ ν (mod 2) if u = p, and ℓ ≡ n+ ν + 1 (mod 2) else. (15)

Use of Eqs. (9,14 -A.7) leads to∑
n,m

A(p)
mn(r⃗1)⃗J

(p)

mn(ρ⃗1)− u⃗
(p)
inc(r⃗; r⃗1)

=
∑
n,m

P∑
q=1

P∑
u=1

δkukp
∑
ν,µ

∑
ℓ

T qu
ν Gup (n,m, ℓ; ν, µ) J⃗

(p)

mn(ρ⃗1)∫
d r⃗j n(r⃗j, r⃗1)A

(q)
µν (r⃗j)e

i(µ−m)ϕ(r⃗1j)Pµ−m
ℓ (cos θ(r⃗1j)) h

(1)
ℓ (kpr1j) .

(16)

3.2. The coherent plane waves

The incident plane wave impinges the z = 0 interface at normal incidence

and we expect the coherent waves of Eq. (9) they give rise to to be plane

waves propagating and attenuated in the same direction z . The solutions of

Eq. (16) are thus searched in the form [45]

A(q)
µν (r⃗j) =

∑
s=1

Ãqs
µνe

iξszj , (17)

so that any coherent wave of wavenumber ξs may arise from the combination

of all possible types of waves in the host matrix. The summation over s

extends a priori from 1 to infinity [53, 25, 26] ; as pointed out in Ref. [45], this

summation is necessary for the coherent waves amplitudes not to be all equal

to zero, but it is not mandatory when looking for the dispersion equation.

More precisely, it is shown in Ref. [26] that a large number of coherent

plane waves is required to calculate accurately the field in the vicinity of the
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interface between the host medium and the heterogeneous one, but that only

one or two of them dominate away from that interface, at least in case of a

fluid host matrix, as the others attenuate much more rapidly.

Noticing that the integration over r⃗j imposes µ = m,∫
d r⃗j n(r⃗j, r⃗1)A

(q)
µν (r⃗j)e

i(µ−m)ϕ(r⃗1j)Pµ−m
ℓ (cos θ(r⃗1j)) h

(1)
ℓ (kpr1j)

= (−1)ℓδm,µ

∑
s

I
(p)
ℓ (ξs) Ã

qs
mν , (18)

with

I
(p)
ℓ (ξ) =

∫
d r⃗j n(r⃗j, r⃗1)e

iξzjPℓ (cos θ(r⃗j1)) h
(1)
ℓ (kprj1) , (19)

Eq. 16 turns to∑
s

∑
n,m

Ãps
mne

iξsz1 J⃗
(p)

nm(ρ⃗1)− u⃗
(p)
inc(r⃗; r⃗1)

=
∑
s

∑
n,m

P∑
q=1

P∑
u=1

δkukp
∑
ν,m

∑
ℓ

Ãqs
mνT

qu
ν (−1)ℓI

(p)
ℓ (ξs)Gup (n,m, ℓ; ν,m) J⃗

(p)

nm(ρ⃗1).

(20)

In the following, we shall, for a while, separate Eq. (20) into three different

equations, depending upon the local polarization that p is related to, until

we get the extinction theorem and compare it with those in Refs [20, 29]

where a smaller number of polarization types of waves were considered.

Owing to the orthogonality of the vector spherical harmonics of different

orders and/or degrees, and keeping in mind Eqs. (11b,A.1-A.7), this leads to
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∀p ∈ L, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − δ0me
ikpz1a(p)in(2n+ 1) =

∑
s

∑
q

+∞∑
ν=0

∑
ℓ

Ãqs
mνT

qp
ν (−1)ℓI

(p)
ℓ (ξs)GLL (n,m, ℓ; ν,m) , (21a)

∀p ∈ S, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1− δ0n) i
n2n+ 1

2

[
δ−1m +

1

n(n+ 1)
δ1m

]
eikpz1a(p) =

∑
s

∑
q

+∞∑
ν=1

∑
ℓ

Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓI

(p)
ℓ (ξs),

(21b)

∀p ∈ T , ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1− δ0n) i
n2n+ 1

2

[
δ−1m +

1

n(n+ 1)
δ1m

]
eikpz1a(p) =

∑
s

∑
q

+∞∑
ν=1

∑
ℓ

Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓI

(p)
ℓ (ξs).

(21c)

After Refs. [20, 29, 30, 17], taking into account Eq. 6 provides

I
(p)
ℓ (ξ) =

2n0πi
ℓ

ξ − kp

[
2b

ξ + kp
Ñ

(p)
ℓ (ξ)eiξz1 +

i

k2
p

eikpz1
]
with (22a)

Ñ
(p)
ℓ (ξ) = N

(p)
ℓ (ξ) +

ξ2 − k2
p

k3
pb

L
(p)
ℓ (ξ) (22b)

N
(p)
ℓ (ξ) = ξbj

′

ℓ(ξb)h
(1)
ℓ (kpb)− kpbjℓ(ξkb)h

(1)′

ℓ (kpb), (22c)

L
(p)
ℓ (ξ) =

∫ ∞

b

jℓ (ξr) h
(1)
ℓ (kpr)U (r, n0) k

3
pr

2dr. (22d)
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Inserting Eqs. (22) into Eqs. (21) leads to

∀p ∈ L, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − δ0mi
n(2n+ 1)eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ

(p)
ℓ (ξs)GLL (n,m, ℓ; ν,m) eiξsz1+

∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=0

∑
ℓ

(−1)ℓiℓ+1Ãqs
mνT

qp
ν GLL (n,m, ℓ; ν,m) eikpz1 , (23a)

∀p ∈ S, ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1− δ0n) i
n2n+ 1

2

[
δ−1m +

1

n(n+ 1)
δ1m

]
eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs)e

iξsz1+∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

(−1)ℓiℓ+1Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
eikpz1 ,

(23b)
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∀p ∈ T , ∀n ∈ N, ∀m ∈ Z ∩ [−n, n]∑
s

Ãps
mne

iξsz1 − (1− δ0n) i
n2n+ 1

2

[
−δ−1m +

1

n(n+ 1)
δ1m

]
eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs)e

iξsz1+∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

(−1)ℓiℓ+1Ãqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
eikpz1 .

(23c)

Obviously, if m ̸= 0,−1, 1, all Ãps
mn are zero, and, introducing

γ
(m)
0 = η

(m)
0 = 1 (24a)

γ(m)
n =


1

in(2n+ 1)
if m = 0

2n(n+ 1)

in(2n+ 1)
else,

(24b)

η(m)
n =

i−n if m = 0

i−nn(n+ 1) else,

(24c)

and using Eqs. (10,A.4,A.7) and Eqs.(A.11,A.12,A.13,A.16) of appendix Ap-
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pendix A, Eqs. (23) reduce to

∀p ∈ L, ∀n ∈ N, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 − δ0m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ

(p)
ℓ (ξs)GLL (n,m, ℓ; ν,m) eiξsz1+

∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=0

iδ0m
η
(m)
ν

γ
(m)
n

Ãqs
mνT

qp
ν eikpz1 , (25a)

∀p ∈ S, ∀n ∈ N∗, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 − δ1m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs)e

iξsz1+∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

i
η
(m)
ν

γ
(m)
n

Ãqs
mνδ1m

(
T qp
ν + T qp+1

ν

)
eikpz1 , (25b)

∀p ∈ T , ∀n ∈ N∗, ∀m ∈ [0, 1] ,∑
s

Ãps
mne

iξsz1 − δ1m

γ
(m)
n

eikpz1a(p) =

∑
s

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs)e

iξsz1+∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

i
η
(m)
ν

γ
(m)
n

Ãqs
mνδ1m

(
T qp
ν + T qp−1

ν

)
eikpz1 . (25c)
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and, due to Eqs. A.11,

Ãps
−1n = ±(n+ 1)!

(n− 1)!
Ãps

1n, (26)

with the minus sign when p ∈ T .

Because of Eq. (A.12) and as there is no coupling, through scattering, of

”t” waves with either longitudinal or ”s” waves, the coefficients of all Ãqs
0n

(m = 0) in Eqs. (25a,25b) are zero when q ∈ T , and, for the same reasons,

Eq. (25c) is a homogeneous linear system involving only p and q both in T .

When m = 0, thus, the Ãps
0n are all zero when p is in T , and ”t” waves do not

concur to the multiple scattering process in case of a longitudinal incident

plane wave. The remaining Ãps
0n unknowns obey Eqs. (25a,25b).

When m = 1, the incident plane wave is rotational, and, as Eq. (A.12) is

no longer relevant, Eqs. (25) form one unique linear system that couples all

the unknowns, and all types of waves participate to the multiple scattering

process.

4. Extinction theorem and Lorentz-Lorenz law

The extinction theorem consists in balancing the coefficients of eikpz1 in

Eqs. (25). It provides

∀p ∈ L,

i
∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=0

η(0)ν Ãqs
0νT

qp
ν = −a(p), (27a)
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which is the extension of Eqs. (2.12-133) in Ref. [20] that takes into account

the possibility of rotational waves to propagate in the matrix, and

∀p ∈ S,

i
∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

h(1)
ν Ãqs

1ν

(
T qp
ν + T qp+1

ν

)
= −a(p), (28a)

∀p ∈ T ,

i
∑
s

2n0π

(ξs − kp) k2
p

P∑
q=1

+∞∑
ν=1

h(1)
ν Ãqs

1ν

(
T qp
ν + T qp−1

ν

)
= −a(p), (28b)

which are the extension of Eqs.(32,33) in Ref. [29] that takes into account

the longitudinal waves. As a(p) is the same for p ∈ S as for p ∈ T , one can

check that Eqs. (28) reduce to a single equation as in the electromagnetic

case (Eq. (46) in Ref. [29]).

The Lorentz-Lorenz law consists in balancing the terms of eiξsz1 ; there is

one set of equations for m = 0, and a different one for m = 1, but both share

the same general form,

∀p ∈ L, ∀n ∈ N, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=0

∑
ℓ

iℓÃqs
mνT

qp
ν (−1)ℓÑ

(p)
ℓ (ξs)GLL (n,m, ℓ; ν,m) , (29a)

∀p ∈ S, ∀n ∈ N∗, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp+1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs),

(29b)
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∀p ∈ T , ∀n ∈ N∗, ∀m ∈ [0, 1] ,

Ãps
mn =

4n0πb

ξ2s − k2
p

P∑
q=1

+∞∑
ν=1

∑
ℓ

iℓÃqs
mν

[
T qp
ν GSS (n,m, ℓ; ν,m) + T qp−1

ν GST (n,m, ℓ; ν,m)
]
(−1)ℓÑ

(p)
ℓ (ξs).

(29c)

Setting to zero the determinant of the Lorentz-Lorenz law provides the dis-

persion equation the effective wavenumbers ξs must obey ; there is one dis-

persion equation for m = 0, and another one for m = ±1, and we should

discuss that before proceeding any further.

The displacement field of a coherent wave propagating with a given ef-

fective wavenumber ξs , solution of the dispersion equation for m = 0, will

be the summation of displacements of amplitudes Ãps
0n, p ∈ L ∪ S. These

displacements , in a given spherical coordinate system, will be linear combi-

nations of spherical harmonics of order m = 0 (see Eqs.9,17), as is the case

of a longitudinal plane wave (see Eq. 8a) ; the coherent wave, which, in case

of low concentration, should be close to a longitudinal wave, will be referred

to, in the following, as a ”quasi-longitudinal” coherent wave. If ξs is a solu-

tion of the dispersion equation for m = 1, the displacements, of amplitudes

Ãps
±1n, p ∈ L ∪ S ∪ T , will be combinations of spherical harmonics of orders

m = ±1, as is the case for a rotational wave (see Eq. 8b). The coherent wave

will be referred to as a ”quasi-rotational” wave.

Solving anyone of those two dispersion equations consists in looking for

the roots of an implicit equation in ξs, which is possible only numerically,

and, as discussed in Refs. [25, 26], while the number of solutions in each

case is infinite, most of them correspond to highly attenuated waves. More-
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over, provided a not too large concentration of scatterers, and/or not too

much scattering from each, one expects coherent waves to propagate with

wavenumbers close to those of the waves existing in the absence of scatter-

ers. Approximations of those particular solutions of the dispersion equations

are looked for in next section.

5. Matrix form of the Lorentz-Lorenz law : dispersion equations

of the coherent waves

The aim of this section is to write Eqs. (29) in a matrix form more suitable

to get approximate solutions of the dispersion equations, as in Refs. [45, 31].

The quasi-longitudinal waves dispersion equation and the quasi-rotational

one may be treated the same way until we get that matrix form, and, even

though the elements of the matrices we shall introduce depend on the value

(0 or 1) of m, we shall not write explicitly that they do, in order to have

notations as light as possible. For this very same reason, we shall drop the

index s all over and introduce new unknowns, B̃p
n, that will correspond , for

a given value of m and a given one of s, to Ãps
mn. Keeping in mind that there

are no ”s” or ”t” monopolar modes, i.e. n ∈ N if p ∈ L and n ∈ N∗ else, and

turning back to the
∑

u δkukp notations instead of expanding those sums so

that the matrix form will be easier to get, we start with

B̃p
n −

4n0πb

ξ2 − k2
p

P∑
u=1

δkukp

+∞∑
ν=0

∑
ℓ

Ñ
(p)
ℓ (ξ)(−i)ℓGup (n,m, ℓ; ν,m)

P∑
q=1

B̃q
νT

qu
ν = 0,

(30)
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and introduce the H(pu)(ξ) and J(pu)(ξ) matrices from their (m-depending)

elements,

Hpu
nν(ξ) =

∑
ℓ

ikpbN
(p)
ℓ (ξ)(−i)ℓGup (n,m, ℓ; ν,m)

γ
(m)
n

η
(m)
ν

, (31a)

Jpu
nν(ξ) =

∑
ℓ

(kpb)
−2L

(p)
ℓ (ξ)(−i)ℓGup (n,m, ℓ; ν,m)

γ
(m)
n

η
(m)
ν

. (31b)

With γ
(m)
n B̃p

n denoted as Bp
n, Eq. (30)turns to

Bp
n−4n0πb

3

P∑
u=1

δkukp

+∞∑
ν=0

1

ikpb(ξ2 − k2
p)b

2

[
Hpu

nν(ξ) + i(ξ2 − k2
p)b

2Jpu
nν(ξ)

] P∑
q=1

Bq
νt

(uq)
nν = 0,

(32)

with matrix t(uq) entries given by

t(uq)nν = δνn
ην
γν

T qu
ν . (33)

When multiple scattering is low, either because each single sphere does not

scatter much the incident plane wave, or because there are very few of them,

we expect each coherent quasi-longitudinal (resp. quasi-rotational) plane

wave to be practically the same as one of the longitudinal (resp. rotational)

plane wave in the pure matrix. Letting σinc be the scattering cross section

associated to the incident plane wave of the spheres normalized by their

geometric section πa2, multiple scattering should be proportional somehow

to σinc times the concentration c of spheres. For a longitudinal incident wave,

σinc =
∑P

q=1 σincq with σincq given by [54]

σincq =
4

(kinca)(kqa)

∞∑
n=0

(2n+ 1)
∣∣T incq

n

∣∣2 if q ∈ L,

σincq =
4

(kinca)(kqa)

∞∑
n=1

n(n+ 1)(2n+ 1)
∣∣T incq

n

∣∣2 if q ∈ S,

σincq = 0 else,

(34)
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and, for a rotational incident wave whose shear part corresponds to index p,

σinc =
∑P

q=1 (σpq + σp+1q) with σpq, σp+1q given by [54]:

σpq =
2

(kpa)(kqa)

∞∑
n=1

2n+ 1

n(n+ 1)
|T pq

n |2 if q ∈ L,

σpq =
2

(kpa)(kqa)

∞∑
n=1

(2n+ 1) |T pq
n |2 if q ∈ S,

σp+1q =
2

(kpa)(kqa)

∞∑
n=1

(2n+ 1)
∣∣T p+1q

n

∣∣2 if q ∈ T ,

σp+1q = 0 if q /∈ T .

(35)

We define block matrix T, whose Tuq entry, line u column q, is the t(uq)

matrix divided by σinc , along with

yp =
(
ξ2 − k2

p

)
b2, ϵ = 4n0σincb

3 =
3

π
σinc

b3

a3
c, (36)

so that small values of ϵ correspond to small concentration × scattering cross

section products and ξ close to the wavenumber of the incident longitudinal

or rotational plane wave. It is the approximation formulas of those particular

values of ξ at small ϵ that, at the end, we are looking for.

Now we define the infinite vectors |B(p)⟩ and |e⟩, of respective components

Bp
n and en = 1, along with the infinite matrix Q̄(pu)(ξ),

Q̄pu
nν(ξ) =

π

ikpbyp
[Hpu

nν(ξ) + iypJ
pu
nν(ξ)− 1] δkukp , (37)

and get

∣∣B(p)
〉
− ϵ

P∑
u=1

(
Q̄(pu)(ξ) +

π

ikpbyp
δkukp |e⟩ ⟨e|

) P∑
q=1

Tuq

∣∣B(q)
〉
= |0⟩ , (38)
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or [
I− ϵ

(
Q̄(ξ) +

P∑
p=1

∣∣g(p)〉 〈e(p)∣∣
yp

)
T

]
|B⟩ = |0⟩ , (39)

with the ”block vectors” and block matrices defined from their entries,

(|B⟩)q = |B(q)⟩,
(
|g(p)⟩

)
q
= δpq

√
π(ikpb)

−1/2|e⟩,
(〈
e(p)
∣∣)

q
= δkqkp

√
π(ikpb)

−1/2 ⟨e|

(40a)

(I)pq = δpq |e⟩ ⟨e| ,
(
Q̄(ξ)

)
pq

= Q̄(pq)(ξ). (40b)

Now we can follow exactly Ref. [31], which followed merely the same proce-

dure as Ref. [45] for its matrix formulation part; defining

|h(p)⟩ = T1/2|g(p)⟩, ⟨f (p)| = ⟨e(p)|T1/2, |b⟩ = T1/2|B⟩, (41a)

Q(ξ) = T1/2Q̄(ξ)T1/2, (41b)

and multiplying by T1/2 on the left, we obtain[
I− ϵ

(
Q(ξ) +

P∑
p=1

|h(p)⟩⟨f (p)|
yp

)]
|b⟩ = |0⟩, (42)

the physical solutions ξ of which being the solutions of[
I− ϵ (I− ϵQ(ξ))−1

P∑
p=1

|h(p)⟩⟨f (p)|
yp

]
|b⟩ = |0⟩. (43)

Taking the inner product of Eq. (43) with ⟨f (p)| yields

(1− ϵ
Mpp(ξ)

yp
)⟨f (p)|b⟩ − ϵ

P∑
q=1
q ̸=p

Mpq(ξ)

yq
⟨f (q)|b⟩ = 0, (44)

with

∀p ∈ [1, P ] ,

Mpq(ξ) = ⟨f (p)| (I− ϵQ(ξ))−1 |h(q)⟩ = ⟨ep|M−1T|gq⟩. (45)
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and

M =
[
I− ϵTQ̄(ξ)

]−1
= I+ ϵTQ̄(ξ) + ϵ2

[
TQ̄(ξ)

]2
+ ... (46)

Eq. (44) is a homogeneous linear system of rank P = L + 2R, whose deter-

minant provides, when set to zero, the dispersion equation of the coherent

waves. It is the generalization of Eqs. (48,49) obtained by Tsang et Kong

[29] in electromagnetism.

6. The asymptotic effective wavenumbers at low concentration ×

scattering cross section product

At low ϵ, we expect each of the effective wavenumbers to be close to one

kp, so that we shall look for the asymptotic expansion in ϵ of each yp for a

given p,

yp = ϵy(1)p + ϵ2y(2)p + ... (47)

It follows, from Eqs. (36,45,46), that asymptotic expansions can also be done

for the Q̄(ξ) matrix, and hence for Mpq(ξ),

Q̄(ξ) = Q̄(kp)+ϵQ̄(1)+ϵ2Q̄(2)+..., Mpq(ξ) = M (0)
pq +ϵM (1)

pq +ϵ2M (2)
pq +.... (48)

Inserting Eqs. (47,48) into the determinant of Eq. (44), letting yq be equal

to yp + (kpb)
2 − (kqb)

2 for all q ̸= p and considering only the first two terms

of the asymptotic expansion of the effective wavenumbers ξ will provide ap-

proximations of those close to kp at low concentration × scattering product.

We must study now separately the dispersion equation of the quasi-

longitudinal coherent waves (m = 0) and that of the quasi-rotational waves

(m = 1).
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6.1. The effective wavenumbers of the quasi-longitudinal coherent waves

As noticed in the previous section, (locally) ”t” waves do not participate

to the multiple scattering process because of Eqs. (A.12,12), so that p is in

[1, L+R] rather than [1, L+ 2R], the size of the homogeneous linear system

Eq. (44), is (L + R) × (L + R), and δkukp = δup. The dispersion equation

takes a form similar to Eq. (27) in Ref. [31], and, taking into account the b2

coefficient in the definition of ϵ in Eq. (36), as compared to that in Ref. [31],

Eqs. (30) in the latter turn to

y(1)p = M (0)
pp , y(2)p = M (1)

pp +
∑
q ̸=p

M
(0)
pq M

(0)
qp

(k2
p − k2

q)b
2
, (49)

a priori whatever the value of the (L,R) couple. The expressions of the

M
(0)
pp , M

(1)
pp in terms of the scattering coefficients, are given in Eqs. (B.6,B.7),

and are to be compared to Eqs. (31) of Ref.[31].

Using Eqs. (B.1,B.3) and noticing that, contrary to what was the case in

Ref. [32], the effect of correlation may be seen in Q̄(kp) = Q̄(ϵ = 0), as the

ϵ defined in Eq. (36) can be 0 while the concentration is not, one gets the

asymptotic expansion of the ξ2/k2
p ratio, up to order 2 in the concentration

× scattering product,

∀p ∈ L,

ξ2

k2
p

= 1− 3ic
δ1

(kpa)3
− 9i

c2

(kpa)3

[
b

2a

δ
(p)
2

(kpa)2
+

b

a

∑
q ̸=p

δ
(pq)
2

(k2
p − k2

q)a
2
+
∑
q

δ
(pq)
2corr

(kqa)3

]
(50)
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with, after Eqs. (B.4-B.7,A.1),

δ1 =
∑
n

(2n+ 1)T pp
n (51a)

δ
(p)
2 =

∑
n

∑
ν

iν−n(2ν + 1)T pp
ν

∑
ℓ

(−i)ℓGLL(n, 0, ℓ; ν, 0)nℓ(kpb)T
pp
n (51b)

δ
(pq)
2 =

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν

∑
ℓ

(−i)ℓGqq(n, 0, ℓ; ν, 0)N
(q)
ℓ (kp)T

qp
n (51c)

δ
(pq)
2corr =

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν

∑
ℓ

(−i)ℓGqq(n, 0, ℓ; ν, 0)L
(q)
ℓ (kp)T

qp
n . (51d)

The difference between the effective wavenumbers obtained from Eqs. (50,51a)

and those from Ref. [31] will be studied in the case of elastic spheres in an

elastic matrix in the numerical section.

6.2. The effective wavenumbers of the quasi-rotational coherent waves

The determinant to be set to zero is now of order L + 2R because of

transverse waves, yp+1 = yp and, after Eqs. (45,B.1),

∀p ∈ S, Mp+1q = Mpq, ∀(p, q) ∈ L × T , M (0)
pq = 0. (52)

We look for effective wavenumbers close to a shear wavenumber of the matrix,

e.g. for p ∈ S and get

y(1)p = M (0)
pp +M

(0)
pp+1, y(2)p = M (1)

pp +M
(1)
pp+1+

∑
q∈L

M
(0)
pq M

(0)
qp

(k2
p − k2

q)b
2
+
∑
q∈S,
q ̸=p

[
M

(0)
pq +M

(0)
pq+1

] [
M

(0)
qp +M

(0)
qp+1

]
(k2

p − k2
q)b

2
,

(53)

28



and, after Eqs. (12,B.10-B.13,A.1-A.7),

∀p ∈ S,
ξ2

k2
p

= 1− 3

2
ic

δ1
(kpa)3

− 9i

2

c2

(kpa)3
× b

2a

δ
(p)
2

(kpa)2
+

b

a

∑
q∈L

δ
(pq)
2L

(k2
p − k2

q)a
2
+

b

a

∑
q∈S
q ̸=p

δ
(pq)
2S

(k2
p − k2

q)a
2
+
∑
q∈L

δ
(pq)
2corrL

(kqa)3
+
∑
q∈S

δ
(pq)
2corrS

(kqa)3

 ,

(54)
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with

δ1 =
∑
n∗

(2n+ 1)
[
T pp
n + T p+1p+1

n

]
(55a)

δ
(p)
2 =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
× [T pp

ν T pp
n + T p+1p+1

ν T p+1p+1
n ]

∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)nℓ(kpb)

+ [T p+1p+1
ν T pp

n + T pp
ν T p+1p+1

n ]
∑

ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)nℓ(kpb)

 (55b)

δ
(pq)
2L =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T pq
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)N
(q)
ℓ (kp)T

qp
n

(55c)

δ
(pq)
2S =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
× [T pq

ν T qp
n + T p+1q+1

ν T q+1p+1
n ]

∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)N

(q)
ℓ (kp)

+ [T pq
ν T q+1p+1

n + T p+1q+1
ν T qp

n ]
∑

ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)N
(q)
ℓ (kp)

 (55d)

δ
(pq)
2corrL =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T pq
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)L
(q)
ℓ (kp)T

qp
n

(55e)

δ
(pq)
2corrS =

∑
n∗

∑
ν∗

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
× [T pq

ν T qp
n + T p+1q+1

ν T q+1p+1
n ]

∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)L

(q)
ℓ (kp)

+ [T p+1q+1
ν T qp

n + T pq
ν T q+1p+1

n ]
∑

ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)L
(q)
ℓ (kp)

 . (55f)

7. Elastic spheres in an elastic matrix : Numerics

In the following, we consider elastic spheres in an elastic matrix, so that

one longitudinal (L = 1) and one rotational wave (R = 1) may propagate

in the matrix, with respective wavenumbers k1 = kL, k2 = k3 = kS. In the

following, indexes L will refer to longitudinal waves, while S and T will refer
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to ”s” and ”t” waves respectively. We suppose the Ursell function equal to

0, thus neglecting any pair correlation effect other than those of the hole

correction, as we will be interested only in the effect of the (questionable)

assumption of azimuthal invariance that was done in Ref. [31] when dealing

with quasi-longitudinal waves, or of introducing longitudinal waves in Refs.

[30, 29] when dealing with quasi-rotational waves. The summations over

n, ν in the Lorentz-Lorenz law, Eqs. (29), may be truncated to some finite

integer N that depends upon the frequency through the kLa, kSa products,

while the number of unknowns depends upon the incident plane wave (m = 0

or m = 1), i.e. whether quasi-longitudinal waves or quasi-rotational ones are

looked upon.

All figures correspond to an epoxy matrix and tungsten carbide spheres

of radius a = 198.5 µm whose properties are given in Ref. [38], and the

numerical calculations for b = 2a are compared to previous experimental

results [55, 38], in which the longitudinal wave measurements were made in

transmission at normal incidence in a water tank using a pair of immersion

transducers with center frequency f = 1 MHz. The shear wave measurements

were performed also in transmission at normal incidence using a contact

measurement device. This device consisted of two blocks of aluminum alloy

used as delay lines, on which shear wave transducers with center frequency

f = 1 MHz were glued with controlled clamping. Each sample was inserted

between the two delay lines and the coupling at the two interfaces was made

by a shear wave couplant of controlled thickness [56, 57].

Such a system exhibits two strong dipolar resonances, associated to trans-

lation and rotation movements [55, 58] at frequencies respectively around
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530 kHz and 920 kHz. In order to observe the influence of such resonances

on the scattering by a single particle, the normalized scattering cross-sections

[54] σIM for an incident wave of nature I and a scattered wave of nature M

are plotted versus frequency in Figure 1. The scattering cross section σinc of

the incident wave is equal [54] to σLL + σLS in case of an incident longitu-

dinal wave, and to σSL + σSS + σTT if the incident wave is rotational. The

scattering cross sections σLL, σLS, σSL, and σSS exhibit a peak at the vicinity

of the translation dipolar resonance of the bead, whereas σTT exhibits one

in the vicinity of the rotation dipolar resonance. The translation resonance

therefore affects both longitudinal and ”s” waves, while the rotation reso-

nance influences only the ”t” waves. Moreover, for an incident longitudinal

wave, the scattering cross section σLS is stronger than σLL, implying that the

wave conversion is important, especially at the translation resonance. On the

contrary, for an incident rotational wave, the scattering cross section σSL is

weaker than σSS, implying that the wave conversion is weak in that case.

7.1. The quasi-longitudinal coherent waves

When looking for the quasi-longitudinal coherent waves, m is set to 0 in

Eqs. (29), and, letting A
(L)
ν denote Ã1s

0ν and A
(S)
ν denote Ã2s

0ν , remembering

that A
(S)
0 = 0, the dispersion equation is obtained by setting to zero the

determinant of the following system of (2N+1) equations of 2N+1 unknowns

32



0.0 0.5 1.0 1.5 2.0
f (MHz)

0

5

10

15
S

ca
tt

er
in

g
cr

os
s

se
ct

io
n σLL

σLS

σSL

σSS

σTT

Figure 1: Tungsten carbide sphere in an epoxy resin : scattering cross sections σIM for

an incident wave of type I and a scattered wave of type M .

(A
(L)
0 , ...A

(L)
N , A

(S)
1 ...A

(S)
N ),

∀n ∈ [0, N ] ,

A(L)
n =

4n0πb

ξ2 − k2
L

N∑
ν=0

∑
ℓ

(−i)ℓÑ
(L)
ℓ (ξ)

[
A(L)

ν TLL
ν + A(S)

ν T SL
ν

]
GLL (n, 0, ℓ; ν, 0) ,

(56a)

∀n ∈ [1, N ] ,

A(S)
n =

4n0πb

ξ2 − k2
S

N∑
ν=1

∑
ℓ

(−i)ℓÑ
(S)
ℓ (ξ)

[
A(L)

ν TLS
ν + A(S)

ν T SS
ν

]
GSS (n, 0, ℓ; ν, 0) .

(56b)

At low concentration × scattering and under the hole correction assump-

tion, the solution of Eq. (56) that is close to kL can be approximated, using
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Eq. (50), by

ξ2

k2
L

= 1− 3ic
δ1

(kLa)3
− 9i

b

a

c2

(kLa)3

[
δ
(L)
2

2(kLa)2
+

δ
(LS)
2

(k2
L − k2

S)a
2

]
(57)

with, after Eqs. (51a),

δ1 =
N∑

n=0

(2n+ 1)TLL
n (58a)

δ
(L)
2 =

N∑
n=0

N∑
ν=0

iν−n(2ν + 1)TLL
ν

∑
ℓ

(−i)ℓGLL(n, 0, ℓ; ν, 0)nℓ(kLb)T
LL
n (58b)

δ
(LS)
2 =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)TLS
ν

∑
ℓ

(−i)ℓGSS (n, 0, ℓ; ν, 0)N
(S)
ℓ (kL)T

SL
n .

(58c)

The only difference between Eqs.(57,58) and Eqs.(36) of Ref. [31] where

azimuthal invariance was assumed, comes from the δ
(LS)
2 term in Eq. (58).

It involves the GSS (n, 0, ℓ; ν, 0) coefficient of the vector addition theorem,

contrary to Eq.(36) which involved only the GLL (n, 0, ℓ; ν, 0) coefficient of

the scalar addition theorem. From a physical point of view, the coupling

between longitudinal and shear waves was different in Ref. [31] from here.

The first two delta coefficients in Eq. (58), associated to longitudinal waves

only, are the same as in Ref. [31]. This suggests that the azimuthal invariance

hypothesis is acceptable only if the coupling between longitudinal and shear

waves is weak, as far as a longitudinal incident wave is considered.

The effective phase velocity ceff =
2πf

Re[ξ]
and attenuation αeff = Im[ξ]

of the quasi-longitudinal coherent wave are plotted in Figs. 2(a) and (b)

respectively, for a concentration c = 5% of beads. Experimental results

(green solid lines with squares) of Duranteau et al. [55] are compared to
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those obtained with Ref. [31] denoted LCN (black dotted curves) and those

derived from Eqs. (57) denoted LCVB (blue solid curves). The red dashed

curves labeled ”Num” have been obtained by solving the dispersion equation

that results from Eq. (56). For each frequency, this solution is obtained by

searching for the complex effective wave number by a dichotomy method, in

the vicinity of the value given by the approximate expression of Eq. (50). A

convergence criterion is imposed during that search. The translation dipolar

resonance of dense beads induces on coherent quasi-longitudinal wave a large

dispersion of the phase velocity and a strong attenuation peak in the vicinity

of 530 kHz, where the difference between the Num curve and the LCVB one

is the largest, as σinc = σLL + σLS and ϵ are larger in that region. The

results of the modelings are quite comparable with Duranteau et al.’s [55]

experimental data, except the LCN at low frequency: taking into account

the azimuth variation of the fields has little influence at higher frequency.

7.2. The quasi-rotational coherent waves

When looking for the quasi-rotational coherent waves, m is set to 1 in

Eqs. (29), and, letting A
(L)
ν , A

(S)
ν , and A

(T )
ν denote respectively Ã1s

1ν , Ã
2s
1ν ,

Ã3s
1ν , remembering that A

(S)
0 = A

(T )
0 = 0, and that the summations over ℓ

must obey Eq. (15), the dispersion equation is obtained by setting to zero

the determinant of the following system of (3N + 1) equations of 3N + 1
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Figure 2: Concentration c = 5% of tungsten carbide spheres in an epoxy matrix. (a)

Phase velocity and (b) attenuation of the quasi-longitudinal coherent wave. Green line

with squares: experiment from Ref. [55], black dotted line: from Eq.(36) of Ref. [31], blue

solid line: from Eq. (57), dashed red line: from Eq. (56).

unknowns,

∀n ∈ [0, N ] ,

A(L)
n =

4n0πb

ξ2 − k2
L

P∑
q=1

N∑
ν=0

∑
ℓ

(−i)ℓ
[
A(L)

ν TLL
ν + A(S)

ν T SL
ν

]
Ñ

(L)
ℓ (ξ)GLL (n, 1, ℓ; ν, 1) ,

(59a)

∀n ∈ [1, N ] ,

A(S)
n =

4n0πb

ξ2 − k2
S

N∑
ν=1

∑
ℓ

(−i)ℓ
[
A(L)

ν TLS
ν + A(S)

ν T SS
ν

]
GSS (n, 1, ℓ; ν, 1) Ñ

(S)
ℓ (ξ)+

4n0πb

ξ2 − k2
S

N∑
ν=1

∑
ℓ

(−i)ℓA(T )
ν T TT

ν GST (n, 1, ℓ; ν, 1) Ñ
(S)
ℓ (ξ), (59b)
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∀n [1, N ] ,

A(T )
n =

4n0πb

ξ2 − k2
S

N∑
ν=1

∑
ℓ

(−i)ℓ
[
A(L)

ν TLS
ν GST (n, 1, ℓ; ν, 1) + A(S)

ν T SS
ν GST (n, 1, ℓ; ν, 1)

]
Ñ

(T )
ℓ (ξ)+

4n0πb

ξ2 − k2
S

N∑
ν=1

∑
ℓ

(−i)ℓA(T )
ν T TT

ν GSS (n, 1, ℓ; ν, 1) Ñ
(T )
ℓ (ξ). (59c)

At low concentration × scattering and under the hole correction assump-

tion, the solution of Eq. (59) that is close to kS can be approximated, using

Eq. (54), by

ξ2

k2
S

= 1− 3

2
ic

δ1
(kSa)3

− 9i

2

b

a

c2

(kSa)3

[
1

2

δ
(S)
2

(kSa)2
+

δ
(SL)
2L

(k2
S − k2

L)a
2

]
, (60)

with, after Eqs. (55) and remembering Eq. (15),

δ1 =
N∑

n=1

(2n+ 1)
[
T SS
n + T TT

n

]
(61a)

δ
(S)
2 =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
×

[
T SS
ν T SS

n + T TT
ν T TT

n

]∑
ℓ(−i)ℓGSS(n, 1, ℓ; ν, 1)nℓ(kSb)

+
[
T TT
ν T SS

n + T SS
ν T TT

n

]∑
ℓ(−i)ℓGST (n, 1, ℓ; ν, 1)nℓ(kSb)

 (61b)

δ
(SL)
2L =

N∑
n=1

N∑
ν=1

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T SL
ν

∑
ℓ

(−i)ℓGLL(n, 1, ℓ; ν, 1)N
(L)
ℓ (kS)T

LS
n .

(61c)

The first order term in Eqs. (60) is exactly the same as in Eq. (57) of Ref.

[29]: the elastic and electromagnetic models are identical to first order in

concentration times scattering cross section, and there is no coupling between

shear and longitudinal waves at this order. Coupling occurs at higher orders.
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The effective phase velocity and attenuation of the quasi-rotational coherent

wave are plotted in Figs. 3(a) and (b) respectively, for a concentration c =

6.4% of beads. Experimental results (green curves with squares) of Simon

et al. [38] are compared to those obtained with Refs. [30, 29] denoted

FW-TK (black dotted curves) and those derived from Eqs. (60) denoted

LCVB (blue solid curves). The red dashed curves labeled ”Num” have been

obtained by solving the dispersion equation that results from Eq. (59). The

same method was used as for the longitudinal coherent wave, except that

the starting point of the dichotomy method used was given by Eq. (54).

The translation and rotation dipolar resonances of the dense beads induce

a large dispersion of the phase velocity and strong attenuation peaks in the

vicinity of 530 kHz and 920 kHz. The difference between the Num curve and

the LCVB one is larger in the vicinity of the rotation resonance frequency,

where σinc = σSL + σST + σTT and hence ϵ are larger. The coupling between

longitudinal and shear waves is also stronger at this resonance frequency, as

shown by the difference between the FW-TK curve and the LCVB and/or

Num curves. We still observe a good agreement of all models with Simon’s

experimental data [38] .

8. Conclusion

Multiple scattering effects due to a random distribution of identical spheres

have been investigated in the general case of elastic or poroelastic host me-

dia within Fikioris and Waterman’s [20, 30] framework. Setting to zero the

determinants of Eqs. (29,44) provides the secular equations for the effective

wavenumbers of the longitudinal and rotational coherent waves. Their closed
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Figure 3: Concentration c = 6.4% of tungsten carbide spheres in an epoxy matrix. (a)

Phase velocity and (b) attenuation of the quasi-transverse coherent wave. Green line with

squares: experiment, from Ref. [38], black dotted line: from Eq.(36) of Refs. [30, 29], blue

solid line: from Eqs. (60), red dashed line: from Eq. (59)

form solutions, when the product of the concentration with the scattering

cross section of the spheres is low, are given in Eqs. (50,51a) for the quasi-

longitudinal coherent waves and in Eqs. (54,55) for the quasi-rotational ones.

They correspond to asymptotic expansions up to order two in the concentra-

tion × scattering cross section product, introducing thus products between

scattering coefficients and, consequently, the coupling between longitudinal

and rotational waves.

In the case of elastic media, numerical studies have been performed and

compared to experimental data for tungsten carbide spheres in an epoxy ma-

trix. The results show a good agreement. Taking into account the azimuthal

dependence of the fields has a notable influence on the propagation of longi-

tudinal coherent waves only at low frequency.

For rotational coherent waves, the elastic and electromagnetic models provide
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the same asymptotic expansion up to first order in concentration × scatter-

ing cross section. There is no coupling between rotational and longitudinal

waves at this order, and the first order term in Eqs. (60,61a) is exactly the

same as in Eq. (57) of Ref. [29]. The major effect of the longitudinal -

shear waves coupling is observed at the rotation resonance frequency of the

spheres. There is a good agreement between the numerical solution obtained

by setting to zero the determinant of Eq. (59), the closed form solutions

Eqs. (60,61a) and experimental data from Ref. [38].
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Appendix A. The addition theorems coefficients - Useful sums

over ℓ

Different letters are often used for the coefficients of the addition theo-

rems, such as [51, 59, 20, 30, 29, 60] Cµν
mn for the scalar addition theorem,

Aµν
mn and Bµν

mn for the vectorial one ; the Gup (n,m, ℓ; ν, µ) coefficients we use

are related to those through the following equations.

� For u and p in L,

Gup (n,m, ℓ; ν, µ) = GLL (n,m, ℓ; ν, µ) , with [51, 29, 59, 30], (A.1)∑
ℓ

GLL (n,m, ℓ; ν, µ) ei(µ−m)ϕj1Pµ−m
ℓ (cos θj1) h

(1)
ℓ (kprj1) = Cµν

mn, and [51, 30]

(A.2)

GLL (n,m, ℓ; ν, µ) = (−1)min−ν+ℓ(2n+ 1)a(µ, ν| −m,n|ℓ). (A.3)

40



� For u and p in S or u and p in T ,

Gup (n,m, ℓ; ν, µ) = GSS (n,m, ℓ; ν, µ) , with [51, 29, 59, 30], (A.4)∑
ℓ

GSS (n,m, ℓ; ν, µ) ei(µ−m)ϕj1Pµ−m
ℓ (cos θj1) h

(1)
ℓ (kprj1) = Aµν

mn, and [51, 30]

(A.5)

GSS (n,m, ℓ; ν, µ) = (1− δn0) (1− δν0) (−1)ma(µ, ν| −m,n|ℓ)a(ν, n, ℓ).

(A.6)

� For p in S and u in T ,

Gup (n,m, ℓ; ν, µ) = Gpu (n,m, ℓ; ν, µ) = GST (n,m, ℓ; ν, µ) , with [51, 29, 59, 30],

(A.7)∑
ℓ

GST (n,m, ℓ; ν, µ) ei(µ−m)ϕj1Pµ−m
ℓ (cos θj1) h

(1)
ℓ (kprj1) = Bµν

mn, and [51, 30]

(A.8)

GST (n,m, ℓ; ν, µ) = (1− δn0) (1− δν0) (−1)ma(µ, ν| −m,n|ℓ, ℓ− 1)b(ν, n, ℓ).

(A.9)

The Gaunt coefficients a(µ, ν| −m,n|ℓ) are defined from [51]

Pm
n

(
cos θ

)
Pµ
ν

(
cos θ

)
=
∑
ℓ

a(m,n|µ, ν|ℓ)Pm+µ
ℓ

(
cos θ

)
, (A.10)

and the a(µ, ν|−m,n|ℓ, ℓ−1), a(ν, n, ℓ), b(ν, n, ℓ), coefficients from Eqs. (13,14)

in Ref. [30].

For m = −1, owing to the properties of the Gaunt coefficients, as noticed in
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Refs.[29, 30],

GLL(n,−1, ℓ; ν,−1)

GLL(n, 1, ℓ; ν, 1)
=

GSS(n,−1, ℓ; ν,−1)

GSS(n, 1, ℓ; ν, 1)
= −GST (n,−1, ℓ; ν,−1)

GST (n, 1, ℓ; ν, 1)

=
(ν − 1)! (n+ 1)!

(ν + 1)! (n− 1)!
. (A.11a)

After Ref. [52],

GST (n, 0, ℓ; ν, 0) = 0. (A.12)

From Eqs. (15,A.1,A.10,24) ,∑
ℓ

(−1)ℓiℓ+1GLL (n,m, ℓ; ν,m) = (2n+1)in−ν+1(−1)m
∑
ℓ

a(m, ν|m,n|ℓ) = iδ0m
η
(m)
ν

γ
(m)
n

,

(A.13)

and, after Eq. (30) in Ref. [30],∑
ℓ

(−1)ℓiℓ+1GSS (n, 1, ℓ; ν, 1) = −i
∑
ℓ

(−i)ℓa(1, ν| − 1, n|ℓ)a(ν, n, ℓ) =

i
η
(1)
ν

γ
(1)
n

=
∑
ℓ

(−1)ℓiℓ+1GST (n, 1, ℓ; ν, 1) , (A.14a)

and Eq. (A.10) that provides∑
ℓ

a (0, ν|0, n|ℓ) = 1, (A.15)

along with Eqs.(82,13) in Ref. [30] and Eq. (15),∑
ℓ

iℓ+1GSS (n, 0, ℓ; ν, 0) =
∑
ℓ

(−i)ℓGSS (n, 0, ℓ; ν, 0) = 0. (A.16)

Appendix B.

The M
(0)
pq , M

(1)
pq needed in the calculation of the y

(1)
p , y

(2)
p of Eqs. (49,53)

are obtained from the expansions of all functions of ξ around the kp wavenum-

ber it is supposed to be close to. In the following, r is no longer equal to the
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modulus of r⃗, but is a mute index related to a local polarization state.

M (0)
pq =

−iπ

σinc

1

(kpb)1/2(kqb)1/2

∑
r

δkrkp
∑
n

η
(m)
n

γ
(m)
n

T qr
n , (B.1)

,

M (1)
pq =

−iπ

σ2
inc

1

(kpb)1/2(kqb)1/2

∑
r

∑
s

∑
u

∑
n

∑
ν

η
(m)
n η

(m)
ν

γ
(m)
n γ

(m)
ν

T qs
ν Q̄us

nν(kp)T
ur
n δkrkp ,

(B.2)

or, using Eqs. (37,31),

M (1)
pq = − π2

σ2
inc

i

(kpb)1/2(kqb)1/2

∑
r

δkrkp
∑
u

∑
s

δkuks
∑
n

∑
ν

η
(m)
n

γ
(m)
ν

T qs
ν T ur

n ×[
(1− δkukp)

h
(us)
nν (kp)

(k2
p − k2

u)b
2
+ δkukp

q
(us)
nν (kp)

2(kpb)2
+

j
(us)
nν (kp)

(kub)3

]

+
π2

σ2
inc

1

(kpb)1/2(kqb)1/2

∑
r

δkrkp
∑
u

∑
s

δkuks
∑
n

∑
ν

η
(m)
n η

(m)
ν

γ
(m)
n γ

(m)
ν

(1− δkukp)
T qs
ν T ur

n

kub(k2
p − k2

u)b
2

(B.3a)

with

q(us)nν (kp) =
∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)nℓ(kpb), (B.4a)

nℓ(x) = h
(1)
ℓ (x)

{
−xj

′

ℓ(x) +
[
ℓ(ℓ+ 1)− x2

]
jℓ(x)

}
− x2j

′

ℓ(x)h
′

ℓ(x), (B.4b)

and

h(us)
nν (kp) =

Hus
nν(kp)

ikub

η
(m)
ν

γ
(m)
n

=
∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)N
(u)
ℓ (kp), (B.5a)

j(us)nν (kp) = (kub)
2Jus

nν(kp)
η
(m)
ν

γ
(m)
n

=
∑
ℓ

(−i)ℓGsu(n,m, ℓ; ν,m)L
(u)
ℓ (kp). (B.5b)

The expressions of all M
(n)
pq thus depend upon the type of coherent waves

involved (quasi-longitudinal or quasi-rotational), through m and the δkrkp ,
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and those needed in the asymptotic expressions of the effective wavenumbers,

up to order 2 in ϵ, may be written as:

� for m = 0

M (0)
pq =

−iπ

σinc

1

(kpb)1/2(kqb)1/2

∑
r

∑
n

(2n+ 1)T qp
n , (B.6)

M (1)
pp = − π2

σ2
inc

i

(kpb)

∑
q

∑
n

∑
ν

iν−n(2ν + 1)T pq
ν T qp

n ×[
(1− δqp)

h
(qq)
nν (kp)

(k2
p − k2

q)b
2
+ δqp

q
(qq)
nν (kp)

2(kpb)2
+

j
(qq)
nν (kp)

(kqb)3

]

+
π2

σ2
inc

1

(kpb)

∑
q ̸=p

∑
n

∑
ν

(2n+ 1)(2ν + 1)
T pq
ν T qp

n

kqb(k2
p − k2

q)b
2

(B.7)

� for m = 1

The δkrkp depend upon p, whether in L or not, and the Mpq needed for

the expansion of the effective wavenumbers as well.

– for p ∈ L

M (0)
pq =

−iπ

σinc

1

2(kpb)1/2(kqb)1/2

∑
n

(2n+ 1)T qp
n , (B.8)

,

M (1)
pp = − π2

σ2
inc

i

2(kpb)

∑
q

∑
s

δkqks
∑
n

∑
ν

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T ps
ν T qp

n ×[
(1− δqp)

h
(qs)
nν (kp)

(k2
p − k2

q)b
2
+ δqp

q
(qs)
nν (kp)

2(kpb)2
+

j
(qs)
nν (kp)

(kqb)3

]

+
π2

σ2
inc

1

4(kpb)

∑
q ̸=p

∑
s

δkqks
∑
n

∑
ν

(2n+ 1)(2ν + 1)
T ps
ν T qp

n

kqb(k2
p − k2

q)b
2

(B.9a)
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– for p ∈ S

M (0)
pq =

−iπ

σinc

1

2(kpb)1/2(kqb)1/2

∑
n

(2n+ 1)
(
T qp
n + T qp+1

n

)
, (B.10)

M (0)
qp =

−iπ

σinc

1

2(kpb)1/2(kqb)1/2

∑
ν

(2ν + 1)
(
T pq
ν + T pq+1

ν

)
, (B.11)

M (1)
pp = − π2

σ2
inc

i

2(kpb)

∑
q

∑
s

δkqks
∑
n

∑
ν

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T ps
ν

(
T qp
n + T qp+1

n

)
×[

(1− δkqkp)
h
(qs)
nν (kp)

(k2
p − k2

q)b
2
+ δkqkp

q
(qs)
nν (kp)

2(kpb)2
+

j
(qs)
nν (kp)

(kqb)3

]

+
π2

σ2
inc

1

4(kpb)

∑
q

(1− δkqkp)
∑
s

δkqks
∑
n

∑
ν

(2n+ 1)(2ν + 1)
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ν (T qp

n + T qp+1
n )

kqb(k2
p − k2

q)b
2

(B.12a)

M
(1)
pp+1 = − π2

σ2
inc

i

2(kpb)

∑
q

∑
s

δkqks
∑
n

∑
ν

iν−n(2ν + 1)
n(n+ 1)

ν(ν + 1)
T p+1s
ν

(
T qp
n + T qp+1

n

)
×[

(1− δkqkp)
h
(qs)
nν (kp)

(k2
p − k2

q)b
2
+ δkqkp

q
(qs)
nν (kp)

2(kpb)2
+

j
(qs)
nν (kp)

(kqb)3

]

+
π2

σ2
inc

1

4(kpb)

∑
q

(1− δkqkp)
∑
s

δkqks
∑
n

∑
ν

(2n+ 1)(2ν + 1)
T p+1s
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(B.13a)
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