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Abstract. We consider in this paper the scheduling problem defined by
a set of dependent jobs with release times and deadlines to be processed
by identical parallel machines. This problem is denoted by P |prec, ri, di|⋆
in the literature. Starting from an extension of the Branch-and-Bound
algorithm of Demeulemeester and Herroelen to take into account release
times and deadlines, we build a state graph of which longest paths rep-
resent all active schedule. New dominance rules are also proposed.
We establish that our state graph construction algorithm is fixed-para-
meter tractable. The two parameters are the pathwidth, which corre-
sponds to the maximum number of overlapping jobs time windows and
the maximum execution time of a job. The algorithm is experimented on
random instances. These experiments show that the pathwidth is also a
key factor of the practical complexity of the algorithm.

Keywords: Scheduling · Parallel machines · Release times and deadlines
· Branch-and-Bound · Fixed-parameter tractable

1 Introduction

Scheduling problems with resource limitation and precedence constraints have
many applications in various fields, such as production systems, the use of multi-
core parallel machines or the design of embedded systems. Also, many authors
have developed exact or approximate algorithms to efficiently solve these prob-
lems since the beginning of the sixties. Several books and surveys are dedicated
to this class of combinatorial optimization problems [3,5,16].

This paper considers the basic scheduling problem defined by a set of n non-
preemptive jobs T to be executed by m identical machines. Each job i ∈ T has a
⋆ Supported by EASI project, Sorbonne universités
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positive integer processing time pi, release time ri and deadline di. Job i has to
be scheduled in such a way that its starting time s(i) verifies ri ≤ s(i) ≤ di− pi.
Each job i ∈ T has to be scheduled on one machine, each of which can process
at most one job at a time. Lastly, a directed acyclic graph G = (T , E) defines a
set of precedence constraints: for each arc (i, j) ∈ E, the associated constraint
is s(i) + pi ≤ s(j). The problem is to find, if possible, a feasible schedule. This
problem is denoted by P |prec, rj , dj |⋆ using the Graham notation [12].

This problem is clearly difficult to be solved exactly. Indeed the P |prec, pj =
1|Cmax problem was proved to be NP-hard by Ullman [21]. On the same way,
Garey and Johnson [11] established that P ||Cmax is strongly NP-hard.

The development of fixed-parameter tractable algorithms (FPT algorithms
in short) makes it possible to push a little further the study of the existence of
an efficient algorithm for certain instances of a difficult problem [6,10]. A fixed-
parameter tractable algorithm solves any instance of size n of the problem with
parameter k in a time O(f(k)×poly(n)), where f is allowed to be a computable
superpolynomial function and poly(n) a polynome of n.

The (quite) recent article of Mnich and van Bevern [17] surveys the existence
of a FPT algorithm for classical scheduling problems and identifies 15 difficult
questions in this context. However, most of the results obtained so far conclude
the non-existence of FPT algorithms for the considered parameters.

Enumerative techniques [22] such as Branch-and-Bound methods or dynamic
programming approaches are commonly considered for solving exactly combina-
torial problems.

Dynamic programming approaches rely on the Bellman’s principle of opti-
mality [1] and were developed for different optimization sub-problems (see for
example [14]). Their characteristic is that a non-trivial upper bound of their
worst-time complexity can usually be evaluated. For example, Dolev and War-
muth [9] developed such an algorithm solving P |prec, pi = 1|Cmax with time
complexity O(nh(G)(m−1)+1), h(G) being the length of the longest path of the
precedence graph. For the same problem, Möhring [18] proposed an algorithm
of time in O(mw(G)), where w(G) is the width of the precedence graph. None of
them are FPT algorithms.

Van Bevern et al. [2] defined a FPT algorithm for the resource constrained
scheduling problem (RCPSP) parameterized by the pair (w(G), λ), where λ is
the maximum allowed difference between the earliest starting time and factual
starting time of a job. More recently, Munier [19] developed a FPT algorithm for
the decision problem P |prec, rj , dj , pj = 1|⋆. Its parameter µ, called the path-
width, is the maximal number of overlapping jobs time windows at a single time t
i.e. µ = maxt∈A |{i ∈ T s.t. ri ≤ t < di}| with A = [mini∈T ri,maxi∈T di). By
augmenting this algorithm with a binary search, a FPT algorithm parameterized
by µ is obtained for the two classical optimization problems P |prec, pi = 1|Cmax

and P |prec, pi = 1|Lmax. This approach was extended by Hanen and Munier
in [13] to handle different computation time, but with the couple of parameters
(µ, pmax) where pmax = maxi∈T pi. They also proved that P2|ri, di|⋆ parame-
terized by the pathwidth is para-NP-complete as well as P |prec, ri, di|⋆ param-
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eterized by pmax; it follows that unless P = NP, there is no FPT algorithm for
P |prec, ri, di|⋆ parameterized by only one of these parameters.

The enumerative Branch-and-Bound methods are usually considered to de-
velop efficient algorithms for NP-complete scheduling problems. In the nineties,
several authors developed Branch-and-Bound methods to handle the resource-
constrained scheduling project denoted by PS|prec|Cmax; see Brucker et al. [4]
for the notation and a survey on these methods. The Demeulemeester and Her-
roelen algorithm [7] is one of the most efficient Branch-and-Bound methods
to solve this class of problems [8] without release times and deadlines. To our
knowledge, there is no study of the worst-case complexity of this algorithm.

Our first aim was to study whether it would be possible to develop a FPT al-
gorithm more efficient in practice than a Branch-and-Bound algorithm. We thus
started from the analysis of the Demeulemeester and Herroelen algorithm [7],
in order to evaluate the influence of the parameters (µ, pmax) on its complexity.
We discovered that it can be transformed to generation of a state graph, instead
of a search tree, linking this algorithm with a dynamic programming approach.
We also established several new dominance rules, and modified the generation
of successors of a state of the state graph to handle release times and dead-
lines. However, to simplify the complexity study, we did not consider bounding
techniques to prune states.

This leads us to define a new dynamic programming algorithm (DP in short)
for our decision problem. We analyse its complexity and show that it is FPT for
parameters (µ, pmax). This algorithm is significantly different from that devel-
oped by Hanen and Munier [13] and has a better time complexity. We also ran
some experiments on random instances with controlled parameters that confirms
their influence on the practical tractability of the problem. Our experiments show
that the practical time complexity of the state graph generation also strongly
depends on the pathwidth µ. We also observed that the state graph can be
completely generated for small values of the parameters even without bounding
techniques.

The remainder of this paper is organized as follows. Section 2 is devoted to
the presentation of several general properties of feasible solutions of the problem
P |rj , dj |⋆ without precedence constraints. These properties allow setting an up-
per bound on the number of states generated at each step of our algorithm. In
Section 3, we present the DP algorithm, the characteristics of the state graph it
generates and its complexity analysis. In Section 4, computational experiments
for the DP algorithm are shared. We conclude with final remarks in Section 5.

2 Feasibility properties of schedules for jobs with release
times and deadlines

This section presents several properties on feasible semi-active schedules for in-
stances of P |rj , dj |Cmax, i.e. we do not consider here precedence constraints.
These properties will be considered in Section 3 to bound the complexity of our
DP algorithm.
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We illustrate some definitions below with an example. Figure 1 shows a fea-
sible schedule on two processors for the example of Table 1.

jobs 1 2 3 4 5 6 7 8 9 10 11
ri 0 0 4 6 3 7 10 10 15 14 16
di 6 6 6 10 10 11 15 15 17 18 18
pi 3 5 2 4 4 2 4 4 2 3 1

Table 1: Release times, deadlines and processing times for a set of n = 11 jobs

1 3

2

4

5 6

7

8 9

10

11

0 3 4 11 14 15

Fig. 1: A feasible schedule on m = 2 processors.

A schedule defines for each job i a starting time s(i). It is feasible if no job
starts earlier (resp. completes later) than its release time (resp. deadline) and
there are not more than m jobs that are in-progress at any time t ∈ R+.

Let us consider a schedule S. We sort the starting times of jobs in increasing
order (breaking ties with the job index if necessary), and denote by J1, J2, ..., Jn
the successive jobs such that s(J1) ≤ s(J2) ≤ ... ≤ s(Jn). For any value α ∈
{0, . . . , n}, Sα is a partial schedule of S including only its first α jobs J1, J2, ..., Jα.
The schedule S0 is empty whereas Sn = S. When appropriate, Sα is used to
refer to the jobs of the corresponding partial schedule. Let us define the time
t(Sα) to be the earliest completion time of a job of Sα after s(Jα) : t(Sα) =
min{j∈Sα,s(j)+pj>s(Jα)} sj + pj . We denote by P (Sα) the set of jobs in schedule
Sα that complete or are in-progress at time t(Sα). More formally, P (Sα) = {i ∈
Sα, s(i) < t(Sα) ≤ s(i) + pi} for α ∈ {0, ..., n}.

For our previous example, the schedule S presented by Figure 1 is associated
by the sequence of jobs (1, 2, 3, 5, 4, 6, 7, 8, 10, 9, 11). The partial schedule S4 is
thus associated with the jobs set {1, 2, 3, 5}. We also get t(S4) = s(3) + p3 = 6
and P (S4) = {3, 5}.

For each value α ∈ {0, . . . , n}, we define Zα as the first max{0, α− µ} jobs,
when jobs are sorted in increasing order of their deadlines, i.e. d1 ≤ d2 ≤ ... ≤ dn.
More precisely, ∀α ∈ {0, . . . , n},

Zα =

{
∅ if α ≤ µ

{1, 2, . . . , α− µ} with d1 ≤ d2 ≤ . . . ≤ dn otherwise.
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We note that if the deadlines jobs are not all different, there can have several
jobs whose deadline is the (α− µ)th smallest deadline among all jobs. In such a
case, we break ties considering the indexes of the jobs: the job with the smallest
index among the jobs having the (α−µ)th smallest deadline is added to set Zα.
Thus, the cardinality of set Zα is always max{0, α− µ}.

Similarly, for each value α ∈ {0, . . . , n} let Z ′
α be the set of the first min{n−

max{0, α − µ}, 2µ} jobs that are not included in Zα when jobs are sorted in
ascending order of their release times such that r1 ≤ r2 ≤ ... ≤ rn. Again, we
break ties considering the jobs indexes if necessary.

For convenience, we provide the cardinality of sets Zα and Z ′
α for different

n and α values in Table 2. Since |Z ′
α|+ |Zα| ≤ n for each value α ∈ {0, . . . , n},

Z ′
α is properly defined.

Table 2: Values |Zα| = max{0, α− µ}, |Z ′
α| = min{n−max{0, α− µ}, 2µ} and

|Zα|+ |Z ′
α| following n, α and µ.

Case n < 2µ

Subcase |Zα| |Z′
α| |Zα|+ |Z′

α|
α ≤ µ 0 n n
α > µ α− µ n− (α− µ) n

Case n ≥ 2µ

Subcase |Zα| |Z′
α| |Zα|+ |Z′

α|
α ≤ µ 0 2µ 2µ

µ < α < n− µ α− µ 2µ α+ µ
α ≥ n− µ α− µ n− (α− µ) n

Notice that in the example of Table 1 the jobs are indexed by increas-
ing order of deadlines. The list of jobs ordered by increasing release times is
(1, 2, 5, 3, 4, 6, 7, 8, 10, 9, 11). Observe that at most 4 intervals (intervals of jobs
{1, 2, 3, 5} and {7, 8, 9, 10}) overlap at a same time, so µ = 4. Table 3 presents
sets Sα, Zα and Z ′

α for α ∈ {2, 6, 8}.

Table 3: Sets Sα, Zα and Z ′
α associated of the example of Table 1 for α ∈ {2, 6, 8}.

α Sα Zα Z′
α

2 {1, 2} ∅ {1, 2, 3, 4, 5, 6, 7, 8}
6 {1, 2, 3, 4, 5, 6} {1, 2} {3, 4, 5, 6, 7, 8, 9, 10}
8 {1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4} {5, 6, 7, 8, 9, 10, 11}
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Now let us consider the partial schedule S6 of the partial schedule depicted
in Figure 1. We have s(1) = s(2) = 0, s(3) = 4, s(4) = 6, s(5) = 5 and s(6) = 9.
Moreover, t(S6) = s(4) + p4 = 10 and P (S6) = {4, 6}.

For any value α ∈ {0, . . . , n}, |Sα\Zα| ≥ |Sα| − |Zα| ≥ α − max{0, α − µ}.
Next propositions show inclusion properties between the sets Sα, Zα, Z ′

α and
P (Sα).

Proposition 1. For any feasible schedule S, ∀α ∈ {0, . . . , n}, Zα ⊆ Sα.

Proof. The set Zα = ∅ for α ≤ µ. Therefore, we consider the case α > µ and
the corresponding schedule Sα. Let time t be the starting time of the last job
in schedule Sα, i.e. t = maxj∈Sα

s(j) = s(Jα). Thus, for each job j ∈ Sα, rj ≤
s(j) ≤ t. Moreover, by definition of S and Sα, jobs in S\Sα can start at time t
at the earliest, i.e. s(j) ≥ t, ∀j ∈ S\Sα.

By contradiction, assume that there exists a job i ∈ Zα with i ∈ S\Sα. Then,
s(i) ≥ t and thus di > t. Now, by definition of set Zα, all jobs in Sα\Zα have
a deadline greater than or equal to di, i.e, dj ≥ di > t,∀j ∈ Sα\Zα. Two cases
must be considered:

– If ri > t, then ∀j ∈ Sα\Zα, rj ≤ t < ri < di ≤ dj . Since |Sα\Zα| ≥ µ,
there will be at least µ jobs overlapping with the time window of job i which
contradicts the definition of µ.

– Similarly, if ri ≤ t, then ∀j ∈ (Sα\Zα) ∪ {i}, rj ≤ t < di ≤ dj . All these at
least µ+ 1 jobs overlap at time t, which contradicts the definition of µ. ⊓⊔

Proposition 2. For any feasible schedule S, ∀α ∈ {0, . . . , n}, Sα ⊆ Zα ∪ Z ′
α.

Proof. If n < 2µ or if α ≥ n−µ, |Zα∪Z ′
α| = |Zα|+ |Z ′

α| = n as shown in Table 2
and the proposition holds for these cases. Therefore, let us consider n ≥ 2µ and
α < n− µ; in this case |Z ′

α| = 2µ.
By contradiction, let us suppose the existence of a job i ∈ Sα\(Zα ∪Z ′

α). We
first prove that |Z ′

α\Sα| ≥ µ+ 1. Indeed, by Proposition 1, Zα ⊆ Sα. Thus, Sα

can be partitioned into the 3 sets Zα, {i} and the remaining jobs set R. Here,
|R| = |Sα\(Zα ∪ {i})| = |Sα| − |Zα| − 1 ≤ α − (α − µ)− 1 = µ− 1. Now, since
(Zα ∪ {i}) ∩ Z ′

α = ∅, Z ′
α ∩ Sα ⊆ R and thus |Z ′

α\Sα| ≥ |Z ′
α| − |R|. Now, since

|Z ′
α| = 2µ and |R| ≤ µ− 1, we get |Z ′

α\Sα| ≥ µ+ 1.
Let us denote now by t = maxj∈Sα s(j) = s(Jα) the starting time of the last

job in the partial schedule Sα. We prove that, for each j ∈ Z ′
α\Sα, rj ≤ t < dj .

Indeed, each job j ∈ Z ′
α\Sα verifies s(j) ≥ t, thus dj > t. Now, since job i is

scheduled before or at time t, ri ≤ s(i) ≤ t. As i ̸∈ Zα ∪ Z ′
α, ri ≥ rj for every

job j ∈ Z ′
α\Sα, we get rj ≤ ri ≤ t.

Thus all the time windows of jobs in Z ′
α\Sα overlap during the interval

(t, t + 1). Since |Z ′
α\Sα| ≥ µ + 1, it contradicts the definition of the interval

parameter µ.
⊓⊔

Proposition 3. For any feasible schedule S, ∀α ∈ {0, . . . , n}, P (Sα) ∩ Zα = ∅,
and thus Zα ⊆ Sα\P (Sα) and P (Sα) ⊆ Z ′

α.
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Proof. Since Zα = ∅ for α ≤ µ, we only consider α > µ. In this case, by
Proposition 1, |Sα\Zα| = µ.

By contradiction, let us consider a job i ∈ P (Sα) ∩ Zα. Since i ∈ P (Sα), i
is either in-progress or completes at time t(Sα) and therefore di ≥ t(Sα) > ri.
Now, as i ∈ Zα, every job j ∈ Sα\Zα verifies dj ≥ di ≥ t(Sα). Moreover
rj ≤ s(j) ≤ s(Jα) < t(Sα).

Thus, every job j ∈ {i} ∪ (Sα\Zα) verifies rj < t(Sα) ≤ dj ; we deduce that
there are at least µ + 1 jobs which time window intersects any t ∈ (t(Sα) −
1, t(Sα)), a contradiction with the definition of µ.

Lastly, by Proposition 1, Zα ⊆ Sα, and thus Zα ⊆ Sα\P (Sα). By Proposi-
tion 2 this implies that P (Sα) ⊂ Z ′

α, which achieves the proof. ⊓⊔

3 The DP algorithm

It is inspired from a branch-and-bound algorithm proposed by [7] that mini-
mizes the makespan for the RCPSP. Here, we consider the decision problem
P |prec, ri, di|⋆ which includes release times and deadlines for jobs unlike the
RCPSP problem. The DP algorithm differentiates from the branch-and-bound
algorithm in several ways: a state graph is generated instead of a search tree,
release times and deadlines are considered while generating successors of a state,
dominance based on properties of section 2 are used, and no bounding technique
is applied to ease the complexity analysis. On another hand, the dominance
properties and state definition on which the branch-and-bound [7] is based are
used. Branching principles are also similar but extended to handle time windows.

Let the relevant state graph denoted by G(V,A). In Section 3.1, states of
the state graph G(V,A) are defined and some dominance properties presented.
Section 3.2 analyses the worst case complexity of finding an undominated state.
In Section 3.3, the construction of the state graph G(V,A) is explained. In Sec-
tion 3.4, the schedules represented by the paths of the state graph G(V,A) are
analyzed. Finally, in Section 3.5, the overall complexity of the DP algorithm is
analyzed.

Without loss of generality, we assume from now that m ≤ µ, otherwise the
earliest schedule would fit on the m processors and the decision problem would
be trivial.

In the rest of the section we illustrate some of the notions with the instance
described by the set of jobs of Table 1, to which we add a precedence graph
shown in Figure 2. The schedule shown in Figure 1 satisfies these precedence
constraints.

3.1 State definitions and dominance properties

Definition 1 (Active and Semi-active schedule [20]). A feasible schedule
is called semi-active (resp. active) if no job can be left shifted by one time unit
(resp. scheduled earlier) without changing the starting time of another job.
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1 5

2 4

3 6

7

8

9

10

11

Fig. 2: A precedence graph for the set of jobs of Table 1

Definition 2 (Partial feasible schedule). Let V ⊆ T such that no arc (i, j)
of G satisfies i ̸∈ V, j ∈ V and GV = (V,E) be the precedence sub-graph of G
restrained to the set of jobs V . A partial feasible schedule is a feasible schedule
of a subset of jobs V ⊆ T following the precedence graph GV = (V,E) and all
the constraints on jobs following the initial problem (release times, deadlines and
machine limitations).

Definition 3 (States [7]). A state v is a quadruplet v = (V, t, P,M) where
V ⊆ T is a set of jobs, t ∈ N is a date, P ⊆ V , and M ∈ N|P | is a vector indexed
following P . Moreover, there exists a partial feasible schedule s of jobs of V such
that:

1. Every job i ∈ V \P is completed before t, i.e. s(i) + pi < t;
2. Every job i ∈ P starts before t and is completed at time Mi ≥ t, i.e. s(i) =

Mi − pi < t ≤ Mi

Hereafter, we use V (v), t(v), P (v), and M(v) to refer to set V , time moment t,
set P and function M of state v. The level of a state v is the number of jobs in
V (v).

Note that σ is a partial schedule of T since it concerns only jobs from V (v).
Moreover, the state v alone is clearly not sufficient to define σ. We also observe
that jobs of P are either in progress or completed at time t and thus |P | ≤ m.

Several enumerative algorithms build semi-active schedules for subsets of jobs
V ⊆ T until reaching a complete schedule of S. The next definition introduces the
notion of schedule associated with a state in coherence with the Demeulemeester
and Herroelen algorithm [7] where some jobs in P can be delayed.

Definition 4 (Schedule associated with a state and perfect state). If v
is a state, a schedule s is said to be associated with v, if it satisfies the following
properties :

1. Every job i ∈ V (v)\P (v) is completed before t(v), i.e. s(i) + pi < t(v);
2. Every job in i ∈ T \V (v) starts after time t, i.e. s(i) ≥ t(v);
3. Every job i ∈ P (v) such that Mi = t(v) starts at time s(i) = Mi − pi.

Every job i ∈ P (v) with Mi > t(v) starts either at time Mi − pi or at time
s(i) ≥ t(v).
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A state v is a perfect state is the set of feasible schedules associated with v is
nonempty.

Let us consider a feasible schedule S and a state v = (Sα, t(Sα), P (Sα),M).
The state v is feasible and by Propositions 2 and 3, Zα ⊆ Sα\P (Sα) and Sα ⊆
Zα∪Z ′

α. These two last conditions will be considered to define the class of states
that are considered in our algorithm:

Definition 5. A partially feasible state v is admissible if Zα ⊆ V (s)\P (s) and
V (s) ⊆ Zα ∪ Z ′

α for α = |V (s)|.

The following dominance property proved by Demeulemeester and Herroe-
len [7] allows the number of states considered in an enumerative algorithm to be
reduced.

Proposition 4. [7] Consider two partially feasible states v and v′ such that
V (v) = V (v′), and such that t(v′) ≥ maxi∈P (v)\P (v′)(Mi(v)) and ∀i ∈ P (v) ∩
P (v′),Mi(v) ≤ Mi(v

′). Then, if v′ is perfect, v is perfect either, so v′ can be
discarded.

Following the previous proposition, we now define the notion of dominance
between states:

Definition 6. Let v and v′ be two states. The state v dominates v′ if V (v) =
V (v′), t(v′) ≥ t(v), t(v′) ≥ maxi∈P (v)\P (v′)(Mi(v)) and ∀i ∈ P (v)∩P (v′),Mi(v) ≤
Mi(v

′). A set of states N is said undominated if there is no couple of states
(v, v′) ∈ N 2 such that v dominates v′.

The next lemma bounds the number of admissible undominated states:

Lemma 1. For any value α ∈ {0, . . . , n}, there are at most
(
2µ
µ

)
different sets V

of α jobs associated to an an undominated admissible state (i.e. such that there
exists an undominated admissible state v with V = V (v)). Moreover, for a given
job set V , the number of undominated admissible states v such that V (v) = V is
bounded by (2 × pmax)

µ. The number of admissible undominated states of level
α is bounded by f(µ, pmax) with f(µ, pmax) =

(
2µ
µ

)
× (2× pmax)

µ.

Proof. Assume that the state v is admissible of level α, i.e. |V (v)| = α. The sets
Zα and Z ′

α are fixed.

1. By Definition 5, Zα ⊆ V (v)\P (v) ⊆ V (v), thus |V (v)\Zα| = |V (v)|− |Zα| =
α − max{0, α − µ} ≤ µ. Moreover, V (v) ⊆ Zα ∪ Z ′

α and by definition
|Z ′

α| ≤ 2µ. Since V (v) is built from at most µ elements in Z ′
α, the num-

ber of possibilities for V (v) is bounded by
(
2µ
µ

)
, which corresponds to the

first part of the lemma.
2. On the same way, by Definition 5, P (v) ⊆ V (v)\Zα; since |V (v)\Zα| ≤ µ,

and P (v) contains at most m elements, the total number of possibilities for

P (v) when V (v) is fixed is
i=m∑
i=0

(
µ
i

)
≤ 2µ; since m ≤ µ;
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3. Let us suppose now that V (v) and P (v) are fixed. Then, if t(v) is fixed, each
job i ∈ P (v) must have its completion time Mi(v) in {t(v), . . . , t(v) + pi −
1}. Thus, (pmax)

|P (v)| is an upper bound of the total number of possible
M(v) vectors. Moreover, by Definition 6, for any fixed M(v) vector, only the
smaller possible value of t(v) should be considered.

4. So, for a given V (v), the number of undominated admissible states is bounded
by (2× pmax)

µ

Thus, the total number of undominated admissible states of level α is bounded

by A =
(
2µ
µ

)
×

m∑
i=0

(
(
µ
i

)
(pmax)

i) ≤
(
2µ
µ

)
× (pmax)

m ×
m∑
i=0

(
µ
i

)
. Now, since m ≤ µ

and
µ∑

i=0

(
µ
i

)
= 2µ, we get A ≤

(
2µ
µ

)
× (pmax)

µ × 2µ, which achieves the proof. ⊓⊔

3.2 Management of the undominated sets of admissible states

For any α ∈ {0, . . . , n}, we define Vα as the set of undominated admissible
states of level α, i.e. ∀v ∈ Vα, |V (v)| = α. Algorithm 1 describes function
AddDiscardOrReplace(v,Vα) that considers adding state v to set Vα while pre-
serving the undominance property of set Vα. It considers whether state v is
dominated by another state u ∈ Vα or not. If so, AddDiscardOrReplace(v,Vα)
returns false and the state v is not added to Vα (lines 4-5). Otherwise, v will
be added to Vα and states that are dominated by v are removed from Vα (lines
6-10).

Algorithm 1 AddDiscardOrReplace(v,Vα)

Require: v is a state of level α; Vα is a set of undominated admissible states of level α.
Ensure: Add v to Vα if possible and maintain that Vα is an undominated set of states;

Returns false if v is not added to Vα, v otherwise.
1: Set D = ∅
2: Find Q = {u ∈ Vα, V (u) = V (v)}
3: for each state u ∈ Q do
4: if u dominates v then
5: return false
6: else if v dominates u then
7: D = D ∪ {u}
8: end if
9: end for

10: Vα = (Vα −D) ∪ {v}
11: return v

Next Lemma analyses the time complexity of Algorithm 1.

Lemma 2. The time complexity of the function AddDiscardOrReplace(v,Vα)
is O(g(µ, pmax)) where g(µ, pmax) = µ× (µ ln(µ) + (2pmax)

µ).
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Proof. Let us assume that the states sharing the same set V are stored in a
separate container in Vα. Let V (C) denote the set V of the states stored in the
container C. The set of containers can be stored using AVL trees to speed-up
the initialization of Q at line 2. Since all the states stored in Vα are admissible,
for every v ∈ Vα, Zα ⊆ V (v) and V (v)\Zα ⊆ Z ′

α by Definition 5. So, we only
consider jobs in Z ′

α to differentiate the containers. Moreover, |Z ′
α| ≤ 2µ, thus 2µ

bits b1 . . . b2µ are required for determining a key associated to V (Q): bj = 1 if
and only if the associated job of Z ′

α is in V (Q).
For a fixed value α, there can be at most

(
2µ
µ

)
different possible set V as

shown in Lemma 1. Therefore, Vα is partitioned by at most
(
2µ
µ

)
different con-

tainers. The AVL trees as described before allows to get the container Q in time
complexity O(µ× ln

(
2µ
µ

)
) = O(µ× µ× ln(µ)) since

(
2µ
µ

)
≤ (2µ)µ.

Testing that a state u dominates v is in time complexity O(m), and thus
O(µ). We deduce that the time complexity of a single iteration of the loop at
lines 3-9 is O(µ).

Lastly, as shown in Lemma 1, the number of undominated admissible states
in the container Q is O((2× pmax)

µ). Therefore, the complexity of Algorithm 1
is O(µ× (µ ln(µ) + (2× pmax)

µ)) which proves the lemma. ⊓⊔

3.3 Construction of the state graph

The DP algorithm computes the state graph G(V,A) and is expressed by Algo-
rithm 2. The main ideas of [7] were adapted to handle release times and deadlines.
The DP algorithm starts with the root state v0 = (∅, 0, ∅, ∅) and gradually builds
the state graph G(V,A).

Algorithm 2 The DP algorithm
Require: An instance I of n jobs of P |prec, rj , dj |⋆
Ensure: The associated state graph G(V,A)
1: V0 = {(∅, 0, ∅, ∅)}, Vα = ∅ for α ∈ {1, · · · , n}, A = ∅
2: for α ∈ {0, . . . , n− 1} do
3: for each state v ∈ Vα do
4: R(v), tmin ← SetCandidateNewJobs(v)
5: for each subset C ̸= ∅ of R(v) s.t. |C| = min(m, |R(v)|) do
6: v′ ← NewState(v, tmin, C)
7: if v′ ̸= false then
8: u← AddDiscardOrReplace(v′,Vα′) where α′ = |V (v′)|
9: if u ̸= false then

10: A ← A∪ {(v, u)}
11: end if
12: end if
13: end for
14: end for
15: end for
16: return G(V,A) where V =

⋃n
α=0 Vα
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At line 1 of Algorithm 2, the subsets of admissible undominated states
V0, . . . ,Vn and the set of arcs A are initialized. The algorithm is composed
by 3 nested loops; the first two loops on respectively lines 2 and 3 iterate on
the admissible states in V0, . . . ,Vn−1. The set R(v) computed by the function
SetCandidateNewJobs(v) at line 4 is the set of jobs to be considered for building
the states u successors of v in G, i.e. V (u) ⊆ V (v)∪R(v). The value tmin ≥ t(v)
is the minimum time at which a new job can be performed.

The inner loop at lines 5-13 iterates on every non empty maximal subset C
of R(v). The function NewState at line 6 returns a new admissible state built
from C and tmin if it is possible, or false otherwise. If a new state v′ from state v,
set C and time tmin is generated, we call AddDiscardOrReplace(v′,Vα′) where
α′ = |V (v′)| at line 8. As seen in Subsection 3.2, this function returns false if
there exists another state in Vα′ that is dominating state v. In this case, we do
not consider the new state v′. Otherwise, AddDiscardOrReplace(v′,Vα′) deletes
the states in Vα′ that are dominated by v′ and returns v′. Note that we consider
that as soon as a state is deleted from V, all its adjacent arcs are automatically
removed from A.

Computation of the set of candidate jobs R(v) and the time instant tmin: Let
us consider an admissible state v and a time instant t ≥ t(v). For any job i we
denote by Γ−⋆(i) the set of all ancestors of i in the precedence graph. We then
define the following subsets of jobs:

– IP (v, t) = {i ∈ P (v),Mi(v) > t} is the set of jobs of P (v) that are in
progress at time t;

– E(v, t) = {i ∈ T \V (v), Γ−⋆(i) ⊆ V (v)\IP (v, t)} is the set of eligible jobs at
time t following v, i.e. these jobs are not in V (v) and all of their ancestors
are in V (v) and completed by time t;

– D(v, t) = E(v, t) ∩ {i ∈ T , ri ≤ t}, the set of eligible jobs that are released
before or at time t.

Algorithm 3 describes the determination of the set of jobs to be considered to
build successors u of state v in the state graph and their time t(u) = tmin.

Algorithm 3 SetCandidateNewJobs(v)

Require: v is an admissible state
Ensure: The set of jobs R(v) ⊆ (T \V (v) ∪ P (v), the time instant tmin

1: tmin = min{t : t ≥ t(v), D(v, t) ̸= ∅}
2: ect⋆(v, tmin) = min{ect(v, i, tmin), i ∈ E(v, tmin) ∪ IP (v, tmin)}
3: if there exists a job i ∈ T \V (s) s.t. ect(v, i, tmin) > di then
4: return (∅, 0)
5: end if
6: R(v) = IP (v, tmin) ∪ (E(v, tmin) ∩ {i ∈ T , ri < ect⋆(v, tmin)})
7: return (R(v), tmin)
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The DP algorithm ensures that when a new state u is generated from a state
v, the cardinality of V (u) is greater than the cardinality of V (v).

By definition of state v, jobs that are not in V (v) can be started at time t(v)
at the earliest in the schedules represented by state v. Let us define tmin ≥ t(v)
as the minimum value such that a new job j from T \V (v) may be executed
in a feasible schedule represented by the admissible state v. We observe that
j ∈ D(v, tmin) and thus tmin can be defined following line 1 of Algorithm 3.

Now, for any job i ∈ IP (v, t) ∪ (T \V (v)), let us define the lower bound of
the completion time of i following v as

ect(v, i, t) =

{
Mi(v) if i ∈ IP (v, t)

max{t, ri}+ pi if i ∈ T \V (v).

By definition of v, and tmin any job i ∈ T \V (s) starts not earlier than tmin,
thus ect(v, i, tmin) is a lower bound of the completion time of i. If ect(v, i, tmin) >
di, v cannot lead to a feasible schedule and the function returns ∅ (line 4).

To avoid overlooking jobs that are not released immediately at tmin but
very close in time, ect⋆(v, tmin) is defined as the earliest possible completion
time among the jobs in E(v, tmin)∪ IP (v, tmin); then, the set R(v) includes any
eligible job at time tmin that is released strictly before ect⋆(v, tmin) (lines 6 of
Algorithm 3).

One can observe that jobs in T \(V (v) ∪ R(v)) cannot start their execu-
tion following v in the interval [tmin, ect

⋆(v, tmin)). Indeed, considering job i ∈
T \(V (v) ∪ R(v)), if i ∈ E(v, tmin), then ri ≥ ect⋆(v, tmin). Otherwise, i ̸∈
E(v, tmin) and thus i has at least one predecessor j which is not completed
at time tmin. By definition of ect⋆(v, tmin), no job is completed in the interval
[tmin, ect

⋆(v, tmin)) and ect(v, j, tmin) ≥ ect⋆(v, tmin), thus i cannot start its
execution before t = ect⋆(v, tmin).

Lastly, no job of R(v) will complete earlier than ect⋆(v, tmin). Thus, it is
sufficient to consider only the jobs in set R(v) while generating new states from
state v.

Let us consider, for the example of Table 1 and Figure 2, the state v =
({1, 2, 3, 4, 5, 6}, 10, {4, 6},M) with M4 = 10,M6 = 11. According to the prece-
dence graph, all the predecessors of the remaining jobs are completed at 10, and
at least one of them has a release time not greater than 10. So that tmin = 10.
The earliest completion time is then ect⋆(v, 10) = 11, the completion time of job
6. Hence R(v) is the set of eligible jobs with release time less than 11 plus job
6, so R(v) = {6, 7, 8}. Similarly if we consider the state u = ({1, 2}, 3, {1, 2},M)
with M1 = 3,M2 = 5, then job 5 is available at time 3 so that tmin = 3,
and the earliest completion time of a job in progress at tmin is 5. So the set
R(u) = {2, 3, 5} since job 3 has release time less than 5.

Computation of a new state: Algorithm 4 presents the function NewState that
returns, if it possible, a new admissible state u built by considering all the jobs
from C. If the two conditions on line 1 hold for subset C, Algorithm 4 returns
false since there will be at least one job that can be left-shifted in the schedules
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associated with the new state. The first condition on line 1 means that at least
one job in set P (v) is not included in subset C (i.e. a delayed job). This will
incur an idle time in [tmin − 1, tmin] since the corresponding delayed job is in-
progress at time tmin. On the other hand, the second condition on line 1 means
that at least one job in subset C is eligible to be scheduled at time tmin − 1.
Consequently, if the relevant two conditions hold, it means at least one job in
subset C will be started at time tmin at the new state although it could be
started before tmin. Hence, in this case, no new state will be generated by using
subset C.

Algorithm 4 NewState(v, tmin, C)

Require: v is an admissible state, t the time instant of the new state, C ⊂ R(v) the
set of new jobs added to V (v) for the new state.

Ensure: an admissible new state u if it is possible, false otherwise.
1: if P (v)\C ̸= ∅ and (C\P (v)) ∩D(v, tmin − 1) ̸= ∅ then return false
2: end if
3: Set V (u) = (V (v)\IP (v, tmin)) ∪ C and β = |V (u)|
4: if Zβ ̸⊆ V (u) or V (u) ̸⊆ Zβ ∪ Z′

β then return false
5: end if
6: P (u) = C; ∀j ∈ C, Mj(u) = ect(v, j, tmin); t(u) = minj∈C Mj(u)
7: return state u

The set of states V (u) and its cardinality β are defined at line 3. Lines 4-5
discard u if it is not admissible (see Definition 5). Line 6 defines P (u), M(u) and
t(u) as well.

In our example, starting from state u = ({1, 2}, 3, {1, 2},M) with M1 =
3,M2 = 5 we would try three successors with sets C1 = {2, 3}, C2 = {2, 5}, C3 =
{3, 5}, leading to the quadruplets v1 = ({1, 2, 3}, 5, {2, 3},M2 = 5,M3 = 6), v2 =
({1, 2, 5}, 5, {2, 5},M2 = 5,M5 = 7), v3 = ({1, 3, 5}, 6, {3, 5},M3 = 6,M5 = 7).
Then, v2 will be discarded because if job 3 is scheduled at 5 it misses its deadline.
Similarly, if 2 is scheduled after 6, it will miss its deadline, so v3 is discarded too.

3.4 Paths of the state graph

In this section, we define the relationships between the schedules and the paths
of the state graph G. We first show that any path from the root state v0 to a
state v ∈ V represents at least one schedule.

Lemma 3. If u is a successor of a feasible state v in the state graph as defined
in the DP algorithm, and if s is a partial schedule associated with v, then s can
be extended to s′ (a feasible schedule of jobs of v(u)) such that jobs of P (u)
complete at time M(u). We deduce that any path of the graph from V0 to a state
of Vn is associated with at least one schedule.
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Proof. Let s be a partial schedule associated with state v satisfying definition
3. Let C the subset of jobs used to generate u from v. Recall that V (u) =
(V (v)\IP (v, tmin)) ∪ C. We define the partial schedule s′ as follows:

– If i ∈ C\IP (v, tmin) then s′(i) = Mi(u)− pi = max(tmin, ri).
– otherwise s′(i) = s(i)

We claim that s′ is a schedule, in which jobs of P (u) end at times described in
M(u).

We now consider the following property:

Theorem 1. Let G be the state graph built without applying the dominance cri-
teria in Proposition 4. If s is a feasible active schedule, then there is a path in
the state graph G from the initial state to a state of Vn, so that s is associated
with each state of the path.

Proof. Let s be a feasible active schedule. We define for each value the partial
schedules sα, α ∈ {0, . . . , n}. sα is a partial schedule of s including only its
first α jobs J1, J2, ..., Jα sorted by increasing starting times (breaking ties with
job index). The schedule s0 is empty whereas sn = s. When appropriate, sα
is used to refer to the jobs of the corresponding partial schedule. Let us define
the time t(sα) to be the earliest completion time of a job of sα after s(Jα) :
t(sα) = min{j∈sα,s(j)+pj>s(Jα)} s(j) + pj .

For each α ∈ {0, . . . , n}, we define P (sα) to be the set of jobs of sα that
complete not before t(sα). Moreover, M(sα) is the completion time in sα of jobs
of P (sα).

Now, we consider the set of indexes A = {α ∈ {0, . . . , n}, t(sα+1) > t(sα)}
Let us show that if α ∈ A then

s(Jα+1) ≥ t(sα) (1)

By contradiction assume that s(Jα+1) < t(sα). We know that there is a job i in
P (sα) that completes at time t(sα). We also know that s(Jα+1) ≥ s(Jα). This
implies that i starts not later than and completes after s(Jα+1), and thus it is
included in the computation of t(sα+1), the least completion time after s(Jα+1).
So t(sα+1) ≤ t(sα) is a contradiction. This implies that for any job j ̸∈ sα,
s(j) ≥ s(Jα+1) ≥ t(sα).

Let us denote by {α0 = 0, α1, . . . , ακ = n} the increasing sequence of indexes
of A.

For k ∈ {0, . . . , κ}, we define vk = (sαk
, t(sαk

), P (sαk
),M(sαk

)). We claim
that states v0, v1, . . . , vκ are on a path of the state graph G. We first prove that
for any k, vk fulfils Definition 3 of a state.

1. Consider a job i ∈ sαk
\P (sαk

). By definition of sαk
and P (sαk

), s(i) + pi <
t(sαk

) and the first item of Definition 3 is verified;
2. If now i ∈ P (sαk

), then s(i) < t(sαk
) ≤ s(i) + pi = Mi, so that the last item

is also verified.
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By recurrence on k, assume that v0, . . . , vk is a path of G. We know that
t(sαk+1) > t(sαk

) and that ∀α′ such that αk < α′ ≤ αk+1, we have t(sαk+1
) ≤

t(sα′) ≤ t(sαk+1). Moreover by definition we necessarily have t(sαk+1
) > s(Jαk+1

)
and we know by Equation 1 that s(Jαk+1

) ≥ t(sαk
). This implies that all such

jobs Jα′ start not earlier than t(sαk
) (by Equation 1) and complete at or after

t(sαk+1
). So, no job is completed in the interval (t(sαk

), t(sαk+1
)).

Now, when considering state vk, the computation of tmin would give a value
tmin ≥ t(sαk

).
Consider the set

C = {Jαk+1, . . . , Jαk+1
} ∪ {j ∈ P (vk), sj + pj ≥ t(sαk+1

)}

Jobs of C are completed or in-progress at t(sαk+1
) in schedule s. So C cannot

comprise more than m jobs. Thus, two cases may occur:
Case 1: ect∗(vk) > s(Jαk+1

). In this case, set C is included in R(vk) so that
the state vk+1 is a valid successor of state vk. Observe that P (vk, tmin)\C = ∅
(no job has been removed from P (vk) to build V (vk+1) so that vk cannot be
pruned using the rule related to semi-active schedules in Algorithm 4).

Case 2: ect∗(vk) < s(Jαk+1
). In this case, some jobs of C do not belong to

R(v).
Case 2.1: ect∗(vk) is the completion time of a job in P (vk). Then necessarily

s(Jβ) < ect∗(vk) for all Jβ ∈ C−P (vk), otherwise we would have t(sβ−1) < t(sβ),
a contradiction.

Case 2.2: ect∗(vk) is the completion time of a job in C − P (vk). Similarly, if
for some Jβ ∈ C, s(Jβ) ≥ ect∗(vk) then t(sβ−1) < t(sβ), a contradiction.

Case 2.3: ect∗(vk) is the completion time of a job not in C. Assume that
there exists a first job Jβ ∈ C with s(Jβ) ≥ ect∗(vk). If Jβ was eligible before
ect∗(vk) it could be left shifted and s would not be active, since we know that
all processors processing jobs in C − P (vk) are free at time t(vk) in state vk
(otherwise the machine is processing a job of P (vk)).

So the release time of Jβ is at least s(Jβ). And in schedule s, the processor
processing Jβ is free between t(vk) and s(Jβ), whereas there is a job j ̸∈ C for
which ect(vk, j) = ect∗(vk). Job j is scheduled later in S, whereas it could be
scheduled earlier, without changing the other starting times. So s is not an active
schedule.

3.5 Complexity analysis of the DP algorithm

In this section we prove that the algorithm is fixed parameter tractable for the
parameters µ, pmax.

Proposition 5. For any admissible state v ∈ V, |R(v)| ≤ µ.

Proof. By definition of R(v), all jobs in R(v) are schedulable in the interval
[ect⋆(v, tmin)−1, ect⋆(v, tmin)), thus their time windows overlap, and the propo-
sition holds. ⊓⊔
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Proposition 6. The time complexity of the function SetCandidateNewJobs(v)
(see Algorithm 3) is O(n2 × µ) if no specific data structure is used.

Proof. SetCandidateNewJobs(v) requires first to find tmin(see line 1). To this
purpose we can observe that tmin is either t(v), a release time ri > t(v) or a value
Mi(v) for i ∈ IP (v, t(v)). Let us denote by ∆1, . . . ,∆k these values following
increasing order i.e. ∆1 < ∆2 < . . .∆k, ∆0 = t(v) and k ≤ m (with m ≤ µ).

– For each value ∆b, b ∈ {0, . . . , k} sets E(v,∆i) can be computed in time
complexity O(n2): we consider at most n jobs to check if their ancestors
are completed by time ∆i and there can be at most n − 1 ancestors for a
given job. Then, sets D(v,∆i) can be deduced in time complexity O(n). The
overall computation of these sets is then in time O(n2 × µ);

– Let b⋆ be the minimum value in b ∈ {0, . . . , k} such that D(v,∆b) ̸= ∅. If
b⋆ = 0, tmin = t(v). Else, we get ∆b⋆−1 < tmin ≤ ∆b⋆ . We define the set
A = E(v,∆b⋆−1)∩D(v,∆b⋆). If A = ∅, then jobs in D(v,∆b⋆) are not eligible
at time ∆b⋆−1, and thus tmin = ∆b⋆ . Otherwise, tmin = mini∈A ri. Without
any specific data structure, the time complexity is in O(m+ µ).

– We conclude that the computation of tmin is in time complexity O(n2 × µ).

Once tmin and set D(v, tmin) are fixed, the computation of ect⋆(v, tmin) at
line 3 and of R(v) take both O(n). The total complexity of SetCandidateNewJobs(v)
is thus O(n2 × µ). ⊓⊔

Proposition 7. The time complexity of the function NewState(v, tmin, C) (see
Algorithm 4) is O(n).

Proof. The time complexity of the instructions at lines 1, 3 and 4 of Algorithm 4
are O(n), while it is O(m) at line 6. Since m ≤ n, the whole time complexity of
this algorithm is O(n), which proves the lemma. ⊓⊔

Our main theorem follows:

Theorem 2. The DP algorithm (see Algorithm 2) is a FPT algorithm of time
complexity

O
(
n3 × µf(µ, pmax) + n2 × h(µ, pmax) + n× g(µ, pmax)h(µ, pmax)

)
with f(µ, pmax) =

(
2µ
µ

)
× pµmax × 2µ , g(µ, pmax) = µ(µln(µ) + (2× pmax)

µ) and
h(µ, pmax) =

(
µ

⌈µ/2⌉
)
× f(µ, pmax).

Proof. Algorithm 2 consists of three nested loops starting respectively at lines
2, 3 and 5.

1. By Proposition 7 and Lemma 2, the time complexity of the loop body of the
inner loop (lines 6-12) is O(n+g(µ, pmax)). Now, by Proposition 5, |R(v)| ≤
µ. Thus the total number of sets R(v) is

(
µ
m

)
≤

(
µ

⌈µ/2⌉
)
. The complexity of

one execution of the inner loop (line 5-13) is in time complexity O(A) with
A = (n+ g(µ, pmax))×

(
µ

⌈µ/2⌉
)
;
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2. By Proposition 6, the time complexity of the loop body of the intermediate
loop (lines 4-13) is O(A + n2µ). Following Lemma 1, the number of itera-
tions of the intermediate loop (line 3-14) is bounded by f(µ, pmax), thus its
complexity belongs to O((A+ n2µ)× f(µ, pmax));

3. Lastly, the outer loop (lines 2-14) is executed n times, thus the overall time
complexity is O((A+ n2µ)× f(µ, pmax)× n).

Replacing A by its value, we get the theorem. ⊓⊔

4 Computational experiments

4.1 Data generation

We develop a problem instance generator that for given values of n, µ,m, γ−

and γ+, guarantees to produce an instance for which i) the number of jobs
and machines are n and m, respectively, ii) the maximum number of jobs with
overlapping time windows is µ, iii) the maximum processing time among all jobs
is pmax and iv) the maximum number of predecessors and successors a job has
is γ− and γ+, respectively.

Algorithm 5 InstanceGenerator(n,m, µ, pmax, γ
−, γ+, ρ)

1: T = ∅
2: GenerateFirstµJobs(T ,m, µ, pmax, γ

−, γ+)
3: GenerateRemainingJobs(T , n,m, µ, pmax)
4: SetAdditionalPrecedenceRelations(T , γ−, γ+, ρ)
5: return T

As shown in Algorithm 5, the proposed instance generator first calls proce-
dure GenerateFirstµJobs described by Algorithm 6 which i) generates µ jobs
with at least one job having processing time pmax (lines 1-3), ii) ensures that
time windows of all of these jobs overlap (lines 4-6) and iii) ensures that there
will be two jobs with γ− predecessors and γ+ successors, respectively (see lines
7-8). In the generation of new jobs, the following functions are used to set their
deadlines:

C1(S) = max
i∈S

(ri + pi + qi)

C2(S) = max
i∈S

ri + ⌈ µ
m⌉max

i∈S
pi +max

i∈S
qi

After the generation of first the µ jobs, we have already satisfied the re-
quirements according to the pmax, γ

− and γ+ values. Moreover, we have gen-
erated µ jobs for which time windows overlap. In the subsequent, procedure
GenerateRemainingJobs described in Algorithm 7 generates new jobs as pre-
serving the maximum number of jobs for which the time windows overlap. To
this end, it iteratively considers the earliest time t′ for which there is a job with
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Algorithm 6 GenerateFirstµJobs(T ,m, µ, pmax, γ
−, γ+)

1: Add µ jobs to T such that pi, ri and qi are random integer numbers in [1, pmax]
∀i ∈ T and there exits a job i ∈ T where pi = pmax

2: Set C to an integer number randomly generated in [C1(T ), C2(T )]
3: Set di = C − qi ∀i ∈ T
4: while maximum number of jobs with overlapping time windows < µ do
5: Choose job i s.t. ri = max

j∈T
rj and set ri ← min

j∈T
rj

6: end while
7: Choose two jobs i and j for which ri = min

k∈T
rk and rj = max

k∈T
rk

8: Set randomly chosen γ+ (γ−) jobs as the successors (predecessors) of job i (job j).
Adjust (if necessary) time windows of the corresponding jobs accordingly

Algorithm 7 GenerateRemainingJobs(T , n,m, µ, pmax)

1: t = 0
2: while |T | < n do
3: t′ = min

i∈T :di>t
di and n′ is the number of jobs in T having deadline t′

4: Add min{n′, n − |T |} new jobs to T such that ri = t′, pi and qi are random
integer numbers in [1, pmax] for each new job i

5: Set C to an integer number randomly generated in [C1(S), C2(S)] where S =
{i ∈ T , di > t′}

6: Set di = C − qi ∀i ∈ S, t← t′

7: end while

deadline t′ but there is no job released at time t′ and generate new jobs that are
released at time t′ (lines 3-4).

Lastly, the instance generator calls SetAdditionalPrecedenceRelations that
is shown in Algorithm 8 which generates further precedence constraints (in ad-
dition to the ones generated in Algorithm 6). Algorithm 8 requires a given prob-
ability ρ which determines the density of the precedence graph. Specifically, as
ρ increases, we are expecting denser interval graphs (line 2). We do not set a
precedence relationship between two jobs if this would require the adjustments
of their time windows (line 1).

Algorithm 8 SetAdditionalPrecedenceRelations(T , γ−, γ+, ρ)

1: for each pair (i, j) ∈ T 2 s.t. |Γ+(i)| < γ+, |Γ−(j)| < γ−, ri + pi ≤ rj , di ≤ dj − pj
and di > rj do

2: Set precedence relation i→ j with probability ρ
3: end for

In our experiments, we set both γ− and γ+ equal to ⌊µ
4 ⌋. Time windows

of a given job and its successors (and its predecessors as well) must overlap,
otherwise the precedence relations between them would be redundant. Therefore,
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if γ− and γ+ get high values, available jobs at a given time in terms of the
time windows would consist only a few jobs and their successors and thereby
precedence relations would excessively dictate the possible schedules. To avoid
such cases, we keep the magnitude of γ− and γ+ limited. Other parameters
are given values as follows: n ∈ {50, 100, 250, 500}, µ ∈ {5, 10, 15, 20, 25}, m ∈
{2, 5, 10} and ρ ∈ {0.25, 0.50, 0.75}. Considering pmax value, we consider two
possibilities: i) pmax = µ or ii) pmax = n. We generate instances for all cross-
combinations of the possible parameter values except the cases where µ < m.
For each distinct tuple (n, µ,m, pmax, ρ), we generate 5 instances.

Computational experiments are conducted on a workstation with Processor
2x Intel Xeon X5677, 144Go RAM and 3.47 GHz through Visual Studio 2019.

4.2 Computational results

In our computational experiments, we apply the depth-first search in accordance
with the objective of finding a feasible solution. The enumeration of subsets C
on line 5 of Algorithm 2 uses sorted earliest starting times of the jobs in R(v)
where ties are broken considering the ascending order of deadlines. Thus, the first
chosen new state schedules the jobs with the earliest starting times (and earliest
deadlines in case of ties) in set R(v) and thereby follows the Jackson’s rule [15].
We use one hour time limit for each instance such that the DP algorithm is
terminated after one hour if the state graph cannot be completely generated
yet.

In Table 4, we provide the percentage of the instances for which the state
graph can be generated completely. In our results, the impact of the instance size
on the complete state graph generation percentages is less significant according
to the impacts of other parameters, especially µ. This is consistent with the
complexity of the proposed FPT so that its complexity is polynomial in the
number of jobs n.

– We first note that µ seems to be a key parameter in practice, since the
percentages are clearly decreasing with µ in every cases. For µ = 10 the
whole state graph can be generated, for µ = 25 it is hopeless;

– The value of m has an impact. We can observe that for m = 2 or m =
10 the percentages are often similar, whereas when m = 5 the percentage
dramatically decreases. This could be partially explained since the number
of enumerated sets C is bounded by

(
µ
m

)
which is lower for low or high values

of m;
– The impact of n is quite limited with respect to µ when m is either 2 or 10,

even for pmax = n.

Besides, we observed that higher number of states can be pruned by the domi-
nance criterion as the number of machines gets smaller. Specifically, the overall
percentages of the dominated states over the total number of states generated
are 63.5%, 45.5% and 28.7% when the number of machines is 2, 5 and 10, re-
spectively.
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Table 4: Complete state graph generation percentages for different tuples
(n, pmax ,m, µ).

n pmax m
µ

5 10 15 20 25

moderate small 2 - 100.0 100.0 66.7 0.0
5 - 100.0 80.0 0 0.0
10 - - 100.0 86.7 10.0

high 2 100.0 100.0 100.0 66.7 0.0
5 - 100.0 66.7 0.0 0.0
10 - - 100.0 73.3 13.3

large small 2 100.0 100.0 100.0 50.0 0.0
5 - 100.0 33.3 3.3 0.0
10 - - 100.0 70.0 16.7

high 2 100.0 100.0 83.3 10.0 0.0
5 - 100.0 13.3 0.0 0.0
10 - - 100.0 70.0 13.3

In all our experiments, when the state graph was completely generated, in-
stance required less than 1812.7s on average. Most of the instances requires much
less time.

We also analyzed when the first feasible solutions are found in the feasible
instances. For most of them, we can find a feasible solution in less than 0.01s.
For only 18 of all feasible instances, the first feasible solution finding time is
greater then 0.10s and only for 5 of them, it is greater than 5s.

5 Conclusion

In this paper we developed a new dynamic programming approach to solve the
decision problem P |pre, ri, di|⋆ starting from the Demeulemeester and Herroelen
Branch-and-Bound algorithm [7]. New dominance rules were provided, and an
efficient way to manage the set of undominated states lead to prove that our
algorithm is FPT with respect to parameters (µ, pmax). Experiments show that
the practical efficiency of our algorithm depends on the parameters but that the
theoretical complexity is overestimated. Our study could be extended to measure
the impact time windows adjustment, and bounds. Generalization of the resource
constraints and introduction of optimization criteria is also as secondary goal.

Branch-and-bound methods are widely used and often efficient to solve sche-
duling problems; however, it is rare that a theoretical fine analysis of their ef-
ficiency is performed. From this point of view, parameterized complexity offers
a new angle of approach to measure the parameters that explain an efficiency
or inefficiency for some instances. In "The Middle Class Gentleman", Molière’s
character Mr. Jourdain says: "By my faith! For more than forty years I have
been speaking prose without knowing anything about it..." Probably several re-
searchers designed FPT algorithms without knowing anything about them. This
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could be a partial hidden reason why some branch and bound techniques are
very efficient in practice. Thus, as a perspective of this work, the study of other
Branch-and-Bound-based methods and their adaptation in FPT, depending on
the parameters, seems promising.
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