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AN INVERSE PITMAN’S THEOREM FOR A SPACE-TIME
BROWNIAN MOTION IN A TYPE A1

1 WEYL CHAMBER

MANON DEFOSSEUX AND CHARLIE HERENT

Abstract. We prove an inverse Pitman’s theorem for a space-time Brownian
motion conditioned in Doob’s sense to remain in an affine Weyl chamber. Our
theorem provides a way to recover an unconditioned space-time Brownian
motion from a conditioned one applying a sequence of path transformations.
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1. Introduction

Pitman’s theorem [22] of 1975 gives a path representation of a standard real
Brownian motion conditioned in Doob’s sense to remain forever positive as

{Pb(t) = bt − 2 inf
0≤s≤t

bs, t ≥ 0},

where b is a standard Brownian motion with b0 = 0. This seminal result has given
rise to many generalizations or variations, see for instance [1, 2, 7, 8, 19, 21, 24].
Let us briefly describe one of the most accomplished one, due to Ph. Biane,
Ph. Bougerol and N. O’Connell [4, 5]. In Pitman’s theorem, the unconditioned
Brownian motion lives on R and the conditioned one lives on R+. Actually
R+ can be seen as the fundamental chamber of the group generated by the
reflection through 0 acting on R. This group is the simplest one among the class
of Coxeter groups. In [4], Ph. Biane, Ph. Bougerol and N. O’Connell have
established a Pitman’s theorem for a Brownian motion conditioned to remain in
the fundamental chamber of a finite Coxeter group. The theorem is obtained
by applying to an unconditioned Brownian motion Pitman type transformations
associated to a set of generators of the Coxeter group, according to the order of
appearance of the generators in a reduced decomposition of the longest element
in the group.

In [4] Ph. Biane, Ph. Bougerol and N. O’Connell have brought to light deep
connections between the Pitman transform and the Littelmann path model [18]
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which is a combinatorial model that describes the representations of a Kac–
Moody Lie algebra. The affine Coxeter group of type A1

1 is the Weyl group of
a rank one affine Kac–Moody algebra. In [6], a Pitman’s theorem has been es-
tablished for a conditioned random process living in the fundamental chamber of
the latter group. Pitman’s theorem in that case involves two Pitman type trans-
formations corresponding to the generators of the group and is only asymptotic,
due to the fact that there is no longest element in that case. Moreover, and quite
surprisingly, the conditioned process is not obtained by applying successively and
infinitely the two Pitman transforms to an unconditioned process : a correction
has to be applied, which involves two Lévy type transformations.

In [4] a functionnal inverse Pitman transform is introduced. In the simplest
case, given for T ≥ 0 a nonnegative continuous real trajectory {π(t), t ∈ [0, T ]}
starting at 0, and a real x ∈ [0, π(T )], there is a unique real trajectory η starting
at 0 such that

Pη = π and x = − inf
0≤s≤T

η(s).

It satisfies η(t) = π(t) − 2 min(x, inft≤s≤T π(s)), t ∈ [0, T ]. In other words, a
path defined on [0, T ] is entirely determined by its image by the Pitman trans-
form and a real number that can be called a string coordinate, according to the
terminology of Littelmann. We can reformulate this saying that there exists a
functional transformation which sends a conditioned positive Brownian motion
and a properly distributed real random variable on a standard real Brownian
motion. And we can do the same in the framework of any finite Coxeter group.

In the framework of [6], given an unconditioned process, we can define its string
coordinates and its image in the fundamental chamber of the affine Coxeter group
by an analog of the Pitman transform. It is then natural to ask if it is possible to
recover such an unconditioned process from a conditioned one and a sequence of
string coordinates. The asymptotic nature of Pitman’s theorem in that case, and
the presence of Lévy transformations make the issue nontrivial. We propose an
answer to the question in this paper. It has to be noticed that our reconstruction
is of a very different nature from the one previously described in the context of
a finite Coxeter group. In the latter case actually, the reconstruction is a direct
consequence of a deterministic result, whereas our result is a purely probabilistic
one. This is a reconstruction in law.

We use results obtained in [6] but our approach is quite different as the one
adopted in this last paper. Actually the proof of a Pitman’s theorem in this last
paper leds on an approximation of the affine Coxeter group A1

1 by a sequence
of dihedral ones. Thus, Brownian motions involved in the Pitman’s theorem for
a dihedral group established in [5] provide approximations of random processes
occurring in Pitman’s theorem for A1

1. It has been proved in [9] (see also [11]) that
these last processes can also be approximated by random walks defined using the
Littelmann path model for the affine Kac-Moody algebra A1

1. Such random walks
have been originally introduced by C. Lecouvey, E. Lesigne and M. Peigné in [16].
These are the approximations we use here. Their laws offer the advantage of
being given by explicit formulas coming from representation theory, which allows
to make computations. This is a huge advantage and makes our paper fall in the
large category of the so-called integrable probability. Demazure modules play a
crucial role in our paper. These modules have beautiful combinatorial properties.
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Nevertheless, as far as we know, they haven’t been used before in the framework
of integrable probability, which maybe can be explained by the fact that they do
not form a tensor category, so that they do not define an hypergroup structure
which could naturally relate them to a Markov process in a usual way (see for
instance [25] and references therein). We notice that the Littelmann model and
Demazure character formulas that we use are available for any affine Kac-Moody
algebra, so that there is some hope to obtain an inverse Pitman’s theorem in a
more general context.

Let us make a last remark about our result. Actually, in the context of a finite
Coxeter group, one can state another reconstuction theorem. In the simplest case,
it states that if {rt, t ≥ 0} is a Doob-conditioned positive standard Brownian
motion then

{rt − 2 inf
s≥t

rs, t ≥ 0}

is a real standard Brownian motion. More generally, for any finite Coxeter group,
there exists such a functional transformation, which sends a conditioned Brown-
ian motion to an unconditioned one. Such a result seems to be unattainable for
A1

1. Actually, in the finite case, the string coordinates of a Brownian motion are
infinite and a Brownian motion stands morally for the lowest weight path in the
Littelmann module of a Verma module. There is no such a lowest weight path
in the case of A1

1.
The paper is organized as follows. In section 2 we give a statement of an inverse

Pitman’s theorem for A1
1. In section 3 we briefly recall the necessary background

on representation theory of the affine Lie algebra A1
1. The Littelmann path

model for a Kac-Moody algebra A1
1 and its connection with Pitman transforms

is explained in section 4. We define in section 5 random walks with increments
in a Littelmann module and the associated random processes in the affine Weyl
chamber. These processes can be seen as approximations of the unconditioned
and conditioned Brownian motions introduced in section 6. Finally we prove an
inverse Pitman’s theorem for A1

1 in section 7.

Acknowledgments: This project is supported by the Agence Nationale de la
Recherche funding CORTIPOM ANR-21-CE40-0019.

2. Statement of the theorem

For a real x ≥ 0, we define two functional transformations Ix0 and Ix1 acting
on a continuous map η : R+ → R2 such that η(t) = (t, f(t)), where f(t) ∈ R, for
t ≥ 0, and limt→∞ f(t)/t ∈ (0, 1) as

Ix0 η(t) =
(
t, f(t) + 2 min(x, inf

s≥t
(s− f(s)))

)
,

Ix1 η(t) =
(
t, f(t)− 2 min(x, inf

s≥t
(f(s)))

)
, t ≥ 0.

We consider a space-time Brownian motion {B(t) = (t, bt + t/2), t ≥ 0}, where
b is a standard Brownian motion, and a space-time Brownian motion {A(t) =
(t, at), t ≥ 0} with a drift 1/2, conditioned to remain in the domain Caff defined
by

Caff = {(t, x) ∈ R+ × R : 0 < x < t}.
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This process will be defined more carefully later. We consider a sequence εn, n ≥
0, of independent exponential random variables with parameter 1 and we let
ξ0,p(∞) = ε0, and for all k ∈ {1, . . . , p},

ξk,p(∞)

k
=

p∑
n=k

2εn
n(n+ 1)

.

The notational choices will be hopefully clearer later. Then one has the following
reconstruction theorem.

Theorem 1. The sequence of processes

{Iξ0,p(∞)
0 . . . I

ξp,p(∞)
p A(t), t ≥ 0}, p ≥ 0,

converges, in the sense of finite dimensional distributions, towards the space-time
Brownian motion {B(t), t ≥ 0}.

Let us notice that there is no correction term here. Actually the correction
term in the affine Pitman’s Theorem proved in [6] comes from the fact that the
sequence of string coordinates associated to a Brownian motion is a convergent
sequence with limit 2. The law of the random sequence in the previous theorem
is the law of the string coordinates conditioned to be ultimately equal to 0. So
this is not a surprise that no correction term is needed for this reconstruction
theorem.

3. The affine Lie algebra A1
1 and its representations

We consider the affine Lie algebra A1
1 and recall what we need for our purpose

about its representations. One can refer to the book of Victor G. Kac [13] for
more details about Affine Lie algebras and their representations.
Generalities. For our purpose, we only need to define and consider a realization
of a real Cartan subalgebra. We introduce two copies of R3 in duality,

hR = SpanR{c, α∨1 , d}, h∗R = SpanR{Λ0, α1, δ},
where c = (1, 0, 0), α∨1 = (0, 1, 0), d = (0, 0, 1), and Λ0 = (1, 0, 0), α1 = (0, 2, 0),
δ = (0, 0, 1) in R3. We let α∨0 = (1,−1, 0) and α0 = (0,−2, 1), so that c = α∨0 +α∨1
and δ = α0 + α1. Usually α0 and α1 are called the two positive simple roots of
A1

1 and α∨0 and α∨1 their coroots. One considers the set of integral weights

P = {λ ∈ h∗R : 〈λ, α∨i 〉 ∈ Z, i = 0, 1},
where 〈·, ·〉 is the natural pairing, and the set of dominant integral weights

P+ = {λ ∈ h∗R : 〈λ, α∨i 〉 ∈ N, i = 0, 1}.
Highest weight representations. For a dominant integral weight λ, the char-
acter of the irreducible representation V (λ) of A1

1 with highest weight λ is defined
as the formal series

chλ =
∑
β∈P

dim(V (λ)β)eβ,(1)

where V (λ)β is the weight space corresponding to the weight β in V (λ). If we let
eβ(h) = e〈β,h〉 for h ∈ hR, and evaluate this formal series at h, the series converges
absolutely or diverges, and it converges when 〈δ, h〉 > 0. For h ∈ hR ⊕ ihR such
that <〈δ, h〉 > 0, the character is evaluated at h similarly extending linearly
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weights to hR ⊕ ihR. We consider the reflexions sαi , for i ∈ {0, 1}, defined on h∗R
by

sαi(β) = β − 〈β, α∨i 〉αi, β ∈ h∗R.

The Weyl group W is the group generated by these reflections. The Weyl char-
acter’s formula (chapter 10 of [13]) states here that

chλ =

∑
w∈W det(w)ew(λ+ρ)−ρ∏

α∈R+
(1− e−α)

,(2)

where ρ = 2Λ0 + α1
2 and R+ is the set of positive roots defined by

R+ = {α0 + nδ, α1 + nδ, (n+ 1)δ, n ∈ N}.

In particular ∏
α∈R+

(1− e−α) =
∑
w∈W

det(w)ew(ρ)−ρ.(3)

The affine Weyl group W is the semi-direct product T nW0 where W0 is the
subgroup generated by sα1 and T is the subgroup of transformations tk, k ∈ Z,
defined by

tk(λ) = λ+ k(λ, δ)α1 − (k(λ, α1) + k2(λ, δ))δ, λ ∈ h∗.

Thus for λ = nΛ0 + mα1
2 , with (m,n) ∈ N2 such that 0 ≤ m ≤ n, a ∈ R, and

b > 0, the Weyl character formula becomes here

chλ(aα∨1 + bd) =

∑
k∈Z sinh(a(m+ 1) + 2ak(n+ 2))e−b(k(m+1)+k2(n+2))∑

k∈Z sinh(a+ 4ak)e−b(k+2k2)
.(4)

Verma modules. The character of a Verma module with highest weight 0 is
denoted by chM(0). Let us recall some various known expressions of this character.
First of all, one has

chM(0) =
∏
α∈R+

(1− e−α)−1,(5)

One has also

chM(0) = lim
〈λ,α∨i 〉→∞,i=0;1

e−λchλ(6)

and

chM(0) = (
∑
w∈W

det(w)ew(ρ)−ρ)−1,(7)

the last identity being derived from the Weyl character formula. Because it will
be useful in the rest of the paper, one notices that for λ ∈ P+ and h ∈ hR such
that 〈δ, h〉 > 0, one has the inequality

chλ(h)e−〈λ,h〉 ≤ chM(0)(h).(8)
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4. Pitman transforms and Littelmann modules

In this section we explain connections between the Littelmann path model and
Pitman transform in the context of the affine Lie algebra A1

1. For more details
about the Littelmann path model one can see Peter Littelmann’s papers [17, 18].
We fix T > 0. A path π defined on [0, T ] is a continuous piecewise linear function
π : [0, T ] → h∗R such that π(0) = 0. We consider the cone C generated by P+

that is to say
C = {λ ∈ h∗R : 〈λ, α∨i 〉 ≥ 0, i ∈ {0, 1}}.

A path π defined on [0, T ] is called dominant if π(t) ∈ C for all t ∈ [0, T ]. It is
called integral if π(T ) ∈ P and

min
t∈[0,T ]

〈π(t), α∨i 〉 ∈ Z, for i ∈ {0, 1}.

One defines Pitman tranforms Pαi , i ∈ {0, 1}, which operate on the set on
continuous functions η : [0, T ]→ h∗R such that η(0) = 0 by the formula

Pαiη(t) = η(t)− inf
0≤s≤t

〈η(s), α∨i 〉αi, t ∈ [0, T ].

For a dominant path π defined on [0, T ], such that π(T ) ∈ P+, the Littelmann
module Bπ generated by π is the set of integral paths η defined on [0, T ] such
that there exists k ∈ N such that

Pαk . . .Pα0η = π,

where α2k = α0 and α2k+1 = α1. If π is a dominant integral path defined on
[0, T ] such that π(T ) = λ ∈ P+, then the Littelmann path theory ensures that

chλ =
∑
η∈Bπ

eη(T ).(9)

Besides for an integral path η defined on [0, T ] there exists k0 such that for all
k ≥ k0,

Pαk . . .Pα0η(t) = Pαk0
. . .Pα0η(t), t ∈ [0, T ]1.

Thus for an integral path η defined on [0, T ], one defines a dominant path Pη on
[0, T ], letting

Pη(t) = lim
k→∞

Pαk . . .Pα0η(t), t ∈ [0, T ].

String coordinates. For a dominant path π defined on [0, T ] and η ∈ Bπ , we
define a(η) as an almost-zero nonnegative integer sequences of integers (ak)k≥0

defined by the identities

Pαm . . .Pα0η(T ) = η(T ) +

m∑
k=0

akαk, m ≥ 0.(10)

Peter Littelmann proved in [18] that the function

a : η ∈ Bπ → a(η) ∈ `(∞)(N)

is a one-to-one function. Its image set, which depends on π only throught π(T ), is
given by the set B(π(T )) defined below, which is the set of vertices of a Kashiwara
crystal [15]. The sets B(∞) and B(λ) defined below are for instance respectively

1It has been proved in [6] that this fact remains true if η is a continuous, piecewise C1

trajectory in h∗R.
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described in [20] and [18]. We let `(∞)(N) the set an almost-zero sequences of
nonnegative integers.

Definition 2. The subset B(∞) of `(∞)(N) is defined as

B(∞) = {a = (ak)k≥0 ∈ `(∞)(N) :
ak
k
≥ ak+1

k + 1
, k ≥ 1}.

For λ ∈ P+, the subset B(λ) of B(∞) is defined as

B(λ) = {a = (ak)k≥0 ∈ B(∞) : ap ≤ 〈λ−
∞∑

k=p+1

akαk, α
∨
p 〉, ∀p ≥ 0}

= {a = (ak)k≥0 ∈ B(∞) : ap ≤ 〈λ− ω(a) +

p∑
k=0

akαk, α
∨
p 〉, ∀p ≥ 0},

where ω(a) =
∑∞

k=0 akαk, which is the opposite of the weight of a as an element
of the crystal B(∞) of the Verma module of highest weight 0.

Thus identity (9) becomes

chλ =
∑

a∈B(λ)

eλ−ω(a),(11)

and the character of a Verma module is written with the string coordinates,

chM(0) =
∑

a∈B(∞)

e−ω(a).(12)

The inverse function of a can be written using the functionals Ix,Tαi , i ∈ {0, 1},
x ≥ 0, introduced in [4] and defined by

Ix,Tαi f(t) = f(t)−min(x, inf
T≥s≥t

〈f(s), α∨i 〉)αi, t ∈ [0, T ],

for f : [0, T ]→ h∗R. For a ∈ B(λ) and π an integral dominant path on [0, T ] such
that π(T ) = λ, the only path η ∈ Bπ such that a(η) = a is given by

η(t) = Ia0,T
α0

. . . I
ap,T
αp π(t), t ∈ [0, T ],

where p is chosen such that ak = 0, for all k ≥ p+1. Notice that if f is a function
defined on R+ with values in h∗R such that

lim
t→∞
〈f(t), α∨i 〉 = +∞, i ∈ {0, 1},

the definition of Ix,Tαi , i ∈ {0, 1}, makes sense for T = +∞. In the following, we
write Ixαi instead of Ix,+∞αi . We notice that if f is a map with values in RΛ0⊕Rα1

then for t ≥ 0, i ∈ {0, 1},

Ixαif(t) = Ixi f(t) mod δ.

Demazure modules. A Demazure character is the character of a Demazure
module. There exists a character formula for a Demazure character, which gen-
eralizes the Weyl character formula. Nevertheless this formula is not convenient
to obtain asymptotic results and we do not use it here. For our purpose a formu-
lation with the string coordinates will be more useful. One can find for instance
in [15] an introduction to Demazure characters in the context of crystals. For
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an integer p ≥ 0, we let wp = sαp . . . sα0 , and for λ ∈ P+, one considers the
Demazure character chwpλ defined by

chwpλ =
∑

η∈Bwpπ
eη(T ),(13)

where π is an integral dominant path defined on [0, T ] such that π(T ) = λ, and
Bwpπ = {η ∈ Bπ : Pαp . . .Pα0η = π}. Written with the string coordinates,
definiton (13) becomes

chwpλ =
∑

a∈B(λ), ap+1=0

eλ−ω(a).(14)

Actually Bwpπ can be identified with the vertices of the crystal graph of a
Demazure module F (w−1

p λ) of V (λ). We define a Verma–Demazure character
chwpM(0) letting

chwpM(0) =
∑

a∈B(∞), ap+1=0

e−ω(a).(15)

Let us notice that this series is not defined as the character of a sub-module.

5. Random walks and Littelmann paths

In this whole section m is a fixed positive integer. Let us consider a path π0

defined on [0, 1] by
π0(t) = tΛ0, t ∈ [0, 1],

and the Littelmann module Bπ0 generated by π0. We consider a dual Weyl vector
ρ∨ = 2d + α∨1 /2. We fix an integer m ≥ 1 and equip Bπ0 with a probability
measure µm letting

µm(η) =
e

1
m
〈η(1),ρ∨〉

chΛ0(ρ∨/m)
, η ∈ Bπ0.(16)

One considers a sequence (ηmi )i≥0 of i.i.d random variables with law µm and a
random path {Πm(t), t ≥ 0} defined by

Πm(t) = ηm1 (1) + · · ·+ ηmk−1(1) + ηmk (t− k + 1),

when t ∈ [k− 1, k[, for k ∈ Z+. We write ∗ for the usual concatenation of paths,
so that for an integer t, the restriction of Πm to [0, t] is in Bπ∗t0 . For t ∈ N,
we consider the string coordinates of Πm|[0,t], and denote them by (ξmk (t))k≥0.
Notice that the definition makes sense for t = ∞, as each string coordinate is
increasing on R+. The law of (ξmk (∞))k≥0 can be described with the character
of the Verma module with highest weight 0 as we will see later. We define a
random process {Πm

+ (t), t ≥ 0} with values in C letting

Πm
+ (t) = PΠm(t), t ≥ 0.

The identity of the following proposition is an immediate consequence of the
properties of the Littelmann path model. One can see for instance [16] for more
explicit explanations. It implies in particular that {Πm

+ (k), k ≥ 0} is Markovian.
For us the proposition will be very useful in the whole paper as it allows to
show that the Markov process {Πm

+ (k), k ≥ 0} inherits many properties from the
random walk {Πm(k), k ≥ 0}.
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Proposition 3. For any integers k and n, and any fonction f defined on the set
of continuous functions C([n, n+ k],R), one has

E
(
f(Πm

+ (t) : n ≤ t ≤ n+ k)|Πm
+ (s), s ≤ n

)
= E

(
f(Πm(t) + λ, 0 ≤ t ≤ k)

chΠm(k)+λ(ρ∨/m)

chλ(ρ∨/m)
e−〈Π

m(k),ρ∨/m〉1λ+Πm|[0,k]∈C

)
,

where λ = Πm
+ (n).

The identity of the following proposition is an immediate consequence of the
fact that the image of a Littelmann module Bπ under a depends on π only
through the final value of π. As it will also be used quite often in the rest of the
paper, a proposition is devoted to it.

Proposition 4. For u ∈ N and f a real function defined on B(∞) one has

E
(
f(ξm(u))|Πm

+ (t), t ≤ u
)

=

∑
a∈B(Πm+ (u)) f(a)e〈Π

m
+ (u)−ω(a),ρ∨/m〉∑

a∈B(Πm+ (u)) e
〈Πm+ (u)−ω(a),ρ∨/m〉

Lemma 5. For i ∈ {0, 1}, 〈Πm(k), α∨i 〉/k almost surely converges as k goes to
infinity towards a positive real number.

Proof. In a more general context, it has been proved in [16], Proposition 5.4,
that E(η(1)) is the interior of C. In our particular case, it is easily proved using
the explicit description of the weights of V (Λ0) given for instance in chapter 9 of
[12]. The convergence follows from a law of large numbers. �

The following lemma is a first useful application of Proposition 3.

Lemma 6. For i ∈ {0, 1}, in probability, limk→∞〈Πm
+ (k), α∨i 〉 = +∞.

Proof. Lemma 5 implies in particular that almost surely limk→∞〈Πm(k), α∨i 〉 =
+∞. For M > 0, i ∈ {0, 1} and k ≥ 1, Proposition 3 gives

P
(
〈Πm

+ (k), α∨i 〉 < M
)

=

E
(

1{〈Πm(k),α∨i 〉<M}chΠm(k)(ρ
∨/m)e−〈Π

m(k),ρ∨/m〉1Πm|[0,k]∈C

)
.

Upper bound (8) and Lemma 5 achieve the proof. �

Proposition 7. The sequence of string coordinates ξm(∞) is independent of
{Πm

+ (t), t ≥ 0} and

P (ξm(∞) = a) =
e−〈ω(a),ρ∨/m〉

chM(0)(ρ∨/m)
, a ∈ B(∞).

Proof. Let T ≥ 0, a ∈ B(∞) and f be a real valued function defined on Bπ∗T0

that we suppose bounded by 1. One has

E
(
f(Πm

+ |[0,T ]
)1{ξm(∞)=a}

)
= lim

u→∞
E
(
f(Πm

+ |[0,T ]
)1{ξm(u)=a}

)
Let us fix ε > 0. We choose M ≥ 0 such that if λ ∈ P+ and satisfies

〈α∨i , λ〉 ≥M, for i ∈ {0, 1},
then one has

a ∈ B(λ) and
∣∣∣∣ 1

e−〈λ,ρ∨/m〉chλ(ρ∨/m)
− 1

chM(0)(ρ∨/m)

∣∣∣∣ ≤ ε.
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Lemma 6 implies that there exists u0 ∈ N such that for all integer u ≥ u0

P
(
〈α∨i ,Πm

+ (u)〉 ≥M, i ∈ {0, 1}
)
≥ 1− ε.

By conditioning on {Πm
+ (t), 0 ≤ t ≤ u} in the lefthand side expectation of the

following identity one obtains by proposition 4, for an integer u ≥ T ,

E
(
f(Πm

+ |[0,T ]
)1{ξm(u)=a}

)
= E

(
f(Πm

+ |[0,T ]
)

e−〈ω(a),ρ∨/m〉1B(Πm+ (u))(a)

e−〈Π
m
+ (u),ρ∨/m〉chΠm+ (u)(ρ∨/m)

)
.

It implies that for an integer u ≥ u0,∣∣∣∣∣E(f(Πm
+ |[0,T ]

)1{ξm(u)=a}

)
− E

(
f(Πm

+ |[0,T ]
)
) e−〈ω(a),ρ∨/m〉

chM(0)(ρ∨/m)

∣∣∣∣∣ ≤ 2ε,

which gives the lemma. �

Proposition 7 implies immediately the following corollary.

Corollary 8. For p ≥ 0,

P
(
ξmp+1(∞) = 0

)
=

chwpM(0)(ρ
∨/m)

chM(0)(ρ∨/m)

As {Πm(t) ∈ C, t ≥ 0} = {ξm(∞) = 0}, Proposition 7 has a second corollary,
which has already been proved in [16] by a quite different method. This corollary
is not really useful for our purpose, nevertheless it is worth giving it.

Corollary 9. One has P (Πm(t) ∈ C, t ≥ 0) = (chM(0)(ρ
∨/m))−1.

6. The continuous counterpart

The random processes introduced in section 5 are approximations of continuous
time random processes that we define in this section. For this, let us define the
affine cone

Caff = {(t, x) ∈ R+ × R+ : 0 < x < t}.
We consider a process {B(t) = tΛ0 + (bt + t/2)α1/2 : t ≥ 0}, where {bt : t ≥ 0}
is a standard real Brownian motion starting from 0 and a process {A(t), t ≥ 0}
starting from (0, 0), whose law is the Doob transformation of the law of the
process B killed on the boundary of Caff by the harmonic function ϕ1/2 defined
on R∗+ × R by

ϕ1/2(t, x) = e−x/2
∑
k∈Z

sinh((2kt+ x)/2)e−2(kx+k2t), for t > 0, x ∈ R,(17)

which is positive on Caff and vanishies on the boundary of Caff. This process has
been introduced and studied in [9, 10] and carefully defined in [6] in the context
of the present paper.

The convergences of the following proposition have been proved in [11]. In
this proposition, as in the convergence theorems of the following sections, all
the processes are considered as processes with values in the quotient space h∗R
mod δ, which is identified with RΛ0 ⊕ Rα1 = R2. We notice that α0 = −α1 in
the quotient space. The set of continuous paths from R+ to R2 is equipped with
the topology of uniform convergence on compact sets and we use the standard
definition of convergence in distribution for a sequence of continuous processes
as in Revuz and Yor ([23], XIII.1).
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Proposition 10. (1) For any t ≥ 0, the random variable 1
m(Πm(mt) −

Πmbmtc) goes to 0 in probability when m goes to infinity.
(2) The sequence of processes

{ 1

m
Πm(mt) : t ≥ 0}, m ≥ 1,

viewed in the quotient space h∗R mod δ, converges in distribution towards
the process {B(t) : t ≥ 0} when m goes to infinity.

(3) The sequence of processes

{ 1

m
Πm

+bmtc : t ≥ 0}, m ≥ 1,

viewed in the quotient space h∗R mod δ, converges towards {A(t) : t ≥ 0}
when m goes to infinity, in the sense of finite dimensional distribution.

For t ≥ 0, we consider the string coordinates of B on [0, t], denoted by
(ξk(t))k≥0. They are defined by

Pαm . . .Pα0B(t) = B(t) +

m∑
k=0

ξk(t)αk, m ≥ 0.(18)

For every k ≥ 0, the function t ∈ R+ 7→ ξk(t) is increasing, and because of
the drift, limt→∞ ξk(t) < +∞. We let limt→∞ ξk(t) = ξk(∞). For a sequence
x = (xk) ∈ RN

+, we let

ω(x) = lim
n→+∞

n−1∑
k=0

xkαk +
1

2
xnαn mod δ,(19)

when this limit exists in Rα1. The following sets are the continuous analogs of
the Kashiwara crystals defined in definition 2.

Definition 11. One defines, for λ ∈ C̄aff,

Γ(∞) = {x = (xk) ∈ RN
+ :

xk
k
≥ xk+1

k + 1
≥ 0, for all k ≥ 1, ω(x) ∈ R2},

Γ(λ) = {x ∈ Γ(∞) : xk ≤ 〈λ− ω(x) +

k∑
i=0

xiαi, α
∨
k 〉, for every k ≥ 0}.

7. An inverse Pitman’s theorem

We will now prove a reconstruction theorem which allows to get a space-time
Brownian motion B from a conditioned one A and a sequence of random variables
properly distributed. The idea is to prove that the commutative diagram in figure
1 is valid. The convergence represented by the third arrow of the diagram will
then provides a reconstruction theorem. Black arrows on the diagram stand for
convergences that have been already proved. Dashed ones stand for convergences
which have still to be proved at this stage. Let us first define the random variables
involved in the diagram which have not been defined yet. The law of ξ(∞) is
described by the following theorem, which has been proved in [6].

Theorem 12 (Ph. Bougerol, M. Defosseux [6]). The random variables

ξ0(∞),
1

2
((k + 1)ξk(∞)− kξk+1(∞)), k ≥ 1,
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are independent exponential random variables with parameter 1.

1
m
I
ξm0,p(∞)
α0 . . . I

ξmp,p(∞)
αp Πm

+ (m.) I
ξ0,p(∞)
α0 . . . Iξp,p(∞)

αp
A

m→ ∞

p→ ∞

1
m

Πm(m.)
m→ ∞

p→ ∞

B

1

2 3

4

(mod δ)

(mod δ)

(mod δ)

Figure 1. A commutative diagram of finite dimensional distri-
bution convergences

From now on, one considers the sequence εn, n ≥ 0, of independent exponential
random variables with parameter 1 defined by

ε0 = ξ0(∞), εk =
1

2
((k + 1)ξk(∞)− kξk+1(∞)), k ≥ 1,(20)

and {A(t) : t ≥ 0} is supposed to be independent of this sequence.

Definition 13. For every p ≥ 0, one lets ξ0,p(∞) = ε0, and for all k ∈ {1, . . . , p},

ξk,p(∞)

k
=

p∑
n=k

2εn
n(n+ 1)

.

We write ξ·,p(∞) = (ξk,p(∞))k∈{0,...,p}.

7.1. Proof of the convergence corresponding to the first arrow of the
diagram. For every p ≥ 0, one considers a random vector

(ξm0,p(∞), . . . , ξmp,p(∞))

independent from Πm
+ , which is distributed as (ξm0 (∞), . . . ξmp (∞)) conditionally

on ξmp+1(∞) = 0. Lemma 14 and Propositions 17 and 18 will imply the desired
convergence.

Lemma 14. For every p ∈ N, 1
m(ξm0,p(∞), . . . , ξmp,p(∞)) converges in distribution

towards (ξ0,p(∞), . . . , ξk,p(∞)) when m goes to +∞.

Proof. From definition 13, one derives that the density of (ξ0,p(∞), . . . , ξp,p(∞))
is given by

f(ξ0,p,...,ξ0,p)(x0, . . . , xp) =
(p+ 1)!e−

∑p
k=0 xk

2p
1x0≥0,

x1
1
≥x2

2
≥···≥xp

p
≥0.

Moreover, from Proposition 7 and Corollary 8 we deduce that for every real
numbers t0, . . . , tp ≥ 0,

E
(
e−

∑p
k=0 tk

ξmk,p(∞)

m

)
=

1

chwpM(0)(ρ
∨/m)

∑
(a0,...,ap)∈Np+1

e−
∑p
k=0(1+tk)

ak
m 1a1

1
≥a2

2
≥···≥ap

p
.
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Lemma follows from the fact that

m−(p+1)
∑

(a0,...,ap)∈Np+1

e−
∑p
k=0(1+tk)

ak
m 1a1

1
≥a2

2
≥···≥ap

p

converges towards the Riemann integral∫
Rp+1

+

e−
∑p
k=0(1+tk)xk1x1

1
≥x2

2
≥···≥xp

p
dx.

�

Proposition 15. For every t ≥ 0, 1
m(Πm

+ (mt)−Πm
+bmtc) converges in probabilty

to 0 as m goes to infinity.

Proof. Let us fix ε > 0 and t > 0. We choose a compact K in Caff such that

P(A(t) ∈ K) > 1− ε/2.

Convergences recalled in proposition 10 ensure that there exists m0 ∈ N∗ such
that for all m ≥ m0

P
(

1

m
(Πm

+bmtc+ ρ) ∈ K
)
> 1− ε.

We choose such an integer m0. One has for all m ≥ m0

E
(

1{ 1
m
|〈Πm+ (mt)−Πm+ bmtc,α∨1 〉|>ε}

)
≤ E

(
1{ 1

m
|〈Πm+ (mt)−Πm+ bmtc,α∨1 〉|>ε}∩Km

)
+ ε,(21)

where Km = { 1
m(Πm

+bmtc+ ρ) ∈ K}. By proposition 3, one has for λ ∈ P+,

E
(

1{ 1
m
|〈Πm+ (mt)−Πm+ bmtc,α∨1 〉|>ε}

|Πm
+bmtc = λ

)
= E

(
1{ 1

m
|〈Πm(mt−bmtc),α∨1 〉|>ε}

chΠm(1)+λ(ρ∨/m)

chλ(ρ∨/m)
e−〈Π

m(1),ρ∨/m〉1{λ+Πm|[0,1]
∈Caff}

)
≤ E

(
1{ 1

m
|〈Πm(mt−bmtc),α∨1 〉|>ε}

chM(0)(ρ
∨/m)

chλ(ρ∨/m)e−〈λ,ρ∨/m〉

)
,

the last inequality being derived from (8). Moreover the Weyl character formula
gives

chλ(ρ∨/m)e−〈λ,ρ
∨/m〉

chM(0)(ρ∨/m)
=
∑
w∈W

det(w)e〈w(λ+ρ∨
m

)−(λ+ρ∨
m

),ρ∨〉.

The function
x ∈ Caff 7→

∑
w∈W

det(w)e〈w(x)−x,ρ∨〉,

is positive on K. We let

M = max{(
∑
w∈W

det(w)e〈w(x)−x,ρ∨〉)−1 : x ∈ K}.

Thus for λ ∈ P+ such that (λ+ ρ)/m ∈ K one has,

E
(

1{ 1
m
|〈Πm+ (mt)−Πm+ bmtc,α∨1 〉|>ε}

|Πm
+bmtc = λ

)
≤ME

(
1{ 1

m
|〈Πm(mt−bmtc),α∨1 〉|>ε}

)
.
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As 1
mΠm(mt−bmtc) converges towards 0 in probability as it is recalled in propo-

sition 10, we choose an integer m1 ≥ m0 such that for all m ≥ m1,

E
(

1{ 1
m
|〈Πm(mt−bmtc,α∨1 〉|>ε}

)
≤ ε/M.

Finally by conditioning by Πm
+bmtc within the expectation of the righthand side

of inequality (21), one obtains for m ≥ m1,

E
(

1{ 1
m
|〈Πm+ (mt)−Πm+ bmtc,α∨1 〉|>ε}

)
≤ 2ε,(22)

which proves the expected convergence. �

By proposition 3, we prove in the following proposition that the sequence
of random processes { 1

mΠm
+ (mt) : t ≥ 0}, m ≥ 1, inherits the tightness from

{ 1
mΠm(mt) : t ≥ 0}, m ≥ 1.

Proposition 16. The sequence of processes { 1
mΠm

+ (mt) : t ≥ 0}, m ≥ 1, is tight.

Proof. For t ≥ 0, we let Xm(t) = 1
mΠm

+ (mt). As it has been recalled in proposi-
tion 10, it has been proved in [11] that 1

mΠm
+bmtc converges in law when m goes

to infinity. From proposition 15, we deduce the convergence in law of Xm(t) for
any t ≥ 0. Thus it is sufficient to prove that

∀T ≥ 0, ∀ε > 0, ∀η > 0,∃δ > 0 s.t. lim sup
m→+∞

P (wT (Xm, δ) ≥ η) ≤ ε,

where, for x : R+ → h∗R,

wT (x, h) = sup{|〈x(t)− x(s), α∨1 〉|, s, t ∈ [0, T ], |s− t| ≤ δ}.

Let T, ε, η > 0. We suppose that T is greater than η. We let t0 = η
2 and define

wt0T (x, δ) by

wt0T (x, δ) = sup{|〈x(t)− x(s), α∨1 〉|, s, t ∈ [t0, T ], |s− t| ≤ δ},

for δ ≥ 0, x : R+ → h∗R, As for every t ≥ 0, Xm(t) is in Caff, one has for δ ≤ t0,

{wT (Xm, δ) ≥ η} ⊂
{
wt0T (Xm, δ) ≥ η

}
.

As in the proof of proposition 15 we choose a compact K in Caff and m0 ∈ N
such as for all m ≥ m0

P
(

Πm
+bmt0c+ ρ

m
∈ K

)
≥ 1− ε.

Hence,

P
(
wt0T (Xm, δ) ≥ η

)
≤ E

(
1
{wt0T (Xm,δ)≥η,

Πm+ bmt0c+ρ
m

∈K}

)
+ ε

By conditioning by Πm
+bmt0c in the expectation of the righthand side of the

above inequality, we obtain as in the proof of the proposition 15 that

P
(
wt0T (Xm, δ) ≥ η,

Πm
+bmt0c+ ρ

m
∈ K

)
≤MP

(
wT (

1

m
Πm(m.), δ) ≥ η

)
,

where
M = max{(

∑
w∈W

det(w)e(w(x)−x),ρ∨)−1 : x ∈ K}.
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As the sequence of processes { 1
mΠm(mt), t ≥ 0}, m ≥ 0, is tight, we choose

m1 ≥ m0 and δ0 ∈ (0, η/2] such that for m ≥ m1,

P
(
wT (

1

m
Πm(m.), δ0) ≥ η

)
≤ ε/M.

Thus for m ≥ m1, one has

P
(
wt0T (Xm, δ0) ≥ η

)
≤ 2ε,

which achieves the proof. �

The convergence recalled in proposition 10 of { 1
mΠm

+bmtc : t ≥ 0} in the sense
of finite dimensional law and the previous proposition give the following one.

Proposition 17. The sequence of processes { 1
mΠm

+ (mt) : t ≥ 0}, m ≥ 1, con-
verges in distribution towards {A(t) : t ≥ 0} in the quotient space h∗R mod δ.

Now it remains to control the asymptotic behavior of Πm
+ for large time uni-

formly in m to get the convergence represented by the first arrow in the diagram.
For this we show the following proposition.

Proposition 18. For all ε, a > 0 there exists T,m0 ≥ 0 such as for i ∈ {0, 1}
and all m ≥ m0

P
(

inf
t≥T

1

m
〈Πm(mt), α∨i 〉 ≥ a

)
, P
(

inf
t≥T

1

m
〈Πm

+ (mt), α∨i 〉 ≥ a
)
≥ 1− ε.

Proof. Slight modifications in the proof of proposition 6.13 of [11] give the first
inequality. Let i ∈ {0, 1}. As previously we choose a compact K in Caff and
m0 ∈ N∗ such as for all m ≥ m0

P
(

Πm
+ (m) + ρ

m
∈ K

)
≥ 1− ε

Let T ≥ 1 that will be chosen later. For u > T and m ≥ m0 one has

E(1{inf{ 1
m
〈Πm+ (mt),α∨i 〉,T≤t≤u}≤a}

) ≤ E
(

1{inf{ 1
m
〈Πm+ (t),α∨i 〉,bmT c≤t≤bmuc+1}≤a}∩Km

)
+ ε,

where Km = { 1
m(Πm

+bmtc+ ρ) ∈ K}. By conditioning by Πm
+bmc in the expec-

tation of the righthand side of the above inequality, we obtain as in the proof of
Proposition 15 that there exists M ≥ 0 such that

E
(

1{inf{ 1
m
〈Πm+ (t),α∨i 〉,bmT c≤t≤bmuc+1}≤a}∩Km

)
≤ME

(
1{inf{ 1

m
〈Πm(t),α∨i 〉,bmT c−m≤t}≤a}

)
Thanks to the first inequality, for such anM ≥ 0, we choose T0 ≥ 0 andm1 ≥ m0

such as for m ≥ m1

P
(

inf
bmT0c−m≤t

1

m
〈Πm(t), α∨i 〉 ≤ a

)
≤ ε/M

Thus for u ≥ T0, m ≥ m1

P
(

inf
T0≤t≤u

1

m
〈Πm

+ (mt), α∨i 〉 ≤ a
)
≤ 2ε.

As m1 does not depend on u, we let u goes to infinity in the above inequality,
which achieves the proof.

�
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We can now state the convergence corresponding to the first arrow of the
diagram of figure 1.

Proposition 19. In the quotient space h∗R mod (δ), the sequence of random
processes

{ 1

m
I
ξm0,p(∞)
α0 . . . I

ξmp,p(∞)
αp Πm

+ (mt) : t ≥ 0}, m ≥ 1,

converges in the sense of finite dimensional distribution towards

{Iξ0,p(∞)
α0 . . . I

ξp,p(∞)
αp A(t), t ≥ 0},

as m goes to infinity.

7.2. Proof of the convergence corresponding to the third arrow of the
diagram. Let us first notice that Proposition 7 implies the following one.

Proposition 20. For m, p ≥ 1, the process {Iξ
m
0,p(∞)
α0 . . . I

ξmp,p(∞)
αp Πm

+ (t) : t ≥ 0}
has the same law as {Πm(t) : t ≥ 0} conditionally on {ξmp+1(∞) = 0}.

Proposition 21. For u ∈ R, and p ∈ N,

E
(
eiu〈Π

mbmtc/m,α∨1 〉1ξmp+1bmtc=0

)
= E

chwpΠm+ bmtc
( 1
m(iuα∨1 + ρ∨))

chΠm+ bmtc(
1
mρ
∨)

(23)

In particular,

P
(
ξmp+1bmtc = 0

)
= E

chwpΠm+ bmtc
( 1
mρ
∨)

chΠm+ bmtc(
1
mρ
∨)

(24)

Proof. First notice that identity (24) follows letting u = 0 in (23). To prove (23),
we notice that proposition 4 implies that

E(eiu〈Π
mbmtc/m,α∨1 〉1ξmp+1bmtc=0|Πm

+bmtc = λ)

is equal to ∑
a∈B(λ) e

iu〈(λ−ω(a))/m,α∨1 〉e〈λ−ω(a),ρ∨/m〉1ap+1=0

chλ(ρ∨/m)

which is by (14) equal to

chwpλ ((iuα∨1 + ρ∨)/m)

chλ(ρ∨/m)
.

Thus (23) follows by conditioning by Πm
+bmtc within the lefthand side expecta-

tion of the identity.
�

The idea of the proof of the third convergence of the diagram rests on the fact
that

E
(
eiu〈Π

mbmtc/m,α∨1 〉|ξmp+1bmtc = 0
)

for which an explicit formula involving a Demazure character is available as we
have just seen, is close to

E
(
eiu〈Π

mbmtc/m,α∨1 〉|ξmp+1(∞) = 0
)

whose limit we are looking for.
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Definition 22. We consider the random sequence (Lp)p≥0 defined by

Lp =

p∑
k=0

ξk,p(∞)αk, p ≥ 0.

Lemma 14 implies in particular that for any p ≥ 0, the random variable
1
mω(ξm.,p(∞)) converges in distribution towards Lp when m goes to infinity. More-
over, we notice that viewed in h∗R mod δ, (Lp)p≥0 is a sequence of real numbers.

Lemma 23. In h∗R mod δ, Lp converges almost surely and in L2 towards

L =

∞∑
k=0

εk
2bk/2c+ 1

αk mod δ,

when p goes to infinity.

Proof. One has for p ≥ 0,

Lp = ε0α0 +

p∑
k=1

k

p∑
n=k

2εn
n(n+ 1)

αk = ε0α0 +

p∑
n=1

2εn
n(n+ 1)

n∑
k=1

kαk

Thus

〈Lp, α∨1 〉 = −2 +

p∑
n=1

4εn
n(n+ 1)

n∑
k=1

k(−1)k+1

= −2 +

p∑
n=1

4εn
n(n+ 1)

(−1)n+1bn+ 1

2
c.

Finally

Lp =

p∑
k=0

εk
2bk/2c+ 1

αk mod δ,

which shows that in h∗R mod δ, (Lp)p≥0 is a bounded martingale in L2, and gives
the expected convergence. �

Lemma 24. If (λm) is a sequence with values in P+ such that limm→∞
λm
m =

λ ∈ Caff then for u ∈ R,

lim
m→∞

chwpλm((iuα∨1 + ρ∨)/m)

chwpM(0)(ρ
∨/m)

= e〈λ,ρ
∨〉E

(
eiu〈λ−Lp,α

∨
1 〉1ξ·,p∈Γ(λ)

)
Proof. Using (14) and (15) to write the Demazure characters one obtains

1

mp+1
chwpλm((iuα∨1 + ρ∨)/m) =

1

mp+1

∑
a∈B(λm),ap+1=0

e〈
1
m

(λm−ω(a)),iuα∨1 +ρ∨〉,

and
1

mp+1
chwpM(0)(ρ

∨/m) =
1

mp+1

∑
a∈B(∞),ap+1=0

e−〈
1
m
ω(a),ρ∨〉.
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Thus

lim
m→∞

chwpλm((iuα∨1 + ρ∨)/m)

chwpM(0)(ρ
∨/m)

=

∫
Rp+1

+
e〈λ−ω(x),iuα∨1 +ρ∨〉1x∈Γ(λ) dx∫

Rp+1
+

e−〈ω(x),ρ∨〉1x∈Γ(∞) dx

= e〈λ,ρ
∨〉

∫
Rp+1

+
eiu〈λ−ω(x),α∨1 〉e−〈ω(x),ρ∨〉1x∈Γ(λ) dx∫
Rp+1

+
e−〈ω(x),ρ∨〉1x∈Γ(∞) dx

.

The observation of the density of (ξ0,p(∞), . . . , ξp,p(∞)) given in the proof of
Lemma 14 allows to conclude. �

Lemma 25. For λ ∈ Caff, the random variable 1{ξ·,p(∞)∈Γ(λ)} converges almost
surely towards 1{ξ(∞)∈Γ(λ)} when p goes to infinity.

Proof. We know that almost surely in the quotient space h∗R mod δ

lim
k→∞

k−1∑
i=0

ξi(∞)αi +
1

2
ξk(∞)αk = L, and lim

p→∞
Lp = L.

As for every integer k, almost surely limp→∞ ξk,p(∞) = ξk(∞), one obtains a
first inclusion

lim sup
p→∞

{ξ.,p(∞) ∈ Γ(λ)} ⊂ {ξ(∞) ∈ Γ(λ)}.

We let for k ∈ {1, . . . , p}

Xk,p = Lp −
k−1∑
i=0

ξi,p(∞)αi −
1

2
ξk,p(∞)αk

and

Xk = L−
k−1∑
i=0

ξi(∞)αi −
1

2
ξk(∞)αk.

We notice that, in the quotient space, one has for k ∈ {1, . . . , p}
k−1∑
i=0

ξi,p(∞)αi +
1

2
ξk,p(∞)αk =

k−1∑
i=0

ξiαi +
1

2
ξk(∞)αk −

ξp(∞)

2p
αk1k is odd.

Thus almost surely
lim
p→∞

sup
0≤k≤p

|α∨k (Xp
k −Xk)| = 0.

It follows, as in the proof of proposition 5.14 of [6], that almost surely

{ξ(∞) ∈ Γ(λ)} ⊂ lim inf
p→∞

{ξ.,p(∞) ∈ Γ(λ)}.

Finally one has,

lim sup
p→∞

{ξ.,p(∞) ∈ Γ(λ)} ⊂ {ξ(∞) ∈ Γ(λ)} ⊂ lim inf
p→∞

{ξ.,p(∞) ∈ Γ(λ)},

from which the lemma follows. �
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We define a function ϕiu+ 1
2
on R∗+ × R letting for t > 0, x ∈ R.

ϕiu+1/2(t, x) =
e−(iu+1/2)x

cosh(u)

∑
k∈Z

sinh((iu+ 1/2)(2kt+ x))e−2(kx+k2t),(25)

The following Lemma follows from the Poisson summation formula as it is
noticed in [6]. We write here a proof following from the Euler’s sine product
formula.

Lemma 26. For u ∈ R,

lim
m→∞

chM(0)(ρ
∨/m)

chM(0)((iuα
∨
1 + ρ∨)/m)

= cosh(u)

Proof. Let m ≥ 1. It follows from (5) that

chM(0)((iuα
∨
1 + ρ∨)/m)

chM(0)(ρ∨/m)
=
∏
n∈N

(1− e−
2n+1
m )2

(1− e
2iu
m
− 2n+1

m )(1− e
−2iu
m
− 2n+1

m )

We write ∏
n∈N

(1− e−
2n+1
m )2

(1− e
2iu
m
− 2n+1

m )(1− e
−2iu
m
− 2n+1

m )
=
∏
n∈N

(1 + an,m)

where

an,m =
2
(
cos(2u

m )− 1
)
e−

2n+1
m

1 + e−2
(2n+1)
m − 2 cos(2u

m )e−
2n+1
m

.

Thus |an,m| =
| cos( 2u

m
)−1|

cosh( 2n+1
m

)−cos( 2u
m

)
and by the classical inequalities

∀x ∈ R cosh(x) ≥ 1 +
x2

2
and | cos(x)− 1| ≤ x2

2

we obtain the upper bound |an,m| ≤ 2(2u)2

(2n+1)2 . It follows from the dominated
convergence theorem that

lim
m→+∞

∏
n∈N

(1 + an,m) =
∏
n∈N

lim
m→+∞

(1 + an,m)

Hence

lim
m→+∞

chM(0)((iuα
∨
1 + ρ∨)/m)

chM(0)(ρ∨/m)
=
∏
n∈N

(2n+ 1)2

(2n+ 1)2 + 4u2

By reversing the formula, we obtain
chM(0)(ρ

∨/m)

chM(0)((iuα
∨
1 + ρ∨)/m)

∼
m→+∞

∏
n∈N

(
1 +

4u2

(2n+ 1)2

)
from which follows the proposition by Euler’s cosine or sine product formulas. �

Proposition 27. Let λ ∈ Caff, u ∈ R. One has

E
(
e−iu〈L,α

∨
1 〉1ξ(∞)∈Γ(λ)

)
= 2ϕiu+1/2(λ).

In particular,

P (ξ(∞) ∈ Γ(λ)) = 2ϕ 1
2
(λ).



20 MANON DEFOSSEUX AND CHARLIE HERENT

Proof. One has by Lemmas 23 and 25

E
(
e−iu〈L,α

∨
1 〉1ξ(∞)∈Γ(λ)

)
= lim

p→+∞
E
(
e−iu〈Lp,α

∨
1 〉1{ξ·,p∈Γ(λ)}

)
Let us consider a sequence (λm)m≥1 with values in P+ such that limm→∞ λm/m =
λ and the real double-sequence (vp,m)p,m≥1 defined by

vp,m =
chwpλm((iuα∨1 + ρ∨)/m)e−〈λm,iuα

∨
1 +ρ∨/m〉

chwpM(0)(ρ
∨/m)

, m, p ≥ 1.

Lemma 24 says that

lim
m→+∞

vp,m = E
(
e−iu〈Lp,α

∨
1 〉1{ξ·,p∈Γ(λ)}

)
As (vp,m)p,m≥1 is a bounded real double-sequence then there exists a convergent
double-subsequence for which we can interchange the composition of the limit in
p and m. For our purpose, we can suppose that the interchange is valid for the
whole sequence, i.e.

lim
p→+∞

lim
m→+∞

vp,m = lim
m→+∞

lim
p→+∞

vp,m.

We suppose so. Then one can write,

E
(
e−iu〈L,α1〉1ξ(∞)∈Γ(λ)

)
= lim

p→∞
lim
m→∞

vp,m

= lim
m→∞

lim
p→∞

vp,m

= lim
m→∞

chwpλm((iuα∨1 + ρ∨)/m)e−〈λm,iuα
∨
1 +ρ∨/m〉

chwpM(0)(ρ
∨/m)

= 2ϕiu+1/2(λ)

the last limit following from the Weyl character formula and Lemma 26.
�

Theorems 8.3 and 6.6 of [6] imply in particular the following proposition.

Proposition 28. For u ∈ R,

E
(
eiu〈B(t),α∨1 〉

)
= E

(
eiu〈A(t),α∨1 〉

ϕiu+1/2(A(t))

ϕ1/2(A(t))

)
.

We have now all the ingredients needed to prove that the third convergence of
the diagram is valid, i.e. to prove Theorem 1.

Theorem 29. The sequence of processes

{Iξ0,p(∞)
α0 . . . I

ξp,p(∞)
αp A(t), t ≥ 0}, p ≥ 0,

converges when p goes to infinity, in a sense of finite dimensional distributions,
towards the space-time Brownian motion {B(t), t ≥ 0}, in the quotient space h∗R
mod δ.

Proof. We first prove the convergence of Iξ0,p(∞)
α0 . . . I

ξp,p(∞)
αp A(t) for a fixed t ≥ 0.

Let t ≥ 0. For u ∈ R, m, p ≥ 1, the Fourier transform

E
(
eiu〈I

ξ0,p(∞)
α0

...I
ξp,p(∞)
αp A(t),α∨1 〉

)
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is equal to

lim
m→∞

E
(
ei

u
m
〈I
ξm0,p(∞)

α0
...I

ξmp,p(∞)
αp Πm+ bmtc,α∨1 〉

)
,

which is, by Proposition 20, also equal to

lim
m→∞

E
(
eiu〈Π

mbmtc/m,α∨1 〉|ξmp+1(∞) = 0
)
.

We write

E
(
eiu〈Π

mbmtc/m,α∨1 〉|ξmp+1(∞) = 0
)

= S1(u,m, p) + S2(m, p)

where

S1(u,m, p) = E
(
eiu〈

1
m

Πmbmtc,α∨1 〉1{ξmp+1bmtc=0}

)
/P
(
ξmp+1(∞) = 0

)
= E

chwpΠm+ bmtc
( 1
m(iuα∨1 + ρ∨))

chΠm+ bmtc(
1
mρ
∨)

 chM(0)(ρ
∨/m)

chwpM(0)(ρ
∨/m)

and

S2(m, p) = E
(
eiu〈

1
m

Πmbmtc,α∨1 〉(1{ξmp+1(∞)=0} − 1{ξmp+1bmtc=0})
)
/P
(
ξmp+1(∞) = 0

)
.

The convergence of 1
mΠm

+bmtc towards A(t) when m goes to infinity, and Lemma
24 imply that

lim
m→∞

S1(u,m, p) = E (ψp(u,A(t)))

where for λ ∈ Caff,

ψp(u, λ) =
eiu〈λ,α

∨
1 〉

2ϕ1/2(λ)
E
(
e−iu〈Lp,α

∨
1 〉1ξ·,p∈Γ(λ)

)
.

Lemmas 25 and Propositions 27 and 28 imply that

lim
p→∞

E (ψp(u,A(t))) = E
(
eiu〈B(t),α∨1 〉

)
As {ξmp+1(∞) = 0} ⊂ {ξmp+1bmtc = 0} one has,

|S2(m, p)| ≤
P(ξmp+1bmtc = 0)

P(ξmp+1(∞) = 0)
− 1 = S1(0,m, p)− 1

which implies that limp→∞ limm→∞ S2(m, p) = 0 and achieves the proof of the
convergence in law of Iξ0,p(∞)

α0 . . . I
ξp,p(∞)
αp A(t) towards B(t) when p goes to infinity.

Let now t0, . . . , tn be a sequence of ordered real numbers such that 0 = t0 <
t1 < · · · < tn, and u1, . . . , un ∈ R. For m, p ≥ 1, the Fourier transform

E
(
ei

∑n
k=1 uk

(
〈I
ξ0,p(∞)
α0

...I
ξp,p(∞)
αp A(tk),α∨1 〉−〈I

ξ0,p(∞)
α0

...I
ξp,p(∞)
αp A(tk−1),α∨1 〉

))
(26)

is equal to

lim
m→∞

E
(
ei

∑n
k=1

uk
m
〈I
ξm0,p(∞)

α0
...I

ξmp,p(∞)
αp Π+bmtkc−I

ξm0,p(∞)

α0
...I

ξmp,p(∞)
αp Π+bmtk−1c,α∨1 〉

)
.

We obtain as previously, introducing this time the event {ξmp+1bmt1c = 0} and
using the independence of the increments, that the Fourier transform (26) con-
verges towards

E
(
ei

∑n
k=1 uk〈B(tk)−B(tk−1),α∨1 〉

)
,
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when p goes to infinity, which achieves the proof.
�
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