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ABSTRACT

The paper is devoted to a nonlocal semi-linear elliptic equation in R
n

arising in various biological and biomedical applications. The Fredholm

property studied for the corresponding linear elliptic operators with dis-

continuous coefficients allows the application of the implicit function the-

orem to prove the persistence of solutions under a small perturbation of

the problem. Furthermore, the existence of solutions is established by

the Leray–Schauder method based on the topological degree for Fredholm

and proper operators and on a priori estimates of solutions in some special

weighted spaces.

Received April 1, 2020 and in revised form December 28, 2020

1

volpert
Highlight

volpert
Highlight



2 C. LEON, I. KUTSENKO AND V. VOLPERT Isr. J. Math.

1. Introduction

In this work, we study the existence of solutions of the equation

(1.1) Δu+ au(1− I(u))− F (u, x) = 0

considered in the whole space R
n, n = 1, 2, 3, where

I(u) =

∫
Rn

u(x)dx.

Such equations arise in various biological and biomedical applications where u(x)

corresponds to the density of some population (animals, cells, viruses) [4, 5].

The diffusion term describes random motion of the individual entities of the

population, the second term characterizes their reproduction, and the last term

their mortality. The reproduction term is proportional to the population den-

sity and to the available resources (1 − I(u)). Here K = 1 is dimensionless

carrying capacity, and I(u) corresponds to consumed resources proportional to

the total population. Thus, instead of the conventional logistic term u(1 − u)

appropriate for the case of local consumption of resources, we consider the in-

tegral term for the global consumption [25]. The specific form of the mortality

term depends on the applications. In particular, in a model of viral infection

development,

F (u, x) = uf(u) + σ(x)u,

where the first term in this function describes virus elimination due to the

immune response, and the second term its natural mortality.

Let us note that in the models of population dynamics the space variable x

can have two different meanings. The first one corresponds to the conventional

physical space where the function u(x, t) describes the distribution of animals

in some habitats or cell (viruses) in the tissue. In the second interpretation,

the variable x characterizes the genotype or the phenotype of the population.

The population density distribution as a function of its genotype describes the

existence and the evolution of biological species, cell lineages and cell clones

in cancer, or virus strains. In this case, a conventional mathematical question

about the existence of solutions acquires a clear and important biological signif-

icance allowing the determination of the conditions of the existence of biological

species (clones, strains) (see [4, 5]).
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Mathematical analysis of equation (1.1) has some specific features because it

is considered in an unbounded domain, and also because of the presence of the

integral term and possibly discontinuous coefficients. General elliptic problems

in bounded domains with a sufficiently smooth boundary satisfy the Fredholm

property if and only if the ellipticity condition, the condition of proper ellipticity

and the Lopatinskii conditions are satisfied [1, 2, 19]. In the case of unbounded

domains, these conditions may not be sufficient. Elliptic problems in unbounded

domains are characterized by the presence of the essential spectrum determined

by limiting operators [18, 20]. Solvability conditions for linear problems, their

index and Fredholm property determine the properties of nonlinear operators

including their properness and topological degree.

The topological degree for elliptic operators was introduced by Leray and

Schauder [17] with the reduction to the operators I+K, where I is the identity

operator and K is a compact operator. This construction is not applicable to

elliptic problems in unbounded domains since, contrary to the case of bounded

domains, the inverse to the Laplace operator is not compact. There are various

degree constructions in an abstract setting [6, 8, 9, 10], [11]–[15] and in the

framework of elliptic problems [7, 21]. We will use the degree construction

for Fredholm and proper operators with the zero index [23]. Together with a

priori estimates of solutions, the topological degree allows the application of the

Leray–Schauder method to prove the existence of solutions.

We will apply these methods of linear and nonlinear analysis to study equa-

tion (1.1). The presence of the integral term implies the integrability of the

solution and imposes some constraints on the function spaces. We will also be

interested in equations with discontinuous coefficients because they can admit

explicit analytical solutions. The latter can be used as a starting point for the

continuation of solutions. However, they also require a special functional setting

which will be discussed below. Altogether, this extended formulation of classical

elliptic problems leads us to revisit the existing theory. Since these results can

represent an independent interest for the mathematical theory, and in view of

other possible applications, we will prove more general results and apply them

to study equation (1.1). In the next section, we study linear operators with dis-

continuous coefficients. Section 3 is devoted to the application of the implicit

function theorem in the case of discontinuous functions. Finally, in Section 4

we introduce the topological degree and study the existence of solutions by the

Leray–Schauder method.
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2. Linear operators with discontinuous coefficients

Fredholm property of general elliptic problems in unbounded domains is studied

in [20] in the case where the coefficients of the problem belong to some Hölder

spaces. In this section we will use these results in order to study a class of

elliptic operators with discontinuous coefficients.

2.1. Operators and spaces. Consider a Banach space E with the norm ‖·‖E,
and the space E∞ with the norm

‖u‖E∞ = sup
y∈Rn

‖u(·)ω(· − y)‖E ,

where ω(x) is an infinitely differentiable function, 0 ≤ ω(x) ≤ 1 for x ∈ R
n,

ω(x) = 1 for |x| ≤ 1/2 and ω(x) = 0 for |x| ≥ 1 (see [20] for more de-

tails). In particular, we will consider the spaces L2
∞(Rn) and H2

∞(Rn) for

which E = L2(Rn) and E = H2(Rn), respectively, n = 1, 2, 3.

Consider the linear second-order elliptic operator

Lu = Δu+

n∑
i=1

ai(x)
∂u

∂xi
+ b(x)u,

where

ai(x) = a0i (x) + a1i (x), b(x) = b0(x) + b1(x), a0i , b0 ∈ Cα(Rn),

and a1i (x), b1(x) are bounded functions (possibly discontinuous) with a bounded

support. The operator acts from H2
∞(Rn) into L2

∞(Rn). We will also consider

the operator

L0u = Δu +

n∑
i=1

a0i (x)
∂u

∂xi
+ b0(x)u.

2.2. Limiting operators and a priori estimates. Consider an arbitrary

sequence xk ∈ R
n such that |xk| → ∞ as k → ∞. Set

aki (x) = a0i (x+ xk), bk(x) = b0(x+ xk), k = 1, 2, . . . .

Since these functions belong to the Hölder space, they converge locally uniformly

to some functions a∗i (x), b∗(x). These limiting functions can depend on the

choice of the sequence xk. The operator L̂ with the limiting coefficients

L̂u = Δu +

m∑
i=1

a∗i (x)
∂u

∂xi
+ b∗(x)u

is called the limiting operator.
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Condition NS. Any limiting equation L̂u=0 has only zero solution inH2
∞(Rn).

The following lemma is a particular case of a more general result proved

in [20] (Chapter 4, Theorem 2.10, p. 155).

Lemma 2.1: Let Condition NS be satisfied. Then there exist numbersM and R

such that the following estimate holds:

(2.1) ‖u‖H2∞(Rn) ≤ M(‖L0u‖L2∞(Rn) + ‖u‖L2(BR))

for any u ∈ H2
∞(Rn). Here BR = {x ∈ R

n, |x| ≤ R}.
We will use this lemma to get a similar estimate for the operatorL. Lemma 2.1

holds under the assumption that the coefficients of the operator L0 belong to

the Hölder space. This result cannot be directly applied to the operator L with

discontinuous coefficients. We prove it in the following theorem. Let us note

that limiting operators for the operator L0 and L are the same.

Theorem 2.2: Let Condition NS be satisfied. Then there exist numbers M

and R such that the following estimate holds:

(2.2) ‖u‖H2∞(Rn) ≤ M(‖Lu‖L2∞(Rn) + ‖u‖L2(BR))

for any u ∈ H2
∞(Rn). Here BR = {x ∈ R

n, |x| ≤ R}.
Proof. Set

Bu =

m∑
i=1

(ai(x) − a0i (x))
∂u

∂xi
+ (b(x) − b0(x))u.

Then L = L0 +B, and estimate (2.1) can be written as follows:

(2.3)
‖u‖H2∞(Rn) ≤ M(‖(L−B)u‖L2∞(Rn) + ‖u‖L2(BR))

≤ M(‖Lu‖L2∞(Rn) + ‖Bu‖L2∞(Rn) + ‖u‖L2(BR)).

We need to estimate the term ‖Bu‖L2∞(Rn). We have

Bu =

m∑
i=1

a1i (x)
∂u

∂xi
+ b1(x)u.

Since a1i (x) and b1(x) are bounded functions with bounded supports, then

|a1i (x), b1(x)| ≤ K
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for some positive constant K, and R can be chosen sufficiently large such that

their supports belong to the ball BR. Hence,

‖b1u‖L2∞(Rn) ≤
(∫

Rn

(b1(x)u(x))
2dx

)1/2

≤ K

(∫
BR

u2(x)dx

)1/2

,

∥∥∥a1i ∂u

∂xi

∥∥∥
L2∞(Rn)

≤ K

(∫
BR

| ∂u
∂xi

|2dx
)1/2

≤ ε‖u‖H2(BR) + Cε‖u‖L2(BR).

The last estimate holds for any positive ε and some constant Cε depending on ε.

For ε sufficiently small, these estimates and (2.3) provide (2.2). The theorem is

proved.

2.3. Properness, normal solvability, the Fredholm property. Recall

that a linear operator acting in Banach spaces is normally solvable if and only

if its image is closed. The operator is called proper on closed bounded sets if

the inverse image of any compact set is compact in any bounded closed set. If a

linear operator is proper, then it is normally solvable with a finite-dimensional

kernel (see [20], Theorem 2.13, p. 163). By definition, a linear operator satisfies

the Fredholm property if it is normally solvable, the dimension of its kernel is

finite and the codimension of its image is also finite. The latter is equivalent to

a finite number of solvability conditions of the non-homogeneous equation.

Condition NS is a necessary and sufficient condition for general elliptic prob-

lems in unbounded domains to be normally solvable with a finite-dimensional

kernel [20]. This result is proved in the case of Hölder continuous coefficients

of the operator. The next theorem affirms the sufficiency of this condition for

the operators with discontinuous coefficients. The necessity of Condition NS is

proved in [20] by construction of non-compact sequences providing a nonzero so-

lution of some limiting operator. A similar construction may be also applicable

here since the limiting operators of the operators L0 and L are the same.

Continuous deformation in the class of normally solvable operators with a

finite-dimensional kernel does not change the index of the operator [16]. There-

fore, we can find the index of the operator reducing it to another operator with

a known index by a continuous deformation, assuming that Condition NS is

satisfied in the process of this deformation. This approach is used in Theo-

rem 2.4 and Lemma 3.3 below. In particular, if the reduction can be applied to

an invertible operator, then the index equals 0.
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Theorem 2.3: Let Condition NS be satisfied. Then the operator L is normally

solvable with a finite-dimensional kernel.

Proof. It is sufficient to prove that the operator L is proper. This property

follows from Theorem 2.2. Indeed, let Lun = fn, fn → f0, and the sequence un

be bounded in H2
∞(Rn). We will verify that we can choose a convergent sub-

sequence from this sequence. Since H2 is locally compact in L2, then we can

choose a subsequence unk, which forms a fundamental sequence in L2(BR).

Applying Theorem 2.2 to the equation

L(unk − unj) = fnk − fnj ,

we conclude that this sequence is also fundamental in H2
∞(Rn). Therefore, it

converges to some function u0 ∈ H2
∞(Rn). The theorem is proved.

Theorem 2.4: The operator L satisfies the Fredholm property if the opera-

tor L0 satisfies it. In this case, their indices are equal to each other.

Proof. Suppose that the operator L0 satisfies the Fredholm property. Then

Condition NS is satisfied for L0. Since the limiting operators for the operator L0

and L are the same, then Condition NS is also satisfied for the operator L and

for their linear combination Lτ = τL0 + (1 − τ)L. Hence, the operator Lτ is

normally solvable with a finite-dimensional kernel for all τ ∈ [0, 1], and its index

does not depend on τ . The theorem is proved.

Example 2.5: Suppose that b0(x) → β as |x| → ∞, where β is a negative

number. Then the essential spectrum of the operator L0 lies in the sector of the

complex plane which does not contain the positive half-axis [20], and its index

equals 0. According to the previous theorem, the same properties hold for the

operator L.

2.4. Solvability of the nonlocal equation. Let us briefly recall some

definitions and spectral properties used below (see [16]). Let L be a linear

operator acting in Banach spaces. The set of all complex numbers λ such that

the operator Lλ = L − λ does not satisfy the Fredholm property is called

the essential spectrum of the operator L. The essential spectrum splits the

complex plane into a finite or a countable number of connected components.

Inside each such connected component, the index κ = α−β of the operator Lλ,

where α is the dimension of the kernel and β the codimension of the image,
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has a constant value. The numbers α and β are also constants except, possibly,

for some discrete set of λ. Next, suppose that the essential spectrum of the

operator L belongs to a half-plane Re λ ≤ r of the complex plane, where r is

a real number, and the index of the operator equals 0 in the complementing

half-plane Re λ > r. This property is satisfied for general elliptic problems in

unbounded domains [20]. For any ε > 0, the half-plane Re λ ≥ r + ε contains

a finite number of points λ of the spectrum. The operator Lλ satisfies the

Fredholm property for such λ but it is not invertible, and α = β. These points λ

are eigenvalues of finite multiplicity. The eigenvalue with the maximal real

part is called the principal eigenvalue. Due to the Krein–Rutman theorem

applicable for the scalar second-order elliptic problems in bounded domains,

the principal eigenvalue is real, simple, and the corresponding eigenfunction is

positive. Moreover, there are no other positive eigenfunctions. This result is

generalized for unbounded domains [21] (see also [3, 22]).

We will now use these spectral properties in order to study the solvability of

the equation

(2.4) Δu + uf(I(u))− σ(x)u = 0,

where I(u)=
∫
Rn u(x)dx, f(·) is a continuous function, σ(x)∈Cα(Rn), σ(x)→σ0

as |x| → ∞, σ0 is a positive constant. We will see below that the solution of

equation (2.4) is an eigenfunction of a Fredholm operator. Therefore, it decays

exponentially at infinity [20], and the integral I(u) is well defined. We will

obtain the conditions for the existence of a positive integrable solution of this

equation.

Theorem 2.6: Suppose that the principal eigenvalue λ0 of the operator

L̂0 = Δu − σ(x)u

satisfies the inequality λ0 > −σ0. Then equation (2.4) has a positive integrable

solution if and only if the equation

(2.5) f(h) = −λ0

has a positive solution h.

Proof. The essential spectrum of the operator L̂0 fills the half-axis λ ≤ −σ0.

Since λ0 > −σ0, then the principal eigenvalue λ0 is real and simple, the corre-

sponding eigenfunction u0(x) is positive, and there are no positive eigenfunc-

tions corresponding to other eigenvalues [21].
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Suppose that equation (2.5) has a positive solution h = h0. Since λ0 is

the principal eigenvalue of the operator L̂0 with a positive eigenfunction u0(x),

then u0(x) is a solution of the equation

(2.6) Δu− σ(x)u = −f(h0)u.

The eigenfunction u0(x) is exponentially decaying at infinity [20], and the inte-

gral I(u0) is well defined. For any real constant c, the function u(x) = cu0(x) is

also a solution of equation (2.6). We can choose c in such a way that I(u) = h0.

Then u is a solution of equation (2.4).

Next, suppose that u(x) is a positive integrable solution of equation (2.4).

Set h = I(u). Then u(x) is a solution of the equation

Δu− σ(x)u = −f(h)u.

Since a positive eigenfunction corresponds only to the principal eigenvalue [25],

then −f(h) = λ0. The theorem is proved.

Example 2.7: Set f(h) = 1 − h, and suppose that σ(x) ≥ 0 for all x ∈ R
n,

σ0 > 1, −1 < λ0 < 0. Then equation (2.5) has a positive solution h. According

to the theorem, equation (2.4) has a positive integrable solution.

2.5. Spectral properties of operators with discontinuous coeffi-

cients. In the analysis of equation (2.4) we used the spectral properties of the

operator L̂0, namely, the location of its essential spectrum and the properties

of the principal eigenvalue. In order to apply these properties, we assumed that

the function σ(x) is Hölder continuous. Theorem 2.4 allows us to determine

the essential spectrum for a wider class of functions including discontinuous

functions if the discontinuities belong to a bounded domain on R
n. Let us now

discuss the properties of the principal eigenvalue in the case of discontinuous

coefficients. We will verify that the corresponding eigenfunction is positive and

that there are no positive eigenfunctions corresponding to other eigenvalues.

Consider the operator

L̂0u = Δu− σ(x)u

assuming that σ(x) = σ0(x) + σ1(x), where σ0(x) ∈ Cα(Rn) and σ1(x) is a

bounded function with a bounded support, σ(x) ≥ 0 for all x ∈ R
n. Suppose

that σ0(x) → σ0 as |x| → ∞, where σ0 is a positive constant, and the principal

eigenvalue λ0 of the operator L0 satisfies the inequality λ0 > −σ0.
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Lemma 2.8: The eigenfunction u0(x) corresponding to the principle eigen-

value λ0 is positive.

Proof. Consider a sequence of functions σk(x) ∈ Cα(Rn) which coincide

with σ0(x) for |x| ≥ R for some R sufficiently large, and σk(x) → σ(x)

in L2(Rn). We suppose that the support of the function σ1(x) is inside the

ball BR of radius R. The corresponding operators

L̂ku = Δu− σk(x)u

have the same limiting operators and essential spectrum as the operator L̃0,

and they satisfy the Fredholm property. Denote by λk the principle eigenvalue

of the operator L̂k, and by uk(x) the corresponding eigenfunction.

Since ‖u‖C(Rn) ≤ ‖u‖H2∞(Rn) for u ∈ H2∞(Rn) (n = 1, 2, 3), we have

‖L̂ku− L̂0u‖L2∞(Rn) ≤
(∫

BR

(σk(x)− σ(x))2u2(x)dx

)1/2

≤ ‖u‖H2∞(Rn)

(∫
BR

(σk(x)− σ(x))2dx

)1/2

→ 0, k → ∞.

Therefore, the operators converge in the operator norm.

By virtue of the properties of Fredholm operators, λk → λ0, and uk → u0

as k → ∞, where u0(x) is the eigenfunction of the operator L̂0 corresponding

to the eigenvalue λ0 [16]. Since uk(x) > 0 for all x, then u0(x) ≥ 0. Let us show

that this inequality is strict. Suppose that u0(x0) = 0 for some x0. If σ(x) is

continuous at x = x0, then we obtain a contradiction with the usual positiveness

theorem. Therefore, u0(x) > 0 for |x| > R, where σ(x) is continuous. We

can now apply the generalized maximum principle to affirm that u0(x) > 0

for |x| ≤ R. The lemma is proved.

Lemma 2.9: The eigenfunction u0(x) corresponding to the principle eigen-

value λ0 is the only positive eigenfunction.

Proof. We will prove that a positive eigenfunction cannot exist for other eigen-

values and that a positive eigenfunction is unique for the eigenvalue λ0 up to a

constant factor.

Suppose that there exists a positive eigenfunction u1(x) for a real eigen-

value λ1 < λ0. As in the proof of the previous lemma, consider a sequence of

smoothed problems with the corresponding sequence of eigenvalues λk
1 → λ1.
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Since the corresponding eigenfunctions uk
1(x) converge to u1(x) locally uni-

formly, then uk
1(x) > 0 for |x| = N for N fixed and for k sufficiently large. If N

is sufficiently large, then uk
1(x) > 0 for |x| ≥ N (see [24], Lemma 3.2). There-

fore, uk
1(xk)≤0 for some xk, |xk|≤N . Passing to the limit, we conclude that the

function u1(x) is not positive. This contradiction proves the required assertion.

If a positive eigenfunction u1(x) corresponds to the principal eigenvalue λ0

and it is linearly independent with the eigenfunction u0(x), then consider the

function z(x) = τu0(x) − u1(x). Let us take the minimal value of τ for

which z(x) ≥ 0 for |x| ≤ N and for the same N as above. Then z(x) ≥ 0

for |x| ≥ N . Hence z(x) ≥ 0 for all x ∈ R
n. If z(x) > 0 for all |x| ≤ N ,

then τ is not minimal, and we obtain a contradiction with the assumption

above. If z(x) ≥ 0 and z(x0) = 0 for some x0, then we obtain a contradiction

with the maximum principle. The lemma is proved.

We proved in Lemmas 2.8 and 2.9 that the properties of the principal eigen-

function remain valid for the operators with discontinuous coefficients. These

properties were used in Theorem 2.6. Therefore, this theorem is now applicable

for the operators with discontinuous coefficients. Similar results can be obtained

for more general operators.

3. Persistence of solutions

3.1. Operators and spaces. Along with the spaces L2
∞(Rn) and H2

∞(Rn)

introduced in the previous section, we consider the corresponding weighted

spaces L2∞,μ(R
n) and H2∞,μ(R

n) with the norms

‖u‖L2∞,μ(R
n) = ‖uμ‖L2∞(Rn), ‖u‖H2∞,μ(R

n) = ‖uμ‖H2∞(Rn)

and the weight function μ(x) = exp(ν
√

1 + |x|2). The value of constant ν > 0

will be specified below.

Consider the operator

A(u, τ) = Δu+ F (u, I(u), x, τ)

depending on a parameter τ ∈ [0, 1] and acting from E1 = H2
∞,μ(R

n) into

E2 = L2∞,μ(R
n). Here I(u) =

∫
Rn u(x)dx, F (u, v, x, τ) is a real function of

the variables u, v, x and of parameter τ . Since we consider the space with an

exponential weight, the integral I(u) is well defined. We will assume that the

function F (u, v, x, τ) satisfies the following conditions.
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Condition 1: The following inequalities hold:

|F (u1, v, x, τ)− F (u2, v, x, τ)| ≤ K|u1 − u2|,(3.1)

|F (u, v1, x, τ)− F (u, v2, x, τ)| ≤ K|v1 − v2||u|,(3.2)

|F (u, v, x, τ1)− F (u, v, x, τ2)| ≤ Kg(x, τ1, τ2)|u|,(3.3)

where K is a positive constant, and

‖g(x, τ1, τ2)‖L2∞,μ(R
n) → 0 as |τ1 − τ2| → 0.

These inequalities hold for any u1, u2, v1, v2 such that |ui|, |vi| ≤ M , i=1,2,

where M is an arbitrary positive constant, and K depends on M , and it is

independent of x ∈ R
n; τ1, τ2 ∈ [0, 1].

Condition 2: The following inequalities hold:

|F ′
u(u1, v, x, τ) − F ′

u(u2, v, x, τ)|, |F ′
v(u1, v, x, τ) − F ′

v(u2,v, x, τ)|
≤ K|u1 − u2|,

(3.4)

|F ′
u(u, v1, x, τ) − F ′

u(u, v2, x, τ)|, |F ′
v(u, v1, x, τ)− F ′

v(u,v2, x, τ)|
≤ K|v1 − v2||u|,

(3.5)

|F ′
u(u, v, x, τ1)− F ′

u(u, v, x, τ2)|, |F ′
v(u, v, x, τ1)− F ′

v(u,v, x, τ2)|
≤ Kg(x, τ1, τ2),

(3.6)

where K is a positive constant, and

‖g(x, τ1, τ2)‖L2∞,μ(R
n) → 0 as |τ1 − τ2| → 0.

These inequalities hold for any u1, u2, v1, v2 such that |ui|, |vi| ≤ M , i = 1, 2,

where M is an arbitrary positive constant, and K depends on M , and it is

independent of x ∈ R
n; τ1, τ2 ∈ [0, 1].

Condition 3: There exists a positive constant N such that

F ′
u(u, v, x, τ), F

′
v(u, v, x, τ) ∈ Cα(RN )

for any u, v, and τ ∈ [0, 1] fixed, where RN = {x ∈ R
n, |x| ≥ N}, α ∈ (0, 1).

Furthermore,

F ′
u(0, 0, x, τ), F

′
u(0, 0, x, τ) < −ε

for all |x| ≥ N , τ ∈ [0, 1], and some ε > 0.
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Lemma 3.1: If Condition 1 is satisfied, then the operator

A(u, τ) : E1 ×R → E2

is bounded and continuous.

Proof. Let u1, u2 ∈ Bρ ⊂ E1, where Bρ is a ball with radius ρ. Then

‖ui‖C(Rn) ≤ M, i = 1, 2,

where the constant M depends on ρ. From (3.1)–(3.3) we have the following

estimates:

|A(u1, τ1)−A(u2, τ2)|
≤ |Δ(u1 − u2)|+K(|u1 − u2|+ |I(u1)− I(u2)||u2|+ g(x, τ1, τ2)|u2|).

Here and in what follows K denotes any constant which depends only on ρ.

Then

(3.7)

‖A(u1, τ1)−A(u2, τ2)‖L2∞,μ(R
n) ≤K‖u1 − u2‖H2∞,μ(R

n)

+K|I(u1)− I(u2)|‖u2‖L2∞,μ(R
n)

+K‖u2‖C(Rn)‖g(x, τ1, τ2)‖L2∞,μ(R
n).

Since

|I(u1)− I(u2)| ≤
∫
Rn

1

μ(x)
|u1(x) − u2(x)|μ(x)dx

≤ K‖(u1 − u2)μ‖C(Rn)

≤ ‖u1 − u2‖H2∞,μ(R
n),

then it follows from (3.7) that

‖A(u1, τ1)−A(u2, τ2)‖L2∞,μ(R
n) → 0 as ‖u1 − u2‖H2∞,μ(R

n) → 0, |τ1 − τ2| → 0.

Hence the operator is continuous. Its boundedness obviously follows from (3.7).

The lemma is proved.

Next, consider the linearized operator

L(u0, τ0)u = Δu+ F ′
u(u0, I(u0), x, τ0)u+ F ′

v(u0, I(u0), x, τ0)I(u).

Lemma 3.2: If Conditions 2 and 3 are satisfied, then the operator L(u0, τ0) is

continuous with respect to (u0, τ0) in the operator norm.
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Proof. We have

L(u1, τ1)u− L(u0, τ0)u =(F ′
u(u1, I(u1), x, τ1)− F ′

u(u0, I(u0), x, τ0))u

+ (F ′
v(u1, I(u1), x, τ1)− F ′

v(u0, I(u0), x, τ0))I(u).

It follows from Condition 2 that

‖(F ′
u(u1, I(u0), x, τ0)− F ′

u(u0, I(u0), x,τ0))u‖L2∞,μ(R
n)

≤ K‖u1 − u2‖C(Rn)‖u‖L2∞,μ(R
n),

‖(F ′
u(u1, I(u1), x, τ0)− F ′

u(u1, I(u0), x,τ0))u‖L2∞,μ(R
n)

≤ K|I(u1)− I(u2)|‖u‖L2∞,μ(R
n),

‖(F ′
u(u1, I(u1), x, τ1)− F ′

u(u1, I(u1), x,τ0))u‖L2∞,μ(R
n)

≤ K‖g(x, τ1, τ2)u‖L2∞,μ(R
n)

≤ K‖g(x, τ1, τ2)‖L2∞,μ(R
n)‖u‖C(Rn)

≤ K‖g(x, τ1, τ2)‖L2∞,μ(R
n)‖u‖H2∞,μ(R

n),

and from Condition 3 that

‖(F ′
v(u1, I(u0), x, τ0)− F ′

v(u0, I(u0), x,τ0))I(u)‖L2∞,μ(R
n)

≤ K|I(u)|‖u1 − u2‖L2∞,μ(R
n),

‖(F ′
v(u1, I(u1), x, τ0)− F ′

v(u1, I(u0), x,τ0))I(u)‖L2∞,μ(R
n)

≤ |I(u1)− I(u0)||I(u)|‖u1‖L2∞,μ(R
n),

‖(F ′
v(u1, I(u1), x, τ1)− F ′

v(u1, I(u1), x,τ0))I(u)‖L2∞,μ(R
n)

≤ K|I(u)|‖g(x, τ1, τ2)‖L2∞,μ(R
n).

Taking into account that

‖u1 − u2‖C(Rn), |I(u1)− I(u2)| ≤ K‖u1 − u2‖H2∞,μ(R
n),

we conclude from the previous estimates that

‖L(u1,τ1)u− L(u0, τ0)u‖L2∞,μ(R
n)

≤K‖u1 − u2‖H2∞,μ(R
n)‖u‖H2∞,μ(R

n) + ‖g(x, τ1, τ2)‖L2∞,μ(R
n)‖u‖H2∞,μ(R

n).

Therefore,

‖L(u1, τ1)u − L(u0, τ0)u‖ → 0

in the operator norm as ‖u1 − u2‖H2∞,μ(R
n) → 0 and |τ1 − τ2| → 0. The lemma

is proved.
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Lemma 3.3: If Conditions 2 and 3 are satisfied, then the operator L(u0, τ0)

satisfies the Fredholm property with the zero index.

Proof. Consider, first, the operator

L1u = Δu+ F ′
u(u0, I(u0), x, τ0)u.

By virtue of Conditions 2 and 3, we can represent the derivative as a sum of

two functions,

F ′
u(u0, I(u0), x, τ0) = a0(x) + a1(x),

where a0(x) ∈ Cα(Rn) and a1(x) is a bounded function with a bounded support.

The operatorL0
1u = Δu+a0(x)u is normally solvable with a finite-dimensional

kernel. Indeed, all its limiting operators L̂u = Δu + â(x)u are invertible since

the limiting coefficients are such that â(x) ≤ −ε < 0 for all x ∈ R
n [20]. Fur-

thermore, it satisfies the Fredholm property, and it has the zero index since

it can be reduced by a continuous deformation to an invertible operator in the

class of normally solvable operators with a finite-dimensional kernel. From The-

orem 2.4 it follows that the operator L1 is Fredholm with the zero index. It

remains to note that the operator L(u0, τ0) differs from the operator L1 by a

finite-dimensional operator which does not change the Fredholm property and

index. The lemma is proved.

Example 3.4: Consider the following function arising in various applications:

F (u, I(u), x, τ) = u(1− I(u))− στ (x)u.

Suppose that στ (x) = σ0(x) + σ1,τ (x), where σ0(x) ∈ Cα(Rn), and σ1,τ (x)

is a bounded function with a bounded support such that σ1,τ1(x) → σ1,τ0(x)

in L2(Rn) as τ1 → τ0. Then the function F satisfies Condition 1, and its

derivatives satisfy Condition 2. Finally, if there exist limits σ0(±∞) < 0, then

Condition 3 is also satisfied.

3.2. Implicit function theorem. The results of the previous section allow

us to use the implicit function theorem in order to study the persistence of

solutions under small perturbations.

Theorem 3.5: Suppose that Conditions 1–3 are satisfied, and A(u0, τ0) = 0

for some u0 ∈ H2
μ,∞(Rn) and τ0 ∈ (0, 1). If the linearized operator A′

u(u0, τ0)

does not have a zero eigenvalue, then the equation A(u, τ) = 0 has a solu-

tion u ∈ H2
μ,∞(Rn) for all τ sufficiently close to τ0.
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The proof of the theorem directly follows from Lemmas 3.1–3.3 and the im-

plicit function theorem.

Example 3.6: In the previous theorem, we supposed that the linearized operator

does not have a zero eigenvalue. Consider an example where this condition can

be explicitly verified. Suppose that the equation

(3.8) Δu + au(1− I(u))− σ(x)u = 0

has a positive solution u0(x) decaying at infinity. Here a > 0, and the func-

tion σ(x) satisfies the conditions of Example 3.4. Consider the nonlinear oper-

ator

A(u) = Δu+ au(1− I(u))− σ(x)u

and the operator L linearized about u0:

Lv = A′(u0)v = Δv + av(1− I(u0))− σ(x)v − au0(x)I(v).

Suppose that it has a zero eigenvalue. Then

(3.9) Δv + av(1− I(u0))− σ(x)v = au0(x)I(v).

The operator

Lv = Δv + av(1− I(u0))− σ(x)v

has a zero eigenvalue with the eigenfunction u0(x). Since it is positive, then λ=0

is the principal eigenvalue of this operator, and it is simple (Lemmas 2.8 and 2.9).

Multiplying equation (3.9) by u0(x) and integrating, we conclude that

I(v)

∫ ∞

−∞
u2
0(x)dx = 0.

Hence, I(v) = 0, and from (3.9) we obtain

(3.10) Δv + av(1− I(u0))− σ(x)v = 0.

Since v = u0(x) is the only solution of this equation, and it is positive, we obtain

a contradiction with the equality I(v) = 0. This contradiction shows that the

linearized operator does not have a zero eigenvalue, and the implicit function

theorem is applicable.
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4. Existence of solutions

4.1. Topological degree. In this section, we will prove the existence of so-

lutions of equation (1.1) by the Leray–Schauder method using the topological

degree for elliptic operators in unbounded domains [20]. The construction of

the degree for Fredholm and proper operators is based on the notion of orien-

tation o(L) for a linear Fredholm operator L. It is given by the formula (−1)ν ,

where ν is the sum of multiplicities of all its positive eigenvalues. The ori-

entation of the operator is a homotopy invariant, it does not change under a

continuous deformation in the class of Fredholm operators. Next, we consider

the equation A(u) = a for a nonlinear Fredholm operator A. It is possible to

choose sufficiently small a (in the norm of the space) such that this operator

equation has a finite number of solutions ui, and the sum of the orientations

γ =
∑
i

o(A′(ui))

does not depend on a. Here A′(ui) is the operator linearized about the solu-

tion ui. The integer value γ is the topological degree.

In order to define the degree, the operator A(u, τ) : E1×R → E2 (Section 2.1)

should be:

(a) proper with respect to both variables u and τ ,

(b) it is assumed that the linearized operator Lv = A′
u(u, τ)v satisfies the

Fredholm property together with the operator Lλv = Lv − λv for all

real λ ≥ 0, and

(c) the operator Lλ has a uniformly bounded inverse for all λ ≥ λ0 for

some λ0 depending on the operator Aτ .

We will verify these conditions assuming that the function F (u, v, x, τ) satisfies

the following condition in addition to Conditions 1–3 formulated above.

Condition 4: Function F (u, v, x, τ) is bounded together with its first derivative

with respect to x ∈ R
n, and up to the third derivative with respect to u in

any bounded interval. It also satisfies estimates (3.2) and (3.3) in Condition 1.

Furthermore,

|F ′
v(u, v, x, τ)| ≤ K|u|

for any |u|, |v| ≤ M , τ ∈ [0, 1], where K depends on M .
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Lemma 4.1: If Conditions 3 and 4 are satisfied, then the operator A(u, τ) is

proper with respect to both variables u and τ , that is, the inverse image of any

compact set in E2 is compact in any bounded closed set in E1 ×R.

Proof. First, we prove that the operator A(u, τ) is proper for a fixed τ . Consider

a bounded sequence uk ∈ E1 and suppose that it converges locally in C to

some u0 ∈ E1. It is proved in [20] (Lemma 2.1, Chapter 11) that the operator

is proper if the convergence

(4.1) ‖A(u0, τ)−A(uk, τ)− L(u0)(u0 − uk)‖E2 → 0

occurs for any sequence uk and its limiting function u0, and the operator L(u0)

has a closed range and a finite-dimensional kernel. Here L(u0) = A′
u(u0, τ).

The required properties of the operator L(u0) follow from Condition 3.

Convergence (4.1) is proved for conventional elliptic operators without the

integral term, that is, it holds for the operator

A0(u, τ) = Δu+ F (u, I(u0), x, τ).

We have

A(u0, τ)−A(uk, τ) = A0(u0, τ)−A0(uk, τ) +A0(uk, τ)−A(uk, τ).

From convergence (4.1) for the operator A0

‖A0(u0, τ)−A0(uk, τ)− L(u0)(u0 − uk)‖E2 → 0,

and from (3.2)

‖A0(uk, τ)−A(uk, τ)‖E2 = ‖F (uk, I(u0), x, τ) − F (uk, I(uk), x, τ)‖E2

≤ |I(u0)− I(uk)| ‖uk‖E2 .

It remains to show that |I(u0)− I(uk)| → 0. Indeed,

I(u0)− I(uk) =

∫
Rn

1

μ(x)
((u0(x) − uk(x))μ(x))dx.

Since the function 1/μ(x) is integrable, and the functions

zk(x) = (u0(x)− uk(x))μ(x)

are uniformly bounded and locally converge to 0, then the desired convergence

takes place. Thus, convergence (4.1) is shown.
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In order to prove the properness of the operator A(u, τ) with respect to both

variables, it is sufficient to verify that the operator is continuous with respect

to τ in the operator norm (Section 2.3, Chapter 11, [20]). We have

‖A(u, τ)−A(u, τ0)‖E2 = ‖F (u, I(u), x, τ)− F (u, I(u), x, τ0)‖E2

≤ K‖g(x, τ1, τ2)|u|‖E2 .

It remains to note that |u| is bounded and ‖g(x, τ1, τ2)|u|‖E2 → 0. The lemma

is proved.

Lemma 4.2: If Conditions 3 and 4 are satisfied, then the operator Lλv=Lv−λv

satisfies the Fredholm property for all real λ ≥ 0, and it has a uniformly bounded

inverse for all λ ≥ λ0 for some λ0 depending on the operator Aτ .

Proof. The operator Lλ,

Lλv = Δv + F ′
u(u, I(u), x, τ)v + F ′

v(u, I(u), x, τ)I(v) − λv,

satisfies Condition 3 for any λ ≥ 0. Therefore, this is a Fredholm operator with

the zero index. The operator

L0,λv = Δv + F ′
u(u, I(u), x, τ)v − λv

is sectorial ([20], Chapter 6). For all λ sufficiently large it satisfies the estimate

‖v‖E1 ≤ K
‖L0,λv‖E2

|λ| .

Hence, by virtue of Condition 4,

‖v‖E1 ≤ K
‖Lλv‖E2

|λ| +K
‖F ′

v(u, I(u), x, τ)I(v)‖E2

|λ|
≤ K

‖Lλv‖E2

|λ| +K2 ‖u‖E1‖v‖E1

|λ| .

For all λ sufficiently large, this inequality provides the estimate of the inverse

to the operator Lλ. The lemma is proved.

Lemmas 4.1 and 4.2 provide the existence and uniqueness of the topological

degree for the considered class of operators. Therefore, we can use the Leray–

Schauder method to prove the existence of solutions. In the next section, we

obtain a priori estimates of solutions.
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4.2. A priori estimates. We consider the equation

(4.2) Δu+ au(1− I(u))− uf(u, x) = 0,

in R
n, n = 1, 2, 3, where x ∈ R, a > 0, I(u) =

∫
Rn u(y)dy. We suppose that u(x)

is integrable, and the integral I(u) is well defined.

Condition 5: Function f(u, x) is continuous together with its first partial deriva-

tives, |f ′
u(u, x)|, |f ′

x(u, x)| ≤ K, and 0 ≤ f(u, x) ≤ K for all u ≥ 0, x ∈ R
n.

Condition 6: Furthermore, f(u, x)− a ≥ ε > 0 for all u ≥ 0, |x| ≥ N and some

positive N .

Under these conditions, we will obtain a priori estimates of solutions given

by the following theorem.

Theorem 4.3: Suppose that the function f(u, x) satisfies Conditions 5 and 6.

Then any positive solution u0(x) of equation (4.2) decaying at infinity admits

the estimate ‖u0‖H2
μ,∞(Rn) ≤ M with some positive constant M independent of

the solution.

The proof of the theorem will be preceded by some auxiliary results.

Lemma 4.4: Suppose that Condition 5 is satisfied and equation (4.2) has a

positive integrable solution u0(x) decaying at infinity, |u0(x)| → 0 as |x| → ∞.

Then 0 < I(u0) < 1.

Proof. The left inequality in the assertion of the lemma follows from the posi-

tiveness of the solution. If the right inequality does not hold, then we consider

two cases, I(u0) > 1 and I(u0) = 1. In the first case, we obtain a contradiction

in signs in equation (4.2) at the point x = x0 where the function u0(x) attains

its maximum. In the second case, if f(u0(x0), x0) > 0, we obtain the same

contradiction in signs, as before. If f(u0(x0), x0) = 0, then u1(x) ≡ u0(x0) is

a solution of equation (4.2). The function z(x) = u1(x) − u0(x) satisfies the

corresponding linear equation

Δz + b(x)z = 0,

where

b(x) = (F (u1(x), x) − F (u0(x), x))/(u1(x)− u0(x)), F (u, x) = uf(u, x).

Since z(x) ≥ 0 for all x ∈ R
n, and z(x0) = 0, we obtain a contradiction with

the maximum principle.
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Let us write equation (4.2) in the following form:

(4.3) Δu = g(x),

where

g(x) = −au0(x)(1 − I(u0)) + u0(x)f(u0(x), x),

and u0(x) is a positive solution of (4.2). Then u0(x) is a solution of this equa-

tion, and by virtue of Theorem 3.2 (see Chapter 3, [20]), we have

(4.4) ‖u0‖H2∞(Rn) ≤ k(‖g‖L2∞(Rn) + ‖u0‖L2∞(Rn)).

Here and below we denote by k positive constants independent of the solution.

Lemma 4.5: Under the conditions of Lemma 4.4, the following inequality holds:

(4.5) ‖u0‖C2+α(Rn) ≤ k‖u0‖C(Rn),

where 0 < α < 1, k is a positive constant independent of the solution.

Proof. Note that

‖u0‖L2∞(Rn) ≤ km,

where m = supx∈Rn |u0(x)|. Due to Lemma 2.1, the function g(x) defined above

admits the following estimate:

‖g‖L2∞(Rn) ≤ k(a+K)m.

Therefore, from (4.4),

‖u0‖H2∞(Rn) ≤ k(a+K) sup
x∈Rn

|u0(x)|.

From the embedding theorems (n = 1, 2, 3) it follows that

(4.6) ‖u0‖Cα(Rn) ≤ k1‖u0‖C(Rn) (0 < α < 1).

Here and below k1 is a positive constant which depends only on a and K.

Next, we can estimate the Hölder norm of the function g(x) in (4.3):

‖g‖Cα(Rn) ≤ k1‖u0‖Cα(Rn) ≤ k1‖u0‖C(Rn).

Finally, from the Schauder estimate applied for equation (4.3), we obtain esti-

mate (4.5).
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Lemma 4.6: Under the conditions of Lemma 4.4,

(4.7) u0(x) ≥ u0(x0)
(
1− k1

2
(x− x0)

2
)
.

Proof. Let us recall that x0 is a global maximum of the function u0(x). This

maximum exists since this function is positive and decaying at infinity. We con-

sider an arbitrary straight line through the point x = x0, and we will estimate

the function u0(x) from below along this line.

We set v(t) = u0(x0 + x∗t), where x∗ belongs to the unit sphere, |x∗| = 1.

Then, the function v(t) is positive, decaying at infinity, it has a global maximum

at t = 0, v(0) = m, and, by virtue of Lemma 4.5, |v′′(t)| ≤ k1m. Hence,

|v′(t)| ≤
∫ t

0

|v′′(y)|dy ≤ k1mt, v(t) ≥ v(0)−
∫ t

0

|v′(y)|dy ≥ v(0)− k1m

2
t2.

This estimate implies (4.7).

Lemma 4.7: In the conditions of Lemma 4.5, ‖u0‖C2+α(Rn) ≤ k1.

Proof. From Lemmas 4.4 and 4.6, it follows that

1 > I(u0) >

∫
S

u0(x)dx > u0(x0)

∫
S

(
1− k1

2
(x− x0)

2
)
dx,

where S is the ball |x − x0| ≤
√

2
k1
. From this inequality, we get the esti-

mate ‖u0‖C(Rn) ≤ k1. We recall that k1 here is an arbitrary constant which

depends only on a and K. The assertion of the lemma follows now from the

Schauder estimate.

Remark 4.8: A similar estimate remains valid for the more general equation

Δu + F (u, I(u), x) = 0

if F (u, v, x) < 0 for v > v0 with some v0 > 0, and all u and x.

Proof of Theorem 4.3. From Lemma 4.7 it follows that supx∈Rn |u0(x)| ≤ M .

Here and below we denote by M positive constants independent of the solu-

tions. Consider the equation Δu − εu = 0 in the exterior domain |x| > N

with the boundary condition u(x) = M for |x| = N . Here N is determined in

Condition 6. It can be easily verified that u0(x) ≤ u(x) for |x| ≥ N . Therefore,

u0(x) ≤ Meνx for all x ∈ R
n and some ν > 0, and ‖u0‖L∞,μ(Rn) ≤ M .

Set v0(x) = u0(x)μ(x). Then ‖v0‖Lμ(Rn) ≤ M . Estimate (4.4) considered for

the corresponding operator completes the proof of the theorem.
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4.3. Existence of solutions.

Leray–Schauder method. We can now prove the existence of solutions by

the Leray–Schauder method. Let us briefly recall the corresponding construc-

tion. Consider an operator A(u, τ) : E1 → E2 acting in Banach spaces, and a

bounded domain Ω ⊂ E1. Suppose that

A(u, τ) 
= 0 for u ∈ ∂Ω, τ ∈ [0, 1].

Denote by γ(τ) the value of the degree corresponding to the operator A(u, τ)

and to the domain Ω. If γ(0) 
= 0, then, by virtue of homotopy invariance of the

degree, γ(1) 
= 0, and there exists a solution of the equation A(u, 1) = 0 inside

the domain Ω. The operator A(u, 1) is the one for which we want to prove the

existence of solutions, while A(u, 0) is a model operator for which we can prove

that the degree is different from 0.

Thus, in order to prove the existence of solutions we need to construct a

homotopy (continuous deformation) from some model operator A(u, 0) to the

given operator A(u, 1) in such a way that the operator does not vanish at the

boundary of the domain ∂Ω. Usually, Ω is taken to be a ball BR ⊂ E1 of a

sufficiently large radius R. Then a priori estimates of solutions, which affirm

that the norm of the solution is less than R, insure that there are no solutions

at the boundary of the domain. Since we want to prove the existence of only

positive solutions, we will use below a more complex construction of domain Ω.

Model operator. Consider the operator

A0(u) = Δu+ au(1− I(u))− f(0, x)u.

Suppose that the principle eigenvalue λ0 of the operator

L0u = Δu − f(0, x)u

satisfies the inequality −a < λ0 < 0. Then equation A0(u) = 0 has a single

positive solution u0(x) (Theorem 2.6), and the linearized operator A′(u0) does

not have zero eigenvalue (Example 3.6). The index of the stationary point

ind(u0), that is, the value of the degree with respect to a small ball containing

the solution, equals (−1)ν , where ν is the number of positive eigenvalues of the

linearized operator. It is well defined if the linearized operator does not have a

zero eigenvalue. Depending on the value of ν, it can be ±1. In what follows,

we will use that ind(u0) 
= 0.
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Existence theorem. The main existence result of this work is given by the

following theorem.

Theorem 4.9: Suppose that a function f(u, x) satisfies Conditions 5 and 6,

and the derivatives f ′′
u2 and f ′′′

u3 are bounded and continuous (cf. Condition 4).

Furthermore, the principal eigenvalue λ0 of the operator L0u = Δu − f(0, x)u

satisfies the inequality −a < λ0 < 0. Then the equation

Δu+ au(1− I(u))− uf(u, x) = 0

has a positive solution in the space H2
μ,∞(Rn).

Proof. We consider the operator A(u, τ) : E1 → E2, where E1 = H2
μ,∞(Rn)

and E2 = L2
μ,∞(Rn),

A(u, τ) = Δu + au(1− I(u))− u(τf(u, x) + (1− τ)f(0, x)).

Due to the imposed conditions and the results of the previous sections, it is a

Fredholm and proper operator with the zero index, and the topological degree

can be defined.

Since we want to prove the existence of positive solutions, and not to take

into account the trivial solution u = 0, we will construct a domain Ω which

contains all positive solutions and which does not contain non-positive solutions

(including the trivial solution). Set

D = {u ∈ E1, δ < ‖u‖E1 < R, u(x) > 0, x ∈ R
n},

where R > M , and M is the constant in Theorem 4.3, δ is a positive number.

The value of δ can be chosen sufficiently small such that any positive solution

of the equation A(u, τ) = 0, τ ∈ [0, 1] belongs to D. Indeed, suppose that

this assertion does not hold, and there is a sequence of positive solutions uk

for τ = τk such that ‖u‖E1 → 0 as k → ∞. Without loss of generality we can

assume that τk → τ0 ∈ [0, 1]. Then the linearized operator

A′(0, τ0)v = Δv + av − f(0, x)v

has a zero eigenvalue with a positive eigenfunction. Hence, this is the principal

eigenvalue. This contradicts the condition of the theorem.

It can be easily verified that if u0 is a solution of the equation A(u, τ) = 0

for some τ ∈ [0, 1] and u0 ∈ D, then any other solution u1 (possibly for a differ-

ent τ) sufficiently close to u0 in the norm E1 also belongs to D. Indeed, u1(x)

is positive in any bounded domain since it is sufficiently close to a positive



Vol. TBD, 2022 NONLOCAL REACTION-DIFFUSION EQUATION 25

solution u0(x). Its positiveness at infinity follows from Condition 6 which en-

sures that the solution cannot have a negative minimum. Thus, a ball Bρ(u0)

with center u0 and a sufficiently small radius ρ0 contains only positive solu-

tions (no trivial solution, negative or alternating sign solutions). It should be

noted that Bρ(u0) is not a subset of D because a function from this ball (not a

solution) can become negative for large |x|.
Consider the set S ⊂ D of all positive solutions of the equation A(u, τ) = 0,

τ ∈ [0, 1] and its covering with balls Bρ(u), where ρ can depend on the solution.

Since the operatorA(u, τ) is proper with respect to an ensemble of two variables,

the set S is compact, and we can choose a finite sub-covering Ω of this covering.

By virtue of the properties of the setD, domain Ω contains all positive solutions,

and it does not contain non-positive solutions. We consider the topological

degree with respect to the domain Ω.

The model problem A(u, 0) = 0 has a single positive solution (in Ω), and

γ(0) 
= 0. Since A(u, τ) 
= 0 for u ∈ ∂Ω, then γ(1) 
= 0, and there exists a

solution of equation A(u, 1) = 0 in Ω. The theorem is proved.
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aticheskĭı Sborornik 68 (1965), 373–416; English translation: American Mathematical

Society Translations 67 (1968), 182–225.

[20] V. Volpert, Elliptic Partial Differential Equations. Vol. 1, Monographs in Mathematics,

Vol. 101, Birkhäuser/Springer, Basel, 2011.

[21] A. I. Volpert and V. A. Volpert, Applications of the rotation theory of vector fields to the

study of wave solutions of parabolic equations, Transactions of the Moscow Mathematical

Society 52 (1990), 59–108.

[22] A. Volpert and V. Volpert, Spectrum of elliptic operators and stability of travelling waves,

Asymptotic Analysis 23 (2000), 111–134.

[23] A. Volpert and V. Volpert, Properness and topological degree for general elliptic opera-

tors, Abstract and Applied Analysis 2003 (2003), 129–181.



Vol. TBD, 2022 NONLOCAL REACTION-DIFFUSION EQUATION 27

[24] V. Volpert and A. Volpert, Location of spectrum and stability of solutions for monotone

parabolic systems, Advances in Differential Equations 2 (1997), 811–830.

[25] V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves,

Asymptotic Analysis 23 (2000), 111–134.




