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Abstract

Viral replication in a cell culture is described by a delay reaction-diffusion system. It is shown
that infection spreads in cell culture as a reaction-diffusion wave, for which the speed of propa-
gation and viral load can be determined both analytically and numerically. Competition of two
virus variants in the same cell culture is studied, and it is shown that the variant with larger in-
dividual wave speed out-competes another one, and eliminates it. This approach is applied to
the Delta and Omicron variants of the SARS-CoV-2 infection in the cultures of human epithelial
and lung cells, allowing characterization of infectivity and virulence of each variant, and their
comparison.

Keywords: viral infection, virus competition, reaction-diffusion equations, SARS-CoV-2
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1. Introduction

Viral infection spreads in a cell culture or in a tissue due to virus replication in the infected
cells combined with virus diffusion in the extracellular space. This process is characterized by
the spreading speed and by the viral load, that is, by the total quantity of virus in the culture at
every moment of time. Both of them have important biological significance. Infection spread-
ing speed in vivo determines the part of infected tissue and, as a consequence, the severity of
related symptoms. Viral load in the upper respiratory tract in the case of respiratory infections
determines virus infectivity, that is, the rate of infection transmission between individuals.

From the modelling point of view, viral infection spreading can be described as a reaction-
diffusion wave [1, 2]. The wave speed and the viral load can be determined analytically through
the model parameters, including the rate of cell infection and the rate of virus replication [3].
Analysis of the results show that spreading speed and viral load being determined by different
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combination of parameters may not correlate in the sense that for two viral infections, larger
speed can be associated either with larger or smaller viral load.

Comparison of the time-dependent viral load with the experimental data on Delta and Omi-
cron variants of the SARS-CoV-2 infection [4, 5] allow us to determine the parameters of the
model and to use them to find the speed of infection spreading. These results have confirmed
larger infectivity of the Omicron variant and weaker symptoms due to lung damage reported in
the literature [8, 9]. Furthermore, we study the competition of two virus strains in a cell culture.
We show that the virus with larger individual spreading speed wins this competition and elim-
inates another one independently of their relative viral loads. Noteworthy, these results are in
agreement with the experimental data on the competition of Delta and Omicron variants in the
cell cultures of human epithelial and lung cells [5].

2. Model of infection spreading

We describe the infection progression in a cell culture by the system of equations

∂U
∂t
= −aUV,

∂I
∂t
= aUV − βI,

∂V
∂t
= D
∂2V
∂x2 + bIτ − σV (2.1)

for the concentrations of uninfected cells U, infected cells I, and virus V [2]. The right-hand
side of the first equation in (2.1) describes the rate of infection of uninfected cells, and there is
a similar term in the second equation for infected cells. Influx and death of uninfected cells are
not considered here since its influence are not essential in a short time scale. It will be taken into
account in the subsequent works. The second term in the right-hand side of the second equation
characterizes death of infected cells. The third equation in (2.1) describes virus random motion
in the extracellular matrix (diffusion term), virus production in the infected cells with time delay
in virus replication, Iτ(x, t) = I(x, t − τ), and virus death (third term). In numerical simulations,
we consider the system (2.1) on a bounded interval with no-flux boundary conditions for V , while
in the analytical study we consider it on the whole axis.

2.1. Estimation of the wave speed and viral load
We are looking for the solution of system (2.1) in the form of reaction-diffusion wave:

U(x, t) = u(x − ct) = u(ξ), I(x, t) = w(x − ct) = w(ξ),V(x, t) = v(x − ct) = v(ξ), where all
functions depend on the variable ξ = x − ct, c is the wave speed. System (2.1) becomes

cu′ − auv = 0, (2.2)

cw′ + auv − βw = 0, (2.3)

Dv′′ + cv′ + bw(ξ + cτ) − σv = 0. (2.4)

We look for its solution on the whole real axis with the limits:

u(−∞) = u f , u(∞) = u0, v(±∞) = w(±∞) = 0 (2.5)

(solution has zero derivatives at infinity). Here, constant u0 is a given initial concentration of
uninfected cells, while the final concentration of uninfected cells u f is unknown. First, we will
determine u f , viral load and the wave speed c following the method from [2]. Then we will use
them to construct the approximate analytical solution.
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The final cell concentration and the total viral load. In order to determine the unknown value
u f , we derive the following equalities from equations (2.2)-(2.4) (cf. [2]):

c ln
u0

u f
= a
∫ ∞
−∞

v(x)dx, c(u0 − u f ) = β
∫ ∞
−∞

w(x)dx, b
∫ ∞
−∞

w(x)dx = σ
∫ ∞
−∞

v(x)dx. (2.6)

Excluding the integrals from these equations, we obtain the equation

Rv(ω − 1) = lnω (2.7)

with respect to ω = u f /u0. Here, Rv = abu0/(βσ) is the virus replication number. Equation (2.7)
has a solution ω in the interval 0 < ω < 1 if and only if Rv > 1. Consequently, if this condition
is not satisfied, the problem (2.2)-(2.5) has no positive solution.

If Rv > 1, then the final value u f can be found from equation (2.7), and the total viral load
VX defined as integral of v(ξ) is given by the following formula:

VX ≡

∫ ∞
−∞

v(x)dx = −
c
a

lnω .

Furthermore, for Rv large enough, as it is the case of all virus variants of concern, solution ω of
the equation (2.7) satisfies the estimate ω ≪ 1, and lnω ≈ −Rv. Therefore, Vx ≈ bcu0/(βσ). Let
us note that the viral load depends on the wave speed. We determine it below.

Wave speed. We approximate u by its value u0 at +∞. Therefore, we obtain the following
linearized system of equations for w and v:

cw′ + au0v − βw = 0, (2.8)

Dv′′ + cv′ + bw(ξ + cτ) − σv = 0. (2.9)

Let us look for the solution of this system in the form w(ξ) = p1e−λξ, v(ξ) = p2e−λξ. Substituting
them into (2.8), (2.9), we obtain

−cλp1 + au0 p2 − βp1 = 0,

Dλ2 p2 − λcp2 + be−λcτp1 − σp2 = 0.

In order to find the minimal wave speed, we should find the minimal value of c for which this
system of equations has a positive solution λ. Introducing an independent parameter µ = λc and
excluding p1 and p2, we obtain the following equation:

D
µ2

c2 − µ +
abu0

µ + β
e−µτ − σ = 0.

Hence,

c = min
µ>µ0

F(µ) ≡

√
Dµ√

µ + σ − abu0e−µτ/(µ + β)
, (2.10)

where µ0 is a positive solution of the equation (µ+σ)(µ+β) = abu0e−µτ. This analytical formula
for the minimal wave speed gives the same result as in numerical simulations (Figure 1, right).

3



2.2. Approximate analytical solution

We use the analytical expressions for the wave speed and viral load in order to construct an
analytical approximation for the spatial distributions of virus and infected cell concentrations.
Consider system (2.3), (2.4), where we approximate the function u(ξ) by a piece-wise constant
function corresponding to its limits at infinity: u(ξ) = u f for ξ < 0 and u(ξ) = u0 for ξ > 0. For
τ = 0 this system can be solved analytically. Taking into account that the solution increases on
the left half-plane, u f ≈ 0, and the solution decreases on the right half-plane, we get:

w =
{

p3e
β
c ξ, ξ < 0

(p1 + q1ξ)e−λξ, ξ > 0
, v(ξ) =

 p4eλ1ξ −
bp3

Dβ2/c2+β−σ
e
β
c ξ, ξ < 0(

cλ+β
au0

p1 −
c

au0
q1 +

cλ+β
au0

q1ξ
)

e−λξ, ξ > 0
,

where λ is a positive double root of the characteristic equation for the system (2.8), (2.9) and

λ1 =
1
2

− c
D
+

√( c
D

)2
+

4σ
D

 .

Figure 1: Left: virus concentration v (curve 1) and concentration of infected cells w (curve 2) in numerical simulations
(red) and analytical approximation (blue) for the values of parameters: a = 0.1 (1/(hour·virus)), b = 1000 (copies/(hour·
cell)), β = 0.1 (1/hour), σ = 0.1 (1/hour),D = 10−4 (cm2/hour), τ = 0 (hour), and dimensionless concentrations
u0 = 1, u f = 0. Analytical and numerical solutions for v(ξ) are normalized by its maximum, vmax = 3672 (copies/ml).
Right: wave speed in numerical simulations and analytical formula (curves coincide) for the values of parameters:
a = 0.1,D = 0.001, β = 0, σ = 1, τ = 2 (hour) (upper curve), τ = 5 (middle curve) and τ = 8 (lower curve). Note that
the wave exists for β = 0, but viral load grows linearly in time [2].

Constants q1, p3, p4 can be expressed through constant p1 from continuity conditions w(−0) =
w(+0), v(−0) = v(+0), and v′(−0) = v′(+0), while constant p1 can be found from the condition∫ +∞
−∞

v(ξ)dξ = − c
a ln w (Appendix A). Altogether, this approach allows us to construct an approx-

imate analytical solution (Figure 1, left).

3. Virus competition

In the case of two viruses (or virus variants) simultaneously present in cell culture, instead of
system (2.1) we consider the system of equations:

∂U
∂t
= −a1UV1 − a2UV2, (3.1)
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∂I1

∂t
= a1UV1 − β1I1,

∂I2

∂t
= a2UV2 − β2I2, (3.2)

∂V1

∂t
= D1

∂2V1

∂x2 + b1I1,τ1 − σ1V1, (3.3)

∂V2

∂t
= D2

∂2V2

∂x2 + b2I2,τ2 − σ2V2. (3.4)

Here V1 and V2 are virus concentrations, I1 and I2 are the concentrations of the corresponding
infected cells. The meaning of all terms in these equations is similar to the one-virus model. As
before, this system is considered on the whole axis in the analytical study, and in the bounded
interval 0 ≤ x ≤ L with no-flux boundary conditions for the virus concentrations in the numerical
simulations, and the initial condition Vi(x, 0) = V0 for 0 ≤ x ≤ x0 and 0 otherwise.

System (3.1)-(3.4) describes competition of two virus types for uninfected cells. If only the
first virus is present initially, that is, V2(x, 0) = 0, then this is also true for all positive times, and
this model is reduced to the previous one-virus model (2.1). Similarly, only the second virus type
is observed if V1(x, 0) = 0. If both of them have positive concentrations at t = 0, then the result
of their competition depends on the values of parameters. It can be formulated in the following
form.

Proposition on virus competition. Consider two virus types V1 and V2 and denote by c1 and
c2, respectively, their individual propagation speeds in the one-virus model (2.1). Solution of the
two-virus model (3.1)-(3.4) with positive initial conditions for both virus types converges to the
one-virus solution V1(x, t) (V2(x, t)) if and only if c1 > c2 (c1 < c2), while the concentration of
another virus converges to 0 uniformly in R. The two virus types coexist if and only if c1 = c2.

Figure 2: Numerical simulations of system (3.1)-(3.4) with the concentrations of the first virus in time (left) and the
second virus (right). The individual wave speed of the first virus is larger since a1b1 > a2b2 (see (2.10)), and it eliminates
the second virus, though the individual viral load of the second virus is larger. The values of parameters are as follows:
a1 = 10−4, a2 = 10−5, b1 = 106, b2 = 9 · 106,D1 = D2 = 0.001, σ1 = σ2 = 1, β1 = β2 = 0.01, τ1 = τ2 =
10, L = 10, x0 = 1,V0 = 100. Units of parameters are given in Figure 1.

This proposition is not proved mathematically since conventional methods of analysis and
available results are not applicable here. We have verified this statement in numerical simulations
for a large range of parameters. An example of numerical simulations is shown in Figure 2.
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4. Competition of SARS-CoV-2 variants

We now apply the results on virus competition to Delta and Omicron variants of SARS-
CoV-2 infection. We use the experimental data from [5] on time-dependent viral load for Delta
and Omicron variants of the SARS-CoV-2 infection in cultures of human nasal cells (HNC) and
human lung cells (HLC).

Comparison with the experimental data allows us to determine the parameters of the one-
virus model for both variants and in the two types of cell culture (Figure 3). In the case of HNC,
viral load for the Omicron variant is larger than that for the Delta variant in the beginning of
the experiment, but it becomes less on days 2 and 3. However, the area under the curve (the
integral of viral load) is larger for Omicron than for Delta. This is interpreted as an explanation
of larger infectivity of Omicron variant [6]. Fitting the experimental data on the time-dependent
viral load, as described in [2, 3], we determine the spreading speed for each variant. It is 0.0139
cm/hour for Delta and 0.0198 cm/hour for Omicron.

Comparison of numerical simulations with the experiments in the culture of lung cells is
shown in Figure 3 (right). As before, we determine the parameters of the one-virus model and
find the spreading speed. For Delta, speed is 0.0118 cm/hour, larger than the speed for Omicron,
which is 0.0094 cm/hour.

Figure 3: Left: human nasal cells, experimental results from [5] (dots) and numerical simulations with the values of
parameters for Delta (blue): a = 10−5, b = 2 · 107, β = 0.01, σ = 1, τ = 15; for Omicron (red): a = 10−4, b =
106, β = 0.01, σ = 1, τ = 5. Right: human lung cells, experimental results from [5] (dots) and numerical simulations
with the values of parameters for Delta (blue): a = 10−5, b = 107, β = 0.01, σ = 1, τ = 17; for Omicron (red):
a = 10−4, b = 106, β = 0.01, σ = 1, τ = 15. Common parameters: D = 0.001, L = 10, x0 = 1, v0 = 100, u0 = 1. Units of
parameters are given in Figure 1.

According to the analysis of the previous section, since the wave speed of the Omicron variant
in the culture of HNC is larger than the wave speed of the Delta variant, then Omicron will
eliminate Delta if both of them are introduced simultaneously. Next, since the relation between
the wave speeds is opposite in the culture of lung cells, in this case Delta will eliminate Omicron.
Both conclusions are confirmed by the numerical simulations, and they are in agreement with the
experimental data [5].

5. Discussion

Viral infection in a cell culture or in a tissue can be characterized by the viral load and spatial
spreading speed, which are different characteristics. For the respiratory infections, viral load in
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the respiratory tract determines its infectivity, that is the rate of its transmission between indi-
viduals, while the spatial spreading speed correlates with the severity of symptoms for a given
individual. Both quantities depend on cell (tissue) type as well as on viral variant. Available epi-
demiological data suggest that Omicron variant, compared to Delta, is more infectious [8], but its
symptoms are weaker [9]. According to in vitro clinical data [6, 7], Omicron has larger viral load
(area under the curve) in the upper respiratory tract than Delta, and vice versa in lungs (Figure
3, dots). However, these experiments are conducted in the homogeneous conditions, insensitive
to spatial effects. Our numerical simulations were fitted to these clinical data (Figure 3, lines)
but do include spatial effects, in particular diffusion limitation. These simulations suggest that
Omicron variant, in addition to larger viral load, has larger spatial spreading speed in the upper
respiratory tract than Delta variant. On the other hand, it has smaller spatial spreading speed in
lungs.

Numerical simulations of the competition of two virus stains (Figure 2) affirm the proposition
that virus with larger individual speed eliminates another one if both are introduced into the
same cell culture to compete. This is a general conclusion for any two viruses competing for
uninfected cells without other interaction between them (some coinfections can interact). This
result corresponds to the experimental data for competing Delta and Omicron variants in the
cultures of epithelial and lung cells [5].

One of the implications of this result concerns the emergence of the Omicron variant. Since it
has a small spreading speed in the lungs, it is unlikely that it might appear due to mutations in the
lungs of a single chronic COVID-19 patient (one of the existing hypothesis). It is more probable
that it has emerged in the upper respiratory tract through a number of intermediate mutations in
different individuals transmitting further these intermediate variants to other individuals.
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Appendix A. Constants for the analytical solution

Constants p1, q1, p3, and p4 for the analytical solution from Section 2.2 are given by the
following equalities:

p1 =
−c/a ln w

r2
λ1
− b

Dβ2/c2+β−σ
· c
β
+
−cλ−β+cr
−au0λ

−
−cλ−β
au0λ2 r

,

r =
au0b(cλ1 − β)

c
(
Dβ2/c2 + β − σ

)
(cλ1 + 2cλ + β)

−
(−cλ − β)(λ1 + λ)

cλ1 + 2cλ + β
,

r2 =
b

Dβ2/c2 + β − σ
−
−cλ − β + cr

au0
,

q1 = rp1, p3 = p1, p4 = r2 p1.

Appendix B. Numerical implementation

The algorithm is based on explicit first order Euler scheme time-stepping procedure with P⊮
finite element spatial approximation where mesh size is equal to L/104. We use the free software
FreeFEM [10] that offers a large variety of triangular finite elements (linear and quadratic La-
grangian elements, discontinuous P1, Raviart-Thomas elements, etc) to solve partial differential
equations. Numerical accuracy was controlled by decreasing time and space discretization and
by the comparison with the analytical solution when it is available.

Figure B.4: Spatial distributions of uninfected cells U, infected cells I and virus V in consecutive moments of time as
solution of system (2.1) for the same values of parameters as in Figure 3 (left, blue curve).

Numerical simulations in Figure B.4 show solution of system (2.1) for the same values of
parameters as in Figure 3. Note that damped oscillations are related to time delay in the model
(see also weak oscillations in Figure 3). Sensitivity of the results to parameters is determined by
the analytical formulas for the viral load and wave speed.
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