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Abstract1

A compartmental epidemiological model with distributed recovery and death rates is2

proposed. In some particular cases, the model can be reduced to the conventional SIR3

model. However, in general, the dynamics of epidemic progression in this model is4

different. Distributed recovery and death rates are evaluated from COVID-19 data.5

The model is validated by the epidemiological data for different countries, and it6

shows better agreement with the data than the SIR model. The time-dependent disease7

transmission rate is estimated.8

Keywords Epidemic model · Variable recovery rate · SIR model · Effective infection9

rate10

1 Introduction11

The world population undergoes successive epidemics of viral infections with impor-12

tant health, social and economical consequences. During the last decades these were13

SARS epidemic in 2002 − 2003 (Anderson et al. 2004; Lam et al. 2003), H5N114

influenza in 2005 (Chen et al. 2006; Kilpatrick et al. 2006), H1N1 influenza in 200915
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_####_ Page 2 of 19 S. Ghosh et al.

(Girard et al. 2010; Jain et al. 2009), Ebola in 2014 (Frieden et al. 2014; WHO Ebola16

Response Team 2014), and currently, COVID-19 pandemic which continues already17

two years and further evolution of which remains unpredictable.18

Nowadays, importance of mathematical modeling in epidemiology is generally19

accepted, but the outcome of this modeling is controversial. On one hand, classical20

compartmental models allow the evaluation of the main tendencies of epidemic pro-21

gression. There are various developments of the epidemic models to multicompartment22

models (see, e.g., Brauer 2008; Giordano et al. 2020; Sharma et al. 2020), models with23

time varying or nonlinear disease transmission rate (d’Onofrio et al. 2020; Sun et al.24

2008). Multipatch models (Bichara and Iggidr 2018; Lahodny and Allen 2013; McCor-25

mack and Allen 2007), multigroup models (Elbasha and Gumel 2021), spatiotemporal26

models (Ahmed et al. 2019; Filipe and Maule 2004) have been formulated and stud-27

ied to understand various aspects of epidemic growth (see the monographs (Brauer28

et al. 2019; Martcheva 2015) and review articles (Hethcote 2000; Hurd and Kaneene29

1993) for further details). However, the main questions about the prediction of epi-30

demic outbreaks and their efficient managing remain unsolved. This can be partially31

explained by the unpredictable emergence of new viruses or virus variants, but the32

lack of understanding of epidemic progression and its economical consequences in a33

complex multiconnected modern society leads to an empirical try and error method34

clearly illustrated during COVID-19 pandemic (Supino et al. 2020).35

Ongoing pandemic stimulated important modeling efforts directed to the appli-36

cation of the existing models and to their critical rethinking. Compartmental37

epidemiological models, like the classical SIR model, are based on the assumptions38

that newly infected individuals at time t appear with the rate proportional to the product39

of the numbers of susceptible individuals S(t) and infected individuals I (t) and that40

the recovery and death rates are proportional to the number of infected individuals. The41

first assumption is justified for homogeneous populations, but the second assumption42

has a limited applicability. Indeed, assuming that an average disease duration is τ , we43

conclude that the recovery and death rates at time t are determined by the number of44

infected individuals at time I (t − τ) (disease onset), which can be very different from45

I (t), unless the epidemic progression is slow (basic reproduction number is close to46

1). In a more detailed description, we do not consider a fixed disease duration but take47

into account that the recovery and death rates depend on the disease status of infected48

individuals, that is, on time passed after the disease onset.49

The recovery and death rates can significantly vary depending on the individual50

disease progression (Github 2022). These factors are rarely taken into account in51

mathematical models (Feng et al. 2007; Hethcote and Tudor 1980), and further stud-52

ies are needed to enlighten the significance of immunological factors to capture the53

incubation period (Culshaw et al. 2003; Leclerc et al. 2014; Vargas-De-León 2012),54

time-dependent immunity (Kyrychko and Blyuss 2005; Taylor and Carr 2009; Yuan55

and Bélair, 2014) and other factors. Continuous dependence of the disease transmission56

rate on immunological parameters (e.g., instantaneous viral load) is also incorporated57

and studied using continuous time delay models (Gilchrist and Sasaki 2002).58

In this work, we continue to study the influence of the disease time course on the epi-59

demic progression. We propose a compartmental model based on integro-differential60

equations where we take into account that recovery and death rates at time t depend61
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An Epidemic Model with Time-Distributed… Page 3 of 19 _####_

on the time interval t − η from the disease onset for the individuals infected at time η.62

We determine the main features of epidemic progression and show that they are dif-63

ferent in comparison with conventional compartmental models. Further, we illustrate64

the application of this modeling approach to the COVID-19 data.65

The contents of the paper are as follows. In Sect. 2, we introduce the model and study66

the positiveness of solutions. Next, we show how it can be reduced to the conventional67

SIR model in some particular cases. In order to apply this model to the investigation of68

COVID-19 epidemic, we determine time-dependent recovery and death rates from the69

available data (Sect. 3). We compare the characteristics of epidemic progression in the70

data and in different models in Sects. 4 and 5. Time-dependent disease transmission71

rate is estimated in Sect. 6.72

2 Model with Distributed Recovery and Death Rates73

Recovery and death rates of infected individuals depend on time after the disease74

onset. In this section, we will derive a model based on the number of newly infected75

individuals and their recovery and death rates depending on time after infection. We76

will study some properties of this model and will show that conventional SIR model77

can be obtained from it under some particular assumptions.78

2.1 Model Formulation79

We propose an integro-differential equation model where the recovery and death rates80

depend on the time-since-infection of the infected individuals. Let J (t) be the number81

of newly infected individuals at time t , while S(t), I (t), R(t) and D(t) denote the82

total numbers of susceptible, infected, recovered and dead individuals at time t . The83

total number of infected at time t is given by the following expression:84

I (t) =
∫ t

0
J (η)dη − R(t) − D(t). (1)85

We assume that the total population size remains constant, S(t)+ I (t)+ R(t)+D(t) =86

N , that is, natural natality and mortality rates are assumed to be equal to each other.87

Using the equality I (t) + R(t) + D(t) = N − S(t) and differentiating equality (1),88

we obtain: d S
dt = −J (t). On the other hand, the rate of change of the susceptible89

population is given by the equation90

d S

dt
= −β

S

N
I (= −J (t)),91

where β is the disease transmission rate.92

Let r(t − η) and d(t − η) be the recovery and death rates depending on the time-93

since-infection t − η. Then the number of infected individuals who will recover at94

time t is given by the expression:95
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_####_ Page 4 of 19 S. Ghosh et al.

∫ t

0
r(t − η)J (η)dη.96

Similarly, we determine the number of infected individuals who will die at time t :97

∫ t

0
d(t − η)J (η)dη.98

Thus, the rate of change of the infected compartment I (t) is given by the following99

equation:100

d I

dt
= β

S

N
I −

∫ t

0
r(t − η)J (η)dη −

∫ t

0
d(t − η)J (η)dη.101

The rates of change of the recovered R(t) and the death compartment D(t) are given,102

respectively, by the equations:103

d R

dt
=

∫ t

0
r(t − η)J (η)dη,

d D

dt
=

∫ t

0
d(t − η)J (η)dη.104

Hence, we obtain the following model:105

d S

dt
= −β

S

N
I , (2a)106

d I

dt
= β

S

N
I −

∫ t

0
r(t − η)J (η)dη −

∫ t

0
d(t − η)J (η)dη, (2b)107

d R

dt
=

∫ t

0
r(t − η)J (η)dη, (2c)108

d D

dt
=

∫ t

0
d(t − η)J (η)dη, (2d)109

where J (t) = βS(t)I (t)/N . This system of equations should be completed by the110

initial condition S(0) = N , I (0) = I0 > 0, R(0) = 0, D(0) = 0 and J (t) = 0 for111

t ≤ 0. We will study below some properties of this model and will apply it to assess112

the epidemic progression.113

The proposed model is capable of capturing the features of multicompartment114

models consisting of symptomatic and asymptomatic compartments implicitly. Their115

explicit consideration assumes that the individuals belonging to two compartments116

have different strength of infectivity and difference in time required to recovery. We117

explain below that r(t) and d(t) follow gamma distribution. Without any loss of gen-118

erality, we can assume that asymptomatic individuals can recover much earlier than119

symptomatic individuals. The distributed recovery rate takes care of the time differ-120

ence between the recovery of individuals belonging to two different compartments.121

Multicompartment epidemic models for COVID-19 also include exposed compart-122

ments and they are less infectious than the infected individuals. This aspect is taken123

into account by calculating the rate of infectivity from the time series of daily infected.124
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An Epidemic Model with Time-Distributed… Page 5 of 19 _####_

Available data for COVID-19 infection do not differentiate between exposed, symp-125

tomatic and asymptomatic infected individuals; hence, we can consider them as a126

single compartment (Ghosh et al. 2022).127

2.2 Positiveness of Solutions128

Since Eq. (2b) contains negative integral terms, we should verify that the solution of129

system (2a)–(2d) remains positive. From (2a), we observe that, if S(t∗) = 0 at some130

time t∗ then d S
dt

∣∣
t=t∗ = 0. This shows that S(t) ≥ 0 for all t > 0. From (2c), (2d)131

we get that R(t), D(t) are increasing functions. Hence, R(t) and D(t) also remain132

positive for all t . Next, we prove that I (t) > 0. Take some t0 > 0. Then from (1) we133

have134

I (t0) =
∫ t0

0
J (η)dη − R(t0) − D(t0). (3)135

Integrating (2c), (2d) from 0 to t0 with R(0) = D(0) = 0 and taking their sum, we136

get the equality137

R(t0) + D(t0) =
∫ t0

0

(∫ t

0

(
r(t − η) + d(t − η)

)
J (η)dη

)
dt .138

Changing the order of integration, we obtain139

R(t0) + D(t0) =
∫ t0

0

( ∫ t0

η

(
r(t − η) + d(t − η)

)
dt

)
J (η)dη. (4)140

Since the integral
∫ t0
η

(r(t − η) + d(t − η))dt gives the proportion of recovered and141

dead individuals from time η to t0 among those infected at time η, it follows that it is142

less than 1. Consequently,143

R(t0) + D(t0) <

∫ t0

0
J (η)dη.144

Together with (3), this inequality gives that I (t0) > 0. Therefore, I (t) remains positive145

for all t . This conclusion completes the proof of positiveness of solution of system146

(2a)–(2d).147

2.3 Reduction to the SIR Model148

In this section, we show that model (2a)–(2d) can be reduced to conventional SIR149

model under some assumptions. Consider the recovery and death rates in the form150

r(t − η) =
{

r0 , t − τ < η ≤ t
0 , η < t − τ

, d(t − η) =
{

d0 , t − τ < η ≤ t
0 , η < t − τ

, (5)151
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_####_ Page 6 of 19 S. Ghosh et al.

where τ > 0 is disease duration and r0 and d0 are some constants. Substituting these152

functions in (2c) and (2d), we get153

d R

dt
= r0

∫ t

t−τ

J (η)dη,
d D

dt
= d0

∫ t

t−τ

J (η)dη. (6)154

Integrating these equalities from t − τ to t , we obtain155

R(t) − R(t − τ) = r0

∫ t

t−τ

( ∫ s

s−τ

J (η)dη

)
ds,156

D(t) − D(t − τ) = d0

∫ t

t−τ

( ∫ s

s−τ

J (η)dη

)
ds.157

Since we assume that the disease duration is τ , then (1) can be written as follows:158

I (t) =
∫ t

t−τ

J (η)dη − (R(t) − R(t − τ)) − (D(t) − D(t − τ)), (7)159

where (R(t) − R(t − τ)) and (D(t) − D(t − τ)) represent the number of recovered160

and dead during the time interval (t − τ, t), respectively. Hence, from (7), we have161

I (t) =
∫ t

t−τ

J (η)dη − (r0 + d0)

∫ t

t−τ

(∫ s

s−τ

J (η)dη

)
ds. (8)162

Now, from (2b) and (8),163

d I

dt
= β

S

N
I − (r0 + d0)

∫ t

t−τ

J (η)dη164

= β
S

N
I − (r0 + d0)

[
I (t) + (r0 + d0)

∫ t

t−τ

(∫ s

s−τ

J (η)dη

)
ds

]
.165

Assuming that (r0 + d0) is small enough, we neglect the term involving (r0 + d0)
2.166

Hence, we obtain167

d I

dt
≈ β

S

N
I − (r0 + d0)I . (9)168

In this case, system (2a)–(2d) is reduced to conventional SIR model169

d S

dt
= −β

S

N
I , (10a)170

d I

dt
= β

S

N
I − (r0 + d0)I , (10b)171

d R

dt
= r0 I ,

d D

dt
= d0 I . (10c)172
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An Epidemic Model with Time-Distributed… Page 7 of 19 _####_

Thus, assuming uniform distribution of recovery and death rates (5) and that they are173

small enough, we can reduce model (2a)–(2d) to the classical SIR model. However, in174

general, these assumptions do not hold, and we need to take into account more realistic175

recovery and death rate distributions.176

3 Estimation of Recovery and Death Rate Functions177

3.1 Gamma Distribution178

In this section, we estimate the recovery r(t) and death d(t) rate functions in the case179

of COVID-19 epidemic. The data for 120 recovered patients and 31 dead individuals180

from Ref. (Github 2022; Verity et al. 2019) were used to fit a gamma distribution.181

Note that there are no recovery or death during the first two days after infection. The182

maximums of these distributions are reached between 13 and 18 days for recovery and183

10-15 days for death (Fig. 2). For some individuals, the recovery time is quite long.184

These distribution functions for recovery and death take into account asymptomatic,185

symptomatic and hospitalized compartments. Individuals recovered within 7 to 10186

days from infection can be considered as asymptomatic either due to less viral load or187

due to strong immune response. On the other hand, death after significant time period188

from the day of infection can be assumed to be contribution from the hospitalized189

compartments. Further, in the literature on epidemic modeling, the choice of gamma190

function to model distributed recovery period is well known (Bailey 1954; Chowell191

et al. 2009; Lloyd 2001).192

We estimate the mean time from the disease onset to recovery as 17.85 days and the193

mean time to death as 13.19 days. The best-fitted gamma distribution corresponding194

to recovery, which is shown by the red curve in Fig. 1a is given by the expression195

f1(t) = 1

ba1
1 �(a1)

ta1−1e
− t

b1196

with the estimated parameter values a1 = 8.06275 and b1 = 2.21407. Similarly,197

the best-fitted gamma distribution corresponding to death shown by the red curve in198

Fig. 1b is given by:199

f2(t) = 1

ba2
2 �(a2)

ta2−1e
− t

b2 ,200

where a2 = 6.00014 and b2 = 2.19887.201

These functions are normalized in such a way that the total probability of recovery202

and death equals 1. We set r(t) = p0 f1(t), d(t) = (1 − p0) f2(t), where p0 is the203

survival probability. Its value is estimated from the data as p0 = 0.97 (Paul and Lorin204

2021).205
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_####_ Page 8 of 19 S. Ghosh et al.

Fig. 1 Probability distribution of recovery a and death b as a function of time (in days) after the onset of
infection. The red curves show the best fit gamma distributions (the values of parameters are given in the
text) (Color figure online)

3.2 Bimodal Gamma Distribution206

Instead of the gamma distribution, some other distribution functions can be used to207

describe the recovery and death rates. It is observed that in some cases there are two208

groups of recovered (dead) individuals, where one group has a shorter time interval209

to recovery (death) and another group a longer time period. In such cases, to obtain210

a better parametrization of the recovery and death rate functions, we can consider211

a bimodal gamma distribution, that is, a linear combination of two different gamma212

distributions. In (Paul and Lorin 2021), the distribution of recovery and death as213

functions of onset-to-recovery and onset-to-death are estimated using the COVID-19214

data in Canada. The corresponding data are shown in Fig. 2 by the blue bars. We have215

fitted these data by bimodal gamma distributions F1 and F2 (red curves in Fig. 2)216

Fig. 2 Probability distribution of recovery a and death b as a function of time (in days) after the onset of
infection. The red curves show the best fit (the values of parameters are given in the text) (Color figure
online)
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Fig. 3 The left panel shows the first-order sensitivity indices corresponding to the model outcome Im and
the right panel to tm in the case of gamma distribution (Color figure online)

corresponding to recovery and death rate functions, respectively:217

F1(t) = 0.91

ba1
1 �(a1)

ta1−1e
− t

b1 + 0.09

dc1
1 �(c1)

tc1−1e
− t

d1 ,218

F2(t) = 0.94

ba2
2 �(a2)

ta2−1e
− t

b2 + 0.06

dc2
2 �(c2)

tc2−1e
− t

d2 ,219

where the best-fitted parameter values are as follows: a1 = 32.52447, b1 = 0.65547,220

c1 = 150.40545, d1 = 0.26171 and a2 = 36.02855, b2 = 0.57511, c2 = 140.11379,221

d2 = 0.27636.222

3.3 Sensitivity Analysis223

Parameters in the recovery and death distributions presented above are estimated from224

the individual data which can vary depending on country, time period, and on the virus225

variant. We will estimate the sensitivity of the model outcomes (maximal number of226

infected Im and time to the maximal number of infected tm) to the shape and scale227

parameters a1, a2, b1, b2. For this purpose, we use variance-based sensitivity analysis228

with the Monte Carlo numerical procedure described in (Saltelli et al. 2008) for com-229

puting the full set of first-order sensitivity indices S j for j = 1, 2, 3, 4 corresponding230

to the parameters a1, a2, b1 and b2, respectively. We have estimated the parameters a1,231

a2, b1 and b2 from the individual level data given in (Github 2022). Then we use a set232

of sample points obtained by using Latin hyper-cube sampling in the neighborhood233

of these estimated parameter values and perform numerical simulation as described234

in (Saltelli et al. 2008).235

The first-order sensitivity indices are shown in Fig. 3 and summarized in Table 1.236

This sensitivity analysis shows that the model outcomes Im (maximal number of237

infected) and tm (time to the maximal number of infected) are most sensitive to the238

scale parameter b1 in the gamma distribution for the recovery rate.239
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_####_ Page 10 of 19 S. Ghosh et al.

Table 1 First-order sensitivity
indices Si (gamma distribution)

Parameters a1 a2 b1 b2

Sensitivity of Im 0.1940 0.0068 0.7905 0.0059

Sensitivity of tm 0.0922 0.1312 0.4971 0.2208

Fig. 4 The left panel shows the first-order sensitivity indices corresponding to the model outcome Im and
the right panel to tm in the case of bimodal gamma distribution (Color figure online)

Table 2 First-order sensitivity indices Si (bimodal gamma distribution)

Parameters a1 a2 c1 c2 b1 b2 d1 d2

Sensitivity of Im 0.0807 0.0188 0.0195 0.0191 0.8051 0.0244 0.0193 0.0194

Sensitivity of tm 0.0480 0.0646 0.0304 0.0413 0.6291 0.0816 0.0435 0.0625

A similar method is used to perform the sensitivity analysis for the parameters240

a1, a2, c1, c2, b1, b2, d1 and d2 involved in the bimodal gamma distribution. The241

corresponding first-order sensitivity indices are shown in Fig. 4 and summarized in242

Table 2. We can observe that b1 is the most sensitive parameter to Im and tm as243

compared to other parameters.244

4 Comparison with the SIR Model245

We showed in Sect. 2 that classical SIR model can be obtained as a particular case of246

distributed model (2a)–(2d). We will compare dynamics of epidemic progression in247

the two models using the estimated recovery and death rates.248

Since the estimated average time to recovery is 17.85 days and to death 13.19 days,249

we take average disease duration as 16 days. The corresponding value in SIR model is250

r0 +d0 ≈ 1/16. We set p0 = 0.97, that is, out of 100 infected individuals, 97 infected251

will recover. This estimate matches with most of the COVID-19 epidemic data from252

various countries (Worldometer 2022; Paul and Lorin 2021).253

Though the parameters of the two models correspond to each other, system (2a)–254

(2d) and SIR model (10a)–(10c) give different dynamics of epidemic progression (Fig.255
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Fig. 5 Comparison between the solutions of the system (2a)–(2d) (blue curves) and SIR model (red curves):
a the number of susceptible individuals S(t), b the number of infected individuals I (t). In both models
N = 107. The values of other parameters for the SIR model: β = 0.3, r0 + d0 = 1/16, I (0) = 1; and
for model (2a)–(2d): β = 0.3, a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887, p0 = 0.97,
S(0) = N − 1, I (0) = 1 (Color figure online)

5). We notice that the maximal number of infected individuals I (t) is much higher256

for system (2a)–(2d) as compared to the SIR model (10a)–(10c), while time to the257

maximal number of infected tm is less.258

Comparison of the final size of epidemic S f , maximal number of infected Im and259

the time to the maximal number of infected tm between system (2a)–(2d) with gamma260

distribution and the SIR model are shown in Fig. 6 for different values of parameters.261

As before, the maximal number of infected individuals Im in model (2a)–(2d) is much262

higher than for the SIR model (10a)–(10c), time tm and the final size S f are less for the263

distributed model. This difference can be explained by the fact that the recovery and264

death rates are uniformly distributed during the disease duration for the SIR model265

(Sect. 2), contrary to the gamma distribution in (2a)–(2d). Therefore, there is a shift266

to earlier recovery and death for the SIR model.267

Similarly, we compare system (2a)–(2d) with bimodal gamma distribution with268

the conventional SIR model. In this case, the estimated mean time from onset-to-269

recovery is 22.63 and the mean time from onset-to-death is 21.80. Hence, the average270

disease duration is taken approximately 22.2 days, and r0 + d0 ≈ 1/22.2. All other271

parameters are kept the same as above. The properties of the final size of epidemic,272

maximal number of infected individuals, time to maximum are similar to the previous273

case and not shown here.274

5 Model Validation with Epidemiological Data275

In order to validate the model with distributed recovery and death rates, we compare276

the results of modeling with the epidemiological data. Distributed recovery r(t − η)277

and death d(t − η) rates are estimated in Sect. 3.1 from the data in China in February278

2020 (Github 2022; Verity et al. 2019). Once these functions are determined, we take279

the number J (t) of daily infected individuals from the epidemiological data and find280
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Fig. 6 Comparison of the maximal number of infected individuals Im a, time to reach the maximal number
tm b and the final size of epidemic S f c between the system (2a)–(2d) (blue curves) and the SIR model

(red curves) for different values of β. The values of parameters: N = 107, I0 = 1, for the SIR model
r0 +d0 = 1/16; and for the system (2a)–(2d): a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887,
p0 = 0.97 (Color figure online)

the sum of daily recoveries and deaths from the expression281

�(t) =
∫ t

0
r(t − η)J (η)dη +

∫ t

0
d(t − η)J (η)dη. (11)282

These results are compared with the sum of recoveries and deaths in the data. Figure 7283

shows the result of such comparison for China from January 23, 2020, to April 15,284

2020, with the data from (Worldometer 2022) (7-day moving average).285

Recoveries and deaths can also be determined as a proportion of active cases σ(t) =286

(r0 + d0)I (t) as it is done in the SIR model. Here I (t) is taken from the data and287

r0 + d0 = 1/16. In agreement with the results of the previous section, SIR model288

overestimates the sum of recovered and dead.289

A similar comparison is done for other countries (Fig. 8). It is important to mention290

here that we used the same gamma distribution as determined before from the data for291

China (Sect. 3.1).292
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Fig. 7 In the left panel, the blue curve shows the number �(t) of recovered and dead in the distributed
model, the magenta curve corresponds to σ(t) in the SIR model, and the black dots correspond to the 7-days
moving average of daily recoveries and death in China. The right panel shows the corresponding cumulative
recovery and death (Color figure online)

Next, we consider the bimodal gamma distribution determined above (Sect. 3.2)293

and calculate �(t) for a longer period of time from March 10, 2020, to June 16, 2020294

(Fig. 9), than used for the determination of the distribution parameters. As before, we295

compare the results with the SIR model and observe that it overestimates the total296

recovery and death.297

Thus, the model with gamma distribution gives a good description of the recovery298

and death in different countries compared with the epidemiological data, while the299

SIR model overestimates it.300

6 Estimation of the Time-Dependent Disease Transmission Rate ˇ(t)301

In this section, we will consider time-dependent transmission rate, β(t) and will esti-302

mate it from the COVID-19 epidemiological data. Dynamics of the transmission rate303

can help in the understanding of epidemic progression (Mummert 2013).304

Theorem 1 For the model (2a)–(2d), the time-dependent transmission function β(t)305

is given by the following expression:306

β(t) = N J (t)

I (t)

(
N − ∫ t

0 J (η)dη

) . (12)307

Proof We have308

β(t)
S(t)

N
I (t) = J (t) ⇒ β(t) = N J (t)

I (t)S(t)
. (13)309
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Fig. 8 �(t), σ(t) are plotted for different countries, using the gamma distributions for recovery and death
rates as estimated in Sect. 3.1. In the left panel, the blue curves correspond to �(t), the magenta curves
correspond to σ(t) and the black dots correspond to the 7-day moving average of daily recovery and death
in different countries. The right panel shows the corresponding cumulative recovery and death. a, b: France;
c, d: Italy; e, f : Sweden (Color figure online)
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Fig. 9 In the left panel, the blue curve corresponds to �(t), the magenta curve corresponds to σ(t) and the
black dots correspond to the 7-day moving average of daily recovery and death in Canada. The right panel
shows the corresponding cumulative recovery and death (Color figure online)

Now, we also know that310

I (t) =
∫ t

0
J (η)dη − (R(t) + D(t)).311

Using S(t) = N − (I (t) + R(t) + D(t)) in the previous equation, we get312

S(t) = N −
∫ t

0
J (η)dη.313

Substituting this expression into (13), we obtain (12). ��314

As an illustration of this theorem, we consider the COVID-19 data taken from315

(Worldometer 2022) for new daily cases and total active cases. In order to decrease316

the irregularity of data, we take the 7-day moving average of J (t) and I (t). Note317

that
∫ t

0 J (η)dη represents the cumulative number of infected. Consequently, we can318

determine the function β(t) using formula (12).319

We consider the COVID-19 infection data for a span of approximately 450 days.320

We use the data for India from March 7, 2020, for France from March 2, 2020, for321

Italy from February 21, 2020, and for Sweden from March 23, 2020, and up to May322

20, 2021, for all the four countries (Worldometer 2022). Then we plot β(t) for four323

countries with the help of (12) and plot in Fig. 10. The initial date corresponds to the first324

reported case in a given country (marked with vertical dashed lines). Initial transient325

observed in case of India may be related to the inaccuracy of the reporting strategy.326

Growth and decline in β(t) at different time correspond to various social restrictions327

as well as onset of a new outbreak. It is interesting to note that the declining pattern for328

two neighboring European countries, France and Italy, are similar in the beginning.329

However, an increasing peak for β(t) may indicate that the relaxation of lockdown330

restriction in France was more rapid compared to other countries.331

We can note from the presented results that β(t) oscillates according to increasing332

or decreasing epidemic waves. Furthermore, average value of this function is different333
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Fig. 10 Time varying β for
COVID-19 in France, India,
Italy, Sweden calculated by
formula (12) for the model with
gamma distribution and the
parameter values: a1 = 8.06275,
b1 = 2.21407, a2 = 6.00014,
b2 = 2.19887, p0 = 0.97 (Color
figure online)

in different countries. As such, it is about 0.1 in India and about 0.05 in France. In334

order to interpret dynamics of time-dependent transmission rate β(t), we simplify335

expression (12) assuming that
∫ t

0 J (η)dη 	 N . This assumption is justified since the336

total number of infected remains in most countries much less than the total population.337

Then β(t) ≈ J (t)/I (t). The same expression for β(t) can be obtained from the SIR338

model if S ≈ N .339

In order to give further estimates of β(t), suppose that disease duration is τ . Then340

I (t) = ∫ t
t−τ

J (η)dη, that is, the individuals infected at time t − τ recover or die at341

time t but not before. Hence, we obtain approximate formula342

β(t) = J (t)∫ t
t−τ

J (η)dη
.343

Set J (t) = J (τ )eλ(t−τ) and then substituting in above equation, we find β(t) =344

λ/(1 − exp(−λτ)). If λ = 0, then β(t) = 1/τ , that is, the disease transmission rate is345

inversely proportional to the disease duration. This estimate is in agreement with an346

average disease duration 16 days determined in Sect. 2. For λ > 0, β characterizes347

the rate of growth of newly infected individuals, and for negative λ, the rate of decay.348

7 Discussion349

Ongoing COVID-19 pandemic has stimulated scientific research in various disciplines350

ranging from economy to education (Volpert et al. 2020). A wide variety of modeling351

approaches are considered in the recent literature (see, e.g., Rahimi et al. 2021; Sharma352

et al. 2020 for more detail). However, validation of these models is complicated by353

the uncertainty of the data, especially for asymptomatic cases.354

Another shortcoming of conventional epidemiological model is that they consider355

recovery and death rate as a given proportion of active infected cases at the same356

moment of time. Clearly, this is a strong assumption which can lead to a large error in357

the evaluation of epidemic progression. In order to overcome this issue, we propose358

in this work a new type of immunoepidemiological models based on the daily number359

of infected individuals and their time-distributed recovery and death rates. Distributed360

recovery and death rates are evaluated from the data from China and Canada. They give361
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a reliable description of data for different countries and time periods. We note that the362

parameters of gamma distribution can depend on the virus variant. This question can363

be addressed in the future studies when the time-dependent recovery rate is available364

in particular for the Omicron variant.365

We compare this approach with the SIR model with appropriate recovery and death366

rates. It is clearly seen that the SIR model overestimates the daily recoveries and367

deaths which, in turn, underestimates the daily number of infected, maximal and total368

numbers of infected individuals. The recovery and death rate functions are estimated369

with the limited real data from China and Canada on the number of days spent since370

infection before recovery and death (Github 2022; Paul and Lorin 2021). These data371

sets are used to estimate the parameters involved with two different parametrization of372

the recovery and death rate functions. Time-since-infection-based recovery and death373

rates implicitly take into account mild and severe infection which can be considered as374

symptomatic and asymptomatic compartments. Numerical validation of the proposed375

model with the COVID-19 epidemic data from five different countries indicates that the376

parametrization of recovery and death rates with gamma function effectively captures377

the daily and cumulative recoveries and deaths, although the real data show large378

irregularity.379

It is important to mention here that the proposed modeling approach can be used380

to predict the disease progression accurately if we have specific data for the first days381

in order to estimate the parameters involved in the recovery and death rate functions.382

Availability of such kind of data is a challenging issue in the beginning of epidemic.383

However, we should highlight that the estimates of r(t) and d(t) with the data from384

China during the onset of COVID-19 epidemic works well to study the disease progres-385

sion in France, Italy and Sweden. Having these information, the proposed modeling386

approach can be used to predict the maximal number of infected and the time to387

maximal number of infected. This predictions can be used to estimate the required388

number of hospital beds and readiness of medical facilities based upon the appropriate389

information about the rate of hospitalization and severity of the viral strain.390

We have also described a method to calculate time-dependent infectivity rate based391

upon the daily incidence data. It clearly indicates that the rate of transmission of392

infection from one individual to another not only depends upon the fixed transmission393

rate, but rather it is solely related with the time period over which one individual394

remain infected. The next challenging issue will be to estimate the rate of infection395

transmission depending on time-dependent viral load for different virus variants.396
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