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Abstract
The purpose of this work is the study of the qualitative behavior of the homogeneous in 
space solution of a delay differential equation arising from a model of infection dynam-
ics. This study is mainly based on the monotone dynamical systems theory. Existence and 
smoothness of solutions are proved, and conditions of asymptotic stability of equilibriums 
in the sense of monotone dynamical systems are formulated. Then, sufficient conditions 
of global stability of the nonzero steady state are derived, for the two typical forms of 
the function f, specifying the efficiency of immune response-mediated virus elimination. 
Numerical simulations illustrate the analytical results. The obtained theoretical results have 
been applied, in a context of COVID-19 data calibration, to forecast the immunological 
behaviour of a real patient.
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Introduction

Mathematical modelling of viral dynamics is studied in many recent articles and surveys 
[4, 22, 24, 36]. Models of immune response and infection dynamics can be governed by 
ordinary or partial differential equations including delay reaction-diffusion equations [1, 
17, 25, 26, 28]. If we neglect time delay in immune response and the spatial distribution 
of immune cells and viruses, then we obtain an ordinary differential equation or systems 
of equations [17, 25, 26]. Models taking into consideration the duration of clonal expan-
sion of immune cells lead to delay differential equations. To study the qualitative behaviour 
of solutions, many approaches and theories can be applied including dynamical systems 
theory. In a previous work by R. H Martin and H.L Smith [19], the authors showed that 
under some hypothesis, the delay reaction-diffusion equation and its homogeneous in space 
equation have the same asymptotic properties of solutions. In this paper we study the local 
and global stability of the homogeneous in space solution of the delay reaction-diffusion 
equation for infection dynamics recently proposed in [1].

Delay reaction–diffusion equation

is introduced in [3] as a model of viral infection spreading in tissues. Here u is the virus 
density distribution, f(u) is a continuous positive function which will be specified below. 
Virus reproduction is described by the logistic term u(1 − u) and its elimination by the 
immune cells is given by the term uf (u� ) , where u� (x, t) = u(x, t − �) , and the function f(u) 
specifies the efficiency of immune response-mediated virus elimination. The strength of 
the antiviral immune response given by the value of f (⋅) depends on virus concentration at 
time t − � due to the duration of proliferation and maturation of immune cells. As detailed 
in [1], the homogeneous in space delay reaction-diffusion equation is

The two above equations were considered by authors in [1]. They studied their dynam-
ics and stability and gave significant numerical simulations in 1D and 2D cases. They 
identified various new regimes in the dynamics of delay reaction-diffusion equation and 
established that the dynamics of space dependent solutions are described by a combina-
tion of various waves, notably, bistable, mono-stable, periodic and quasi-waves. However, 
they discussed more briefly the stability of steady states for the associated delay differential 
equation.

Motivated by their work, we focus particularly on the given delay differential equation 
corresponding to the delayed reaction-diffusion Eq. (1.2). Our purpose is to establish a non-
classical stability result using the monotone dynamical systems approach rarely applied to 
equations arising from immune response models. We recall as pointed out before that in a 
previous work of Martin and Smith [19], the authors showed that under some hypothesis, 
the delayed reaction-diffusion equation and its homogeneous in space equation have the 
same asymptotic behaviour of solutions.

In the late twenties and early thirties of the last century, pioneering ideas on monoto-
nicity for ordinary differential equations have been the subject of two famous and impor-
tant research articles written by Muller and Kamke [13, 23]. Then the work of Krasno-
selskii [14, 15] opens new opportunities for understanding the qualitative behaviour of 

(1.1)
�u

�t
= KΔu + u(1 − u − f (u� )),

(1.2)
{

u�(t) = u(t)(1 − u(t) − f (u(t − �))) for t ≥ 0,

u(t) = �(t) for − � ≤ t ≤ 0.
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positive solutions of operator equations and their trajectories. The transition to a rigor-
ous mathematical theory of monotonicity for dynamical systems is largely due to the 
results proved by Hirsch in a series of articles entitled “Systems of differential equations 
that are competitive or cooperative" [9–11]. Many concepts, definitions and theorems 
have been proved and presented in Hirsch’s works above, such as generic convergence 
under strong monotonicity and compactness assumption and properties of strongly order 
preserving semi-flows associated with ordinary differential equations. It should be noted 
that the notion of strongly order preserving semi-flow was first introduced by Matano in 
[20].

The complete final version of the theory in its general aspect on metric ordered 
spaces has been the subject of the fundamental work of Smith and Thieme [31–34]. 
In this work, the ideas of Kamke, Muller, Krasnoselskii, Matano and Hirsch have been 
generalised, streamlined and simplified. The book of Smith [30] may serve as a back-
ground reference for readers who are interested in learning or applying the classical the-
ory of monotone dynamical systems. We should also cite the important article of Pituk 
[27] where local stability of non-quasimonotone scalar autonomous delay differential 
equations was detailed and ameliorated. Later, Yi and collaborators introduced the 
concept of essentially strongly order-preserving semi-flows and provided a simplified 
compactness assumption [39, 40]. Recently, and using the results of [40], Niri and El 
Karkri have established a simplified framework for stability analysis of equilibriums for 
nonquasimonotone autonomous scalar delay differential equations [5, 6]. The obtained 
theorems have been applied in the same articles to an SIS compartmental epidemiologi-
cal model with infection period, variable population size and deaths caused by infection 
[5, 6].

In the present paper, the method is mainly based on the framework developed in [5, 6]. 
We aim to establish sufficient conditions of local and global asymptotic stability for the 
equilibria of the Eq. (1.2). We prove that for certain values of this model’s parameters the 
equilibriums are asymptotically stable and under particular conditions we get the global 
stability of nonzero equilibrium.

It is important to verify that monotone dynamical systems theory has its special defini-
tions of stability. The reader is referred to a short comparative study published in [7] where 
authors prove that an equilibrium x∗ is asymptotically stable in the sense of the monotone 
dynamical systems theory if and only if it is uniformly asymptotically stable in the sense of 
the classical theory of stability (see Proposition 3 in [7]).

We organize the rest of this paper as follows. The next section provides some prelimi-
nary results concerning existence, regularity and smoothness of solutions of autonomous 
scalar delay differential equations as well as a reminder of some important results of mono-
tone dynamical systems theory for non-quasimonotone scalar delay differential equations. 
Most of the results and definitions in this section are taken from [5, 6, 8, 27, 30, 40]. In 
Sect. 3, the delay differential equation is presented, related existence, equilibria and regu-
larity results are provided. In Sect. 4, we study asymptotic stability, in first place for the 
infection free equilibrium v0 = 0 , then for the nonzero equilibrium (0 < v∗ < 1) in the 
cases of strictly positive and strictly negative derivative f �(v∗) . Global stability results are 
presented in Sects. 5 and  6 with distinction of two forms of the function f namely for non-
decreasing function and for changing monotonicity one. Numerical simulations illustrate 
theoretical results of global stability. In Sect. 7, real clinical data of a COVID-19 patient 
have been used to calibrate models parameters for two particular forms of f(u), and numeri-
cal simulations have been exploited to forecast the immunological behaviour of the patient. 
We summarize our conclusion and discuss our findings at the end of the paper.
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Preliminaries

For readers’ convenience, we recall some concepts, definitions and theorems which will 
be used in the rest of this paper. For 𝜏 > 0 , let 

(
C, ∥ . ∥∞

)
 denote the Banach space of 

continuous functions mapping [−�, 0] into ℝ with the maximum norm ∥ . ∥∞ defined by 
∥ � ∥∞= sup

x∈[−�,0]
∣ �(x) ∣ for all � ∈ C . Let Π be an open subset of C and h ∶ Π → ℝ be 

continuous and Lipschitzian in every compact subset of Π . Consider the autonomous 
functional differential equation

where � ∈ Π is the initial condition and xt(�) = x(t + �) for all (t, �) ∈ [0,+∞[×[−�, 0].

Theorem  2.1  (Existence, continuity and smoothness of solutions [8]) Let Π be an open 
subset of C and suppose that h ∶ Π → ℝ is continuous and Lipschitzian in every compact 
subset of Π . If � ∈ Π , then problem (2.3) has a unique solution x(.,�) = x� defined for 
t ≥ −� . If h is Ck on Π then x� is Ck+1 on [k.�,+∞[.

Put Ω = Π , and assume that h is defined on Ω . The delay differential Eq. (2.3) is said 
to satisfy the Assumption (TD1) on Ω if h maps bounded subsets of Ω to bounded sub-
sets of ℝ , and the positive semi-orbit of every solution of (2.3) with � ∈ Ω is bounded. 
See for instance [5, 40]. For 𝜇 > 0 , consider the set

As pointed out in [27, 30], C� is a closed cone in the Banach space C with empty interior. 
C� generates a closed partial order denoted by ≤� and defined as follows:

i.e, � ≤� � ⟺ � ≤ � and s ⟼ (�(s) − �(s))e�s is non-increasing on [−�, 0] . We write 
𝜙 <𝜇 𝜓 if � ≤� � and � ≠ � . The reader is referred to [5, 27, 30] for further details on the 
partial order ≤� .

Definition 2.2  A continuous linear functional G ∶ C ⟶ ℝ is said to satisfy the (L�) prop-
erty if for some 𝜇 > 0 : (L�) ∶ G(�) + ��(0) ≥ 0 whenever � ∈ C and � ≥� 0.

For all v ∈ ℝ we denote v̂ ∈ C the constant function v̂ defined by v̂(𝜃) = v for all 
� ∈ [−�, 0] . Consider the function h̃ defined on {v ∈ ℝ∕ v̂ ∈ Ω} by

for all v in {s ∈ ℝ∕ ŝ ∈ Ω} . The delay differential equation (2.3)is said to satisfy the (SM�) 
property on Ω if there exists 𝜇 > 0 such that for all �,� ∈ Ω:

The theorem bellow illustrates the importance of the (L�) assumption in the asymptotic 
stability analysis of equilibriums [27, 30].

(2.3)
{

x�(t) = h(xt) for t ≥ 0,

x(t) = �(t) for − � ≤ t ≤ 0,

C� = {� ∈ C; � ≥ 0 and s ⟼ �(s)e�s is nondecreasing on [−�, 0]}.

∀�,� ∈ C ∶ � ≤� � ⟺ � − � ∈ C�,

(2.4)h̃(v) = h(v̂(t))

𝜙 <𝜇 𝜓 ⟹ 𝜇(𝜓(0) − 𝜙(0)) + h(𝜓) − h(𝜙) > 0.



Differential Equations and Dynamical Systems	

1 3

Theorem 2.3  Consider the delay differential Eq. (2.3). Let h̃ defined by (2.4). Suppose that 
h is continuously differentiable in a neighbourhood of an equilibrium x∗ of (2.3) and dh(x∗) 
verifies (L�) for some 𝜇 > 0 , then: 

	 (i)	 If h̃�(x∗) < 0 then x∗ is asymptotically stable.
	 (ii)	 If h̃�(x∗) > 0 then x∗ is unstable.

We recall, as mentioned in the previous section, that here we mean by asymptotically 
stable, asymptotic stability in the sense of monotone dynamical systems theory which is 
equivalent to uniform asymptotic stability in the sense of the classical theory of stability. 
As explained in [27], under the assumption (L�) satisfied by dh(x∗) , the stability of the 
equilibrium x∗ of (2.3) is exactly the same as for the ordinary differential equation obtained 
from (2.3) by ‘‘ignoring the delays’’. A subset H of C is said to be order convex if for all 
�1 , �2 ∈ H such that �1 ≤� �2 we have 

{
𝜈 ∈ C∕𝜈1 ≤𝜇 𝜈 ≤𝜇 𝜈2

}
⊂ H (see [30]). An efficient 

tool for obtaining global convergence for the delay differential Eq. (2.3) has been obtained 
by J.El Karkri et  al by combining results of [30] and [40]. More precisely, we have the 
theorem recently formulated and proved in [5] where we assume that initial values of the 
delay differential Eq. (2.3) belong to Ω.

Theorem 2.4  Let E denote the set of equilibriums of the delay differential Eq. (2.3). Assume 
that f satisfies the assumptions (SM�) and (TD1). Then Ω contains an open and dense 
subset of convergent points. If the set of equilibriums E consists of a single point, then it 
attracts all solutions of (2.3). If Ω is order convex and E consists of two points, then each 
solution of (2.3) converges to one of them.

The Model and the Delay Differential Equation

The delay differential Eq. (1.2) can be written as

where ut(�) = u(t + �) for all (t, �) ∈ [0,+∞[×[−�, 0] , and

In all this article the function f is assumed to be of class C1 on an interval ]a, b[ such that 
[0, 1] ⊂]a, b[ , with f (x) > 0 for all x ∈ [a, b].

Theorem  3.1  (Existence, continuity and smoothness of solutions) For all 
� ∈ C([−�, 0], [0, 1]) , the delay differential Eq. (3.5) has a unique solution 
u(�, .) ∶ t ⟼ u(�, t) defined on [−�,+∞[ . Furthermore, u(�, .) is continuous on [−�,+∞[ 
and of class C1 on [0,+∞[ and u(�, t) = u�(t) ∈ [0, 1] for all t ≥ 0.

Proof  Let � ∈ C([−�, 0], [0, 1]) . Then � ∈ C([−�, 0], ]a, b[) . Since f is C1 on ]a, b[,

(3.5)
{

u�(t) = F(ut) for t ≥ 0,

u(t) = �(t) for − � ≤ t ≤ 0,

F ∶C([−�, 0],ℝ) ⟶ ℝ

� ⟼ F(�) = �(0)(1 − �(0) − f (�(−�))).
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is C1 on the open subset C([−�, 0], ]a, b[) of C. Then F is continuous and Lipschitzian on all 
compact subsets of C([−�, 0], ]a, b[) . According to Theorem 2.1, the delay differential Eq. 
(3.5) has a unique continuous solution u(� , .) = u� (.) on [−�,+∞[ . By the same theorem, 
we have u(� , .) is C1 on [0 +∞[ . 	�  ◻

Theorem 3.2  Under hypothesis of Theorem 3.1, we have u�(t) ∈ [0, 1] for all t ∈ [0,+∞[, 
that is C([−�, 0], [0, 1]) is positively invariant for the semi-flow generated by the delay dif-
ferential Eq. (3.5) (see [30] for the definition and the properties of positively invariant 
subsets).

Proof  Assume that � ∈ C([−�, 0], ]0, 1[) . Let us prove that u�(t) ∈ [0, 1] for all t ∈ [0,+∞[. 
Assume that 

{
t ≥ 0 ∶ u𝜑(t) > 1

}
≠ � . Put t0 = inf

{
t ≥ 0 ∶ u𝜑(t) > 1

}
 and u = u� . We have 

t0 ≥ 0 , u(t0) = 1 and u�(t0) = u(t0)(1 − u(t0) − f (u
(
t0 − �

)
)) . Thus,

The inequality u�(t0) < 0 is in contradiction with the minimality of t0 . Consequently, {
t ≥ 0 ∶ u𝜑(t) > 1

}
= � , and then u�(t) ≤ 1 for any t ≥ 0.

Now assume that 
{
t ≥ 0∕u�(t) = 0

}
≠ � . Put t1 = inf

{
t > 0∕u𝜑(t) = 0

}
 and u = u� . We 

have u(t1) = 0 for t1 ≥ 0 and u(t) > 0 for all t < t1 . Thus, u(t) > 0 for all t < t1 , and

Thus, u(t) > 0 and 
d ln (u(t))

dt
= 1 − u(t) − f (u(t − �)), for all t < t1 . Then,

On the other hand, lim
t→t1
t<t1

u(t) = u(t1) = 0 . Thus, lim
t→t1
t<t1

ln(u(t)) = −∞ , in contradiction with 

lim
t→t1
t<t1

d ln(u(t))

dt

(
t = t1

)
= 1 − f

(
u
(
t1 − 𝜏

))
∈ ℝ . This means that the assumption 

{
t ≥ 0∕u𝜑(t) < 0

}
≠ � fails. Consequently 

{
t ≥ 0∕u𝜑(t) < 0

}
= � which means that 

u�(t) ≥ 0 for all t ∈ [−�,+∞[ . We conclude that u�(t) ∈ [0, 1] for all t ∈ [0,+∞[ . In other 
words, u�(t) ∈ [0, 1] for all � ∈ C([−�, 0], ]0, 1[) and all t ∈ [0,+∞[ . Take now 
� in C([−�, 0], [0, 1]) = C([−�, 0], ]0, 1[) . There exists 

(
�n

)
n∈ℕ

 in (C([−�, 0], ]0, 1[))ℕ such 
that lim

n→+∞
‖�n − �‖∞ = 0 . By the previous result we have u�n

(t) ∈ [0, 1] for all n ∈ ℕ and 
all t ≥ 0 . By continuity of solutions we have lim

n→+∞
u�n

(t) = u� (t) for all t ≥ 0 , with 
0 ≤ u�n

(t) ≤ 1 for all n ∈ ℕ . Thus, 0 ≤ lim
n→+∞

u�n
(t) ≤ 1 for all t ≥ 0 . Then we have 

0 ≤ u� (t) ≤ 1 for all t ≥ 0 . We have proved that 0 ≤ u� (t) ≤ 1 for all � ∈ C([−�, 0], ]0, 1[) 
and all t ≥ 0 . 	�  ◻

It is clearly seen that the function F is differentiable on C([−�, 0], [0, 1]) . Moreover,

F ∶ � ↦ F(�) = �(0)(1 − �(0) − f (�(−�))

u�(t0) =u(t0)
(
1 − u(t0) − f (u

(
t0 − 𝜏

))

=1
(
1 − 1 − f (u

(
t0 − 𝜏

))
= −f

(
u
(
t0 − 𝜏

))
< 0.

u�(t)

u(t)
= 1 − u(t) − f (u(t − �).

lim
t→t1
t<t1

d ln (u(t))

dt
= 1 − u(t1) − f

(
u
(
t1 − 𝜏

))
= 1 − f

(
u
(
t1 − 𝜏

))
.
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for any (�,�) in C([−�, 0], [0, 1]) × C. As pointed out in [1], the function f has two typical 
forms in our context (see Fig. 1 in [1]).

Equilibrium points: The steady state equation is F(u) = 0 which has the solutions 
v0 = 0 , and all v∗ ∈ ]0, 1 ] satisfying f (v∗) = 1 − v∗ . The existence and the number of non-
trivial equilibriums v∗ depend on the form of the function f. In the next section we provide 
an asymptotic stability analysis of all equilibriums without any additional restriction on 
the form or on the smoothness of the C1 nonnegative function f. Contrariwise, for global 
convergence and global asymptotic stability analysis supplementary hypothesis on f will be 
indispensable.

Asymptotic Stability of Equilibriums

In this section, we discuss the conditions for the local stability of the zero and nonzero 
steady states of the delay differential Eq. (3.5). The technique of proofs is an application of 
the results of Theorem 2.3. More precisely, in Sect. 4.1 we prove that asymptotic stability 
of the zero equilibrium depends on the sign of f (0) − 1 . Conditions of asymptotic stabil-
ity of the nonzero equilibrium v∗ are formulated in Sect.  4.2 in the case f �(v∗) < 0 and in 
Sect.  4.3 for the case f �(v∗) > 0.

Asymptotic Stability of the Zero Equilibrium

Theorem 4.1  If the nonnegative C1 function f satisfies the condition f (0) > 1 , then the equi-
librium 0 is asymptotically stable. If f (0) < 1 , then the equilibrium 0 is unstable.

dF(�)(�) = (1 − 2.�(0) − f (�(−�))).�(0) − �(0).f �(�(−�)).�(−�),

Fig. 1   The two typical forms of the function f as presented in [1]
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Proof  It is clearly seen that F is differentiable in 0 and the linearised equation at u = 0 
is v� = (1 − f (0)).v . Furthermore, dF(0)(�) = (1 − f (0))�(0) for all � ∈ C . Thus, for 
𝜇 > 1 + ‖f‖∞ and all 𝜓 𝜇 > 0 we have dF(0)(𝜓) + 𝜇𝜓(0) > 0 . Hence, (L�) holds for 
dF(0). As in Eq. (2.4), one can write �F(x) = F(x̂) for all x ∈ [0, 1] , where x̂(𝜃) = x for all 
� ∈ [−�, 0] . It is clearly seen that

Since F̃(x) = x(1 − x − f (x)) for all x ∈ [0, 1] , we have F̃�(x) = 1 − 2x − f (x) − xf �(x) for 
all x ∈ [0, 1] . Particularly F̃�(0) = 1 − f (0) . It follows that, if f (0) > 1 , then F̃�(0) < 0. In 
other words and by Theorem 2.3, 0 is asymptotically stable. Otherwise, if f (0) < 1 , then 
F̃�(0) > 0 , and then 0 is unstable. The proof is completed. 	�  ◻

Asymptotic Stability of the Equilibrium v∗ if f�(v∗) < 0

Let v∗ be a nonzero equilibrium of the delay differential Eq. (3.5). In this section we assume 
that f �(v∗) < 0 . We have

However, 1 − v∗ − f (v∗) = 0 , as v∗ is an equilibrium. Thus,

Theorem 4.2  Let v∗ be a non zero equilibrium of the delay differential Eq. (3.5) such that 
f �(v∗) < 0.

•	 If −1 < f �(v∗) < 0 , then the equilibrium v∗ is asymptotically stable.
•	 If f �(v∗) < −1 , then v∗ is unstable.

Proof  Let 𝜇 > 0 and 𝜓 𝜇 > 0 . We have

Obviously, 𝜓(0) > 0 and �(−�) ≥ 0 . Since f �(v∗) < 0 , we have

Then, for 𝜇 > v∗ , we have dF(v∗)(𝜓) + 𝜇.𝜓(0) > 0 . Hence, the property (L�) holds for 
dF(v∗) . We can clearly see that

Moreover, F̃�(v∗) > 0 ⇔ f �(v∗) < −1 . The theorem is then proved. 	�  ◻

x̂ ∈ C([−𝜏, 0], ]0, 1[) = C([−𝜏, 0], [0, 1]), ∀x ∈ [0, 1].

{
F̃�(v∗) = 1 − 2.v∗ − f (v∗) − v∗.f �(v∗)

dF(v∗)(𝜓) = (1 − 2.v∗ − f (v∗)).𝜓(0) − v∗.f �(v∗).𝜓(−𝜏) for all 𝜓 ∈ C

{
F̃�(v∗) = −v∗ − v∗f �(v∗) = −v∗(1 + f �(v∗))

dF(v∗)(𝜓) = −v∗.𝜓(0) − v∗.f �(v∗).𝜓(−𝜏) for all 𝜓 ∈ C

{
� ≥ 0 and � ≠ 0

s ↦ �(s)e�s is increasing

dF(v∗)(�) + �.�(0) = [� − v∗]�(0) − v∗f �(v∗)�(−�) ≥ (� − v∗)�(0).

F̃�(v∗) < 0 ⇔ 1 + f �(v∗) > 0 ⇔ f �(v∗) > −1.
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Asymptotic Stability of the Equilibrium v∗ if f�(v∗) > 0

Let v∗ be an equilibrium of the delay differential Eq. (3.5) such that v∗ > 0 . In this section 
we assume that f �(v∗) > 0 . Consider the following assumption:

Theorem 4.3  Let v∗ be a non zero equilibrium of the delay differential Eq. (3.5) such that 
f �(v∗) > 0 . If the condition (H1) is satisfied, then v∗ is asymptotically stable.

Proof  We have

Let us set

We have dF(v∗)(�) = ��(0) + ��(−�) for all � ∈ C . According to Theorem.1.1 of [5], 
dF(v∗) satisfies (L�) if and only if one of the two following statements hold:

Here (a) is not satisfied. It is clearly seen that (H1) implies that hypothesis (b) holds, and 
then dF(v∗) verifies (L�) . Since f �(v∗) > 0 , we have

Then, Theorem 2.3 applies and the equilibrium v∗ is asymptotically stable. 	�  ◻

Global Stability of the Non‑Zero Equilibrium for the First Typical Form 
of f

Here the function f is assumed to be non decreasing, (Fig. 1, left). The function is assumed 
to be sufficiently small, such that f1 = f (0) < 1 . Consider the following assumption

Proposition 5.1  If (HG) holds, then the assumption 
(
SM�

)
 holds for the delay differential 

Eq. (3.5) on C([−�, 0], [0, 1]).

ln

(
1

𝜏v∗f �(v∗)

)
> 1 + 𝜏v∗. (H1)

dF(v∗)(�) = −v∗.�(0) − v∗.f �(v∗).�(−�) for all � ∈ C.

⎧⎪⎨⎪⎩

� = −v∗,

� = −v∗f �(v∗),

�− = min(�, 0).

{
(a) 𝜆 + 𝜂− > 0,

(b) 𝜆 + 𝜂− < 0, 𝜏|𝜂| < 1 and 𝜏𝜆 − ln(𝜏|𝜂|) > 1.

F̃�(v∗) = −v∗(1 + f �(v∗)) < 0.

ln

�
1

𝜏. ∥ f � ∥∞

�
> 𝜏(‖f‖∞ + 1) + 1. (HG)
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Proof  Assume that (HG) holds. Let �,� ∈ C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) be such 
that 𝜙 <𝜇 𝜓 for 𝜇 > 0 . By the same arguments as in the proof of Theorem 4.1 in [5], one 
can affirm that there exists � ∈ [0, 1] such that

where � = �.� + (1 − �).� . Thus,

Since 𝜙 <𝜇 𝜓 , we have (� − �)(−�) ≤ e�.� .(� − �)(0) . Moreover, as f �(�(−�)) ≥ 0 , we 
get

Then,

Since f (�(−�)) ≤∥ f ∥∞,      0 ≤ �(0) ≤ 1   and     0 ≤ f �(�(−�)) ≤∥ f � ∥∞ , we have

It results that,

It can be clearly seen that (HG) ⟺
[
∃𝜇 > 0 ∕ 𝜇 − 1− ∥ f ∥∞ − ∥ f � ∥∞ .e𝜇.𝜏 > 0

]
 . 

Consequently, the condition (HG) implies that there exists 𝜇 > 0 such that, for all 𝜙 <𝜇 𝜓 
in C([−�, 0], [0, 1]) , we have

That is (HG) implies that 
(
SM�

)
 holds for the delay differential Eq. (3.5) on 

C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) . 	� ◻

Theorem 5.2  If hypothesis (HG) holds, then for all � ∈ C([−�, 0], ]0, 1]) , we have

Proof  F is clearly continuous on C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) . Furthermore, from 
Theorem 3.1, all solutions of Eq. (3.5) starting from C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) 
are bounded. Thus, condition (TD1) above is fulfilled by the delay differential Eq. (3.5). 
From Proposition 5.1, the assumption 

(
SM�

)
 holds for the delay differential Eq. (3.5) on 

C([−�, 0], [0, 1]) . The delay differential equation (3.5) has two equilibriums in the convex 
order subset C([−�, 0], [0, 1]) of C. Thus, by Theorem 2.4 , each solution of Eq. (3.5) start-
ing from C([−�, 0], [0, 1]) converges to an equilibrium. Let � ∈ C([−�, 0], ]0, 1]) and 

F(�) − F(�) =dF(�)(� − �)

=[1 − 2.�(0) − f (�(−�))](� − �)(0) − �(0)f �(�(−�)).(� − �)(−�),

F(�) − F(�) + �(� − �)(0) =[1 − 2.�(0) − f (�(−�)) + �].(� − �)(0)

− �(0)f �(�(−�)).(� − �)(−�).

−�(0)f �(�(−�)).(� − �)(−�) ≥ −�(0).f �(�(−�)).e�.� .(� − �)(0).

F(�) − F(�) + �(� − �)(0)

≥
[
� + 1 − 2.�(0) − f (�(−�)) − �(0).f �(�(−�)).e�.�

]
.(� − �)(0).

[� + 1 − 2.�(0) − f (�(−�)) − �(0).f �(�(−�)).e�.� ].(� − �)(0) ≥

[� − 1− ∥ f ∥∞ − ∥ f � ∥∞ .e�.� ].(� − �)(0).

F(�) − F(�) + �(� − �)(0) ≥ [� − 1− ∥ f ∥∞ − ∥ f � ∥∞ .e�.� ].(� − �)(0).

F(𝜓) − F(𝜙) + 𝜇(𝜓 − 𝜙)(0) > 0.

lim
t→∞

u(�, t) = v∗.
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assume by contradiction that lim
t→∞

u(�, t) = 0. We set u(t) = u(t,�) . By the same arguments 
used in the proof of Theorem 3.2, we have u(t) > 0, ∀t ≥ −𝜏. This allows us to write

Introducing the limit when t goes to infinity, we obtain

While 1 − f (0) > 0. Thus,

Which means that u is strictly increasing on [t̃,+∞[ with

This is contradictory. In other words, the hypothesis that lim
t→+∞

u(t) = 0 is false. Since the 
solution converges to an equilibrium, we the have lim

t→+∞
u(t) = v∗ . Therefore, the assertion 

of the theorem holds. 	�  ◻

Theorem 5.3  If (HG) holds, then the positive equilibrium v∗ is globally asymptotically sta-
ble on C([−�, 0], ]0, 1]).

Proof  By (HG) we have

Since 0 < v∗ ≤ 1 and 0 < f �(v∗) ≤∥ f � ∥∞ , we have

Thus,

Hence, condition 
(
H1

)
 holds. Then, by Theorem 4.3 we have the asymptotic stability of v∗ . 

From Theorem 5.2, all solutions starting from C([−�, 0], ]0, 1]) converge to v∗ . Finally, v∗ is 
globally asymptotically stable on C([−�, 0], ]0, 1]) . 	�  ◻

Let study now the convergence of solutions starting from C([−�, 0], [0, 1]).

u�(t)

u(t)
= 1 − u(t) − f (u(t − �)), ∀t ≥ −�.

u�(t)

u(t)
→t→+∞ 1 − 0 − f (0).

∃ t̃ > 0 such that ∀t ≥ t̃,
u�(t)

u(t)
> 0.

{
u(t) > 0, ∀t ≥ t̃;

lim
t→+∞

u(t) = 0.

ln

�
1

𝜏. ∥ f � ∥∞

�
> 𝜏(‖f‖∞ + 1) + 1.

⎧⎪⎨⎪⎩

ln

�
1

�v∗f �(v∗)

�
≥ ln

�
1

�. ∥ f � ∥∞

�
,

�(‖f‖∞ + 1) + 1 ≥ 1 + �v∗.

ln

(
1

𝜏v∗f �(v∗)

)
> 1 + 𝜏v∗.
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Theorem 5.4  Assume that (HG) holds. The following statements are equivalent.

(H1) lim
t→+∞

u(t) = 0

(H2) (∀a, b ∈ [−�,+∞[) ∕b − a ≥ � we have {a ≤ t ≤ b∕ u(t) = 0} ≠ �.

Proof  We have implicitly showed in the proof of Theorem 3.2 that C([−�, 0], ]0, 1]) is posi-
tively invariant. Assume that condition (H2) fails. Then, there exists b ≥ 0 such that for all 
t ∈ [b − �, b] we have 0 < u(t) ≤ 1 . That is ub ∶ � ↦ u(t + b) on [−�, 0] is in the positively 
invariant subset C([−�, 0], ]0, 1]) of C. By Theorem  5.2, we have lim

t≥b
t→+∞

u(t) = v∗ . That is 

lim
t→+∞

u(t) = v∗ . Then, assumption (H1) fails. Finally “ Non(H2) ⟹ Non(H1) ”. Then 
(H1) ⟹ (H2) . Assume now that (H2) is satisfied. It’s clearly seen that there exists a 
sequence 

(
tn
)
n∈ℕ

 such that lim
n→+∞

tn = +∞ and (∀n ∈ ℕ) u(tn) = 0 . Then, lim
n→+∞

u
(
tn
)
= 0 . 

Since lim
t→+∞

u(t) exists and belongs to {0, v∗} , obviously lim
t→+∞

u(t) = 0 . That is (H1) holds. 
Thus, (H2) ⟹ (H1) . The proof is completed. 	� ◻

Example of the First Typical Form of f: Linear Function

Consider f (u) = k1u + k2 , with k1 > 0 and 0 < k2 < 1 . The unique nonzero equilibrium is 
v∗ =

1 − k2

1 + k1
 . We have ∥ f � ∥∞= k1 and ∥ f ∥∞= k1 + k2 . Condition (HG) in this case is

Let take � = 1 , k2 = f (0) = 0.1 and k1 = 0.1 . (HG) is clearly satisfied. The nonzero equilib-
rium is v∗ ≃ 0.82 . In Fig. 2, numerical simulations for different initial values illustrate the 
global stability. As we see, solutions converge to the non zero equilibrium.

Global Stability of the Non‑Zero Equilibrium for the Second Typical 
Form of f

As explained in [3], experimental observations show that, in many cases, the intensity of the 
immune response has a bell-shaped dependence on the concentration of virus, i.e., it increases 
at low and decays at high infection levels [3]. This illustrates the fact that when virus concen-
tration u(t) increases for the first time, the function f(u(t)) should increase quickly so as that 
the concentration of virus at time t + � , u(t + �) , decreases as illustrated in Eq. (1.2). Here f is 
assumed to have the form in the right hand side of Fig. 1 (bell-shaped form).

Put ∥ f � ∥+
∞
= max

{
f �(x) ∶ x ∈ [0, 1], f �(x) ≥ 0

}
 . It is clearly seen that

Denote by 
(
HG+

)
 the assumption

ln

�
1

𝜏. ∥ f � ∥∞

�
> 𝜏(‖f‖∞ + 1) + 1 ⟺ ln

�
1

𝜏.k1

�
> 𝜏(k1 + k2 + 1) + 1.

(∀x ∈ [0, 1]) max(0, f �(x)) ≤∥ f � ∥+
∞
.

ln

�
1

𝜏. ∥ f � ∥+
∞

�
> 𝜏(‖f‖∞ + 1) + 1.
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Proposition 6.1  If 
(
HG+

)
 holds, then the assumption 

(
SM�

)
 holds for the delay differential 

Eq. (3.5) on C([−�, 0], [0, 1]).

Proof  Assume that 
(
HG+

)
 holds. Take �,� ∈ C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) such 

that 𝜙 <𝜇 𝜓 for 𝜇 > 0 . As in the proof of Proposition 5.1, we have

Where � = �.� + (1 − �).� with � ∈ [0, 1] . We have

Thus,

It is clearly seen that (HG) ⟺
[
∃𝜇 > 0 ∕ 𝜇 − 1− ∥ f ∥∞ − ∥ f � ∥+

∞
.e𝜇.𝜏 > 0

]
 . 

Finally, condition 
(
HG+

)
 implies that there exists 𝜇 > 0 such that for all 𝜙 <𝜇 𝜓 in 

C([−�, 0], [0, 1]) , we have F(𝜓) − F(𝜙) + 𝜇(𝜓 − 𝜙)(0) > 0 . That is 
(
HG+

)
 implies that (

SM�

)
 holds for the delay differential Eq. (3.5) on C([−�, 0], ]0, 1[) = C([−�, 0], [0, 1]) 

completing the proof. 	�  ◻

F(�) − F(�) + �(� − �)(0) ≥ [� + 1 − 2.�(0) − f (�(−�))

− �(0).f �(�(−�)).e�.�].(� − �)(0)

f �(�(−�)) ≤ max(0, f �(�(−�))) ≤∥ f � ∥+
∞
.

F(�) − F(�) + �(� − �)(0) ≥ [� − 1− ∥ f ∥∞ − ∥ f � ∥+
∞
.e�.� ].(� − �)(0).

Fig. 2   Numerical simulations for a linear function f = 0.1x + 0.1
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Theorem  6.2  If 
(
HG+

)
 holds, then the positive equilibrium v∗ is globally asymptotically 

stable on C([−�, 0], ]0, 1]).

Proof  The proof is identical to that of Theorem 5.3. 	�  ◻

Example of the Second Typical Form of f: f(x) =
(
ax + b

)
.e−cx

Consider f (x) = (ax + b).e−cx with a > 0 , b > 0 and 0 <
1

c
−

b

a
< 1 . We have 

∥ f � ∥+
∞
= f �(0) = a − cb > 0 and ∥ f ∥∞= f (x0) = f

(
1

c
−

b

a

)
=

a

c
e

(
bc−a

a

)
 . The condition (

HG+
)
 can be rewritten as

For � = 0.1 , a = 1,b = 0.4 and c = 1 , 
(
HG+

)
 is fulfilled. In this case we have v∗ ≃ 0.45 . As 

we see in Fig. 3, solutions converge to the equilibrium v∗ for different initial values.
For � = 0.1 , a = 10 , b = 0.4 and c = 1 , we have

and condition 
(
HG+

)
 is not satisfied.

(
HG+

)
ln

(
1

𝜏.(a − cb)

)
> 𝜏(

a

c
e

(
bc−a

a

)
+ 1) + 1.

ln
(

10

a − cb

)
−

a

c.10
e

(
bc−a

a

)
− 1.1 ≃ −1.44 < 0,

Fig. 3   Numerical simulations for f (x) = (0.1.x + 0.01)e−0.2.x
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Numerical simulations in Fig. 4 show that for some parameters which do not satisfy 
the stability conditions, there are periodic oscillations. Period doubling bifurcations and 
transition to chaos are observed in Fig. 2 of [1].

Application to SARS‑COV‑2 Immune Response

In order to illustrate the obtained analytical results, we use the clinical case measures of 
SARS-CoV-2 for patient 3 represented in Fig. 2 of [16]. The data in Table 1 has been 
obtained after transforming the logarithmic representations into the number of virus 
copies per 103 cells (divided by 106 for normalisation) and denoted u(t). It has been then 
used to calibrate the equation in order to obtain optimized parameters. We have used 
the values from day 9 to day 23. This was performed in R software using the library 

Fig. 4   Oscillations in time for f (u) = (−0.05.u + 0.05)e6.5.u

Table 1   The normalised (divided  
by 106 ) number of copies per 103 
cells during 16 days from the day 
of virus detection (day 8)

Days 8 9 10 11 12 13 14 15

u(t) 5.011 0.199 0.01 0.0063 1.0056 0.008 0.0056 0.003
Days 16 17 18 19 20 21 22 23
u(t) 0.005 0.01 0.016 0.02 0.039 0.015 0.0001 0.0001
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“deSolve”. Then, simulations for different initial values are established using MATLAB 
solver “dde23”.

Delay � represents the duration of clonal expansion of antigen-specific lymphocytes 
in the adaptive immune response. According to the biological data, we set � = 7 . It 
should be noted that the incubation period of SARS-CoV-2 is in average 5 days (less 
for the Omicron variant) [21, 29]. Therefore, disease symptoms appear before the onset 
of the adaptive immune response, and further disease progression is determined by the 
interplay of these two processes. 

Calibration and Simulation in the Case f(u) = k
1
u + k

2

After calibrating the model for the form f (u) = k1u + k2 , with k1 > 0 and 
0 < k2 < 1 to the COVID-19 data, we obtained the following parameters val-
ues k1 ≃ 0.28 and k2 ≃ 0.989 . The assumption of asymptotic stability (H1) is satis-
fied for those parameters with � = 7 . Four different cases of initial values are con-
sidered, �1 = 0.005, �2(t) = 0.01 exp t + 0.008, �3 = 0.01 exp t + 0.02, and 
�4 = 0.01 exp t + 0.05 . We observe that the four solutions u1, u2, u3 , and u4 corresponding 
respectively to the initial values �1, �2, �3, and �4 , converge monotonically to the non-
zero equilibrium (or endemic equilibrium) which is v∗cov ≃ 0.00859 as shown in Fig. 5.

Fig. 5   Numerical simulations corresponding to a COVID-19 case with f (u) = 0.28u + 0.989 and 
� = 7 days
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Calibration and Simulation in the Case f(u) =
(
a.u + b

)
.e−c.u

The calibration of COVID-19 data with the case where f (x) = (ax + b).e−cx , leads to 
the following parameters : a ≃ 0.517 , b ≃ 0.988 and c ≃ 0.173 . Equation f (x) = 1 − x 
has a unique positive solution v∗

cov
≃ 0.01 which is the unique non zero equilibrium 

of the system. With the same delay � = 7 days , and for the four different initial values 
�1(t) = 0.008, �2(t) = 0.025, �3(t) = 0.01 exp t + 0.04, and �4(t) = 0.01 exp t + 0.15 , 
we observe that the four respectively corresponding solutions u1, u2, u3 , and u4 converge 
monotonically to the endemic equilibrium v∗cov ≃ 0.0089 as shown in Fig. 6.

Here we have f �
(
v∗
cov

)
≃ 0.344 > 0 , that means biologically that when the virus concen-

tration is close to the nonzero equilibrium v∗cov , the function f (u) = 1 −
𝜓(u)

𝛷(u)
> 0 is 

increasing, where �(u) is the cell mortality factor and �(u) corresponds to the proliferation 
dynamic. That happens when proliferation increases faster than mortality. Obviously, an 
analogous interpretation corresponds to the case f �

(
v∗
cov

)
< 0 . We refer the reader to [2] for 

further details on � , � and on how the original model of two equations can be reduced to a 
scalar DDE model.

Fig. 6   Numerical simulations corresponding to a COVID-19 case with f (u) = (0.517u + 0.988).e−0.173u and 
� = 7 days
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Discussion and Conclusion

Based on a monotonicity approach, our study provided new results on the qualitative 
behaviour of solutions for a homogeneous in space delay equation arising in mathematical 
immunology. The exponential ordering and its properties allowed us to use the framework 
developed in [5, 6, 8, 27, 30, 40]. The problem of the zero equilibrium asymptotic stabil-
ity in the sense of the monotone dynamical systems theory has been completely resolved 
in the case where f is of class C1 . For the nonzero equilibrium v∗ when f �(v∗) < 0 , a com-
plete characterisation of asymptotic stability has been provided in Theorem   4.2. In the 
case where f �(v∗) > 0 , the study leaded to a sufficient condition on f. The generalization 
of those conditions to the case where f is continuous and Lipschiz using the results of [27], 
can be the subject of other works in the future.

Condition of global stability obtained in Sect. 5 depends on the delay � and on the maxi-
mum norms of the function f and its derivative f ′ . The factor ‖f‖∞ reflects the intensity of 
immune response, while ‖f �‖∞ corresponds to the speed of reaction. Condition in Sect. 6 is 
similar to that of Sect. 5 except that ‖f �‖∞ is replaced by ‖f �‖+

∞
= Sup

�
f �(u) ∶ u ∈ [0, 1] ∩

�
f �
�−1

([0,+∞[)
� . 

Here we see that the global stability condition depends only on the increasing branch of the 
function f. Those results can be used in the study of the reaction-diffusion equation taking into 
account the spacial diffusion of immune cells and viruses.

Some monotone approaches for the study of reaction-diffusion delayed equations with 
space dependence have been the subject of many articles and surveys. In their research on 
abstract functional differential equations and reaction-diffusion systems [18], Martin and 
Smith applied the idea of quasi-monotone functions to some particular reaction–diffusion 
delayed functional equations. In 1991, they proved in [19] that under some hypothesis, the 
solutions of the reaction–diffusion delayed equation �u

�t
(x, t) = Δu(x, t) + F

(
x, ut(x)

)
 and its 

corresponding homogeneous in space delayed equation u�(t) = F
(
ut
)
 have the same asymp-

totic behaviour. The reader is referred to the introduction of [19] for further details. A more 
recent development of these ideas is in the work by Yi and Huang [39], where the topic 
has been introduced as a second application of the theoretical results in the paper (Sub-
section 2.2). A sophisticated framework has been established by Wang and Zhao in [38] 
for non delayed partial differential reaction-diffusion equations. The generalization of the 
obtained results to delayed equations can be the subject of interesting works. The book of 
Zhao [41] is an excellent reference for the theoretical framework of those systems and their 
applications in population biology. The reader is particularly referred to Chapters  2 and 
9 for useful results and explanations. We cite also the relatively recent article of Wu and 
Zhao [37].

It should be noted that the equation studied here is not specific to immune reaction sys-
tems and that many models are governed by such delayed equations in epidemiology, elec-
tronics, ecology and others. We should also point out that the method above can be applied 
to other forms of the function f, for example the delayed systems studied by Volpert and 
Trofimchuk in [35], where f is assumed to satisfy the condition f (1) = 0 and f (0) > 1.

For reader’s convenience, we summarise the main features of the proposed approach. 
First, the monotone dynamical systems framework leads to local and global stability with 
order conservation as seen in Figs.  2, 3,  5 and  6. Hence, the asymptotic behaviour of 
the system is more controllable. This technical advantage is not fulfilled, for example, 
in [1, 3, 4]. Second, the obtained stability conditions are explicit expressions of systems 
parameters. That is, stability regions of parameters can be represented geometrically. And 
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then, biologists and clinicians can forecast the evolution of the viral infection. In the recent 
work [1], for instance, important conditions of stability have been obtained in a more gen-
eral modeling context, but they can not be used in practical situations since they are not 
explicit. Moreover, and as it was established in numerical simulations, the method can also 
be applied to the study of COVID-19 dynamics. We tested the global stability for two spe-
cific forms of the efficiency of the immune response for virus elimination f and for differ-
ent forms of the initial condition. The epidemiological implication of this result can be 
interpreted as that the viral load dynamic is related monotonically to the initial viral load 
value, the most this latest is near the equilibrium value the fast it tends to this equilibrium 
which can be null in several cases and means the extinction of virus. Finally, the asymp-
totic stability and the global asymptotic stability established using the monotone approach 
are stronger than those obtained by the classical Lyapunov and characteristic equation’s 
approach. The method presented in Sect. 7 enables us to forecast the evolution of the viral 
infection in the future. Indeed, the calibration techniques allow the determination of the 
optimal parameters fitting the clinical data. Then numerical simulation with the obtained 
parameters leads to graphical illustrations of the virus concentration dynamics. As we see 
in Fig. 5, using a linear form of the function f(u), we have obtained a small steady state 
virus concentration v∗

cov
≃ 0.00859 that absorbs all the eventual orbits of the system. That 

means that patient 3 will recover from infection but a small viral concentration will persist 
in his body.

The approach presented in this paper can lead to deeper assimilation of other more com-
plex immunological models and consequently, better clinical strategies and protocols may 
be established.
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