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Abstract
Off-shore wind energy in Europe plays a key role in the transition to renewable energy, and its
usage is expected to increase in the next few decades. According to the working regimes of a wind
turbine, wind energy production can be disrupted by extreme atmospheric events related to low
wind speed below the cut-in wind speed and high wind speed above the cut-out wind speed. The
purpose of this work is to estimate the behavior of extreme winds on the European panorama, over
the period 1950–2020, in order to investigate the large-scale weather regimes related to them and
their impact on off-shore wind energy availability. We detected significant changes in the frequency
of high and low extreme wind events, proving that climate change or long-term internal climate
variability have already affected the off-shore wind power output. Moreover, the analysis of
weather regimes showed that high and low extreme wind events can occur simultaneously over
Europe. Our results suggest the necessity to implement efficient European energy management
policies, to minimize the deficit in wind power supply.

1. Introduction

Climate change is one of the most urgent challenges
that humankind confront nowadays. As reported by
the Intergovernmental Panel of Climate Change Syn-
thesis Report [34], adaptation and mitigation are the
main guidelines to follow in order to reduce andman-
age the impacts of climate change. Substantial cuts in
greenhouse gas emissions are necessary to reduce cli-
mate risks in the future (XXI century and beyond)
as they can contribute to climate-resilient pathways
for sustainable development [34]. To this purpose,
the European Union (EU) has planned ambitious
strategies: to cut emissions by at least 55% with
respect to the values in 1990 by 2030 (and 80% by
2050) and to become, by 2050, the first ‘net-zero’ car-
bon continent, i.e. able to compensate all emissions
of CO2 [18], in the world. In this context, renewable

energy (RE) plays a key role: on one hand their devel-
opment and extensive usage can slow down climate
change effects and help to obtain the ‘net-zero’ car-
bon goal, on the other hand substantial local changes
in atmospheric conditions could modify, for better
or worse, their efficiency [10, 35, 39, 40], and their
demand [36].

Due to its increasing price competitiveness and
the development of high-efficiency technologies,
wind energy is playing, and it will playmore andmore
in the future, a significant role in the transition to a
RE system [46]. To gain the climate targets, the EU
is planning to scale up the off-shore wind industry
from the 12GWcapacity currently installed to 60GW
by 2030, and to 300 GW by 2050 [17]. Nevertheless,
wind energy is one of the most variable and weather-
dependent RE, because of its natural dependence on
the wind speed, which can vary at different time
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scales, ranging from small-scale turbulence to sea-
sonal oscillations and up to long-term climate vari-
ability. Moreover, wind energy can be heavily affected
by extreme events, since under these conditionswinds
can easily reach such speeds to force the turbines
to be parked or idled, or, conversely, not be strong
enough to move them, thus interrupting the energy
production.

Indeed, the potential wind power production7

(Wpot), according to the working regimes of a wind
turbine [30], depends on the wind speedV by the fol-
lowing relation:

Wpot =


0 if V< Vi
V3−V3

i

V3
R−V3

i
if Vi ⩽ V< VR

1 if VR ⩽ V< Vo

0 otherwise

(1)

whereVR is the rated speed (13m s−1),Vi (3.5m s−1)
and Vo (25 m s−1) are the cut-in and cut-off speed
respectively8 [29].

When the cut-off threshold is overcome, the tur-
bines are stopped for security reasons (storm control),
and the loss in the wind power production can be
high, ranging from the 50%of the installed capacity in
half an hour to 70% in 1 h [11]. Similarly, the turbines
do not work when the wind speed is lower than the
cut-in threshold, with consequent losses in theWpot.

In Europe, high-speed winds are mainly associ-
ated with the passage of the so called extra-tropical or
mid-latitude cyclones [23], especially in autumn and
winter (supplementary, Extra-tropycal cyclones).

Changes in the intensity or frequency of the cyc-
lones (anticyclones) can cause changes in the occur-
rence of intense storms or low-speed winds events,
with possible impacts on the electric power gen-
eration. Therefore, it is of strong interest having
information about their features and tracks, as well
as knowing which weather regimes generate them
(supplementary,Weather regimes). While Grams et al
[26] have already analyzed the importance of weather
regimes in the average wind energy production by
assuming stationarity in weather regimes over the
historical period (1979–2015), here we extend this
viewpoint by specifically looking at the relationship
between extreme high/low-speed wind conditions
and weather regimes and by releasing the assump-
tion of weather regime stationary. Indeed, Brönni-
man et al [4] and Corti et al [8] evidenced that sig-
nificant trends in extreme winds frequency in the
historical period exist, as well as that natural atmo-
spheric circulation regimes have already changed due

7 Dimensionless indicator of the potential power production at
each location and time.
8 We chose these values because they are the most common, but we
specify that they are not universal and they correspond to a specific
wind turbine technology.

to anthropogenic forcing. This motivates the present
study.

Identifying which weather regimes are associated
with extreme winds9 is of prominent importance in
order to have a complete view of the distribution of
the European wind energy resources. In fact, if the
same weather regime affects a large area, we could
have simultaneous multiple outages in the turbines
operation with consequent shortages in the wind
energy supply. In a future scenario with only RE,
this might even lead to partial or total blackouts,
with heavy impacts especially on cities and urban
areas. Contrariwise, if the weather regimes that cause
extreme wind events differ from area to area, with the
perspective of European energymanagement policies,
which provide investments for the construction of
infrastructures aimed to distribution, storage and
energy transmission, it would be possible to redirect
the energy to the affected zones and thus avoid tem-
porary blackouts [25, 32].

In light of these considerations, the general pur-
pose of this work is to estimate the behavior of
extreme winds on the European panorama, over
the period 1950–2020, in order to investigate the
large-scale weather regimes related to them and their
impact on off-shore wind energy availability.

The paper is organized as follows. In section 2, we
present the data which we will use in our forthcom-
ing analysis. In section 3, we investigate the presence
of significant trends in the occurrence of high/low-
speed wind events, over selected periods and regions,
by means of a non-parametric trend test. Finally, in
section 4, we investigate the weather regimes at which
the high/low-speed wind events occur, in order to
detect changes in their pattern, before drawing our
conclusions in section 5.

2. Data andmethods

The more recent climate reanalysis released by the
European Centre for Medium-Range Weather Fore-
casts is ERA5, which provides data, from 1950 to
present, over different timescales, describing many
atmospheric, land-surface and oceans parameters
together with estimates of uncertainty. These data-
sets are publicly available at the Copernicus Climate
Data Centre [7] on regular latitude-longitude grid, at
0.25◦ × 0.25◦ resolution10.

For our analysis we used two subsets of ERA5 [27],
ERA5 hourly data on single levels from 1950 to 1978
[15] and ERA5 hourly data on single levels from 1979
to present [16], covering a period from 1950 to 2020
and selecting 6-hourly values, at 00:00, 06:00, 12:00
and 18:00. In particular, we selected three variables:

9 See section 2 for the definition of ‘extreme winds’.
10 This resolution corresponds approximately to 27.75 km2.
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Figure 1. (a) 1950–2020 average 100 m horizontal wind-speed (m s−1). (b) Total number of events# above the 100 m horizontal
wind-speed cut-off threshold (25 m s−1) over the period 1950–2020. In order to distinguish more clearly the zones with the
highest number of events, we limited the range of values to 500. All the values⩾500 are mapped with the last color of the
colorbar. The black boxes indicate the areas specifically considered in this study: British Islands (12◦ W−3◦ E, 49◦ N−62◦ N),
North Sea (3◦ E−13◦ E, 51◦ N−59◦ N), Bay of Biscay (10◦ W−1◦ W, 43◦ N−49◦ N), Central Mediterranean (3◦ E−12◦ E, 37◦

N−44.5◦ N),Balkan Peninsula (18◦ E−26◦ E, 35◦ N−42◦ N).

• 100m u-component of wind, u ([m s−1]): eastward
horizontal component of wind speed, measured at
100 m above the Earth surface;

• 100 m v-component of wind, v ([m s−1]): north-
ward horizontal component of wind speed, meas-
ured at 100 m above the Earth surface;

• geopotential, z ([m2 s−2]), at 500 hPa: the gravita-
tional potential energy of a unit mass, at a partic-
ular location at the surface of the Earth, relative to
mean sea level;

and we extracted a sub-region corresponding to the
European area:−12◦ W−30◦ E, 32◦ N−70◦ N.

To obtain the horizontal wind speed at 100 m11,
V, we combined the u-component of wind with the
v-component:

V=
√

u2 + v2. (2)

To calculate the geopotential height, zh, instead, we
simply divided z by the Earth’s gravitational accelera-
tion (9.806 65 m s−2).

In figure 1, panel (a), it is represented the mean
of the horizontal wind speed at 100m over the period
1950–2020. As shown by themap, the strongest winds
blow off-shore, with a peak of 11 m s−1 off the British
Islands.

In this paper, we will refer to ‘extreme (wind)
events’ as the wind events with the wind speed in
the non-operating regime, according to (1). We will
call ‘high wind events’ the wind events with the wind
speed over the cut-off threshold and ‘lowwind events’

11 We use the wind speed at 100 m as reference wind speed for the
off-shore turbines, which have a typical hub height ranging from
80 m to 120 m.

those with the wind speed under the cut-in threshold.
Moreover, we will consider as event every time-step
with the wind speed that satisfies one of these two lat-
ter constraints.

To have a clearer view of which zones are affected
by high wind events, we first masked the 100 m hori-
zontal wind speed, keeping only the values higher
than the cut-off speed. We then counted, grid point
by grid point, the number of events during the period
1950–2020 that satisfy this latter constraint (figure 1,
panel (b)). As expected, we found that this condition
occurs mainly off-shore, and we focused especially on
five regions, where high winds are observed more fre-
quently and where most of the farms are installed:
British Islands, North Sea, Balkan Peninsula, and the
areas off the south of France andnorth of Spain. These
regions are particularly favorable to the installation of
offshore wind farms because they experience quasi-
constant wind patterns. Specifically, the Bay of Bis-
cay, the British Islands and the North Sea lie on the
Atlantic storm track [13]; Central Mediterranean and
the Balkan Peninsula are affected by the Mistral and
Etesian wind patterns, respectively [43]. During the
summer months (June–July–August) no high wind
events are detected, while the peak occurs in winter
(December–January–February, DJF).

3. Trends in wind events

Focusing on the regions indicated in figure 1, we
investigated the existence of significant long-term
changes in the occurrence of extreme events during
the period 1950–2020. With this aim, we analyzed
their trends, separately region by region, by means
of the Mann–Kendall test at 95% level of confidence
[37]. We computed the test not only considering the

3
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Figure 2. Average change (red: increase, blue: decrease) in the number of high wind events per decade#/ten years over the period
1950–2020, during the whole year (a)–(c) and for the winter months (DJF, (d)–(f)), for British Islands, North Sea and Bay of
Biscay. Each map depicts only the grid points that exhibit significant changes.

Figure 3. Average change (red: increase, blue: decrease) in the number of low wind events per decade#/ten years over the period
1950–2020, during the whole year (a)–(c) and for the summer months (JJA, (d)–(f)), for British Islands, North Sea and Bay of
Biscay. Each map depicts only the grid points that exhibit significant changes.

number of events during the whole year, but also
apiece for summer and winter, during which most of
the events occur respectively for the low and the high
wind events.

Figure 2 shows the average change, per dec-
ade, in the number of high wind events, over the
period 1950–2020, during the whole year and for
the winter months, for British Islands, North Sea,
Bay of Biscay. In large part of these regions a sig-
nificant increasing trend is detected throughout the
years and for the DJF period (figure 2), as well as
in very small areas of Central Mediterranean. In
the Balkan Peninsula (not shown), instead, in both
cases, where detected, the trends are significantly
decreasing.

Figure 3 shows the average change, per decade, in
the number of lowwind events, over the period 1950–
2020, during the whole year and for the summer
months, for British Islands, North Sea, Bay of Biscay.
For these latter regions it is observed a general average
decrease in the number of these events, with a signi-
ficant negative trend particularly strong in the num-
ber of events during the whole year. Contrariwise,

in Central Mediterranean and Balkan Peninsula, the
number of low wind events has markedly increased,
especially considering its trend during the whole year,
as shown in figure 4.

We want to stress that reanalysis is not always the
best tool for evaluating wind speed long-term vari-
ability, since there are still issues about its ability to
reproduce wind-speed trends [19, 42] and different
reanalysis can even disagree with each other [2, 47].
In fact, the reanalysis products could be affected by
errors in the observations and in the assimilation
procedure. Therefore, to have more robust results,
it would be recommended to use a multi-reanalysis
approach. Nevertheless, Faranda et al [21] stud-
ied trends in atmospheric circulation using differ-
ent reanalysis (ERA5, NCEP) and gridded interpol-
ated data (EOBS) finding that the qualitative res-
ults of large-scale circulation trends analysis remain
largely unaffected. Moreover, three recent works have
recently appeared pointing to the possibility of attrib-
uting different events to climate change on the basis
of reanalysis only: Faranda et al [20], Cadiou et al [5],
Ginesta et al [24].
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Figure 4. Same as in figure 3, but for Central Mediterranean and Balkan Peninsula. Each map depicts only the grid points that
exhibit significant changes.

Table 1. Number of affected grid points with the corresponding spatial area (km2) above the 95th percentile (high winds) and above the
99th percentile (low winds) for all the areas considered in this study.

Region High winds Low winds

British Islands 419 11627 1104 30636
North Sea 207 5744 668 18537
Bay of Biscay 244 6771 505 14014
Central Mediterranean 85 2359 778 21590
Balkan Peninsula 47 1304 671 18620

4. Weather regimes analysis for high/low
wind events

Since we want to investigate the extreme events that
may have, in each region, themost widespread impact
on the off-shore wind energy production, we restric-
ted the analysis to the events that involve a high num-
ber of grid points. To do so, starting from the data-
sets with only the 6-hourly wind speed values over the
cut-off threshold and under the cut-in threshold, we
selected, separately for each zone, the time-steps with
the number of affected grid points respectively above
the 95th percentile and the 99th percentile (table 1).

As expected, the British Islands is the region
with the most widespread high winds (457 time-steps
identified), followed at a distance by North Sea (97)
and Bay of Biscay (85).

In order to identify the different weather regimes
associated with the occurrence of extreme wind
events and to detect changes in their pattern, we took
some preliminary steps.

Firstly, for each region, we computed the anom-
alies in the geopotential height12, for the high and
low wind events, over the time-steps selected follow-
ing the procedure mentioned above. To do this, for
each time-step we subtracted to ϕ the value of ϕ at
the same instant averaged over the month for all the

12 Going forward, the geopotential height will be referred to as ϕ.

period 1950–2020. For example, to the value of the
geopotential height on the 01 February 1953 at 06:00
we subtracted the mean of the geopotential height
values on every day of February at 6 a.m. from 1950
to 2020. Then, we grouped the selected time-steps in
two sub-periods, past period (1 January 1950–30 June
1985) and present period (1 July 1985–31 December
2020), and we computed the anomalies in the geopo-
tential height averaged over these two time-windows,
together with the difference between present and past
average anomalies. To test the significance of the dif-
ferences we applied the bootstrapmethod, at the 95th
level of confidence. Moreover, to better understand
the nature of these differences, we analyzed the North
Atlantic Oscillation (NAO) index distributions for
both periods, by means of a two-sided Cramér–von
Mises test at the 95% level of confidence [9] (supple-
mentary,Weather regimes).

As shown in figure 5, highwinds inBritish Islands,
North Sea and Bay of Biscay occur during the NAO+
phases. In the second period, the positiveϕ anomalies
become more intense and widespread over Central-
Southern Europe, and the gradient between pos-
itive and negative anomalies is accentuated, lead-
ing to a higher frequency of these extreme events
(table 2) over the zones considered and to stronger
winds over the British Islands and North Sea (supple-
mentary, figure 1). For these two regions, a signific-
ant change in the NAO distribution between present
and past period has been found, with a weak shift

5
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Figure 5. High winds. Composites of the geopotential height anomalies over the time-steps with the number of affected grid
points above the 95th percentile for the period 1 January 1950–30 June 1985 (a), (d), (g), (j), (m) and for the period 1 July
1985–31 December 2020 (b), (e), (h), (k), (n); difference between the climatology of present and past anomalies (c), (f), (i), (l),
(o). British Islands (a)–(c), North Sea (d)–(f), Bay of Biscay (g)–(i), Central Mediterranean (j)–(l), Balkan Peninsula (m)–(o). In
the third column, shadings indicate significant changes.

Table 2. Number of events with the number of affected grid points above the 95th percentile (high winds, left column of each side) and
above the 99th percentile (low winds, right column of each side) for the past period (1 January 1950–30 June 1985) and for the present
(1 July 1985–31 December 2020) for all the areas considered in this study.

Region Past period Present period

British Islands 176 552 281 382
North Sea 38 493 59 369
Bay of Biscay 29 585 56 389
Central Mediterranean 32 531 31 513
Balkan Peninsula 9 477 10 561

towards more positive (neutral) NAO phases in the
present period for the British Islands (North Sea)
(supplementary, figures 3 and 4). Instead, an Atlantic

ridge pattern is found for the Central Mediterranean
(figure 5) and, in the first period, for Balkan Peninsula
(figure 5), for which then it shifts to a Scandinavian

6
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Figure 6. Low winds. Composites of the geopotential height anomalies over the time-steps with the number of affected grid
points above the 99th percentile for the period 1 January 1950–30 June 1985 (a), (d), (g), (j), (m) and for the period 1 July
1985–31 December 2020 (b), (e), (h), (k), (n); difference between the climatology of present and past anomalies (c), (f), (i), (l),
(o). British Islands (a)–(c), North Sea (d)–(f), Bay of Biscay (g)–(i), Central Mediterranean (j)–(l), Balkan Peninsula (m)–(o). In
the third column, shadings indicate significant changes.

blocking, with the center of the low pressure system
remaining located over the Balkan Peninsula. Accord-
ing to this behavior, figure 7 (supplementary) displays
a significant shift from positive to neutral NAO val-
ues in the present period. In both cases, contrary to
what happened for the areas in North Europe (British
Islands, North Sea and Bay of Biscay), there are sub-
stantially no changes in the occurrence of high winds.
However, there is a slight decrease in their intensity in
Central Mediterranean (supplementary, figure 1) and
changes, both positive and negative, in Balkan Penin-
sula (supplementary, figure 1).

Regarding the low winds, in each period and for
each region, their occurrence is related to a blocking

pattern with the high pressure zone over the affected
area (figure 6), and no significant changes in the
NAO distribution between present and past period
have been found (figures 8–12, supplementary). In
all cases, in the second period the intensity of the
positive anomalies increases, leading to stronger pres-
sure gradients and to higher anticyclonic (clockwise)
winds, causing a significant reduction in the num-
ber of low wind events (table 2). In Balkan Penin-
sula, on the contrary, we detected a slight increase in
the average number of days with low winds: indeed,
by looking at the associated ϕ patterns (figure 6),
rather than changes in the pressure gradients we
observe an extension of the high pressure area over

7
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the Mediterranean. This is consistent with the results
presented in [22], where a strengthening in the anti-
cyclones intensity is found over this region.

To account the possible influence of the low-
frequency natural variability, the El Niño-Southern
Oscillation (ENSO) and the Atlantic Multi-decadal
Oscillation (AMO) (supplementary, ENSO and
AMO) distributions have been studied [20], as done
for the NAO index. Regarding the high winds, we
detected significant changes between past and present
period in the ENSO distribution for British Islands
(shift to neutral values), Bay of Biscay and Central
Mediterranean (negative shift), and in the AMO dis-
tribution for Bay of Biscay, Central Mediterranean
(shift to lower values) and Balkan Peninsula (higher
values). Therefore, for these mentioned regions, we
cannot reject the hypothesis that ENSO and AMO
variability have influenced the behavior of the high
winds.

For the lowwinds, we found significant changes in
the ENSO and AMO distribution for all the regions,
with weak positive shift in the mean values in the
present period and/or marked changes in the shape
of the distributions between the two periods. This
implies that changes in the low wind speed behavior
can not be linked only to climate change but they are
also related to the internal climate variability, which
plays a relevant role.

5. Concluding remarks

In this work, we have estimated the behavior of
extreme winds on the European panorama, over the
period 1950–2020, and related them to the large-scale
weather regimes, drawing conclusions on their poten-
tial impacts on off-shore wind energy availability. In
particular, we focused on five regions: British Islands,
North Sea, Bay of Biscay, Central Mediterranean and
Balkan Peninsula. By means of the Mann–Kendall
test, we have detected the presence of significant
trends in the occurrence of wind events with the wind
speed above the cut-out threshold and below the cut-
in threshold, during the period 1950–2020. In Brit-
ish Islands, North Sea and Bay of Biscay a significant
increasing trend has been observed for high winds,
and a decreasing trend for low winds. Contrariwise,
in Central Mediterranean and Balkan Peninsula, the
number of low wind events has increased. Finally,
we have identified the weather regimes at which the
extreme wind events occur, analyzing the changes in
the average geopotential height anomalies and in the
average 100 m horizontal wind speed between the
past period (1 January 1950–30 June 1985) and the
present period (1 July 1985–31 December 2020). The
low winds events are related to blocking patterns with
the high pressure zone centered over the affected area.
This implies that extreme events with the wind speed
under the cut-in threshold can not occur, on aver-
age, at the same time at other locations. Conversely,

we have found that high winds for British Islands,
North Sea and Bay of Biscay were related to the same
weather regime, namely the NAO+ phase. This fact
could lead, in the future, to widespread shortages in
the wind energy supply, possibly leading to partial or
total blackouts, with heavy impacts especially on cit-
ies and urban areas, in a scenario where energy is pro-
duced mostly by renewable sources. We remark that,
although the frequency of extreme events related to
high winds is relatively modest compared to the low
wind ones, they could lead to heavier impacts. In fact,
high winds not only prevent the RE infrastructures
fromoperating, because of the stormcontrol, but they
may damage and sometimes even destroy the wind
turbines, making maintenance interventions neces-
sary and so extending the downtime.

In determining the behavior of low-winds events,
only ENSO and AMO played a significant role, while
for high winds in British Islands, North Sea and
Balkan Peninsula we found a significant link also to
NAO phases.

Our analyses, focused on historical climate data
for the period 1950–2020, have shown that cli-
mate change and internal climate variability inter-
vene together in affectingwind power availability over
Europe during extreme weather events. To perform
the analyses, as underlined at the end of section 3,
we chose to only use ERA5 reanalysis data-sets, and
not a multi-reanalysis approach. Furthermore, we
did not make use of models due to their limitations
in providing a coherent picture of low-frequency
modes of variability and their interactions [6], as
well as inconsistencies betweennumericalmodels and
reanalysis when it comes to temporal variations in
the atmospheric states—which is at the basis of our
analysis [38].

In addition, we point out that in this study we
have considered every grid point as a potential loc-
ation for the installation of wind turbines. However,
this is only possible in areas where the sea depth is less
than 1 km. Therefore, to increase the relevance of our
results, it would be beneficial to only consider the grid
points with an average sea depth of less than 1000 m.

Anatural continuation of this studywill be to look
at future climate scenarios. Various studies suggest
that climate change will not considerably affect the
average near-surface wind speed [28, 41] and there-
fore the average energy production. However, our
analysis could motivate further research by specific-
ally looking at extreme low/high winds that could not
necessarily follow the behavior of average wind speed.
In this context, it will be appropriate to use the new
convection permitting simulations available at high
resolutions [1]. A natural strategy to ensure robust-
ness of the results would be the use of ensembles cli-
mate simulations corresponding to different shared
socio-economic pathways.

The results of our work are consistent with the
previous literature that analyzed the influence of the
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weather patterns, and consequently of the wind con-
ditions, on the wind power generation [3, 14, 45,
48]. In particular, our paper has taken a clue from
the work of Grams et al [26]. In their paper, Grams
et al underline the lack of well-deployed installations
and of an efficient electric European net that could
handle electricity deficit periods. In addition, they
stress the necessity to plan the installation of new
capacity basing on the meteorological understand-
ing. Combining these considerations with the results
of our study, we can state that the planning of new
wind farms should take into account also the beha-
vior of the extreme wind events, which can represent
a threat to an efficient operation of the installations.
We finally remind that, to ensure that meaningful res-
ults are obtained, it is fundamental the use of suit-
able data-sets and an adequate time period to capture
detectable trends.
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