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Abstract: A new model of viral infection spreading in cell cultures is proposed taking into account
virus mutation. This model represents a reaction-diffusion system of equations with time delay for the
concentrations of uninfected cells, infected cells and viral load. Infection progression is characterized
by the virus replication number Rv, which determines the total viral load. Analytical formulas for the
speed of propagation and for the viral load are obtained and confirmed by numerical simulations.
It is shown that virus mutation leads to the emergence of a new virus variant. Conditions of the
coexistence of the two variants or competitive exclusion of one of them are found, and different stages
of infection progression are identified.

Keywords: viral infection; mutation; cell culture; reaction-diffusion equations; time delay

1. Introduction

Viruses constitute a separate specific kingdom of entities. They can have a plethora of
geometrical forms, characterized by different shapes, symmetries and sizes, which cover
the interval ranging from 20 nm (Porcine circovirus) up to 700 nm (Mimivirus). These
properties depend mainly on the amount of nucleic acids they contain, their forms (single
stranded positive- or negative-sense RNA, double stranded RNA, single stranded DNA
or double stranded DNA), as well as on the physiology of the type of cells they use for
their proliferation. Despite these essential differences, the survival and proliferation of all
viruses (as quasi-species) is similar and based on the following strategy: enter the host cells,
force the cells to multiplicate their genetic material (thus, in fact, to produce their multiple
copies), leave the cells and invade new ones.

Experimental or clinical assessment of the progression of viral infection implies the
evaluation of virus concentration in the infected tissue by means of conventional multi-
plicity of infection (MOI) assays (see, e.g., [1–5] and the references therein). After several
consecutive dilutions, the virus-containing solution is poured in a cell culture leading
to the formation of virus plaques. The number of such plaques determines the virus
concentration measured in plaque forming units (PFU). The plaques consist of dead or
modified cells, and they form due to virus replication inside the cells and its random
motion (diffusion) between cells. The plaque growth rate characterizes the efficacy of virus
penetration inside the cells, the intensity of its production and transmission between cells,
thus, the virus virulence.

In spite of the importance and wide use of these experiments, there are relatively few
modeling works devoted to the infection progression in cell culture taking into account
spatial distributions of cells and virus particles. A reaction-diffusion model of plaque
growth is considered in [6] in the case of reversible host infection. The plaque growth rate is
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determined by the method of linearization (cf. Section 3.2). Numerical simulations of viral
plaque growth described by a reaction-diffusion model with time delay are presented in [7].
This model is different in comparison with the model considered below, and these different
approaches are complementary. Individual based models of viral infection spreading in
cell cultures are developed in [8,9].

By that means, the region of infected cells increases and, after some preliminary time,
the boundary of the infected region may propagate as a traveling wave. This fact has been
proven in [10] in the framework of a model, in which the process of cell infection and virus
multiplication with possible delays τ between the moment of the cell infection and the
moment when the multiplicated viruses are released, were taken into account. In a more
complete model, the phenomenon of anti-virus defense via the interferon production by
the infected cells, was considered. By the theoretical and numerical analysis presented
in [10] we showed that, within the proposed model, the following three phases of the virus
infection could be distinguished (in agreement with the experimental results):

1. Virus concentration decay during time delay in its replication in cells;
2. Explosive growth of concentration, when infected cells begin to reproduce new

viruses;
3. Propagation of infection wave along the cell culture.

It was also found that the minimal speed of infection decreases with the delay time τ.
This speed was effectively determined by finding the minimum of an explicitly constructed
function containing the parameters of the model.

However, the model proposed in [10] neglects other characteristic features of viruses
survival strategy, namely their natural mutations and competition between their strains,
which is crucial in the context of epidemiological analysis of virus infection spreading.
An incorporation of these effects is the main objective of the present paper. We show
that the model supplemented with the terms corresponding to mutation and competition
phenomena, though significantly more complicated, can be studied by similar analytic
methods and, together with the numerical calculations, can be a source of interesting
information concerning the evolution of infection in the cell culture. The paper is organized
as follows.

In Section 2, we analyze the model without mutation and competition terms and
assuming that the mortality coefficients of the infected cells is nonzero, we show that the
progression of infection is possible only if the virus replication number Rv satisfies the
inequality Rv > 1. We also derive a lower bound for the minimal speed of the infection
front. In Section 3, we propose a model taking into account mutation and competition
phenomena. In Section 3.1, we show that, under some assumptions on the coefficients
characterizing the considered strains of the virus, the new model can be reduced to one
virus model (without mutation and competition). We also construct a function determining
the lower bound of the infection propagation speed to the considered case. In Section 3.3, a
system of reaction-diffusion equations describing multiple mutations and coinfections is
proposed. In Section 4, we analyze different stages of infection progression in terms of time
dependence of the total virus loads. The values and units of the assumed parameter values
and their reference to culture experiments is summarized at the end of Section 4. Numerical
simulations presented in this work are carried out using the finite element method with
software freeFem++ [11]. Numerical accuracy of the simulations is controlled by decreasing
the time and space discretization, and by the comparison with the analytical results.

2. Infection Progression with Single Virus
2.1. Virus Replication Number and Final Size of Infection
2.1.1. Virus Replication Number

We begin with a conventional model of viral infection progression in cell culture
without taking into account its spatial distribution:
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dU
dt

= −aUV, (1)

dI
dt

= aUV − βI, (2)

dV
dt

= bI − σV. (3)

Here, U(t) is the concentration of uninfected cells, I(t) of infected cells and V(t) of virus;
a, b, β, σ are positive parameters. Parameter a characterizes infection rate of uninfected cells,
b is the rate of virus replication in infected cells, β is the death rate of infected cells, and σ is
the virus death rate. We suppose that

U(0) = U0, I(0) = 0, V(0) = V0. (4)

Clearly, U = U0, I = 0, V = 0 is a stationary point of system (1)–(3). If β > 0, then it is a
unique stationary point. In order to study its stability, we linearize the system about this
stationary point and consider the corresponding eigenvalue problem:(

−β a U0
b −σ

)(
I
V

)
= λ

(
I
V

)
.

Denote the matrix in the left-hand side of this equality by A. Condition det A = 0 can be
written as Rv = 1, where

Rv =
abU0

βσ
.

By analogy with epidemiological models, we will call it virus replication number (VRN).
If Rv < 1, then both eigenvalues of the matrix A are negative, and the stationary point is
stable. If Rv > 1, then this matrix has one positive eigenvalue, and the stationary point is
unstable. In the first case, viral load V(t) decays, in the second case it grows.

VRN represents a ratio of virus replication and elimination rates. Considering cell
culture, we interpret parameters β and σ as death rates of infected cells and viruses. In the
application to living tissue, which will be considered in the subsequent works, these
parameters characterize the strength of the immune response with the elimination of
infected cells by cytotoxic lymphocytes and virus neutralization by antibodies.

2.1.2. Final Concentrations of Cells and Total Viral Load

Next, assuming that Rv > 1, we will determine the final value U f of uninfected cells
as t→ ∞. Taking a sum of Equations (1) and (2) and integrating from 0 to ∞, we obtain

U0 −U f = β
∫ ∞

0
I(t)dt. (5)

Integrating Equation (3), we have

V0 = σ
∫ ∞

0
V(t)dt− b

∫ ∞

0
I(t)dt. (6)

Finally, we divide Equation (1) by U and integrate:

ln
U f

U0
= −a

∫ ∞

0
V(t)dt . (7)

Excluding the integrals from Equations (5)–(7), we deduce the following equation

Rv(U − 1− V0) = lnU , (8)
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where

U =
U f

U0
, V0 =

βV0

bU0
.

The derivation of Equation (8) is inspired by the derivation of the final size of epidemic in
the model SIR, and the equation is the same, though the model is different.

If we neglect the initial viral load and set V0 = 0, then Equation (8) has a positive
solution in the interval 0 < U < 1 if and only if Rv > 1. This case corresponds to infection
progression, and the final value of uninfected cells is less than its initial value. If V0 > 0,
then such solution exists for all values of Rv.

Having found the solution of Equation (8), we can determine the total number of
infected cells, I f = U0 −U f and the total viral load

VT ≡
∫ ∞

0
V(t)dt = −1

a
lnU .

2.1.3. Model with Time Delay

If we take into account time delay in virus replication in the infected cells, then instead
of Equation (3) we consider the equation

dV(t)
dt

= bI(t− τ)− σV(t), (9)

where τ is a positive number. The initial condition for I(t) is now considered as I(t) = 0 for
−τ ≤ t ≤ 0. In the stability analysis for system (1), (2), (9), we have det A = βσ− abU0e−λτ .
The stability boundary, that is, the values of parameters for which λ = 0, remains the same
as before, Rv = 1. In the derivation of the final concentrations of cells, instead of Equation (6)
we have now the equation

V0 = σ
∫ ∞

0
V(t)dt− b

∫ ∞

0
I(t− τ)dt. (10)

Since ∫ ∞

0
I(t− τ)dt =

∫ ∞

−τ
I(t)dt =

∫ ∞

0
I(t)dt,

then Equation (10) is reduced to Equation (6), and the formulas for the final call concentra-
tions and total viral load remain valid for the model with time delay.

2.2. Spatial Infection Spreading

We continue with the model of viral infection progression in cell culture taking into
account its spatial distribution [10]:

∂U
∂t

= −aUV, (11)

∂I
∂t

= aUV − βI, (12)

∂V
∂t

= D
∂2V
∂x2 + bI − σV. (13)

The first term in the right-hand side of Equation (13) describes virus diffusion in the
extracellular matrix, D is the diffusion coefficient.

2.2.1. Wave Propagation

Experimental data and previous modeling show [10] that infection spreads in cell
cultures as a reaction-diffusion wave (Figure 1). In order to study this solution, we consider
a system of Equations (11)–(13) on the whole axis, and set U(x, t) = u(x − ct), I(x, t) =
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w(x− ct), V(x, t) = v(x− ct), where c is the wave speed. Then we obtain the following
system of equations:

− cu′ = −auv, (14)

− cw′ = auv− βw, (15)

− cv′ = Dv′′ + bw− σv, (16)

where primes denote the derivatives with respect to the variable ξ = x − ct. We are
interested in the solution of this system of equations with the following limits at infinity:

u(−∞) = u f , u(∞) = u0, w(±∞) = 0, v(±∞) = 0. (17)

In order to determine unknown value u f , we proceed as in the previous section. From
Equation (14), we obtain

c ln
u0

u f
= a

∫ ∞

−∞
v(x)dx, (18)

taking a sum of (14), (15) and integrating:

c(u0 − u f ) = β
∫ ∞

−∞
w(x)dx, (19)

and from (16):

b
∫ ∞

−∞
w(x)dx = σ

∫ ∞

−∞
v(x)dx. (20)

Excluding the integrals from Equations (18)–(20), we obtain the equation

Rv(ω− 1) = ln ω, (21)

with respect to ω = u f /u0. Equation (21) has a solution ω in the interval 0 < ω < 1 if and
only if Rv > 1. Thus, we obtain the following theorem.

Theorem 1. Inequality Rv > 1 provides a necessary condition for the existence of a positive
solution of problem (14)–(17). In this case, the final value u f can be found from Equation (21),
and the total viral load

VX ≡
∫ ∞

−∞
v(x)dx = − c

a
ln ω .

Figure 1. A snapshot of numerical solution of system (11)–(13). Infection spreads as a reaction-
diffusion wave with a speed c, U(x, t) = u(x− ct), I(x, t) = w(x− ct), V(x, t) = v(x− ct). Note that
u f = 0 here.
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Let us note that the notion of total viral load VX here is different from VT in the previous
section. Here it signifies the total viral concentration in cell culture at any moment of time,
while before it was the total viral load with respect to time (without space distribution).
Furthermore, VX depends on the wave speed c, which is not yet found.

2.2.2. Model with Time Delay

In the model with time delay, Equation (13) is replaced by the equation

∂V(x, t)
∂t

= D
∂2V(x, t)

∂x2 + bI(x, t− τ)− σV(x, t), (22)

and Equation (16) by the equation

− cv′(ξ) = Dv′′(ξ) + bw(ξ + cτ)− σv(ξ). (23)

Clearly, integration of this equation gives (20), and all conclusions above remain applicable
for this case.

2.2.3. Minimal Wave Speed

In order to determine the wave speed, we will use the linearization method widely
used for monostable reaction-diffusion equations beginning from the KPP work [12].
The idea of the method consists to consider the system linearized at infinity and to find
the minimal wave speed c∗ for which this system has a positive decreasing solution. Thus,
instead of Equations (15) and (16) we consider the equations

cw′ + au0v− βw = 0, (24)

Dv′′ + cv′ + bw(ξ + cτ)− σv = 0, (25)

where u(ξ) is replaced by its value u0 at infinity. We look for a solution of this system in
the form

w(ξ) = pe−λξ , v(ξ) = qe−λξ

with some positive numbers p, q and λ. Substituting these expressions into Equations (24)
and (25) and excluding p and q, we obtain the following equation with respect to λ:

Dλ2 − cλ− σ +
abu0

cλ + β
= 0.

We need to find a minimal positive value of c for which this equation has a positive solution.
Set µ = λc. Then from the last equation we find

c2 = F(µ) , F(µ) =
Dµ2(µ + β)eµτ

(µ + σ)(µ + β)eµτ − abu0
.

Under the condition Rv > 1, that is, σβ < abu0, function F(µ) becomes negative for small
positive µ and tends to −∞ as µ↗ µ0 for a positive µ0 for which the denominator vanish.
Therefore, F(µ) > 0 for µ > µ0, F(µ) decreases in some interval µ0 < µ < µ∗ and increases
for µ > µ∗. Hence, this function has a minimum for µ > µ0 reached at µ = µ∗. Set

c2
∗ = min

µ>µ0
F(µ). (26)

This equality provides the minimal wave speed found by the linearization method, and λ =
µ∗/c∗. Let us note that, in general, this method gives an estimate of the minimal wave
speed c0 from below, c0 ≥ c∗. In some cases, it can be proved that c0 = c∗. This question is
discussed in the next paragraph. Having found the wave speed, we can determine the total
viral load VX in Theorem 1.
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2.2.4. Wave Existence

If β = 0, then we can reduce system (11)–(13) to a system of two equations. Indeed,
taking a sum of Equations (11) and (12), we conclude that U(x, t) + I(x, t) = U0, and the
variable U can be excluded:

∂I
∂t

= a(U0 − I)V − βI, (27)

∂V
∂t

= D
∂2V
∂x2 + bIτ − σV. (28)

This is a monotone system of equations for which it is possible to apply the maximum
principle and various methods based on it. Existence of wave for this system is proved
in [10] for all c ≥ c0 for the values of τ limited from above.

Thus, c0 = c∗ for β = 0. If β > 0, this equality is verified in numerical simulations [10].
Knowing the value of speed, we can construct an approximate solution in the following
way. Consider system (15), (16) with u = u0 for ξ > 0 and u = u f for ξ < 0. Then we find
the wave speed c∗ and solution w(ξ), v(ξ) for ξ > 0 as described in the previous paragraph.
Let us note that this solution contains one unknown constant since there is a single relation
between p and q. Next, we have a linear system for ξ < 0 with a given value c = c∗. We
can find its solution, and it depends on two unknown constants. These three constants
can be determined from the continuity conditions at ξ = 0: w(−0) = w(+0), v(−0) =
v(+0), v′(−0) = v′(+0). These calculations are quite cumbersome, and we do not present
them here.

3. Viral Infection with Mutation

We will now consider the case where the first virus can mutate in another one. We
consider the system of equations

∂U
∂t

= −a1UV1 − a2UV2, (29)

∂I1

∂t
= a1UV1 − β1 I1, (30)

∂I2

∂t
= a2UV2 − β2 I2, (31)

∂V1

∂t
= D1

∂2V1

∂x2 + b1 I1τ1
− σ1V1, (32)

∂V2

∂t
= D2

∂2V2

∂x2 + εI1τ1
+ b2 I2τ2 − σ2V2 (33)

describing two viruses V1 and V2 in cell culture. Here U is the concentration of uninfected
cells, I1 of infected cells by virus V1 and I2 by virus V2, Iτ1(x) = I(x, t − τ1), Iτ2(x) =
I(x, t− τ2), ε is the mutation rate which shows that cells infected by virus V1 can produce
virus V2.

3.1. Reduction to the One-Virus Model

System (37)–(39) can be reduced to the one-virus model by setting I1 = 0, V1 = 0 or
I2 = 0, V2 = 0. We are interested in the case where all components of the solution are
positive. Under the assumptions β1 = β2, σ1 = σ2, D1 = D2, τ1 = τ2, we look for the
solution of system (29)–(33) in the form I2(x, t) = k1 I1(x, t), V2(x, t) = k2V1(x, t). Then we
rewrite Equations (31) and (33) as follows:

∂I1

∂t
=

a2k2

k1
UV1 − β1 I1, (34)

∂V1

∂t
= D1

∂2V1

∂x2 +
ε

k2
I1τ1

+
b2k1

k2
I1τ1 − σ1V1. (35)
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Comparing these equations with Equations (30) and (32), we conclude that

a2k2

k1
= a1 ,

ε + b2k1

k2
= b1 .

Hence,
k1 =

εa2

a1b1 − a2b2
, k2 =

εa1

a1b1 − a2b2
. (36)

Since we look for positive solutions, that is k1, k2 > 0, then we should impose the condition
a1b1 > a2b2.

Set I = I1 + I2 = (1+ k1)I1, V = V1 +V2 = (1+ k2)V1. Then we can write Equation (29),
sum of Equations (30) and (31), and of Equations (32) and (33) as follows:

∂U
∂t

= −aUV, (37)

∂I
∂t

= aUV − βI, (38)

∂V
∂t

= D
∂2V
∂x2 + bIτ1 − σV, (39)

where β = β1, σ = σ1, D = D1,

a =
a1 + a2k2

1 + k2
, b =

ε + b1 + b2k1

1 + k1
,

where k1 an k2 are given by equalities (36). Hence, we obtain system (11)–(13) (or (22) in
the case of time delay). We can formulate the following result.

Theorem 2. Suppose that system (37)–(39) has a traveling wave solution U(x, t) = u(x −
ct), I(x, t) = w(x− ct), V(x, t) = v(x− ct), that is, solution of problem (14)–(17). If abU0 > βσ
and a1b1 > a2b2, then system (29)–(33) has a traveling wave solution with positive components
U(x, t) = u(x− ct), Ii(x, t) = wi(x− ct), Vi(x, t) = vi(x− ct), i = 1, 2 such that

w1(ξ) =
w(ξ)

1 + k1
, w2(ξ) =

k1w(ξ)

1 + k1
, v1(ξ) =

v(ξ)
1 + k2

, v2(ξ) =
k2v(ξ)
1 + k2

. (40)

This theorem allows us to apply to system (29)–(33) the results of the previous section
obtained for system (11)–(13) on wave existence and speed of propagation.

Choice between Three Solutions

System (29)–(33) can have one-virus solutions for which I1 = 0, V1 = 0 or I2 = 0, V2 =
0, and two-virus solution for which all components are positive. Conditions aibiU0 > βiσi
and the results of the previous section provide the existence of the first-virus solution for
i = 1 and of the second-virus solution for i = 2. Conditions of the existence of two-virus
solution are provided by Theorem 2. If these conditions are not satisfied, we can expect that
the two-virus solution does not exist, though Theorem 2 does not state this non-existence
result. It is confirmed by the results of numerical simulations. Analytical values of wave
speed coincide with the wave speed in numerical simulations.

3.2. Method of Linearization

Reduction to the one-virus model is applied above under the assumptions D1 = D2,
β1 = β2, σ1 = σ2, τ1 = τ2. If these conditions are not satisfied, we use the method of
linearization to determine different regimes of infection spreading. We search solutions
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of system (29)–(33) in the form U(x, t) = u(x− ct), I1(x, t) = w1(x− ct), I2(x, t) = w2(x−
ct), V1(x, t) = v1(x− ct), V2(x, t) = v2(x− ct). Then,

cu′ − a1uv1 − a2uv2 = 0, (41)

cw′1 + a1uv1 − β1w1 = 0, (42)

cw′2 + a2uv2 − β2w2 = 0, (43)

D1v′′1 + cv′1 + b1w1(ξ + cτ1)− σ1v1 = 0, (44)

D2v′′2 + cv′2 + εw1(ξ + cτ1) + b2w2(ξ + cτ2)− σv2 = 0. (45)

Set u = u0,

v1(x) = p1e−λx, v2(x) = p2e−λx, w1(x) = q1e−λx, w2(x) = q2e−λx.

Then,

p1 =
λc + β1

a1u0
q1, p2 =

λc + β2

a2u0
q2, (46)

(D1λ2 − cλ− σ)p1 + b1q1e−λcτ1 = 0, (47)

(D2λ2 − cλ− σ)p2 + εq1e−λcτ1 + b2q2e−λcτ2 = 0. (48)

After straightforward calculations, we obtain

(D1λ2 − cλ− σ)(cλ + β1)eλcτ1 q1 = −b1a1u0q1, (49)

((D2λ2 − cλ− σ)(λc + β2) + b2a2u0e−λcτ2)q2 + εa2u0e−λcτ1 q1 = 0. (50)

If q1 6= 0, then we deduce from (49) that

(D1λ2 − cλ− σ)(λc + β1)eλcτ1 = −a1u0b1. (51)

Set µ = cλ. Then from the previous equality(
D1

µ2

c2 − µ− σ

)
(µ + β1)eµτ1 = −a1u0b1.

The wave speed c0 is given by the equality

c2
0 = min

µ>0
F(µ), F(µ) =

D1µ2(µ + β1)eµτ1

(µ + σ)(µ + β1)eµτ1 − b1a1u0
. (52)

In the particular case D1 = D2(= D), τ1 = τ2(= τ), β1 = β2(= β), we obtained from (50)
and (51), (46):

q2

q1
=

εa2

b1a1 − b2a2
,

p2

p1
=

a1

a2

q2

q1
. (53)

If q1 = 0, then we have from (50)

((D2λ2 − cλ− σ)(λc + β2) + b2a2u0e−λcτ2)q2 = 0. (54)

Then,
(D2λ2 − cλ− σ)(λc + β2)eλcτ2 = −b2a2u0 (55)

Set µ = λc. The wave speed c0 is given by the equality:

c2
0 = min

µ>0

D2µ2(µ + β2)eµτ2

(µ + σ)(µ + β2)eµτ2 − b2a2u0
. (56)
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It is similar to the previous one but with the parameters characterizing the second virus.
From (53) we can conclude that a positive solution exists if a1b1 > a2b2, that is,

replication of the first virus is faster than of the second one. This condition appears also in
Theorem 1. In the case of equality, the first virus is gradually replaced by the second one
due to the mutation process (Figure 2). If the inequality is opposite, the first virus vanishes
faster since its replication is slower. We will return to this question in the next section.

Figure 2. Numerical simulations of system (29)–(33) in the case where a1 = a2, b1 = b2. Both virus
spread in the form of waves, but the concentration of the first virus slowly decreases while of the
second virus increases. The values of parameters: a1 = 0.01, a2 = 0.01, b1 = b2 = 80, 000; D1 = D2 =

10−3, β1 = β2 = 0.1, σ1 = σ2 = 1, τ = 2, u0 = 1, i10 = i20 = 0, v1,0 = 4.5, v2,0 = 0, x0 = 0.1.

3.3. Multiple Mutations and Coinfections

Generic model of virus mutation and coinfections can be written as follows:

∂U
∂t

= −U
n

∑
i=1

aiVi, (57)

∂Ii
∂t

= aiUVi − βi Ii, i = 1, ..., n, (58)

∂Vi
∂t

= Di
∂2Vi
∂x2 +

n

∑
j=1

bij Ij − σiVi, i = 1, ..., n. (59)

The coefficient bij (positive or negative) show that viruses can promote or downregulate
replication of other viruses in the case of coinfection. As before, under certain conditions
on parameters, we can set Ii = pi I, Vi = qiV, and reduce this system of equations to the
one-virus model. In the case of negative coefficients bij the positiveness of solution in
Equation (59) does not directly follow from the equation, and it should be controlled.

4. Different Stages of Infection Progression
4.1. Single Virus

In the previous sections, we have studied reaction-diffusion waves of infection spread-
ing in cell culture. The solution of the initial boundary value problem approaches the
wave after the initial transient period. However, this initial period cannot be neglected in
the investigation of viral infection since it determines further infection progression. It is
particularly important from the point of view of interaction with the immune response,
though we do not consider it in this work (see [13–15]).

In order to describe analytically the initial stage of infection development, instead of
system (11)–(13), we consider the system

∂U
∂t

= −aUV, (60)
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∂I
∂t

= aU0V − βI, (61)

∂V
∂t

= D
∂2V
∂x2 + bIτ − σV, (62)

where we replaced U by U0 in Equation (61). This means that we neglect the depletion
of uninfected cells in virus replication. This is a linear system which can be further sim-
plified if we integrate the last two equations. In order to compare the results with the
numerical simulations, we consider this system in a bounded interval 0 < x < L with the
boundary conditions

x = 0, L :
∂V
∂x

= 0. (63)

Using the notation J(t) =
∫ L

0 I(x, t)dx, W(t) =
∫ L

0 V(x, t)dx, we obtain the delay differen-
tial system of equations

dJ
dt

= aU0W − βJ, (64)

dW
dt

= bJτ − σW (65)

with the initial condition

J(t) = 0, −τ ≤ t ≤ 0, W(0) = W0 =
∫ L

0
V(x, 0)dx. (66)

This system can be solved analytically. We restrict ourselves here to the two time
intervals, t ∈ [0, τ):

J(t) =
aU0W0

−β + σ
(e−βt − e−σt), W(t) = W0e−σt, (67)

and t ∈ [τ, 2τ):

W(t) = W0e−σt +
abU0W0

(β− σ)2

[
e−β(t−τ)(1 + eh(t)(−1 + h(t)))

]
,

J(t) =
aU0W0

(β− σ)
(e−σt − e−βt) +

a2bU2
0W0

(β− σ)3

(
e−σ(t−τ)(−2 + h(t) + e−h(t)(2 + h(t)))

)
,

where h(t) = (β− σ)(t− τ), used for the comparison with the numerical simulations.
Figure 3 (left) shows the virus concentration distribution in consecutive moments of

time with time difference between them equal 1 h. Let us note that since the length of
the space interval is large and the diffusion coefficient is small, the descending part of the
function V(x,t) looks steep in the graphical representation. It is smoother in Figure 4 and
even more in Figure 1. Beyond the graphical representation, important question is about
numerical accuracy. This descending part of solution contains about 130 discretization
points, and the accuracy of the solution is verified.

The right panel of Figure 3 illustrates how the total viral load (the integral of virus
concentration with respect to the whole space interval) changes in time. The total viral load
is determined in direct numerical simulations of the space-dependent problem (11)–(13)
and by two approximate analytical methods. The first one is based on solution of linear
ODE (64), (65). It is applicable for a relatively small time (t < 4). The second analytical
approximation uses Theorem 1 and the formula for the wave speed that allows us to
determine the viral load in the propagating wave for t large enough.
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Figure 3. Left: virus distribution in consecutive moments of time (every 1 h). Right: total viral load
W(t) =

∫ L
0 V(x, t)dx (in the logarithmic scale) found as solution of system (64), (65) (green), of system

(11)–(13) (blue) and by the formula in Theorem 1 (red). The values of parameters: a = 0.01, b =

8× 104, D = 10−3, β = 0.1, σ = 1, τ = 2.

4.2. Virus Mutation and Competition

In Section 3, we have established conditions of the coexistence of two viruses in cell
culture. If these conditions are not satisfied, and the new variant replicates faster, it will
eliminate the first one (Figure 4).

Figure 4. Distributions of V1(x, t) (left) and V2(x, t) (right) in numerical simulations of system (29)–
(33). In the beginning of simulations, there is only the first virus variant. After some time, the second
variant completely eliminate the first one. The values of parameters: a1 = 0.01, a2 = 0.1, b1 = b2 =

8× 104, D1 = D2 = 10−3, β1 = β2 = 0.1, σ1 = σ2 = 1, τ = 2, u0 = 1, i10 = i20 = 0, v1,0 = 4.5, v2,0 =

0, x0 = 0.1.

Analysis of the total viral load (Figure 5) shows that there are four stages of infection
progression in this case instead of the three stages observed previously. After the infection
decay and explosive growth, the distribution of the first virus reaches its bell-shape form
and propagates along the culture. At the same time, the total viral load of the second virus
variant exponentially grows. When it is reaches its maximum, the first viral load begins its
exponential decay.

Denote by T the transition time defined as the moment of time at which V2(t) reaches
90% of its maximal value. Transition time depends on the mutation rate and on the
replication rates determined by the parameters ai, bi, i = 1, 2 (Figure 5, right). As it can be
expected, T is larger for small ε, and it decreases if the replication rate of the second virus
increases. The dependence of T on ε is well approximated by the function p/εq with some
fitted values of p and q. Let us note that the for these values of q, the dependence of the
transition time on ε is weak. Extrapolating the curves using the analytical approximation,
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we can see that decreasing the mutation rate by 106 increases the transition time only
about twice.

Figure 5. Left: V1(t) (red) and V2(t) (green) in the logarithmic scale for b2 = 8× 104; V2(t) (blue) for
b2 = 8× 105. Right: transition time T as a function of mutation rate ε for b2 = 8× 104 (upper curve,
crosses) and b2 = 8× 105 (lower curve, crosses). Smooth lines represent analytical approximation
with the functions p/εq, p = 25, q = 0.057 (upper curve), p = 17, q = 0.04 (lower curve). The values
of parameters: a1 = 0.01, a2 = 0.1, b1 = 8× 104; D1 = D2 = 10−3, β1 = β2 = 0.1, σ1 = σ2 = 1, τ =

2, u0 = 1, i10 = i20 = 0, v1,0 = 4.5, v2,0 = 0, x0 = 0.1.

4.3. Values of Parameters

The values of parameters for the single variant were determined in [10] by fitting
the experimental data on the variation of viral load in time. Parameter estimation begins
with the first stage of infection development during which virus is not yet reproduced by
the infected cells, and its concentration exponentially decays. Duration of this stage and
the decay rate allow us to uniquely determine parameters τ and σ by comparison with
the total viral load in the experimental data. The next stage is characterized by explosive
virus production with the maximum of the total viral load determined by the parameter
b. At the same time, parameter a is chosen for the best fit of the growth curve. Finally,
the third stage of infection development corresponds to its propagation in cell culture as
a reaction-diffusion wave. The total viral load remains constant for β = 0, and it has a
slow growth for a positive β, also determined by comparison with the total viral load in the
experiment. Virus diffusion coefficient D is estimated from the literature. Let us recall the
dimensions of the main parameters: [L] ∼cm, [time] ∼ hours, [τ] ∼ hours, [σ] ∼ 1/hour,
[D] ∼cm2/hour.

The replication rate for the second virus (constants a2, b2 versus a1, b1) is taken in
the same range or larger than that for the first virus. In order to evaluate the mutation
rate ε, let us note that the rate of mutations of RNA viruses is from 10−6 to 10−4 per base
per generation. Taking into account that only from 0.001 to 0.01 viruses represent plaque
forming units, we estimate the probability of a given mutation during one virus replication
of the order of 10−9 to 10−6. The virus replication rate with respect to a single cell in the
model is given by the constant b1 = 8× 104. Multiplied by the probability determined
above, we obtain the value of ε in the range from 10−4 to 10−1. Further, we can reasonably
assume that viruses of the same size have close diffusion coefficients. In particular, this is
the case of two variants of the same virus. Therefore, we take the same values of diffusion
coefficient for both viruses.

5. Discussion

Multiplicity of virus assays represent conventional tests for the assessment of virus
virulence and other properties [3,5]. In a previous work [10], we have shown that infection
spreading in cell culture can be described by a reaction-diffusion system with time delay.
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Three stages of infection progression were identified: virus decay, explosive growth, wave
propagation. In this work, we apply this modeling approach to study virus mutation
during infection progression. This question has a particular importance in the context
of the emergence of new virus variants in COVID-19 pandemic. In a simplified setting,
without taking into account the influence of the immune response, we can model this
process as infection progression in cell culture and analyze the conditions of the emergence
of new virus strains.

We introduce in this work the notion of virus replication number Rv (similar to the
basic reproduction number in epidemiological models) and show that infection spreads
in cell culture if this number calculated for the first virus is larger than 1. Furthermore,
the total viral load can be expressed in terms of Rv.

If the first virus variant spreads in cell culture and it can give a new virus variant due
to mutations, then the two virus can co-exist or the second virus can eliminate the first
one. The condition of their coexistence is given by the inequality a1b1 > a2b2. Taking into
account that the coefficients ai characterize the rate of cell infection and the coefficients bi
the rate of virus replication in the infected cells, their product aibi describes the total rate of
virus production in cell culture. Hence, the two viruses coexist if the first one is produced
faster than the second one. Otherwise, the second virus eliminates the first one.

The transition time from the first virus to the second virus depends on the mutation
rate and on the replication rates. It is an important characterization of new variants since it
shows whether they have enough time to develop in patients during the disease duration.
The estimates of the transition time show that its dependence on the mutation rate is weak.
Therefore, once new variant appears, it will rapidly replace the original one if it replicates
faster, and the infected individual will become a career of the new variant.

This work is limited to the investigation of the emergence of new virus variants in
the experimental setting of cell culture. The influence of the immune response on the
infection mutation and spreading in the human organism will be considered in further
works. However, some preliminary conclusions can be already done on the basis of the
results of this work, in particular, about the action of vaccines on disease progression. In the
case of SARS-CoV-2, the vaccine acts on virus spike preventing its penetration into the host
cells. In the framework of the model, vaccine action can be described by decreasing the
coefficient a. If it becomes small enough, such that the virus replication number Rv is less
than 1, then infection will not develop. If Rv decreases but remains greater than 1, then
infection will develop. However, infection spreading speed decreases. For the patients it
signifies that disease symptoms are less severe.
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