
HAL Id: hal-03840284
https://hal.science/hal-03840284v1

Preprint submitted on 16 Nov 2022 (v1), last revised 5 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametrized analysis of an enumerative algorithm for a
parallel machine scheduling problem

Istenc Tarhan, Jacques Carlier, Claire C. Hanen, Antoine Jouglet, Alix
Munier-Kordon

To cite this version:
Istenc Tarhan, Jacques Carlier, Claire C. Hanen, Antoine Jouglet, Alix Munier-Kordon. Parametrized
analysis of an enumerative algorithm for a parallel machine scheduling problem. 2022. �hal-
03840284v1�

https://hal.science/hal-03840284v1
https://hal.archives-ouvertes.fr

Parametrized analysis of an enumerative
algorithm for a parallel machine scheduling

problem ⋆

Istenc Tarhan1,2[0000−0002−1632−884X], Jacques Carlier2, Claire
Hanen1,3[0000−0003−2482−5042], Antoine Jouglet2[0000−0001−9251−249X], and Alix

Munier Kordon1[0000−0002−2170−6366]

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
{Istenc.Tarhan,Claire.Hanen,Alix.Munier}@lip6.fr

http://www.lip6.fr
2 UTC, Heudiasyc,France

{Istenc.Tarhan,Jacques.Carlier,Antoine.Jouglet}@hds.utc.fr
3 UPL, Université Paris Nanterre, F-92000 Nanterre,France

Abstract. We consider in this paper the scheduling problem defined by
a set of dependent jobs with release times and deadlines to be processed
by identical parallel machines. This problem is denoted by P |prec, ri, di|⋆
in the literature. We propose an adaptation of the branch-and-bound
algorithm of Demeulemeester and Herroelen algorithm, previously de-
signed for PS|prec|Cmax, as a dynamic programming scheme, consider-
ing release dates and deadlines. New dominance rules are proposed. We
establish that the algorithm is fixed-parameter tractable. The two pa-
rameters are the pathwidth, which corresponds to the maximum number
of overlapping jobs time windows and the maximum execution time of
a job. The algorithm is experimented on random instances to show how
its practical complexity depends on the parameters.

Keywords: Scheduling · fixed-parameter tractable · release times and
deadlines · branch and bound· parallel machines

1 Introduction

Scheduling problems with resource limitation and precedence constraints have
many applications in various fields, such as production systems, the use of multi-
core parallel machines or the design of embedded systems. Also, many authors
have developed exact or approximate algorithms to efficiently solve these prob-
lems since the beginning of the sixties. Several books and surveys are dedicated
to this class of combinatorial optimization problems [3,5,17].

This paper considers the basic scheduling problem defined by a set of n non-
preemptive jobs T to be executed by m identical machines. Each job i ∈ T has a
positive integer processing time pi, an integer release time ri and a deadline di.
⋆ Supported by EASI project, Sorbonne universités

http://www.lip6.fr

2 I. Tarhan et al.

Job i has to be scheduled in such a way that its starting time s(i) verifies
ri ≤ s(i) ≤ di − pi. Each job i ∈ T has to be scheduled on one machine, each
of which can process at most one job at a time. Lastly, a directed acyclic graph
G = (T , E) defines a set of precedence constraints: for each arc (i, j) ∈ E, the
associated constraint is s(i) + pi ≤ s(j). The problem is to find, if possible, a
feasible schedule. This problem is denoted by P |prec, rj , dj |⋆ using the Graham
notation [12].

This problem is clearly difficult to be solved exactly. Indeed the P |prec, pj =
1|Cmax problem was proved to be NP-complete by Ullman [20]. On the same
way, Garey and Johnson [11] established that P ||Cmax is strongly NP-hard.

The development of fixed-parameter tractable algorithms (FPT algorithms
in short) makes it possible to push a little further the study of the existence of
an efficient algorithm for certain instances of a difficult problem [6,10]. A fixed-
parameter tractable algorithm solves any instance of size n of the problem with
parameter k in a time O(f(k)×poly(n)), where f is allowed to be a computable
superpolynomial function and poly(n) a polynome of n.

The (quite) recent article of Mnich and van Bevern [18] surveys the existence
of a FPT algorithm for classical scheduling problems and identifies 15 difficult
questions in this context. However, most of the results obtained so far conclude
the non-existence of FPT algorithms for the considered parameters.

Enumerative techniques [21] such as Branch-and-Bound methods or dynamic
programming approaches are commonly considered for solving exactly combina-
torial problems.

Dynamic programming approaches rely on the Bellman’s principle of opti-
mality [1] and were developed for different optimization sub-problems (see for
example [14]). Their characteristic is that a non trivial upper bound of their
worst-time complexity can usually be evaluated. For example, Dolev and War-
muth [9] developed such an algorithm solving P |prec, pi = 1|Cmax with time
complexity O(nh(G)(m−1)+1), h(G) being the length of the longest path of the
precedence graph. For the same problem, Möhring [19] proposed an algorithm
of time in O(mw(G)), where w(G) is the width of the precedence graph. None of
them are FPT algorithms.

Van Bevern et al. [2] defined an FPT algorithm for the resource constrained
scheduling problem (RCPSP) parameterized by the tuple (w(G), λ), where λ is
the maximum allowed difference between the earliest starting time and factual
starting time of a job. More recently, Munier [16] developed a FPT algorithm for
the decision problem P |prec, rj , dj , pj = 1|⋆. Its parameter µ, called the path-
width, is the maximal number of overlapping jobs time windows at a single time t
i.e. µ = maxt∈A |{i ∈ T s.t. ri ≤ t < di}| with A = [mini∈T ri,maxi∈T di). By
augmenting this algorithm with a binary search, a FPT algorithm parameterized
by µ is obtained for the two classical optimization problems P |prec, pi = 1|Cmax

and P |prec, pi = 1|Lmax. This approach was extended by Hanen and Munier
in [13] to handle different computation time, but with tuple of parameters
(µ, pmax) where pmax = maxi∈T pi. They also proved that P2|ri, di|⋆ parame-
terized by the pathwidth is para-NP-complete as well as P |prec, ri, di|⋆ param-

Parameterized Analysis of a Branch-and-Bound Algorithm 3

eterized by pmax; it follows that unless P = NP, there is no FPT algorithm for
P |prec, ri, di|⋆ parameterized by only one of these parameters.

The enumerative Branch-and-Bound methods are usually considered to de-
velop efficient algorithms for NP-complete scheduling problems. In the nineties,
several authors developed Branch-and-Bound methods to handle the resource-
constrained scheduling project denoted by PS|prec|Cmax; see Brucker et al. [4]
for the notation and a survey on these methods. The Demeulemeester and Her-
roelen algorithm [7] is one of the most efficient Branch-and-Bound method to
solve efficiently this class of problems [8] without release times and deadlines. To
our knowledge, there is no study of the worst-case complexity of this algorithm.

Our first aim was to study whether it would be possible to develop a FPT al-
gorithm more efficient in practice than a Branch-and-Bound algorithm. We thus
started from the analysis of the Demeulemeester and Herroelen algorithm [7],
in order to evaluate the influence of the parameters (µ, pmax) on its complex-
ity. As only semi-active schedules are considered, we discovered that it can be
transformed to a search in a graph, instead of a tree, linking this algorithm with
a dynamic programming approach. We also established several new dominance
rules, and modified the generation of successors of a node of the serach graph to
handle release times and deadlines. However, to simplify the complexity study,
we did not consider bounding techniques to prune nodes.

This lead us to define a new algorithm called Branch-and-Find algorithm
(B&F in short) for our decision problem; We analyse its complexity and show
it is FPT for parameters (µ, pmax). This algorithm is significantly different from
that developed by Hanen and Munier [13]. We also ran some experiments on
random instances with controlled parameters that confirms their influence on
the practical tractability of the problem. Moreover, we also measure the ratio
between the number of nodes of the whole graph in practice and in theory, and
show it is very low and decreases with parameter µ.

The remainder of this paper is organized as follows. Section 2 is devoted to
the presentation of several general properties of feasible solutions of the prob-
lem P |rj , dj |⋆ without precedence constraints. These properties allow setting an
upper bound on the number of nodes generated at each step of our algorithm.
In Section 3, we present the B&F algorithm and its complexity analysis. In
Section 4, computational experiments for the B&F algorithm are shared. We
conclude with final remarks in Section 5.

2 Feasibility properties of schedules for jobs with release
times and deadlines

This section presents several properties on feasible semi-active schedules for in-
stances of P |rj , dj |Cmax, i.e. we do not consider here precedence constraints.
These properties will be considered in Section 3 to bound the complexity of our
B&F algorithm.

We illustrate some definitions below with an example. Figure 1 shows a fea-
sible schedule on two processors for the example of Table 1.

4 I. Tarhan et al.

jobs 1 2 3 4 5 6 7 8 9 10 11
ri 0 0 4 6 3 7 10 10 15 14 16
di 6 6 6 10 10 11 15 15 17 18 18
pi 3 5 2 4 4 2 4 4 2 3 1

Table 1: Release times, deadlines and processing times for a set of n = 11 jobs

1 3

2

4

5 6

7

8

9

10

11

0 3 4 11 14 15

Fig. 1: A feasible schedule on m = 2 processors.

A schedule defines for each job i a starting time s(i). It is feasible if no job
starts earlier (resp. completes later) than its release time (resp. deadline) and
there are not more than m jobs that are in-progress at any time t ∈ R+.

Let us consider a schedule S. We sort the starting times of jobs in increasing
order (breaking ties with the job index if necessary), and denote by J1, J2, ..., Jn
the successive jobs such that s(J1) ≤ s(J2) ≤ ... ≤ s(Jn). For any value α ∈
{0, . . . , n}, Sα is a partial schedule of S including only its first α jobs J1, J2, ..., Jα.
The schedule S0 is empty whereas Sn = S. When appropriate, Sα is used to
refer to the jobs of the corresponding partial schedule. Let us define the time
t(Sα) to be the earliest completion time of a job of Sα after s(Jα) : t(Sα) =
min{j∈Sα,s(j)+pj>s(Jα)} sj + pj . We denote by P (Sα) the set of jobs in schedule
Sα that complete or are in-progress at time t(Sα). More formally, P (Sα) = {i ∈
Sα, s(i) < t(Sα) ≤ s(i) + pi} for α ∈ {0, ..., n}.

For our previous example, the schedule S presented by Figure 1 is associated
by the sequence of jobs (1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11). The partial schedule S4 is
thus associated with the jobs set {1, 2, 3, 5}. We also get t(S4) = s(3) + p3 = 6
and P (S4) = {3, 5}.

For each value α ∈ {0, . . . , n}, we define Zα as the first max{0, α− µ} jobs,
when jobs are sorted in increasing order of their deadlines, i.e. d1 ≤ d2 ≤ ... ≤ dn.
More precisely, ∀α ∈ {0, . . . , n},

Zα =

{
∅ if α ≤ µ

{1, 2, . . . , α− µ} with d1 ≤ d2 ≤ . . . ≤ dn otherwise.

We note that if the deadlines jobs are not all different, there can have several
jobs whose deadline is the (α− µ)th smallest deadline among all jobs. In such a
case, we break ties considering the indexes of the jobs: the job with the smallest
index among the jobs having the (α−µ)th smallest deadline is added to set Zα.
Thus, the cardinality of set Zα is always max{0, α− µ}.

Similarly, for each value α ∈ {0, . . . , n} let Z ′
α be the set of the first min{n−

max{0, α − µ}, 2µ} jobs that are not included in Zα when jobs are sorted in

Parameterized Analysis of a Branch-and-Bound Algorithm 5

ascending order of their release times such that r1 ≤ r2 ≤ ... ≤ rn. Again, we
break ties considering the jobs indexes if necessary.

For convenience, we provide the cardinality of sets Zα and Z ′
α for different

n and α values in Table 2. Since |Z ′
α|+ |Zα| ≤ n for each value α ∈ {0, . . . , n},

Z ′
α is properly defined.

Table 2: Values |Zα| = max{0, α− µ}, |Z ′
α| = min{n−max{0, α− µ}, 2µ} and

|Zα|+ |Z ′
α| following n, α and µ.

Case n < 2µ

Subcase |Zα| |Z′
α| |Zα|+ |Z′

α|
α ≤ µ 0 n n
α > µ α− µ n− (α− µ) n

Case n ≥ 2µ

Subcase |Zα| |Z′
α| |Zα|+ |Z′

α|
α ≤ µ 0 2µ 2µ

µ < α < n− µ α− µ 2µ α+ µ
α ≥ n− µ α− µ n− (α− µ) n

Notice that in the example of Table 1 the jobs are indexed by increas-
ing order of deadlines. The list of jobs ordered by increasing release times is
(1, 2, 5, 3, 4, 6, 7, 8, 10, 9, 11). Observe that at most 4 intervals (intervals of jobs
{1, 2, 3, 5} and {7, 8, 9, 10}) overlap at a same time, so µ = 4. Table 3 presents
sets Sα, Zα and Z ′

α for α ∈ {2, 6, 8}.

Table 3: Sets Sα, Zα and Z ′
α associated of the example of Table 1 for α ∈ {2, 6, 8}.

α Sα Zα Z′
α

2 {1, 2} ∅ {1, 2, 3, 4, 5, 6, 7, 8}
6 {1, 2, 3, 4, 5, 6} {1, 2} {3, 4, 5, 6, 7, 8, 9, 10}
8 {1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4} {5, 6, 7, 8, 9, 10, 11}

Now let us consider the partial schedule S6 of the partial schedule depicted
in Figure 1. We have s(1) = s(2) = 0, s(3) = 4, s(4) = 6, s(5) = 5 and s(6) = 9.
Moreover, t(S6) = s(4) + p4 = 10 and P (S6) = {4, 6}.

For any value α ∈ {0, . . . , n}, |Sα\Zα| ≥ |Sα| − |Zα| ≥ α − max{0, α − µ}.
Next propositions show inclusion properties between the sets Sα, Zα, Z ′

α and
P (Sα).

Proposition 1. For any feasible schedule S, ∀α ∈ {0, . . . , n}, Zα ⊆ Sα.

6 I. Tarhan et al.

Proof. The set Zα = ∅ for α ≤ µ. Therefore, we consider the case α > µ and
the corresponding schedule Sα. Let time t be the starting time of the last job
in schedule Sα, i.e. t = maxj∈Sα s(j) = s(Jα). Thus, for each job j ∈ Sα, rj ≤
s(j) ≤ t. Moreover, by definition of S and Sα, jobs in S\Sα can start at time t
at the earliest, i.e. s(j) ≥ t, ∀j ∈ S\Sα.

By contradiction, assume that there exists a job i ∈ Zα with i ∈ S\Sα. Then,
s(i) ≥ t and thus di > t. Now, by definition of set Zα, all jobs in Sα\Zα have
a deadline greater than or equal to di, i.e, dj ≥ di > t,∀j ∈ Sα\Zα. Two cases
must be considered:

– If ri > t, then ∀j ∈ Sα\Zα, rj ≤ t < ri < di ≤ dj . Since |Sα\Zα| ≥ µ,
there will be at least µ jobs overlapping with the time window of job i which
contradicts the definition of µ.

– Similarly, if ri ≤ t, then ∀j ∈ (Sα\Zα) ∪ {i}, rj ≤ t < di ≤ dj . All these at
least µ+ 1 jobs overlap at time t, which contradicts the definition of µ. ⊓⊔

Proposition 2. For any feasible schedule S, ∀α ∈ {0, . . . , n}, Sα ⊆ Zα ∪ Z ′
α.

Proof. If n < 2µ or if α ≥ n−µ, |Zα∪Z ′
α| = |Zα|+ |Z ′

α| = n as shown in Table 2
and the proposition holds for these cases. Therefore, let us consider n ≥ 2µ and
α < n− µ; in this case |Z ′

α| = 2µ.
By contradiction, let us suppose the existence of a job i ∈ Sα\(Zα ∪Z ′

α). We
first prove that |Z ′

α\Sα| ≥ µ+ 1. Indeed, by Proposition 1, Zα ⊆ Sα. Thus, Sα

can be partitioned into the 3 sets Zα, {i} and the remaining jobs set R. Here,
|R| = |Sα\(Zα ∪ {i})| = |Sα| − |Zα| − 1 ≤ α − (α − µ)− 1 = µ− 1. Now, since
(Zα ∪ {i}) ∩ Z ′

α = ∅, Z ′
α ∩ Sα ⊆ R and thus |Z ′

α\Sα| ≥ |Z ′
α| − |R|. Now, since

|Z ′
α| = 2µ and |R| ≤ µ− 1, we get |Z ′

α\Sα| ≥ µ+ 1.
Let us denote now by t = maxj∈Sα s(j) = s(Jα) the starting time of the last

job in the partial schedule Sα. We prove that, for each j ∈ Z ′
α\Sα, rj ≤ t < dj .

Indeed, each job j ∈ Z ′
α\Sα verifies s(j) ≥ t, thus dj > t. Now, since job i is

scheduled before or at time t, ri ≤ s(i) ≤ t. As i ̸∈ Zα ∪ Z ′
α, ri ≥ rj for every

job j ∈ Z ′
α\Sα, we get rj ≤ ri ≤ t.

Thus all the time windows of jobs in Z ′
α\Sα overlap during the interval

(t, t + 1). Since |Z ′
α\Sα| ≥ µ + 1, it contradicts the definition of the interval

parameter µ.
⊓⊔

Proposition 3. For any feasible schedule S, ∀α ∈ {0, . . . , n}, P (Sα) ∩ Zα = ∅,
and thus Zα ⊆ Sα\P (Sα) and P (Sα) ⊆ Z ′

α.

Proof. Since Zα = ∅ for α ≤ µ, we only consider α > µ. In this case, by
Proposition 1, |Sα\Zα| = µ.

By contradiction, let us consider a job i ∈ P (Sα) ∩ Zα. Since i ∈ P (Sα), i
is either in-progress or completes at time t(Sα) and therefore di ≥ t(Sα) > ri.
Now, as i ∈ Zα, every job j ∈ Sα\Zα verifies dj ≥ di ≥ t(Sα). Moreover
rj ≤ s(j) ≤ s(Jα) < t(Sα).

Parameterized Analysis of a Branch-and-Bound Algorithm 7

Thus, every job j ∈ {i} ∪ (Sα\Zα) verifies rj < t(Sα) ≤ dj ; we deduce that
there are at least µ + 1 jobs which time window intersects any t ∈ (t(Sα) −
1, t(Sα)), a contradiction with the definition of µ.

Lastly, by Proposition 1, Zα ⊆ Sα, and thus Zα ⊆ Sα\P (Sα). By Proposi-
tion 2 this implies that P (Sα) ⊂ Z ′

α, which achieves the proof. ⊓⊔

3 Branch-and-Find (B&F) algorithm

It is inspired from a branch-and-bound algorithm proposed by [7] that mini-
mizes the makespan for the RCPSP. Here, we consider the decision problem
P |prec, ri, di|⋆ which includes release times and deadlines for jobs unlike the
RCPSP problem. The B&F algorithm differentiates from the branch-and-bound
algorithm in several ways: a search graph is generated instead of a search tree ,
release times and deadlines are considered while generating successors of a nod,
dominance based on properties of section 2 are used, and no bounding technique
is applied to ease the complexity analysis. On another hand, the dominance
properties and node definition on which the branch-and-bound [7] is based are
used. Branching principles are also similar but extended to handle time windows.

Let the relevant search graph denoted by G(V,A). In Section 3.1, nodes of
the search graph G(V,A) are defined and some dominance properties presented.
Section 3.2 analyses the worst case complexity of finding an undominated node.
In Section 3.3, the construction of the search graph G(V,A) is explained. Finally,
in Section 3.4, the overall complexity of the B&F algorithm is analyzed.

Without loss of generality, we assume from now that m ≤ µ, otherwise the
earliest schedule would fit on the m processors and the decision problem would
be trivial.

In the rest of the section we illustrate some of the notions with the instance
described by the set of jobs of Table 1, to which we add a precedence graph
shown in Figure 2. The schedule shown in Figure 1 satisfies these precedence
constraints.

1 5

2 4

3 6

7

8

9

10

11

Fig. 2: A precedence graph for the set of jobs of Table 1

8 I. Tarhan et al.

3.1 Nodes definitions and dominance properties

A node v is a quadruplet v = (V, t, P,M) where V ⊆ T is a set of jobs, t ∈ N
is a date, P ⊆ V , and M ∈ N|P | is a a vector indexed following P . Hereafter,
we use V (v), t(v), P (v), and M(v) to refer to set V , time moment t, set P and
function M . The level of a node v is the number of jobs in V (v).

Definition 1. A node v = (V, t, P,M) is said to be partially feasible if there
exists a feasible schedule σ of jobs from V such that

1. Every job i ∈ V \P is completed before t, i.e. σ(i) + pi < t;
2. Every job i ∈ P starts before t: σ(i) < t and is completed at time Mi ≥ t :

i.e. Mi = σ(i) + pi ≥ t.

Note that σ is a partial schedule of T since it concerns only jobs from V (v).
Moreover, the node v alone is clearly not sufficient to define σ. We also observe
that jobs of P are either in progress or completed at time t and thus |P | ≤ m.

Several enumerative algorithms build semi-schedules for subsets of jobs V ⊆
T until reaching a complete schedule of S. The next definition introduces the
notion of fully feasible node in coherence with the Demeulemeester and Herroelen
algorithm [7] where some jobs in P can be delayed.

Definition 2. A partially feasible node v = (V, t, P,M) is said to be fully feasible
if there exists a feasible schedule S of jobs from T such that

1. Every job i ∈ V \P is completed before t, i.e. s(i) + pi < t;
2. Every job in i ∈ T \V starts after time t, i.e. s(i) ≥ t;
3. Every job i ∈ P such that Mi = t starts at time s(i) = Mi − pi. Every job

i ∈ P with Mi > t starts either at time Mi − pi or at time s(i) ≥ t.

Again the associated schedule S is not stored with any feasible node v. Testing
that a node is feasible is thus uneasy. Next proposition will allow us to limit the
exploration of the nodes to a more affordable class.

Proposition 4. Assume that S is a feasible schedule, and let consider the partial
schedules Sα, α ∈ {0, . . . , n} as defined in Section 2. Consider the set of indexes
A = {α ∈ {1, . . . , n}, t(Sα+1) > t(Sα)}. Then, A ̸= ∅. Moreover, ∀α ∈ A, node
v = (Sα, t(Sα), P (Sα),M) with Mi = s(i) + pi for every job i ∈ P (Sα) is a fully
feasible node.

Proof. Let us consider that jobs of T are numbered J1, . . . Jn according to S
such that s(J1) ≤ s(J2) ≤ ... ≤ s(Jn). A is not empty, otherwise for α = µ+ 1,
we would have all jobs J1, . . . , Jµ+1 completed at t(Sµ+1) or in progress at that
time, a contradiction with the definition of µ. Let us consider now α ∈ A and
node v = (Sα, t(Sα), P (Sα),M). We first show that v is partially feasible by
considering for σ the restriction of S to Sα.

1. Consider a job i ∈ Sα\P (Sα). By definition of Sα and P (Sα), s(i) + pi <
t(Sα) and the first item of Definition 1 is verified;

Parameterized Analysis of a Branch-and-Bound Algorithm 9

2. If now i ∈ P (Sα), then s(i) < t(Sα) ≤ s(i) + pi = Mi, so that the last item
is also verified.

Now, we are ready to prove that v is a fully feasible node. Indeed, we observe that
S verifies the two items 1 and 3 of Definition 2. Let us show that if t(Sα+1) >
t(Sα) then s(Jα+1) ≥ t(Sα). By contradiction assume that s(Jα+1) < t(Sα).
We know that there is a job i in P (Sα) that completes at time t(Sα). We also
know that s(Jα+1) ≥ s(Jα). This implies that i starts before and completes
after s(Jα+1), and thus it is included in the computation of t(Sα+1), the least
completion time after s(Jα+1). So t(Sα+1) ≤ t(Sα) a contradiction. This implies
that for any job j ̸∈ Sα, s(i) ≥ t(Sα+1) ≥ t(Sα). Hence the second item of
Definition 2 holds, and v is a fully feasible node.

Let us consider a feasible schedule S and a node v = (Sα, t(Sα), P (Sα),M) as
defined by Propositions 4. The node v is feasible and by Propositions 2 and 3,
Zα ⊆ Sα\P (Sα) and Sα ⊆ Zα∪Z ′

α. These two last conditions will be considered
to define the class of nodes that are considered in our algorithm:

Definition 3. A partially feasible node v is admissible if Zα ⊆ V (s)\P (s) and
V (s) ⊆ Zα ∪ Z ′

α for α = |V (s)|.

The following dominance property proved by Demeulemeester and Herroe-
len [7] allows the number of nodes considered in an enumerative algorithm to be
reduced.

Proposition 5. [7] Consider two partially feasible nodes v and v′ such that
V (v) = V (v′), and such that t(v′) ≥ maxi∈P (v)\P (v′)(Mi(v)) and ∀i ∈ P (v) ∩
P (v′),Mi(v) ≤ Mi(v

′). If v′ is fully feasible, then v is fully feasible either.

Following the previous proposition, we now define the notion of dominance
between nodes:

Definition 4. Let v and v′ be two nodes. The node v dominates v′ if V (v) =
V (v′), t(v′) ≥ t(v), t(v′) ≥ maxi∈P (v)\P (v′)(Mi(v)) and ∀i ∈ P (v)∩P (v′),Mi(v) ≤
Mi(v

′). A set of nodes N is said undominated if there is no couple of nodes
(v, v′) ∈ N 2 such that v dominates v′.

The next lemma bounds the number of admissible undominated nodes:

Lemma 1. For any value α ∈ {0, . . . , n}, there are at most
(
2µ
µ

)
different sets V

of α jobs associated to an an undominated admissible node (i.e. such that there
exists an undominated admissible node v with V = V (v)). Moreover, for a given
job set V , the number of undominated admissible nodes v such that V (v) = V is
bounded by (2 × pmax)

µ. The number of admissible undominated nodes of level
α is bounded by f(µ, pmax) with f(µ, pmax) =

(
2µ
µ

)
× (2× pmax)

µ.

Proof. Assume that the node v is admissible of level α, i.e. |V (v)| = α. The sets
Zα and Z ′

α are fixed.

10 I. Tarhan et al.

1. By Definition 3, Zα ⊆ V (v)\P (v) ⊆ V (v), thus |V (v)\Zα| = |V (v)|− |Zα| =
α − max{0, α − µ} ≤ µ. Moreover, V (v) ⊆ Zα ∪ Z ′

α and by definition
|Z ′

α| ≤ 2µ. Since V (v) is built from at most µ elements in Z ′
α, the num-

ber of possibilities for V (v) is bounded by
(
2µ
µ

)
, which corresponds to the

first part of the lemma.
2. On the same way, by Definition 3, P (v) ⊆ V (v)\Zα; since |V (v)\Zα| ≤ µ,

and P (v) contains at most m elements, the total number of possibilities for

P (v) when V (v) is fixed is
i=m∑
i=0

(
µ
i

)
≤ 2µ; since m ≤ µ;

3. Let us suppose now that V (v) and P (v) are fixed. Then, if t(v) is fixed, each
job i ∈ P (v) must have its completion time Mi(v) in {t(v), . . . , t(v) + pi −
1}. Thus, (pmax)

|P (v)| is an upper bound of the total number of possible
M(v) vectors. Moreover, by Definition 4, for any fixed M(v) vector, only the
smaller possible value of t(v) should be considered.

4. So, for a given V (v), the number of undominated admissible nodes is bounded
by (2× pmax)

µ

Thus, the total number of undominated admissible nodes of level α is bounded

by A =
(
2µ
µ

)
×

m∑
i=0

(
(
µ
i

)
(pmax)

i) ≤
(
2µ
µ

)
× (pmax)

m ×
m∑
i=0

(
µ
i

)
. Now, since m ≤ µ

and
µ∑

i=0

(
µ
i

)
= 2µ, we get A ≤

(
2µ
µ

)
× (pmax)

µ × 2µ, which achieves the proof. ⊓⊔

3.2 Management of the undominated sets of admissible nodes

For any α ∈ {0, . . . , n}, we define Vα as the set of undominated admissible
nodes of level α, i.e. ∀v ∈ Vα, |V (v)| = α. Algorithm 1 describes function
AddDiscardOrReplace(v,Vα) that considers adding node v to set Vα while pre-
serving the undominance property of set Vα. It considers whether node v is
dominated by another node u ∈ Vα or not. If so, AddDiscardOrReplace(v,Vα)
returns false and the node v is not added to Vα (lines 4-5). Otherwise, v will
be added to Vα and nodes that are dominated by v are removed from Vα (lines
6-10).

Next Lemma analyses the time complexity of Algorithm 1.

Lemma 2. The time complexity of the function AddDiscardOrReplace(v,Vα)
is O(g(µ, pmax)) where g(µ, pmax) = µ× (µ ln(µ) + (2pmax)

µ).

Proof. Let us assume that the nodes sharing the same set V are stored in a
separate container in Vα. Let V (C) denote the set V of the nodes stored in the
container C. The set of containers can be stored using AVL trees to speed-up
the initialization of Q at line 2. Since all the nodes stored in Vα are admissible,
for every v ∈ Vα, Zα ⊆ V (v) and V (v)\Zα ⊆ Z ′

α by Definition 3. So, we only
consider jobs in Z ′

α to differentiate the containers. Moreover, |Z ′
α| ≤ 2µ, thus 2µ

bits b1 . . . b2µ are required for determining a key associated to V (Q): bj = 1 if
and only if the associated job of Z ′

α is in V (Q).

Parameterized Analysis of a Branch-and-Bound Algorithm 11

Algorithm 1 AddDiscardOrReplace(v,Vα)

Require: v is a node of level α; Vα is a set of undominated admissible nodes of level α.
Ensure: Add v to Vα if possible and maintain that Vα is an undominated set of nodes;

Returns false if v is not added to Vα, v otherwise.
1: Set D = ∅
2: Find Q = {u ∈ Vα, V (u) = V (v)}
3: for each node u ∈ Q do
4: if u dominates v then
5: return false
6: else if v dominates u then
7: D = D ∪ {u}
8: end if
9: end for

10: Vα = (Vα −D) ∪ {v}
11: return v

For a fixed value α, there can be at most
(
2µ
µ

)
different possible set V as

shown in Lemma 1. Therefore, Vα is partitioned by at most
(
2µ
µ

)
different con-

tainers. The AVL trees as described before allows to get the container Q in time
complexity O(µ× ln

(
2µ
µ

)
) = O(µ× µ× ln(µ)) since

(
2µ
µ

)
≤ (2µ)µ.

Testing that a node u dominates v is in time complexity O(m), and thus
O(µ). We deduce that the time complexity of a single iteration of the loop at
lines 3-9 is O(µ).

Lastly, as shown in Lemma 1, the number of undominated admissible nodes
in the container Q is O((2× pmax)

µ). Therefore, the complexity of Algorithm 1
is O(µ× (µ ln(µ) + (2× pmax)

µ)) which proves the lemma. ⊓⊔

3.3 Construction of the search graph

The Branch-and-Find algorithm computes the search graph G(V,A) and is ex-
pressed by Algorithm 2. The main ideas of [7] were adapted to handle re-
lease times and deadlines. The B&F algorithm starts with the root node v0 =
(∅, 0, ∅, ∅) and gradually builds the search graph G(V,A).

At line 1 of Algorithm 2, the subsets of admissible undominated nodes
V0, . . . ,Vn and the set of arcs A are initialized. The algorithm is composed
by 3 nested loops; the first two loops on respectively lines 2 and 3 iterate on
the admissible nodes in V0, . . . ,Vn−1. The set R(v) computed by the function
SetCandidateNewJobs(v) at line 4 is the set of jobs to be considered for building
the nodes u successors of v in G, i.e. V (u) ⊆ V (v)∪R(v). The value tmin ≥ t(v)
is the minimum time at which a new job can be performed.

The inner loop at lines 5-13 iterates on every non empty maximal subset C
of R(v). The function NewNode at line 6 returns a new admissible node built
from C and tmin if it is possible, or false otherwise. If a new node v′ from node v,
set C and time tmin is generated, we call AddDiscardOrReplace(v′,Vα′) where
α′ = |V (v′)| at line 8. As seen in Subsection 3.2, this function returns false if

12 I. Tarhan et al.

Algorithm 2 The Branch-and-Find algorithm
Require: An instance I of n jobs of P |prec, rj , dj |⋆
Ensure: The associated search graph G(V,A)
1: V0 = {(∅, 0, ∅, ∅)}, Vα = ∅ for α ∈ {1, · · · , n}, A = ∅
2: for α ∈ {0, . . . , n− 1} do
3: for each node v ∈ Vα do
4: R(v), tmin ← SetCandidateNewJobs(v)
5: for each subset C ̸= ∅ of R(v) s.t. |C| = min(m, |R(v)|) do
6: v′ ← NewNode(v, tmin, C)
7: if v′ ̸= false then
8: u← AddDiscardOrReplace(v′,Vα′) where α′ = |V (v′)|
9: if u ̸= false then

10: A ← A∪ {(v, u)}
11: end if
12: end if
13: end for
14: end for
15: end for
16: return G(V,A) where V =

⋃n
α=0 Vα

there exists another node in Vα′ that is dominating node v. In this case, we do
not consider the new node v′. Otherwise, AddDiscardOrReplace(v′,Vα′) deletes
the nodes in Vα′ that are dominated by v′ and returns v′. Note that we consider
that as soon as a node is deleted from V, all its adjacent arcs are automatically
removed from A.

Computation of the set of candidate jobs R(v) and the time instant tmin: let
us consider an admissible node v and a time instant t ≥ t(v). For any job i we
denote by Γ−⋆(i) the set of all ancestors of i in the precedence graph. We then
define the following subsets of jobs:

– IP (v, t) = {i ∈ P (v),Mi(v) > t} is the set of jobs of P (v) that are in
progress at time t;

– E(v, t) = {i ∈ T \V (v), Γ−⋆(i) ⊆ V (v)\IP (v, t)} is the set of eligible jobs at
time t following v, i.e. these jobs are not in V (v) and all of their ancestors
are in V (v) and completed by time t;

– D(v, t) = E(v, t) ∩ {i ∈ T , ri ≤ t}, the set of eligible jobs that are released
before or at time t.

Algorithm 3 describes the determination of the set of jobs to be considered to
build successors u of node v in the search graph and their time t(u) = tmin.

The B&F algorithm ensures that when a new node u is generated from a
node v, the cardinality of V (u) is greater than the cardinality of V (v).

By definition of node v, jobs that are not in V (v) can be started at time t(v)
at the earliest in the schedules represented by node v. Let us define tmin ≥ t(v)
as the minimum value such that a new job j from T \V (v) may be executed

Parameterized Analysis of a Branch-and-Bound Algorithm 13

Algorithm 3 SetCandidateNewJobs(v)

Require: v is an admissible node
Ensure: The set of jobs R(v) ⊆ (T \V (v) ∪ P (v), the time instant tmin

1: tmin = min{t : t ≥ t(v), D(v, t) ̸= ∅}
2: ect⋆(v, tmin) = min{ect(v, i, tmin), i ∈ E(v, tmin) ∪ IP (v, tmin)}
3: if there exists a job i ∈ T \V (s) s.t. ect(v, i, tmin) > di then
4: return (∅, 0)
5: end if
6: R(v) = IP (v, tmin) ∪ (E(v, tmin) ∩ {i ∈ T , ri < ect⋆(v, tmin)})
7: return (R(v), tmin)

in a feasible schedule represented by the admissible node v. We observe that
j ∈ D(v, tmin) and thus tmin can be defined following line 1 of Algorithm 3.

Now, for any job i ∈ IP (v, t) ∪ (T \V (v)), let us define the lower bound of
the completion time of i following v as

ect(v, i, t) =

{
Mi(v) if i ∈ IP (v, t)

max{t, ri}+ pi if i ∈ T \V (v).

By definition of v, and tmin any job i ∈ T \V (s) starts not earlier than tmin,
thus ect(v, i, tmin) is a lower bound of the completion time of i. If ect(v, i, tmin) >
di, v cannot lead to a feasible schedule and the function returns ∅ (line 4).

To avoid overlooking jobs that are not released immediately at tmin but
very close in time, ect⋆(v, tmin) is defined as the earliest possible completion
time among the jobs in E(v, tmin)∪ IP (v, tmin); then, the set R(v) includes any
eligible job at time tmin that is released strictly before ect⋆(v, tmin) (lines 6 of
Algorithm 3).

One can observe that jobs in T \(V (v) ∪ R(v)) cannot start their execu-
tion following v in the interval [tmin, ect

⋆(v, tmin)). Indeed, considering job i ∈
T \(V (v) ∪ R(v)), if i ∈ E(v, tmin), then ri ≥ ect⋆(v, tmin). Otherwise, i ̸∈
E(v, tmin) and thus i has at least one predecessor j which is not completed
at time tmin. By definition of ect⋆(v, tmin), no job is completed in the interval
[tmin, ect

⋆(v, tmin)) and ect(v, j, tmin) ≥ ect⋆(v, tmin), thus i cannot start its
execution before t = ect⋆(v, tmin).

Lastly, no job of R(v) will complete earlier than ect⋆(v, tmin). Thus, it is
sufficient to consider only the jobs in set R(v) while generating new nodes from
node v.

Let us consider, for the example of Table 1 and Figure 2, the node v =
({1, 2, 3, 4, 5, 6}, 10, {4, 6},M) with M4 = 10,M6 = 11. According to the prece-
dence graph, all the predecessors of the remaining jobs are completed at 10, and
at least one of them has a release time not greater than 10. So that tmin = 10.
The earliest completion time is then ect⋆(v, 10) = 11 the completion time of job
6. Hence R(v) is the set of eligible jobs with release time less than 11 plus job
6, so R(v) = {6, 7, 8}. Similarly if we consider the node u = ({1, 2}, 3, {1, 2},M)
with M1 = 3,M2 = 5, then job 5 is available at time 3 so that tmin = 3,

14 I. Tarhan et al.

and the earliest completion time of a job in progress at tmin is 5. So the set
R(u) = {2, 3, 5} since job 3 has release time less than 5.

Computation of a new node: Algorithm 4 presents the function NewNode that
returns, if it possible, a new admissible node u built by considering all the jobs
from C.

For any t ≥ t(v), we define the set X(v, t) ⊆ E(v, t) of eligible jobs j re-
leased before t, and such that no predecessor of j ends at t(v). i.e. X(v, t) =
{j ∈ E(v, t), rj < t and ∀i ∈ Γ−⋆(j), i ̸∈ P (v)}. We also note X(v, t) =
E(v, t)\X(v, t).

Now, by definition of R(v), any set C ⊆ R(v) can be partitioned into three
subsets CP ⊆ IP (v, tmin), CX ⊆ X(v, tmin) and CX ⊆ X(v, tmin). In any semi-
active schedule, jobs from CX cannot be executed at time tmin or later with
an idle slot just before, since all their predecessors are completed at a times
t′ < t(v) ≤ tmin. Let Q define the set of jobs in P (v) that complete at time
tmin (see line 2 of Algorithm 4). If |Q| < |CX |, then there is at least one job in
CX that will be executed at time tmin with an idle time in the previous time
slot [tmin − 1, tmin), and the schedule associated with the new node will not be
semi-active. Thus, the set C must be discarded and Algorithm 4 returns false
(lines 3-4).

Algorithm 4 NewNode(v, tmin, C)

Require: v is an admissible node, t the time instant of the new node, C ⊂ R(v) the
set of new jobs added to V (v) for the new node.

Ensure: an admissible new node u if it is possible, false otherwise.
1: Let C = CP ∪ CX ∪ CX with CP ⊆ IP (v, tmin), CX ⊆ X(v, tmin) and CX ⊆

X(v, tmin)
2: Let Q = {i ∈ P (v),Mi(v) = tmin}
3: if |Q| < |CX | then return false
4: end if
5: Set V (u) = (V (v)\IP (v, tmin)) ∪ C and β = |V (u)|
6: if Zβ ̸⊆ V (u) or V (u) ̸⊆ Zβ ∪ Z′

β then return false
7: end if
8: P (u) = C; ∀j ∈ C, Mj(u) = ect(v, j, tmin); t(u) = minj∈C Mj(u)
9: return node u

The set of nodes V (u) and its cardinality β are defined at line 5. Lines 6-7
discard u if it is not admissible (see Definition 3). Line 8 defines P (u), M(u) and
t(u) as well.

In our example, starting from node u = ({1, 2}, 3, {1, 2},M) with M1 =
3,M2 = 5 we would try three successors with sets C1 = {2, 3}, C2 = {2, 5}, C3 =
{3, 5}, leading to the quadruplets v1 = ({1, 2, 3}, 5, {2, 3},M2 = 5,M3 = 6), v2 =
({1, 2, 5}, 5, {2, 5},M2 = 5,M5 = 7), v3 = ({1, 3, 5}, 6, {3, 5},M3 = 6,M5 = 7).
Then, v2 will be discarded because if job 3 is scheduled at 5 it misses its deadline.
Similarly, if 2 is scheduled after 6, it will miss its deadline, so v3 is discarded too.

Parameterized Analysis of a Branch-and-Bound Algorithm 15

3.4 Complexity analysis of the Branch-and-Find algorithm

In this section we prove that the algorithm is fixed parameter tractable for the
parameters µ, pmax.

Proposition 6. For any admissible node v ∈ V, |R(v)| ≤ µ.

Proof. By definition of R(v), all jobs in R(v) are schedulable in the interval
[ect⋆(v, tmin)−1, ect⋆(v, tmin)), thus their time windows overlap, and the propo-
sition holds. ⊓⊔

Proposition 7. The time complexity of the function SetCandidateNewJobs(v)
(see Algorithm 3) is O(n2 × µ) if no specific data structure is used.

Proof. SetCandidateNewJobs(v) requires first to find tmin(see line 1). To this
purpose we can observe that tmin is either t(v), a release time ri > t(v) or a value
Mi(v) for i ∈ IP (v, t(v)). Let us denote by ∆1, . . . ,∆k these values following
increasing order i.e. ∆1 < ∆2 < . . .∆k, ∆0 = t(v) and k ≤ m (with m ≤ µ).

– For each value ∆b, b ∈ {0, . . . , k} sets E(v,∆i) can be computed in time
complexity O(n2): we consider at most n jobs to check if their ancestors
are completed by time ∆i and there can be at most n − 1 ancestors for a
given job. Then, sets D(v,∆i) can be deduced in time complexity O(n). The
overall computation of these sets is then in time O(n2 × µ);

– Let b⋆ be the minimum value in b ∈ {0, . . . , k} such that D(v,∆b) ̸= ∅. If
b⋆ = 0, tmin = t(v). Else, we get ∆b⋆−1 < tmin ≤ ∆b⋆). We define the set
A = E(v,∆b⋆−1)∩D(v,∆b⋆ . If A = ∅, then jobs in D(v,∆b⋆) are not eligible
at time ∆b⋆−1, and thus tmin = ∆b⋆ . Otherwise, tmin = mini∈A ri. Without
any specific data structure, the time complexity is in O(m+ µ).

– We conclude that the computation of tmin is in time complexity O(n2 × µ).

Once tmin and set D(v, tmin) are fixed, the computation of ect⋆(v, tmin) at
line 3 and of R(v) take both O(n). The total complexity of SetCandidateNewJobs(v)
is thus O(n2 × µ). ⊓⊔

Proposition 8. The time complexity of the function NewNode(v, tmin, C) (see
Algorithm 4) is O(n).

Proof. The time complexity of the instructions at lines 1 and 5 of Algorithm 4
are O(n), while those at lines 2 and 8 are O(m). Since m ≤ n, the whole time
complexity of this algorithm is O(n), which proves the lemma. ⊓⊔

Our main theorem follows:

Theorem 1. The Branch-and-Find algorithm (see Algorithm 2) is an FPT al-
gorithm of time complexity

O
(
n3 × µf(µ, pmax) + n2 × h(µ, pmax) + n× g(µ, pmax)h(µ, pmax)

)
with f(µ, pmax) =

(
2µ
µ

)
× pµmax × 2µ , g(µ, pmax) = µ(µln(µ) + (2× pmax)

µ) and
h(µ, pmax) =

(
µ

⌈µ/2⌉
)
× f(µ, pmax).

16 I. Tarhan et al.

Proof. Algorithm 2 consists of three nested loops starting respectively at lines
2, 3 and 5.

1. By Proposition 8 and Lemma 2, the time complexity of the loop body of the
inner loop (lines 6-12) is O(n+g(µ, pmax)). Now, by Proposition 6, |R(v)| ≤
µ. Thus the total number of sets R(v) is

(
µ
m

)
≤

(
µ

⌈µ/2⌉
)
. The complexity of

one execution of the inner loop (line 5-13) is in time complexity O(A) with
A = (n+ g(µ, pmax))×

(
µ

⌈µ/2⌉
)
;

2. By Proposition 7, the time complexity of the loop body of the intermediate
loop (lines 4-13) is O(A + n2µ). Following Lemma 1, the number of itera-
tions of the intermediate loop (line 3-14) is bounded by f(µ, pmax), thus its
complexity belongs to O((A+ n2µ)× f(µ, pmax));

3. Lastly, the outer loop (lines 2-14) is executed n times, thus the overall time
complexity is O((A+ n2µ)× f(µ, pmax)× n).

Replacing A by its value, we get the theorem. ⊓⊔

4 Computational experiments

4.1 Data generation

We develop a problem instance generator that for given values of n, µ,m, γ−

and γ+, guarantees to produce an instance for which i) the number of jobs
and machines are n and m, respectively, ii) the maximum number of jobs with
overlapping time windows is µ, iii) the maximum processing time among all jobs
is pmax and iv) the maximum number of predecessors and successors a job has
is γ− and γ+, respectively.

Algorithm 5 InstanceGenerator(n,m, µ, pmax, γ
−, γ+, ρ)

1: T = ∅
2: GenerateFirstµJobs(T ,m, µ, pmax, γ

−, γ+)
3: GenerateRemainingJobs(T , n,m, µ, pmax)
4: SetAdditionalPrecedenceRelations(T , γ−, γ+, ρ)
5: return T

As shown in Algorithm 5, the proposed instance generator first calls proce-
dure GenerateFirstµJobs described by Algorithm 6 which i) generates µ jobs
with at least one job having processing time pmax (lines 1-3), ii) ensures that
time windows of all of these jobs overlap (lines 4-6) and iii) ensures that there
will be two jobs with γ− predecessors and γ+ successors, respectively (see lines
7-8). In the generation of new jobs, the following functions are used to set their
deadlines:

C1(S) = max
i∈S

(ri + pi + qi)

Parameterized Analysis of a Branch-and-Bound Algorithm 17

Algorithm 6 GenerateFirstµJobs(T ,m, µ, pmax, γ
−, γ+)

1: Add µ jobs to T such that pi, ri and qi are random integer numbers in [1, pmax]
∀i ∈ T and there exits a job i ∈ T where pi = pmax

2: Set C to an integer number randomly generated in [C1(T), C2(T)]
3: Set di = C − qi ∀i ∈ T
4: while maximum number of jobs with overlapping time windows < µ do
5: Choose job i s.t. ri = max

j∈T
rj and set ri ← min

j∈T
rj

6: end while
7: Choose two jobs i and j for which ri = min

k∈T
rk and rj = max

k∈T
rk

8: Set randomly chosen γ+ (γ−) jobs as the successors (predecessors) of job i (job j).
Adjust (if necessary) time windows of the corresponding jobs accordingly

C2(S) = max
i∈S

ri + ⌈ µ
m⌉max

i∈S
pi +max

i∈S
qi

After the generation of first the µ jobs, we have already satisfied the re-
quirements according to the pmax, γ

− and γ+ values. Moreover, we have gen-
erated µ jobs for which time windows overlap. In the subsequent, procedure
GenerateRemainingJobs described in Algorithm 7 generates new jobs as pre-
serving the maximum number of jobs for which the time windows overlap. To
this end, it iteratively considers the earliest time t′ for which there is a job with
deadline t′ but there is no job released at time t′ and generate new jobs that are
released at time t′ (lines 3-4).

Algorithm 7 GenerateRemainingJobs(T , n,m, µ, pmax)

1: t = 0
2: while |T | < n do
3: t′ = min

i∈T :di>t
di and n′ is the number of jobs in T having deadline t′

4: Add min{n′, n − |T |} new jobs to T such that ri = t′, pi and qi are random
integer numbers in [1, pmax] for each new job i

5: Set C to an integer number randomly generated in [C1(S), C2(S)] where S =
{i ∈ T , di > t′}

6: Set di = C − qi ∀i ∈ S, t← t′

7: end while

Lastly, the instance generator calls SetAdditionalPrecedenceRelations that
is shown in Algorithm 8 which generates further precedence constraints (in ad-
dition to the ones generated in Algorithm 6). Algorithm 8 requires a given prob-
ability ρ which determines the density of the precedence graph. Specifically, as
ρ increases, we are expecting denser interval graphs (line 2). We do not set a
precedence relationship between two jobs if this would require the adjustments
of their time windows (line 1).

18 I. Tarhan et al.

Algorithm 8 SetAdditionalPrecedenceRelations(T , γ−, γ+, ρ)

1: for each pair (i, j) ∈ T 2 s.t. |Γ+(i)| < γ+, |Γ−(j)| < γ−, ri + pi ≤ rj , di ≤ dj − pj
and di > rj do

2: Set precedence relation i→ j with probability ρ
3: end for

In our experiments, we set both γ− and γ+ equal to ⌊µ
4 ⌋ and consider only

a single class of machines. Other parameters are given values as follows: n ∈
{50, 100, 250, 500}, µ ∈ {5, 10, 15, 20, 25}, m ∈ {2, 5, 10} and ρ ∈ {0.25, 0.50, 0.75}.
Considering pmax value, we consider two possibilities: i) pmax = µ or ii) pmax =
n. We generate instances for all cross-combinations of the possible parameter
values except the cases where µ < m. For each distinct tuple (n, µ,m, pmax, ρ),
we generate 5 instances.

Computational experiments are conducted on a workstation with Processor
2x Intel Xeon X5677, 144Go RAM and 3.47 GHz through Visual Studio 2019.

4.2 Computational results

We defined the B&F algorithm with respect to the breadth-first search in Algo-
rithm 2. However, in our computational experiments, we apply the depth-first
search in accordance with the objective of finding a feasible solution. When a
new node needs to be chosen among multiple candidates to generate, we choose
the new node by following the Jackson’s rule [15] (node with earliest completion
time of a job of C). We use one hour time limit for each instance such that the
B&F algorithm is terminated after one hour if the search graph cannot be com-
pletely generated yet. We call the instances with 50 and 100 jobs moderate-size
as the instances with 250 and 500 jobs are referred to as large-size instances.
Similarly, when pmax is equal to µ and n, it is referred to as small and high,
respectively. In the following, we present computational results for each possible
instance tuple (instance size, pmax size,m,µ). We present different metrics to
analyze the results in terms of the feasible solution existence, complete search
graph generation, the number of nodes generated and the solution time. The
value of a particular metric for an instance tuple is equal to the mean of that
metric’s value for the instances in the corresponding instance tuple.

In Table 4, for each instance tuple, we provide the percentage of the instances
i) for which a feasible solution is found, ii) which are proven to be infeasible and
iii) which are neither proven to be feasible nor infeasible (i.e. the algorithm
terminated due to the time limit without finding a feasible solution). When µ
is in {5, 10}, we can solve all instances (an instance is said to be solved if it
is proven to be feasible or infeasible). On the other hand, as µ increases, the
number of solvable instances gradually decreases. All of the unsolved instances
with µ = 15 have 5 machines. This signifies that the problem may get more
difficult when the number of machines is neither too small nor too big. When µ
becomes larger than 15, there exists at least one instance that cannot be solved

Parameterized Analysis of a Branch-and-Bound Algorithm 19

Table 4: Percentages (in %) of instances with respect to feasibility status: i)
Feasible (F), ii) Infeasible (IF) and iii) Unknown (UNK)

size pmax m

µ
5 10 15 20 25

F IF UNK F IF UNK F IF UNK F IF UNK F IF UNK

moderate small 2 53.3 46.7 0.0 60.0 40.0 0.0 90.0 10.0 0.0 93.3 6.7 0.0 90.0 0.0 10.0
5 - - - 93.3 6.7 0.0 96.7 3.3 0.0 100.0 0.0 0.0 100.0 0.0 0.0
10 - - - - - - 96.7 3.3 0.0 100.0 0.0 0.0 100.0 0.0 0.0

high 2 40.0 60.0 0.0 80.0 20.0 0.0 80.0 20.0 0.0 90.0 6.7 3.3 86.7 0.0 13.3
5 - - - 66.7 33.3 0.0 96.7 3.3 0.0 96.7 0.0 3.3 90.0 0.0 10.0
10 - - - - - - 86.7 13.3 0.0 96.7 3.3 0.0 100.0 0.0 0.0

large small 2 6.7 93.3 0.0 23.3 76.7 0.0 60.0 40.0 0.0 66.7 20.0 13.3 80.0 0.0 20.0
5 - - - 80.0 20.0 0.0 90.0 6.7 3.3 90.0 3.3 6.7 93.3 0.0 6.7
10 - - - - - - 63.3 36.7 0.0 90.0 6.7 3.3 86.7 0.0 13.3

high 2 0.0 100.0 0.0 13.3 86.7 0.0 73.3 26.7 0.0 66.7 6.7 26.7 90.0 0.0 10.0
5 - - - 26.7 73.3 0.0 73.3 0.0 26.7 80.0 0.0 20.0 86.7 0.0 13.3
10 - - - - - - 26.7 73.3 0.0 53.3 40.0 6.7 73.3 6.7 20.0

in the instance tuples with large instance size. On the other hand, all moderate
instances can be solved when the number of machines is high (i.e. m = 10).

The complexity of the Branch&Find algorithm is a function of n, µ and pmax

(see Theorem 1). In accordance with its complexity, the number of solutions
of which statuses are unknown is increasing in the corresponding parameters.
Specifically, when instance size is large, µ ∈ {20, 25} and pmax is high, the
number of solutions with unknown feasibility status increases and ranges in [10%,
27%] except the instance tuple (large, high, 10, 20). In this exception case, many
of the instances are infeasible. Being able to fathom nodes in the early iterations
due to the infeasibilities enables to solve the corresponding infeasible instances.

In Table 5, we show for what percent of the instances in each instance tuple,
the search graph can be generated completely. Table 5 shows that when µ is
small, we not only solve all the instances as shown in Table 4, we can also generate
their search graph completely. When µ is in {15, 20}, we can still generate the
complete search graphs for most of the instances except the ones with m = 5. Our
results indicate again that the problem gets more difficult for medium number
of machines. On the other hand, when µ becomes 25, we cannot generate the
complete search graph for most of the instances. All of the instances having
µ = 25 for which complete graph is generated has the highest number of machines
(i.e, m = 10). In our results, the impact of the instance size on the complete
search graph generation percentages is less significant in relative to the impacts
of other parameters. This is in line with the complexity of the proposed FPT so
that its complexity is polynomial in the number of jobs, i.e. n.

In Table 6, for each instance tuple, we present two values: i) the average ratio
of the actual number of nodes generated over the theoretical maximum number
of nodes to be generated and ii) average solution (running) times, by considering

20 I. Tarhan et al.

Table 5: Complete search graph generation percentages (in %)

size pmax m
µ

5 10 15 20 25

moderate small 2 - 100.0 100.0 66.7 0.0
5 - 100.0 80.0 0 0.0
10 - - 100.0 86.7 10.0

high 2 100.0 100.0 100.0 66.7 0.0
5 - 100.0 66.7 0.0 0.0
10 - - 100.0 73.3 13.3

large small 2 100.0 100.0 100.0 50.0 0.0
5 - 100.0 33.3 3.3 0.0
10 - - 100.0 70.0 16.7

high 2 100.0 100.0 83.3 10.0 0.0
5 - 100.0 13.3 0.0 0.0
10 - - 100.0 70.0 13.3

only the instances of which search graphs are generated completely4. The number
of nodes generated in our experiments is strictly smaller than the number of
nodes that can be generated in the worst case (see Lemma 1). The highest ratio
of the actual number of nodes over its theoretical maximum is less than 10−5.
This shows that for none of the instances, our empirical results approach the
worst-case complexity. As µ increases, the number of nodes generated increases
yet not in the order of µ unlike the theoretical maximum number of nodes for
most of the instance tuples. Therefore, the ratio of the actual number of nodes
and the theoretical maximum number of nodes gets significantly smaller as µ
increases. In terms of solution times required to generate the complete search
graphs, instances requires less than 1812.7s to be solved on average even if we
use one hour time limit. Most of the instances are solved in much less time. This
suggests that we can solve instances before their search graph reaches a certain
boundary yet they cannot be solved beyond this boundary.

We used the generation of the complete search graph and the time limit
as the termination condition of our algorithm for the purpose of more detailed
analysis. On the other hand, in accordance with the objective of the proposed
algorithm, it can be stopped when a feasible solution is found. To this end, we
also analyzed when the first feasible solutions are found in the feasible instances.
Since we can find a feasible solution in less than 0.01s for most of the instances,
we do not share the details of the first feasible solution finding times and just
note the following. For only 18 of all feasible instances, the first feasible solution
finding time is greater then 0.10s and only for 5 of them, it is greater than 5s. The

4 i). Average number of nodes x for a tuple is rounded up to ⌈x⌉ if x < 100000.
Otherwise, it is rounded up to 1000 ∗ y where y = ⌈x/1000⌉ and presented as yK
nodes. ii) If a ratio is presented as “< 10−x”, it means the corresponding ratio is in
[10−x−5, 10−x). iii) If an average solution time is less than 0.01, it is presented as
“< 0.01”.

Parameterized Analysis of a Branch-and-Bound Algorithm 21

Table 6: Comparison of the actual and theoretical maximum number of nodes
(Nb and Nb*) and solution times for instances of which the search graph is
completely generated

size pmax m

µ
5 10 15 20 25

Nb Nb/Nb* Time(s) Nb Nb/Nb* Time(s) Nb Nb/Nb* Time(s) Nb Nb/Nb* Time(s) Nb Nb/Nb* Time(s)

moderate small 2 322 < 10−5 <0.01 25278 < 10−15 0.19 1303K < 10−25 21.27 20745K < 10−35 926.20 - - -
5 - - - 3359 < 10−15 0.02 2865K < 10−25 508.51 - - - - - -
10 - - - - - - 172 < 10−30 <0.01 172K < 10−40 80.59 1492K < 10−50 573.63

high 2 285 < 10−10 <0.01 99037 < 10−25 0.83 2529K < 10−35 33.52 51270K < 10−50 1812.70 - - -
5 - - - 3069 < 10−25 0.02 1691K < 10−35 271.85 - - - - - -
10 - - - - - - 2216 < 10−40 0.01 383K < 10−50 285.18 1154K < 10−65 223.60

large small 2 861 < 10−5 0.02 72825 < 10−15 1.03 2130K < 10−25 42.48 27238K < 10−35 1071.64 - - -
5 - - - 25284 < 10−15 0.27 3386K < 10−25 366.91 3387K < 10−40 177.15 - - -
10 - - - - - - 836 < 10−30 0.01 584K < 10−40 105.00 1427K < 10−50 773.65

high 2 353 < 10−15 0.01 733K < 10−30 17.11 17619K < 10−45 573.52 41820K < 10−65 1696.00 - - -
5 - - - 21195 < 10−30 0.33 4439K < 10−45 1118.05 - - - - - -
10 - - - - - - 1988 < 10−50 0.03 338K < 10−65 290.48 1499K < 10−85 461.62

highest first solution finding time is 59.15 which is, surprisingly, for an instance
with 50 jobs, 2 machines, small pmax, µ = 20 and ρ = 0.75.

5 Conclusion

In this paper we developed a new dynamic programming approach to solve the
decision problem P |pre, ri, di|⋆ starting from the Demeulemeester and Herroelen
Branch-and-Bound algorithm [7]. New dominance rules were provided, and an
efficient way to manage the set of undominated nodes lead to prove that our
algorithm is FPT with respect to parameters (µ, pmax). Experiments show that
the practical efficiency of our algorithm depends on the parameters but that the
theoretical complexity is overestimated. Our study could be extended to measure
the impact time windows adjustment, and bounds. Generalization of the resource
constraints and introduction of optimization criteria is also as secondary goal.

Branch-and-bound methods are widely used and often efficient to solve sche-
duling problems; however, it is rare that a theoretical fine analysis of their ef-
ficiency is performed. From this point of view, parameterized complexity offers
a new angle of approach to measure the parameters that explain an efficiency
or inefficiency for some instances. In "The Middle Class Gentleman", Molière’s
character Mr. Jourdain says: "By my faith! For more than forty years I have
been speaking prose without knowing anything about it..." Probably several re-
searchers designed FPT algorithms without knowing anything about them. This
could be a partial hidden reason why some branch and bound techniques are
very efficient in practice. Thus, as a perspective of this work, the study of other
Branch-and-Bound-based methods and their adaptation in FPT, depending on
the parameters, seems promising.

Acknowledgements This work was supported by the EASI project funded by
Sorbonne Universités

22 I. Tarhan et al.

References

1. Bellman, R.: The theory of dynamic programming. Bulletin of the American Math-
ematical Society 60, 503–515 (1954)

2. van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., Woeg-
inger, G.J.: Precedence-constrained scheduling problems parameterized by partial
order width. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos,
P. (eds.) Discrete Optimization and Operations Research. pp. 105–120. Springer
International Publishing, Cham (2016)

3. Brucker, P.: Scheduling algorithms (4. ed.). Springer (2004)
4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained

project scheduling: Notation, classification, models, and methods. European
Journal of Operational Research 112(1), 3–41 (1999). https://doi.org/https://
doi.org/10.1016/S0377-2217(98)00204-5, https://www.sciencedirect.com/science/
article/pii/S0377221798002045

5. Chen, B., Potts, C.N., Woeginger, G.J.: A Review of Machine Scheduling: Com-
plexity, Algorithms and Approximability, pp. 1493–1641. Springer US, Boston, MA
(1998)

6. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated, 1st edn. (2015)

7. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multi-
ple resource-constrained project scheduling problem. Management Science 38(12),
1803–1818 (1992)

8. Demeulemeester, E.L., Herroelen, W.S.: New benchmark results for the resource-
constrained project scheduling problem. Management Science 43(11), 1485–1492
(1997), http://www.jstor.org/stable/2634582

9. Dolev, D., Warmuth, M.K.: Scheduling precedence graphs of bounded height. J.
Algorithms 5(1), 48–59 (1984)

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer-Verlag London, 1st edn. (2013)

11. Garey, M., Johnson, D.: Strong NP-completeness results: motivation, examples,
and implications. J. Assoc. Comput. Mach. 25(3), 499–508 (1978)

12. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. In: Hammer, P., John-
son, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Math-
ematics, vol. 5, pp. 287–326. Elsevier (1979). https://doi.org/https://doi.org/
10.1016/S0167-5060(08)70356-X, https://www.sciencedirect.com/science/article/
pii/S016750600870356X

13. Hanen, C., Munier, A.K.: Fixed-parameter tractability of scheduling dependent
typed tasks subject to release times and deadlines. Accepted to Journal of Schedul-
ing (2022)

14. Held, M., Karp, R.: A dynamic programming approach to sequencing problems.
SIAM Journal on Applied Mathematics 10(1), 196–210 (1962)

15. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. Tech.
rep., University of California (1955)

16. Kordon, A.M.: A fixed-parameter algorithm for scheduling unit dependent tasks on
parallel machines with time windows. Discret. Appl. Math. 290, 1–6 (2021). https:
//doi.org/10.1016/j.dam.2020.11.024, https://doi.org/10.1016/j.dam.2020.11.024

https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://www.sciencedirect.com/science/article/pii/S0377221798002045
https://www.sciencedirect.com/science/article/pii/S0377221798002045
http://www.jstor.org/stable/2634582
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
https://www.sciencedirect.com/science/article/pii/S016750600870356X
https://www.sciencedirect.com/science/article/pii/S016750600870356X
https://doi.org/10.1016/j.dam.2020.11.024
https://doi.org/10.1016/j.dam.2020.11.024
https://doi.org/10.1016/j.dam.2020.11.024
https://doi.org/10.1016/j.dam.2020.11.024
https://doi.org/10.1016/j.dam.2020.11.024

Parameterized Analysis of a Branch-and-Bound Algorithm 23

17. Leung, J.Y.T.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman & Hall/CRC, 1st edn. (2004)

18. Mnich, M., van Bevern, R.: Parameterized complexity of machine scheduling: 15
open problems. Computers and Operations Research 100, 254 – 261 (2018)

19. Möhring, R.H.: Computationally Tractable Classes of Ordered Sets, pp. 105–193.
Springer Netherlands, Dordrecht (1989)

20. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3),
384–393 (jun 1975). https://doi.org/10.1016/S0022-0000(75)80008-0, https://doi.
org/10.1016/S0022-0000(75)80008-0

21. Walker, R.: An enumerative technique for a class of combinatorial problems. In:
American Mathematical Society Symposia in Applied Mathematics. pp. 91–94.
No. 10 (1960)

https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0

	Parametrized analysis of an enumerative algorithm for a parallel machine scheduling problem

