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Abstract: Immuno-epidemiological models with distributed recovery and death rates can describe
the epidemic progression more precisely than conventional compartmental models. However, the
required immunological data to estimate the distributed recovery and death rates are not easily
available. An epidemic model with time delay is derived from the previously developed model
with distributed recovery and death rates, which does not require precise immunological data. The
resulting generic model describes epidemic progression using two parameters, disease transmission
rate and disease duration. The disease duration is incorporated as a delay parameter. Various
epidemic characteristics of the delay model, namely the basic reproduction number, the maximal
number of infected, and the final size of the epidemic are derived. The estimation of disease duration
is studied with the help of real data for COVID-19. The delay model gives a good approximation of
the COVID-19 data and of the more detailed model with distributed parameters.

Keywords: epidemic model; disease duration; time delay; COVID-19

MSC: 34K60; 92D30

1. Introduction

Mathematical modeling of infectious diseases attracts much attention due to successive
epidemics, such as HIV, emerging in the 1980s and still continuing [1,2], SARS epidemic in
2002–2003 [3,4], H5N1 influenza in 2005 [5,6] and H1N1 in 2009 [7,8], Ebola in 2014 [9,10].
The ongoing COVID-19 pandemic has stimulated unprecedented efforts of mathematical
modeling in epidemiology. A wide variety of mathematical approaches are developed to
study epidemiological problems. However, sufficiently simple and validated models still
remain in the focus of mathematical modeling in epidemiology.

Modern studies in mathematical epidemiology begin with the SIR model developed
in the works by W. O. Kermack and A. G. McKendrick [11–13], stimulated by the Spanish
flu epidemic in 1918–1919. Among many developments of such models, we can cite
multi-compartment models [14–16], models with a time-varying or nonlinear disease
transmission rate [17,18], multi-patch models [19–21], multi-group models incorporating
the effect of the heterogeneity of the population [22], and epidemic models with vaccination
and other control measures [23,24]. Random movement of individuals in the population is
considered in spatiotemporal models in order to describe spatial distributions of susceptible
and infected individuals [25,26]. A more detailed literature review can be found in the
monographs [27,28] and review articles [29,30].

The conventional SIR model, which includes susceptible (S), infected (I), and recovered
(R) compartments, and similar models assume that recovery and death rates at time t are
proportional to the number of actively infected individuals I(t) at the same moment of
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time. This assumption does not take into account disease duration, and it can lead to
a large error. In our previous work [31], we showed that this assumption leads to an
overestimation of actual recoveries and deaths. Instead, if we use distributed recovery and
death rates, properly chosen from real data, the description of the epidemic progression
becomes more precise. However, since distributed recovery and death rates are not easily
available, we develop a simpler delay model in this work. It gives close results, but it does
not require precise immunological data. The model considered in [31] involves distributed
recovery and death rates. The model considered in [32] is an extension of the model by
incorporating the vaccinated compartment, and the resulting model is an immuno-epidemic
model. The delay model, with disease duration delay, considered here is derived from the
model proposed in [31] with an appropriate assumption on the recovery and death rate
functions. The present model is quite different from the delay model considered in [33] as
the delay parameter involved with the earlier model was the measure of the incubation
period and the departure of infected individuals from the infected compartment was due
to the imposition of quarantine measure. The model proposed and analyzed here is solely
dependent on the disease duration period and without imposed quarantine.

Most of the existing delay epidemic models consider time delay either in the disease
incidence function or in the susceptible recruitment function (Appendix A). The delay in the
recovery and death rates has not been studied yet thoroughly. In this work, we introduce
time delay in recovery and death rates with the average disease duration considered as the
delay parameter.

In Section 2, we discuss the distributed model and derive the delay model where the
discrete time delay estimates average disease duration. We obtain epidemic characterization
of the delay model in Section 3. Then, in Section 4, we perform a numerical comparison
among the distributed model, delay model, and conventional SIR model with the equivalent
parameter values. Next, we discuss a method to estimate the value of disease duration
using the real data of disease incidence in Section 5. In Section 6, we validate our delay
model with epidemiological data collected during the COVID-19 epidemic. The main
outcomes of the proposed model and its epidemiological implications are discussed in the
concluding section.

2. Model Formulation

In contrast with the existing compartmental epidemiological models, we start the
model derivation by the introduction of the class of newly infected individuals instead of
the total number of infected individuals. This approach is appropriate to evaluate daily
recovery and death rates. We recall in this section the model with a distributed recovery
and death rate [31,33]. We then use this model to derive the delay model and study its
properties in the next sections.

2.1. Model with Distributed Parameters

The number of newly infected individuals J(t) is determined by the rate of decrease
of the number of susceptible individuals, J(t) = −S′(t). Assuming that

N = S(t) + I(t) + R(t) + D(t) (1)

is constant, where I(t) is the total number of infected at time t and R(t) and D(t) denote,
respectively, recovered and dead, we can write

I(t) =
∫ t

0
J(η)dη − R(t)− D(t). (2)

Following conventional epidemiological models, we set

dS(t)
dt

= −β
S(t)
N

I(t),
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where β is the disease transmission rate. Let r(η) and d(η) be the recovery and death rates
depending on the time-since-infection η. Then, the number of infected individuals who
will recover at time t is given by the expression:

dR(t)
dt

=
∫ t

0
r(t− η)J(η)dη,

and the number of infected individuals who will die at time t:

dD(t)
dt

=
∫ t

0
d(t− η)J(η)dη.

Differentiating Equality (1), we obtain

dI(t)
dt

= β
S(t)
N

I(t)−
∫ t

0
r(t− η)J(η)dη −

∫ t

0
d(t− η)J(η)dη.

Thus, we obtain the following integro-differential equation model:

dS(t)
dt

= −β
S(t)
N

I(t) (= −J(t)), (3a)

dI(t)
dt

= β
S(t)
N

I(t)−
∫ t

0
r(t− η)J(η)dη −

∫ t

0
d(t− η)J(η)dη, (3b)

dR(t)
dt

=
∫ t

0
r(t− η)J(η)dη, (3c)

dD(t)
dt

=
∫ t

0
d(t− η)J(η)dη, (3d)

with the initial condition S(0) = N, I(0) = I0 > 0 (I0 is sufficiently small as compared to
N), R(0) = 0, D(0) = 0.

2.2. Reduction to SIR Model

In a particular case, if we assume the uniform distribution of recovery and death rates:

r(t− η) =

{
r0 , t− τ < η ≤ t
0 , η < t− τ

, d(t− η) =

{
d0 , t− τ < η ≤ t
0 , η < t− τ

,

where τ > 0 is disease duration, r0 and d0 are some constants, and if r0 and d0 are small
enough, then the model (3) can be reduced to the conventional SIR model (see [31]):

dS(t)
dt

= −β
S(t)
N

I(t), (4a)

dI(t)
dt

= β
S(t)
N

I(t)− (r0 + d0)I(t), (4b)

dR(t)
dt

= r0 I(t),
dD(t)

dt
= d0 I(t). (4c)

However, the approximation of a uniform distribution of recovery and death rates may
not be precise since infected individuals are unlikely to recover or die at the beginning of
the disease. In the following subsection, we consider another choice of recovery and death
rates, which will approximate the real scenario of recovery and death more accurately.

2.3. Delay Model

Let us assume that disease duration is τ, and the individuals J(t− τ) infected at time
t− τ recover or die at time t with certain probabilities. This assumption corresponds to the
following choice of the functions r(t− η) and d(t− η):
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r(t− η) = r0δ(t− η − τ), d(t− η) = d0δ(t− η − τ),

where r0, d0 are constants, r0 + d0 = 1, and δ is the Dirac delta-function. Then,

dR(t)
dt

=
∫ t

0
r(t− η)J(η)dη = r0 J(t− τ),

dD(t)
dt

=
∫ t

0
d(t− η)J(η)dη = d0 J(t− τ).

Note that J(t) is the number of newly infected individuals appearing at time t. If we assume
that the first infected case was reported at time t = 0, then we can set J(t) = 0 for all t < 0.
Now, integrating the above two equations from 0 to t and assuming that R(0) = D(0) = 0,
we obtain

R(t) = r0

∫ t

0
J(s− τ)ds = r0

∫ t−τ

−τ
J(y)dy = r0

∫ t−τ

0
J(y)dy,

D(t) = d0

∫ t

0
J(s− τ)ds = d0

∫ t−τ

−τ
J(y)dy = d0

∫ t−τ

0
J(y)dy.

Then, instead of (2), we have

I(t) =
∫ t

t−τ
J(s)ds, (5)

and from (3b),
dI(t)

dt
= β

S(t)
N

I(t)− J(t− τ). (6)

From (5) we obtain

J(t) = β
S(t)
N

∫ t

t−τ
J(s)ds,

dS(t)
dt

= −J(t). (7)

Hence,

dS(t)
dt

= −β
S(t)
N

∫ t

t−τ
J(s)ds = β

S(t)
N

∫ t

t−τ

dS(s)
ds

ds = −β
S(t)
N

(S(t− τ)− S(t)). (8)

Once we obtain the solution S(t) from (8), then we can find I(t) using the following relation:

I(t) =
∫ t

t−τ
J(s)ds = −

∫ t

t−τ

dS(s)
ds

ds = S(t− τ)− S(t).

Hence, System (3) is reduced to the following delay model:

dS(t)
dt

= −J(t), (9a)

dI(t)
dt

= J(t)− J(t− τ), (9b)

dR(t)
dt

= r0 J(t− τ), (9c)

dD(t)
dt

= d0 J(t− τ), (9d)

J(t) = β
S(t)
N

I(t), (9e)

with J(t) = 0 for all t < 0. A similar model was proposed in [33] without derivation from
the distributed model.
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3. Epidemic Characteristics

In this section, we determine the basic reproduction number, the final size of the
epidemic, and maximum number of infected individuals for the delay model (9).

3.1. Basic Reproduction Number

To determine the initial exponential growth rate and the basic reproduction number
R0, we use the equations for the infected compartments I(t) considered in the form:

dI(t)
dt

= β
S(t)
N

I(t)− β
S(t− τ)

N
I(t− τ). (10)

Suppose that, at the beginning of the epidemic, S(t) ≈ S0 and S(t− τ) = S0. Then, from
(10), we have

dI(t)
dt

= β
S0

N
(I(t)− I(t− τ)).

Substituting I(t) = I0 eλt, we have

λ = β
S0

N
(
1− e−λτ

)
. (11)

Let G(λ) = β S0
N
(
1− e−λτ

)
. Clearly, (11) has a solution λ = 0 and a non-zero solution

with the sign determined by G ′(0). Denote

R0 = G ′(0) = βτ
S0

N
.

Let R0 > 1. This implies, G ′(0) > 1. We observe that G(λ) is an increasing function
of λ and G(λ) → β S0

N as λ → ∞. This implies that Equation (11) has a positive solution,
i.e., there exists λ∗ > 0 such that G(λ∗) = λ∗. IfR0 < 1, i.e., G ′(0) < 1, then

G ′(λ) = βτ
S0

N
e−λτ < 1

for all λ ≥ 0. Therefore, the equation G(λ) = λ has no positive solution.
Hence, the basic reproduction number is given by the following expression:

R0 = βτ
S0

N
. (12)

Letting λ̂ = λ/(β S0
N ), we can write Equation (11) in the following form:

λ̂ = 1− e−R0λ̂.

The solution of this equation determines the initial exponential growth rate, which depends
on the single parameterR0.

3.2. Final Size of the Epidemic

Next, we determine the final size of the susceptible compartment S f = limt→∞ S(t).
From (3a), we obtain:

dS(t)
dt

= −β
S(t)
N

∫ t

t−τ
J(η)dη.

Then, integrating from 0 to ∞, we obtain

∫ ∞

0

dS
S

= − β

N

∫ ∞

0

( ∫ t

t−τ
J(η)dη

)
dt.
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Changing the order of integration, we get

ln
S0

S f
=

β

N

[ ∫ 0

−τ

( ∫ η+τ

0
J(η)dt

)
dη +

∫ ∞

0

( ∫ η+τ

η
J(η)dt

)
dη

]
=

β

N

[ ∫ 0

−τ
(η + τ)J(η)dη +

∫ ∞

0
τ J(η)dη

]
.

Now, integrating (9a) from 0 to ∞, we have:∫ ∞

0
J(η)dη = S0 − S f . (13)

Since J(t) = 0 for all t ∈ [−τ, 0], then

ln
S0

S f
=

β

N

[ ∫ ∞

0
τ J(η)dη

]
=

β

N
τ
(
S0 − S f

)
. (14)

Thus, the final size can be obtained from the equation:

ln
S0

S f
=

β

N
τ
(
S0 − S f

)
. (15)

Integrating (9c) and (9d) from 0 to ∞ and using (13), we obtain:

R f ≡ lim
t→∞

R(t) = r0

∫ ∞

0
J(s− τ)ds = r0

∫ ∞

0
J(η)dη = r0(S0 − S f ),

D f ≡ lim
t→∞

D(t) = d0

∫ ∞

0
J(s− τ)ds = d0

∫ ∞

0
J(η)dη = d0(S0 − S f ).

Final size S f obtained from the numerical simulation and using the Formula (15) is
verified for three different values of τ and a range of values of β (Figure 1). Observe that
Equation (15) can be written as:

ln
S0

S f
= R0

(
1−

S f

S0

)
. (16)

Note that the SIR model (4) gives the same equation for the final size, and also in the SIR
model (4), if we assume that r0 + d0 = 1/τ, then the expression ofR0 is equivalent for both
the SIR model (4) and the delay model (9).
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Figure 1. Dependence of S f on β found analytically by Formula (15) and in numerical simulations of
(8) for τ = 3 (upper curves), τ = 4 (middle curves), and τ = 5 (lower curves). The analytical and
numerical solutions coincide.

3.3. Maximum Number of Infected Individuals

We now derive an approximate formula for the maximal number of infected individu-
als for the delay model (9). We have I(t) = S(t− τ)− S(t). Suppose that I(t) attains its
maximum at t = tm. Set Im = I(tm), Sm = S(tm). From the equality I′(tm) = 0, we obtain
S′(tm − τ) = S′(tm). This implies

βS(tm − τ)I(tm − τ)

N
=

βS(tm)I(tm)

N
. (17)

Substituting the relation I(tm) = S(tm − τ)− S(tm) in (17), we obtain

I(tm − τ) =
Sm Im

Sm + Im
. (18)

From (8), we have
dS
dt

= − βS(t)
N

(
S(t− τ)− S(t)

)
. (19)

Integrating (19) from 0 to tm and changing the variable inside the first integral of the
right-hand side, we obtain:

∫ tm

0

dS
S

= − β

N

( ∫ 0

−τ
S(t)dt−

∫ tm

tm−τ
S(t)dt

)
. (20)

We assume that S(t) = S0 for all t ∈ [−τ, 0] and use the approximation (Figure 2):∫ tm

tm−τ
S(t)dt ≈ τ

2
Im + τSm.

Then from (20) we have

ln
Sm

S0
= − β

N

(
τS0 −

τ

2
Im − τSm

)
.
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Figure 2. The red curve represents S(t). The integral
∫ tm

tm−τ S(t)dt, i.e., the area under the red curve
(yellow color region + cyan color region), is approximated by the sum of the areas of the cyan color
region, the yellow color region, and the green color region.

Let x = Im
S0

, y = Sm
S0

and S0
N ≈ 1. Then we have

ln y = −βτ

(
1− 1

2
x− y

)
. (21)

Again, integrating (19) from tm − τ to tm, we obtain:∫ tm

tm−τ

dS
S

= − β

N

( ∫ tm

tm−τ
S(t− τ)dt−

∫ tm

tm−τ
S(t)dt

)
.

Changing the variable inside the first integral of the right-hand side, we get:

ln
Sm

S(tm − τ)
= − β

N

( ∫ tm−τ

tm−2τ
S(t)dt−

∫ tm

tm−τ
S(t)dt

)
.

Now, using the approximation described in Figure 2, we conclude that

ln
Sm

S(tm − τ)
= − β

N

(
τS(tm − τ) +

τ

2
I(tm − τ)− τSm −

τ

2
Im

)
. (22)

Using the relation I(tm) = S(tm − τ) − S(tm), after some transformations, (22) can be
written as:

ln
Sm

Sm + Im
= − β

N
τ

2

(
Im + I(tm − τ)

)
.

Using (18), we obtain:

ln
Sm

Sm + Im
= − β

N
τ

2

(
Im +

Sm Im

Sm + Im

)
.

Substituting x = Im
S0

, y = Sm
S0

and S0
N ≈ 1, we have

ln
y

x + y
= − βτ

2

(
x +

xy
x + y

)
. (23)

Solving (21) and (23), we can find x, y and, consequently, Im, Sm.
In Figure 3, we show a comparison between the maximum number of infected obtained

by Equations (21) and (23) and the maximum number of infected obtained by direct
numerical simulation of the delay model (9). From Figure 3, we can observe that the
approximation gives a very close upper bound to the maximum number of infected.
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Figure 3. The red curve and the blue curve show the maximum number of infected using the direct
numerical simulation of the delay model and using Equations (21) and (23) respectively. Parameter
values: N = 105, τ = 4, S0 = N − 1, I0 = 1.

4. Comparison of Models (3) and (9) and SIR (4)

We compare the results obtained from the distributed model (3), the delay model (9),
and the conventional SIR model (4). In [31], we showed that Model (3) can describe the
epidemic spread more precisely, and it can exactly capture the recovery and death dynamics
by using suitable distributed recovery and death rates. However, the main constraint in
using the distributed model (3) is the availability of distributed recovery and death rates.
Instead, the average duration of the disease is easier to determine. We show that, in the
delay model (9), if we take τ as the mean of the recovery and death distribution functions
involved in the distributed model (3), then the delay model (9) gives a close solution to the
distributed model (3).

To estimate the recovery and death distributions in the model (3), we use the function
fitdist(:,gamma) in MATLAB. This function is used to fit a vector of data X = (x1, x2, · · · , xn)
by a gamma distribution of the form 1

baΓ(a) xa−1e−x/b, where a and b are the shape and
scale parameters. This function gives the maximum likelihood estimators of a and b for the
gamma distribution, which are the solutions of the simultaneous equations

log â−Ψ(â) = log
(

X̄/
( n

∏
i=1

xi
)1/n

)
,

b̂ = X̄/â,

where X̄ is the sample mean of the data X and Ψ is the digamma function given by

Ψ(x) = Γ′(x)/Γ(x).

The function fitdist(:,gamma) estimates the shape and scale parameters with the 95% con-
fidence interval. Using this statistical technique, we estimated the recovery and death
distributions for the model (3) for the data used in [31] and given by the formulas

r(t) =
p0

ba1
1 Γ(a1)

ta1−1e−
t

b1 , d(t) =
(1− p0)

ba2
2 Γ(a2)

ta2−1e−
t

b2 ,

(Figure A1 in Appendix C), where the estimated parameter values are given in Table 1.
Here, p0 is the survival probability, and its estimated value, from the data, is p0 = 0.97 [34].
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Table 1. Estimated parameter values (gamma distributions).

Parameters Estimated Value 95% Confidence Interval

a1 8.06275 [6.15314, 10.565]
b1 2.2140 [1.67523, 2.92623]
a2 6.00014 [3.69566, 9.74161]
b2 2.19887 [1.32639, 3.64526]

The estimated average time to recovery is 17.85 days and to death is 13.19 days.
The value of survival probability p0 is 0.97 [34], that is, out of 100 infected individuals, 97
infected will recover. This estimate matches with most of the COVID-19 epidemic data
from various countries [34,35]. Thus, we can take average disease duration τ as 17.7 days.
The corresponding value in the SIR model is r0 + d0 ≈ 1/17.7 days−1.

It is essential to mention here that, instead of a gamma distribution, we can use the
Erlang distribution Ek = λkxk−1e−λx

(k−1)! , x, λ ≥ 0 and k ∈ N. Since, for lower values of k,
e.g., E1, E2 distributions, with a reasonable choice of λ, give a significant probability of
recovery or death at the beginning of infection, we should look for an Erlang distribution
with higher values of k.

We found that the Erlang-8 distribution

E8 =
λ8x7e−λx

(7)!
,

with λ = 0.4545, and the Erlang-6 distribution

E6 =
λ6x5e−λx

(5)!
,

with λ = 0.4548, closely match with the gamma distributions for recovery and death rates
respectively, as estimated above. The estimated values of the shape parameters a1 and a2
associated with the gamma distributions can be approximated as a1 ≈ 8 and a2 ≈ 6 for
the recovery and death rate distributions, respectively. Thus, one can use the E8 and E6
distributions instead of the gamma distributions for recovery and death rates. However,
the result will be similar in both cases, and we continue our numerical simulation with the
gamma distributions.

Though the parameters of the three models correspond to each other, the distributed
model (3) and the delay model (9) both give far different dynamics as compared to the SIR
model (4), whereas the distributed model (3) and the delay model (9) give reasonably close
dynamics to each other (Figure 4).
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(a) (b)

(c) (d)

Figure 4. Comparison of the solutions of the distributed model (3) (blue curve), the delay model (9)
(green curve), and the conventional SIR model (4) (red curve). (a) Susceptible S(t), (b) infected I(t),
(c) recovered R(t), and (d) dead D(t). The values of parameters: N = 105, I0 = 1, β = 0.2, for the SIR
model r0 + d0 = 1/17.7; for the delay model τ = 17.7; for the distributed model (3): a1 = 8.06275,
b1 = 2.21407, a2 = 6.00014, b2 = 2.19887, p0 = 0.97.

The comparison of the final size of epidemic S f , maximal number of infected Im, and
the time to the maximal number of infected tm of the distributed model (3) with the gamma
distribution, the delay model (9), and the SIR model (4) is shown in Figure 5 for different
values of the transmission rate β. As before, the maximal numbers of infected individuals
Im in the models (3) and (9) are sufficiently close, but they are much higher than for the
SIR model (4). The times to maximum infected tm in the models (3) and (9) are reasonably
close, but less than for the SIR model (4). The final size of the epidemic S f is more or less
the same for all three models. Similar properties are observed if the gamma distribution is
replaced by the Erlang distribution with the corresponding parameters.

This result indicates the relevance of the delay model. If we do not have sufficient
individual-level data to estimate the recovery and death distributions, but we have an
approximate value of disease duration, then we can describe the epidemic progression in a
sufficiently precise way.
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(a) (b)

(c)

Figure 5. Comparison of the maximal number of infected individuals Im (a), the time to reach the
maximal number tm (b), and the final size of the epidemic S f (c) for the distributed model (3) (blue
curves), the delay model (9) (green curves), and the SIR model (4) (red curves) for different values
of β. The values of parameters: N = 105, I0 = 1, for the SIR model r0 + d0 = 1/17.7; for the delay
model τ = 17.7; for the distributed model (3): a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887,
p0 = 0.97.

5. Determination of Disease Duration from Data

In this section, we determine the disease duration τ from the epidemiological data for
the daily number of infected J(t) and the total number of infected individuals I(t), using
the equation

dI(t)
dt

= J(t)− J(t− τ).

Let I(t) have the maximum at t = tm. Set I(tm) = Im. Then, J(tm) = J(tm− τ), i.e., the
daily number of infected is the same at two different time points t = tm and t = tm − τ.
From the real data of the infected individuals I(t), we can find the day on which the daily
number of active cases is maximal, and it determines tm. From the data of daily reported
cases J(t), we can observe that J(t) crosses its maximum at some time before tm. Now,
we have to find the value of J(t) such that J(tm) will be equal to J(tm − τ), which in turn
determines the disease duration τ. Hence, considering the delay model, using the real
data of daily new cases J(t) and active cases I(t) around a peak, we can find the disease
duration τ.

We illustrate this method using the data of J(t) and I(t) taken from [35] for COVID-19
in Italy. We collected the daily new reported data J(t) and active case data I(t) for Italy
from 21 February 2020 to 31 May 2021 (which capture the first three peaks in Italy) and
from 10 November 2021 to 28 February 2022 (which capture the peak due to Omicron in
Italy). To have smoother data, we used the 7-day moving average, the data on the j-th day
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replaced by the average data from the (j− 3)th day to the (j + 3)th day. As the concerned
method is focused on the peaks, the error at the beginning and end of the time interval is not
essential. In Italy, during the first peak (in April 2020), the peak of I(t) is attained at tm = 51
(Figure 6a) and the peak of J(t) is attained before on t = 51, which is less than tm (Figure 6b).
First, we find that J(tm = 51) = 4.17× 103 and then find J(32) = 4.15× 103 ≈ J(tm = 51).
This implies J(tm − τ) = J(32), and consequently, we can calculate τ = 19 as the disease
duration during the first peak. Similarly, during the second peak (in November 2020) and
third peak (in March 2021), we estimated the disease duration as τ = 20 days and τ = 14
days, respectively. The peak of epidemic progression due to Omicron in January 2022 is
shown in Figure 6c,d, and we estimated the value of τ as 11 days. Similarly, the value of τ
is estimated for some other countries (Table 2).

(a) (b)

(c) (d)

Figure 6. Estimation of the disease duration τ using the data around different peaks of COVID-19 in
Italy. (a,b) Time t = 0 corresponds to 21 February 2020. The obtained value of τ is 19 days for the
first peak, 20 days for the second peak, and 14 days for the last peak. (c,d) Time t = 0 corresponds
to 10 November 2021 (which corresponds to the Omicron outbreak), and the obtained value of τ

corresponding to the Omicron outbreak is 11 days.
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Table 2. Estimated value of τ for different countries during different outbreaks of the COVID-
19 epidemic. The months indicated in the table correspond to the time when the corresponding
peak appeared.

Country Estimated Value Estimated Value Estimated Value Estimated Value
of τ (in Days) of τ (in Days) of τ (in Days) of τ (in Days)

during Peak 1 during Peak 2 during Peak 3 during Peak 4

Italy 19 (April 2020) 20 (November 2020) 14 (March 2021) 11 (January 2022)

Russia 25 (May 2020) 24 (January 2021) 26 (November 2021) 9 (February 2022)

China 16 (February 2020) - - -

Romania 16 (November 2020) 14 (March 2021) 18 (October 2021) 12 (February 2022)

Sweden 20 (July 2020) 20 (December 2020) 19 (April 2021) 14 (February 2022)

Iran 14 (December 2020) 24 (May 2021) 28 (August 2021) 10 (February 2022)

Remark 1. It is important to note that in the case of the combination of strains, the estimated
value of τ corresponds to the weighted average of the strain-specific disease duration. Furthermore,
note that this method depends on how the daily cases of infection were reported. However, in many
cases, there is a dominant variant during epidemic outbreaks. Thus, the estimated value of τ can
be considered as the disease duration corresponding to the dominant variant during a specific
epidemic wave.

Remark 2. Note that the delay model (9) does not take into account the difference in duration
to recovery and the duration to death. If we assume that the death cases are relatively rare (e.g.,
approximately ≤ 2% in the case of COVID-19), then this difference may not be very essential.

Remark 3. Note that this method of the estimation of τ remains the same for time-varying β = β(t).
Thus, the method discussed above does not depend on whether β is a constant or β varies with
respect to time. Since the time-varying β(t) is capable of incorporating the effect of all possible
infected compartments (i.e., exposed E(t), asymptomatic IA(t), symptomatic IS(t), hospitalized
H(t), etc.) on disease transmission, we can use this method to obtain an estimation of τ for any
infectious disease with available data.

6. Model Validation with Epidemiological Data

In order to validate the delay model (9) and the method of estimation of τ, we com-
pared the results with the epidemiological data. We used the estimated value of τ obtained
by the method described above during different peaks of COVID-19.

In Italy, the estimated value of τ is 19 days, 20 days, 14 days, and 11 days during the
first peak (April 2020), the second peak (November 2020), the third peak (March 2021),
and the fourth peak (January 2022), respectively. We assumed that the disease duration
τ remains τ = 19 days from 21 February 2020 to 15 August 2020; τ = 20 days from 16
August 2020 to 19 February 2021; τ = 14 days from 20 February 2021 to 21 May 2021; and
11 days from 10 November 2021 to 28 February 2022 (during Omicron in Italy).

Once these parameter values were determined, we took the number J(t) of daily in-
fected individuals from the epidemiological data [35] and found the sum of daily recoveries
and deaths from the expression

Σ(t) = J(t− τ). (24)

These results were compared with the sum of recoveries and deaths in the data. Figure 7
shows the result of such a comparison for Italy from 21 February 2020 to 21 May 2021
and from 10 November 2021 to 28 February 2022, with the data from [35] (7-day moving
average). Recoveries and deaths can also be determined as a proportion of active cases
σ(t) = (r0 + d0)I(t), as is done in the SIR model. Here, I(t) is taken from the data and
r0 + d0 = 1/τ, and we observed that the SIR model overestimates the sum of recovered
and dead. Thus, the delay model (9) gives a good description of the recovery and death
compared with the epidemiological data, while the SIR model overestimates them.



Mathematics 2022, 10, 2561 15 of 19

(a) (b)

(c) (d)

Figure 7. The blue curves show the number Σ(t) of recovered and dead in the delay model; the ma-
genta curves correspond to σ(t) in the SIR model; the black dots correspond to the 7-day moving
average of daily recoveries and death in Italy.

7. Discussion

We proposed a delay model under the assumption that the infected individuals
recover or die exactly after an average disease duration τ. Generally, in the case of COVID-
19, we observed that the recovery and death distributions follow unimodal or bimodal
gamma distributions [34,36]. Estimating these gamma distributions requires individual-
level data with the date of onset of disease and the date of recovery or death, which may
be very difficult to gather for every country or province. Instead, the only information
about the disease duration can help us to obtain sufficiently good results using the delay
model. Furthermore, we developed a method to estimate the disease duration from
the epidemiological data. It is important to mention here that one can use the Erlang
distributions, instead of the gamma distributions, for a compartmental epidemic model
with multi-phase disease transition [37].

Let us note that we consider only symptomatic individuals in the model. The influence
of asymptomatic individuals is widely discussed in the COVID-19 literature. According
to some estimates, they can constitute between 25% and 50% of the total number of
cases [38,39]. On the other hand, the infectivity of asymptomatic individuals is much lower
than the infectivity of symptomatic individuals because infectivity is proportional to the
viral load in the upper respiratory tract [40] and symptoms correlate with viral load. Hence,
in the first approximation, we can consider only symptomatic individuals. Further studies
are needed to take into account asymptomatic individuals more precisely.

We noticed that during different peaks of COVID-19, the estimated value of τ was
different. This difference might be due to different strains or the change of proportion of
different infected compartments (such as asymptomatic, hospitalized) that we counted in
the same compartment.
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The presence of exposed individuals can be taken into account by means of time-
dependent infectivity rate β(t− η). For the individuals infected at time η, their infectivity
at time t depends on the difference t− η. The function β(t− η) is small if the difference
t− η is small, which is the case of exposed individuals. This case was studied in [32]. We
did not consider the time-dependent infectivity rate in this work since its main objective is
to compare the model with distributed recovery and death rates with the delay model.

We compared the final size of the epidemic and maximal number of infected obtained
in the Formulas (15), (21), and (23), respectively. Note that these formulae depend on
τ and β. Since the outbreak due to Omicron is the only one when the social distancing
measures such as lockdowns or isolation were not strictly imposed, we can assume that the
transmission rate β is approximately constant. We took the data of the Omicron outbreak
in Italy from [35] from 10 November 2021 to 10 December 2021, and we fit the delay model
to these 40 days of data and estimated the disease transmission rate β as 0.118. We took the
value of disease duration τ = 11 days, which was obtained by using the method discussed
in Section 5. Then, using the formula (15), we calculated the final size of the epidemic as
3.387× 107. Using the formulae (21) and (23), we calculated the maximal number of infected
as Im = 3.4139× 106, whereas the maximal number of infected was Im = 2.7317× 106

in the data. Thus, the formulae (21) and (23) give a reasonable estimate of the maximal
number of infected. Similarly, we obtained an accurate estimate of the maximal number of
infected for some other countries (not shown).

Let us finally note that the delay model presented in this work is simple and generic. It
describes epidemic progression with two parameters β and τ, which can be easily estimated
from the data. Our next goal will be to apply the proposed modeling approach to multi-
compartment models consisting of different groups of susceptible and/or infected and to
immuno-epidemic models with time-varying recovery and death rates [32]. It is also
interesting to check the applicability of the proposed model to other transmissible diseases.
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Appendix A. Review of Delay Models

Time delay in epidemic models accounts for the delay for an individual to become
infectious after being infected. Time delay for vector-born diseases characterizes the time
needed for the pathogen to reach a certain threshold sufficient for infection transmission.
Under the assumption that the infection transmission rate at time t depends on the number
of infected at time t − τ and the number of susceptible at time t, the delay SIR model
for vector-born diseases is given by the following system of equations (see [41] and the
references therein):

dS(t)
dt

= − f
(
S(t), I(t− τ)

)
,

dI(t)
dt

= f
(
S(t), I(t− τ)

)
− δI(t),

where S(t) represents susceptible and I(t) infectious compartments, the function f (S(t), I(t−
τ)) characterizes the disease transmission rate, δ is the clearance rate, and τ is the time
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delay from the moment of infection to disease transmission. Another type of delay model
describes temporary immunity [28]:

dS(t)
dt

= − f
(
S(t), I(t)

)
+ δI(t−ω),

dI(t)
dt

= f
(
S(t), I(t)

)
− δI(t),

where ω is the time period after which an infected individual becomes susceptible again.
For long-lasting epidemics such as HIV, new generations of susceptible individuals

influence epidemic dynamics. In this case, time delay corresponds to the maturation period
after which young adults become susceptible to infection (see [42–44] and the references
therein):

dS(t)
dt

= g(N(t− τ))− h(
(
S(t), I(t)

)
,

dI(t)
dt

= h
(
S(t), I(t)

)
− δI(t).

Here, N(t) = S(t) + I(t), g(N(t − τ)) is the susceptible recruitment function, which
incorporates the maturation delay τ and h(S, I) is the disease transmission rate.

Appendix B. Positiveness of the Delay Model (9)

We show the positiveness of the solution of the delay model (9). Note that, as per our
assumption, J(t) is a positive function. From (9a), we observe that, if S(t∗) = 0 at some
time point t∗, then dS

dt |t=t∗ = 0. This implies that S(t) ≥ 0 for t > 0. From (3c) and (3d),
we obtain that R(t) and D(t) are both increasing functions, and hence, R(t) and D(t) also
remain positive for all t. Next, we prove that I(t) > 0. Integrating (9c) from 0 to t, we
obtain

I(t) = I(0) +
∫ t

0
J(η)dη −

∫ t

0
J(η − τ)dη

= I(0) +
∫ t

0
J(η)dη −

∫ t−τ

−τ
J(η)dη.

Since, J(t) = 0 for t < 0, we can write:

I(t) = I(0) +
∫ t

t−τ
J(η)dη ≥ 0.

Therefore, I(t) is positive for all t. This shows the positiveness of the solution of System (9).
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Appendix C. Gamma Distributions for Recovery and Death Rates

(a) (b)

Figure A1. Probability distribution of recovery (a) and death (b) as a function of time (in days) after
the onset of infection. The red curves show the best-fit gamma distributions using the function
“fitdist(:,’gamma’)” in MATLAB.
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