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Abstract

On a complex symplectic manifold, we prove a finiteness result for the global
sections of solutions of holonomic DQ-modules in two cases: (a) by assuming that
there exists a Poisson compactification (b) in the algebraic case. This extends
our previous result of [KS12] in which the symplectic manifold was compact. The
main tool is a finiteness theorem for R-constructible sheaves on a real analytic
manifold in a non proper situation.
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1 Introduction and statement of the results

Consider a complex Poisson manifold X of complex dimension dX endowed with a
DQ-algebroid AX . Recall that AX is a C[[~]]-algebroid locally isomorphic to a star
algebra (OX [[~]], ⋆) to which the Poisson structure is associated. Denote by A loc

X the
localization of AX with respect to ~, a C((~))-algebroid. For short, we set

C
~ := C[[~]], C

~,loc := C((~)).

Hence A loc
X ≃ C~,loc⊗

C~ AX . The algebroids AX and A loc
X are right and left Noetherian

(in particular coherent) and if M is a (say left) coherent A loc
X -module, then its support

is a closed complex analytic subvariety of X and it follows from Gabber’s theorem
that it is co-isotropic. In the extreme case where X is symplectic and the support is
Lagrangian, one says that M is holonomic.

Recall the following definitions (see [KS12, Def. 2.3.14, 2.3.16 and 2.7.2]).

(a) A coherent AX -submodule M0 of a coherent A loc
X -module M is called an AX-lattice

of M if M0 generates M .

(b) A coherent A loc
X -module M is good if, for any relatively compact open subset U

of X , there exists an (AX |U)-lattice of M |U .

(c) One denotes by Db
gd(A

loc
X ) the full subcategory of Db

coh(A
loc
X ) consisting of objects

with good cohomology.

(d) In the algebraic case (see below) a coherent A loc
X -module M is called algebraically

good if there exists an AX-lattice of M . One still denotes by Db
gd(A

loc
X ) the full

subcategory of Db
coh(A

loc
X ) consisting of objects with algebraically good cohomology.

Let Y ⊂ X . We shall consider the hypothesis

Y is open, relatively compact, subanalytic in X and the Poisson structure
on X is symplectic on Y .

(1.1)

Example 1.1. Denote by Xns the closed complex subvariety of X consisting of points
where the Poisson bracket is not symplectic and set Y = X \ Xns. Hence Y is an
open subanalytic subset of X and is symplectic. If X is compact, then Y satisfies
hypothesis (1.1).

In this paper we shall prove the following theorem which extends [KS12, Th. 7.2.3]
in which X was symplectic, that is, Y = X .
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Theorem 1.2. Assume that Y satisfies hypothesis (1.1). Let M and L belong to

Db
gd(A

loc
X ) and assume that both M |Y and L |Y are holonomic. Then the two com-

plexes RHom
A loc

Y
(M |Y ,L |Y ) and RΓc(Y ; RHom

A loc

Y
(L |Y ,M |Y )) [dX] have finite di-

mensional cohomology over C
~,loc and are dual to each other.

We shall also obtain a similar conclusion under rather different hypotheses, namely
that X = Y is symplectic and all data are algebraic (see [KS12, § 2.7]). Let X be a
smooth algebraic variety and let AX be a DQ-algebroid on X . We denote by Xan the
associated complex analytic manifold and AXan

the associated DQ-algebroid on Xan

(see Lemma 5.1). For a coherent A loc
X -module M we denote by Man its image by the

natural functor Db
coh(A

loc
X ) −→ Db

coh(A
loc
Xan

).

Theorem 1.3. . Let X be a quasi-compact separated smooth symplectic algebraic vari-

ety over C endowed with the Zariski topology. Let M and L belong to Db
gd(A

loc
X ). Then

the two complexes RHom
A loc

Xan

(Man,Lan) and RΓc(Xan; RHom
A loc

Xan

(Lan,Man)) [dX] have

finite dimensional cohomology over C~,loc and are dual to each other.

The main tool in the proof of both theorems is Theorem 2.2 below which gives
a finiteness criterion for R-constructible sheaves on a real analytic manifold in a non
proper situation.

This Note is motivated by the paper [GJS19] of Sam Gunningham, David Jordan and
Pavel Safronov on Skein algebras, whose main theorem is based over such a finiteness
result (see loc. cit. § 3). The proof of these authors uses a kind of Nakayama theorem
in the case where M and L are simple modules over smooth Lagrangian varieties.

2 Finiteness results for constructible sheaves

In this paper, k is a Noetherian commutative ring of finite global homological dimension.
We denote by Db

f(k) the full triangulated subcategory of Db(k) consisting of objects
with finitely generated cohomology. We denote by D the duality functor RHom( • ,k)
and we say that two objects A and B of Db

f(k) are dual to each other if DA ≃ B, which
is equivalent to DB ≃ A.

For a sheaf of rings R, one denotes by D(R) the derived category of left R-modules.
We shall also encounter the full triangulated subcategory D+(R) or Db(R) of complexes
whose cohomology is bounded from below or is bounded.

For a real analytic manifold M , one denotes by Db(kM) the bounded derived cat-
egory of sheaves of k-modules on M . We shall use the six Grothendieck operations.
In particular, we denote by ωM the dualizing complex. We also use the notations for
F ∈ Db(kM)

D′
MF := RHom (F,kM), DMF := RHom (F, ωM).

Recall that an object F of Db(kM) is weakly R-constructible if condition (i) below is
satisfied. If moreover condition (ii) is satisfied, then one says that F is R-constructible.

(i) there exists a subanalytic stratification M =
⊔

a∈A Ma such that Hj(F )|Ma is
locally constant for all j ∈ Z and all a ∈ A

3



(ii) Hj(F )x is finitely generated for all x ∈M and all j ∈ Z.

One denotes by Db
Rc(kM) the full subcategory of Db(kM) consisting of R-constructible

objects.
If X is a complex analytic manifold, one defines similarly the notions of (weakly)

C-constructible sheaf, replacing “subanalytic” with “complex analytic” and one denotes
by Db

Cc(kX) the full subcategory of Db(kX) consisting of C-constructible objects.
We shall use the following classical result (see [KS90, Prop. 8.4.8 and Exe. VIII.3]).

Proposition 2.1. Let F ∈ Db
Rc(kM) and assume that F has compact support. Then

both objects RΓ(M ;F ) and RΓ(M ; DMF ) belong to Db
f(k) and are dual to each other.

For F ∈ Db(kM), one denotes by SS(F ) its microsupport [KS90, Def. 5.1.2], a closed
R+-conic (i.e., invariant by the R+-action on T ∗M) subset of T ∗M . Recall that this
set is involutive (one also says co-isotropic), see loc. cit. Def. 6.5.1.

Theorem 2.2. Let j : U →֒ M be the embedding of an open subanalytic subset U of M
and let F ∈ Db

Rc(kU). Assume that SS(F ) is contained in a closed subanalytic R
+-conic

Lagrangian subset Λ of T ∗U which is subanalytic in T ∗M . Then Rj∗F and j!F belong

to Db
Rc(kM ).

Proof. (i) Let us treat first j!F . The set Λ is a locally closed subanalytic subset of T ∗M
and is isotropic. By [KS90, Cor. 8.3.22], there exists a µ-stratification M =

⊔
a∈A Ma

such that Λ ⊂
⊔

a∈A T ∗
Ma

M .
Set Ua = U ∩Ma. Then U =

⊔
a∈A Ua is a µ-stratification and one can apply loc.

cit. Prop. 8.4.1. Hence, for each a ∈ A, F |Ua is locally constant of finite rank. Hence
(j!F )|Ua as well as (j!F )M\U ≃ 0 is locally constant of finite rank. Hence j!F ∈ Db

Rc(kM).

(ii) Set G = j!F . Then G ∈ Db
Rc(kM) by (i) and so does Rj∗F ≃ RHom (kU , G)

(apply [KS90, Prop. 8.4.10]).

Remark 2.3. One has SS(DMF ) = SS(F )a where ( • )a is the antipodal map. Hence
DMF satisfies the same hypotheses as F .

Corollary 2.4. In the preceding situation, assume moreover that U is relatively compact

in M . Then RΓ(U ;F ) and RΓc(U ; DUF ) belong to Db
f(k) and are dual to each other.

Proof. One has RΓ(U ;F ) ≃ RΓ(M ; Rj∗F ) and RΓc(U ; DUF ) ≃ RΓ(M ; DMRj∗F ).
Since Rj∗F is R-constructible and has compact support, the result follows from Propo-
sition 2.1.

For a complex analytic manifold X (that we identify with the real underlying man-
ifold if necessary), one denotes by Db

Cc(kX) the full triangulated subcategory of Db(kX)
consisting of C-constructible sheaves.

In this paper, a smooth algebraic variety X means a quasi-compact smooth algebraic
variety over C endowed with the Zariski topology. We denote by Xan the complex
analytic manifold underlying X . If X is smooth algebraic variety, we keep the notation
Db

Cc(kX) to denote the category of algebraically constructible sheaves, that is, object
of Db

Cc(kXan
) locally constant on an algebraic stratifications. Hence, for an algebraic

variety X , one shall not confuse Db
Cc(kX) and Db

Cc(kXan
), although Db

Cc(kX) is a full
subcategory of Db

Cc(kXan
).
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Corollary 2.5. Let X be a smooth algebraic variety and let F ∈ Db
Cc(kX). Then

RΓ(Xan;F ) and RΓc(Xan; DXan
F ) have finite dimensional cohomology over k and are

dual to each other.

Proof. Let Z be a smooth algebraic compactification of X with X open in Z. By the
hypothesis, Λ is a closed algebraic subvariety of T ∗X . Hence, its closure in T ∗Z is a
closed algebraic subvariety of T ∗Z. Therefore Λ is subanalytic in T ∗Zan.

Then the result follows from Corollary 2.4 with M = Zan and U = Xan.

3 Reminders on DQ-modules, after [KS12]

3.1 Cohomologically complete modules

In this subsection,

X denotes a topological space and R is a sheaf of Z[~]-algebras on X with
no ~-torsion.

(3.1)

Let M be an R-module. (Hence, a ZX [~]-module.) One sets

R
loc := ZX [~, ~

−1]⊗
ZX [~] R,

M
loc := R

loc ⊗
R

M ≃ ZX [~, ~
−1]⊗

ZX [~] M ,

gr~(R) := R/~R,

gr~(M ) := gr~(R)
L
⊗

R
M ≃ ZX

L
⊗

ZX [~]
M .

Definition 3.1 ([KS12, Def. 1.5.5]). One says that an object M of D(R) is cohomo-
logically complete if it belongs to D(R loc)⊥r, that is, Hom D(R)(N ,M ) ≃ 0 for any

N ∈ D(R loc).

Proposition 3.2 ([KS12, Prop. 1.5.6]). Let M ∈ D(R). Then the conditions below

are equivalent.

(a) M is cohomologically complete,

(b) RHom
R
(R loc,M ) ≃ 0,

(c) lim
−→
U∋x

Extj
Z[~]

(
Z[~, ~−1], H i(U ;M )

)
≃ 0 for any x ∈ X, j = 0, 1 and any i ∈ Z. Here,

U ranges over an open neighborhood system of x.

Denote by Dcc(R) the full subcategory of D(R) consisting of cohomologically com-
plete modules. Then clearly Dcc(R) is triangulated.

Proposition 3.3 ([KS12, Prop. 1.5.10, Cor. 1.5.9]). Let M ∈ Dcc(R). Then

(a) RHom
R
(N ,M ) ∈ D(ZX [~]) is cohomologically complete for any N ∈ D(R).

(b) If gr~(M ) ≃ 0, then M ≃ 0.
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Proposition 3.4 ([KS12, Prop. 1.5.12]). Let f : X −→ Y be a continuous map and let

M ∈ D(ZX [~]). If M is cohomologically complete, then so is Rf∗M .

Proposition 3.5. Let M ∈ D(R) be a cohomologically complete object and a ∈ Z. If

H i(gr~(M )) = 0 for any i ≥ a, then H i(M ) = 0 for any i > a.

Proof. The proof is exactly the same as that of [KS12, Prop. 1.5.8] when replacing i > a
with i < a.

3.2 Microsupport and constructible sheaves

Let M be a real analytic manifold and let k be a Noetherian commutative ring of finite
global homological dimension.

We shall need the next result which does not appear in [KS12].

Proposition 3.6. Let F ∈ Db(ZM [~]). Then SS(F loc) ⊂ SS(F ).

Proof. By using one of the equivalent definitions of the micro-support given in [KS90,
Prop. 5.11], it is enough to check that forK compact, RΓ(K;F )loc ≃ RΓ(K;F loc) which
follows from loc. cit. Prop. 2.6.6 and the fact that Z[~, ~−1] is flat over Z[~].

Proposition 3.7 ([KS12, Prop. 7.1.6]). Let F ∈ Db(ZM [~]) and assume that F is

cohomologically complete. Then

SS(F ) = SS(gr~(F )).(3.2)

Proof. Let us recall the proof of loc. cit. The inclusion

SS(gr~(F )) ⊂ SS(F )

follows from the distinguished triangle F
~
−→ F −→ gr~(F )

+1
−→. Let us prove the converse

inclusion.
Using the definition of the microsupport, it is enough to prove that given two

open subsets U ⊂ V of M , RΓ(V ;F ) −→ RΓ(U ;F ) is an isomorphism as soon as
RΓ(V ; gr~(F )) −→ RΓ(U ; gr~(F )) is an isomorphism. Consider a distinguished triangle

RΓ(V ;F ) −→ RΓ(U ;F ) −→ G
+1
−→. Then we get a distinguished triangle RΓ(V ; gr~(F )) −→

RΓ(U ; gr~(F )) −→ gr~(G)
+1
−→. Therefore, gr~(G) ≃ 0. On the other hand, G is cohomo-

logically complete, thanks to Proposition 3.4 (applied to F |U and F |V ) and then G ≃ 0
by Proposition 3.3 (b).

Proposition 3.8 ([KS12, Prop. 7.1.7]). Let F ∈ Db
Rc(C

~). Then F is cohomologically

complete.

Proof. Let us recall the proof of loc. cit. One has

“lim
−→

”
U∋x

Extj
Z[~]

(
Z[~, ~−1], H i(U ;F )

)
≃ Extj

Z[~]

(
Z[~, ~−1], “lim

−→
”

U∋x

H i(U ;F )
)

≃ Extj
Z[~]

(
Z[~, ~−1], Fx

)
≃ 0

where the last isomorphism follows from the fact that Fx is cohomologically complete.
Hence, hypothesis (c) of Proposition 3.2 is satisfied.
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3.3 DQ-modules

In this subsection, X will be a complex manifold (not necessarily symplectic) of complex
dimension dX .

Set O~

X := OX [[~]] = lim
←−
n

OX ⊗C (C~/~n
C

~). An associative multiplication law ⋆ on

O~

X is a star-product if it is C~-bilinear and satisfies

f ⋆ g =
∑

i≥0

Pi(f, g)~
i for f, g ∈ OX ,(3.3)

where the Pi’s are bi-differential operators, P0(f, g) = fg and Pi(f, 1) = Pi(1, f) = 0
for f ∈ OX and i > 0.

We call (OX [[~]], ⋆) a star-algebra. A ⋆-product defines a Poisson structure on
(X,OX) by the formula

{f, g} = P1(f, g)− P1(g, f) ≡ ~
−1(f ⋆ g − g ⋆ f) mod ~OX [[~]].(3.4)

Definition 3.9. A DQ-algebroid A on X is a C~-algebroid locally isomorphic to a
star-algebra as a C~-algebroid.

Remark 3.10. The data of a DQ-algebroid AX on X endows X with a structure of
a complex Poisson manifold and one says that AX is a quantization of the Poisson
manifold. Kontsevich’s famous theorem [Kon01,Kon03] (see also [Kas96] for the case
of contact manifolds) asserts that any complex Poisson manifold may be quantized.

Example 3.11. Assume that M is an open subset of Cn, X = T ∗M and denote by
(x; u) the symplectic coordinates on X . In this case there is a canonical ⋆-algebra AX

that is usually denoted by ŴX(0), its localization with respect to ~ being denoted by

ŴX .
Let f, g ∈ OX [[~]]. Then the DQ-algebra ŴX(0) is the star algebra (OX [[~]], ⋆)

where:

f ⋆ g =
∑

α∈Nn

~
|α|

α!
(∂α

u f)(∂
α
x g).(3.5)

This product is similar to the product of the total symbols of differential operators

on X and indeed, the morphism of C-algebras π−1
M DM −→ ŴX is given by

f(x) 7→ f(x), ∂xi
7→ ~

−1ui,

where, as usual, DM denotes the ring of finite order holomorphic differential operators
and πM : T ∗M −→ M is the projection.

For a DQ-algebroid AX , there is locally an isomorphism ofC-algebroids AX/~AX
∼−→

OX . Moreover there exists a unique isomorphism of C-algebras

End(idgr~AX
) ≃ OX .(3.6)

Therefore, there is a well-defined functor

•

L
⊗

OX

• : Db(OX)×Db(gr~AX) −→ Db(gr~AX).(3.7)

7



Theorem 3.12 ([KS12, Th. 1.2.5]). For a DQ-algebroid AX , both AX and A loc
X are

right and left Noetherian (in particular, coherent).

One defines the functors

gr~ : D
b(AX) −→ Db(gr~AX), M 7→ CX

L
⊗

C~

X
M ,

( • )loc : Db(AX) −→ Db(A loc
X ), M 7→ C

~,loc
X ⊗

C~

X
M ,

for : Db(gr~(AX)) −→ Db(AX) associated with σ0 : AX −→ gr~(AX).

The functor ( • )loc is exact on Mod(AX). The category Mod(gr~(AX)) is equivalent
to the full subcategory of Mod(AX) consisting of objects M such that ~ : M −→ M
vanishes.

Theorem 3.13 ([KS12, Th. 1.6.1 and 1.6.4]). Let M ∈ D+(AX). Then the two condi-

tions below are equivalent:

(a) M is cohomologically complete and gr~(M ) ∈ D+
coh(gr~AX),

(b) M ∈ D+
coh(AX).

The next result follows from Gabber’s theorem [Gab81].

Proposition 3.14 ([KS12, Prop. 2.3.18]). Let M ∈ Db
coh(A

loc
X ). Then supp(M ) (the

support of M ) is a closed complex analytic subset of X, involutive (i.e., co-isotropic)
for the Poisson bracket on X.

Remark 3.15. One shall be aware that the support of a coherent AX -module is not
involutive in general. Indeed, any coherent gr~AX -module may be regarded as an AX -
module. Hence any closed analytic subset can be the support of a coherent AX-module.

4 DQ-modules along Λ

4.1 A variation on a theorem of [Kas03]

In order to prove Lemma 4.6 below, we need a slight modification of a result of [Kas03].
Let R be a ring on a topological space X , and let {Fn(R)}n∈Z be a filtration of R

which satisfies

(a) R =
⋃

n∈Z Fn(R),

(b) 1 ∈ F0(R),

(c) Fm(R) · Fn(R) ⊂ Fm+n(R).

We set

grF≥0(R) =
⊕

n≥0
grFn (R).

8



Proposition 4.1. Assume that

(a) F0(R) and grF≥0(R) are Noetherian rings,

(b) grFn (R) is a coherent F0(R)-module for any n ≥ 0.

Then R is Noetherian.

Proof. Define F̃n(R) by

F̃n(R) =

{
Fn(R) if n ≥ 0,

0 if n < 0.

We shall apply [Kas03, Theorem A.20] to F̃k(R). Hence in order to prove the
theorem, it is enough to show

for any positive integerm and an open subset U ofX , if an R|U -submodule
N of R⊕m|U has the property that Fk(N ):=N ∩Fk(R)⊕m|U is a coherent
F0(R)|U -module for any k ≥ 0, then N is a locally finitely generated R|U -
module.

(4.1)

Since grF≥0(R) is a Noetherian ring, grF≥0(N ) :=
⊕

n≥0 gr
F
n (N ) is a coherent grF≥0(R)-

module. Hence there exists locally a finitely generated R-submodule N ′ of N such
that grF≥0(N

′) = grF≥0(N ). Hence we have N = N ′ + F0(N ). Since F0(N ) is a
locally finitely generated F0(R)-module, N is locally finitely generated R-module.

4.2 The algebroid AΛ/X

From now on, X is a complex manifold endowed with a DQ-algebroid AX .

Definition 4.2 ([KS12, Def. 2.3.10]). Let Λ be a smooth submanifold of X and let L

be a coherent AX-module supported by Λ. One says that L is simple along Λ if gr~(L )
is concentrated in degree 0 and H0(gr~(L )) is an invertible OΛ ⊗OX

gr~(AX)-module.
(In particular, L has no ~-torsion.)

Let Λ be a smooth submanifold of X and let L be a coherent AX -module simple
along Λ. We set for short

O
~

Λ := OΛ[[~]], O
~,loc
Λ := OΛ((~)),

D
~

Λ := DΛ[[~]], D
~,loc
Λ := DΛ((~)).

One proves that there is a natural isomorphism of algebroids EndC~(L ) ≃ EndC~(O~

Λ)
([KS12, Lem. 2.1.12]). Then the subalgebroid of EndC~(L ) corresponding to the sub-
ring DΛ[[~]] of EndC~(O~

Λ) is well-defined. We denote it by DL . Then (see [KS12,
Lem. 7.1.1]):

(a) DL is isomorphic to D~

Λ as a C
~-algebroid and gr~(DL ) ≃ DΛ.

(b) The C~-algebra DL is right and left Noetherian.

9



We denote by IΛ ⊂ OX the defining ideal of Λ. Let I be the kernel of the compo-
sition

~
−1

AX
~
−−→ AX −→ gr~AX −→ OΛ

L
⊗

OX
gr~AX .(4.2)

Then we have

I /AX ≃ IΛ ⊗OX
gr~AX .(4.3)

Remark 4.3. In [KS12, Ch. 7, § 1] we have used the symbol map σ : AX −→ OX .
This map is only defined locally, but all results of this chapter are of local nature. If
nevertheless, one wants a global construction, then one has to replace the sequence two
lines above Definition 7.1.2 of loc. cit. with (4.2).

Definition 4.4 ([KS12, Def. 7.1.2]). One denotes by AΛ/X the C~-subalgebroid of A loc
X

generated by I .

The ideal ~I is contained in AX , hence acts on L and one sees easily that ~I

sends L to ~L . Hence, I acts on L and defines a functor AΛ/X −→ DL . We thus
have the morphisms of algebroids

AX |Λ //

$$■
■

■

■

■

■

■

■

■

■

AΛ/X |Λ

��

// A loc
X |Λ

��

DL
// D loc

L
.

In particular, L is naturally an AΛ/X-module and gr~(DL ) ≃ DΛ is a gr~(AΛ/X)-
module.

Example 4.5. We follow the notations of Example 3.11. Let Λ = M . Then L :=

ŴX(0)/
(∑

i ŴX(0)ui

)
≃ O~

Λ is simple along Λ and I ⊂ ~−1AX = AX(−1) is generated
by ~−1u = (~−1u1, . . . , ~

−1un). Identifying ~−1ui with
∂
∂xi

we get an isomorphism DL ≃
DΛ[[~]].

From now on, and until the end of the proof of Proposition 4.8 we work locally on
X and thus we may assume that there is an isomorphism gr~AX

∼−→ OX .
We introduce a filtration FA loc

X on A loc
X by setting

FkA
loc
X = ~

−k
AX for k ∈ Z.(4.4)

Therefore, there is a natural isomorphism

grFk A
loc
X ≃ T−k

OX given by ~←→ T .(4.5)

We endow AΛ/X with the induced filtration, that is,

FkAΛ/X = AΛ/X ∩ FkA
loc
X .
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Recall (see [KS12, § 1.4]) that for a left Noetherian C~-algebra R, one says that a
coherent R-module P is locally projective if the functor

Hom
R
(P, • ) : Modcoh(R) −→ Mod(C~

X)

is exact. This is equivalent to each of the following conditions: (i) for each x ∈ X ,
the stalk Px is projective as an Rx-module, (ii) for each x ∈ X , the stalk Px is a flat
Rx-module, (iii) P is locally a direct summand of a free R-module of finite rank.

Recall that one says that a ring R has global homological dimension ≤ d if both
Mod(R) and Mod(Rop) have homological dimension ≤ d (see [KS90, Exe. I.28]). In
such a case, we shall write for short ghd(R) ≤ d.

Also recall that dX denotes the complex dimension of X .

Lemma 4.6. One has

(a) (AΛ/X)
loc ≃ A loc

X .

(b) The algebra grFAΛ/X is a graded commutative subalgebra of grFA loc
X .

(c) There are natural isomorphisms

grFAΛ/X ≃
⊕

k∈Z

T−kIkΛ and grF≥0AΛ/X ≃
⊕

k≥0

T−kIkΛ,

where IkΛ := OX for k ≤ 0.

(d) The sheaves of algebras grFAΛ/X and grF≥0AΛ/X are Noetherian.

(e) For any x ∈ X, one has ghd(grFAΛ/X)x ≤ dX + 1.

Proof. (a) is obvious since AX ⊂ AΛ/X ⊂ A loc
X .

(b) is obvious.

(c) grF1 (AΛ/X) ≃ IΛ. Hence, gr
F
k AΛ/X ≃ IkΛ.

(d) The commutative algebras grFAΛ/X and grF≥0AΛ/X are locally finitely presented OX-
algebras. Hence they are Noetherian. (Note that the associated variety with grFAΛ/X

is the deformation of normal bundle to Λ.)

(e) For x ∈ X , set Rx = (grFAΛ/X)x. If x /∈ Λ , then Rx ≃ OX,x[T, T
−1] and

ghd(Rx) ≤ dX + 1. Assume now that x ∈ Λ. Then Rx/TRx ≃ OΛ,x[y1, . . . , yn] (with
n = codimX Λ) has global homological dimension dX and Rx[T

−1] ≃ OX,x[T, T
−1]

has global homological dimension dX + 1. Hence, ghd(Rx) ≤ dX + 1 by the classical
Lemma 4.7 below.

Lemma 4.7. Let R be a commutative Noetherian ring and let t ∈ R be a non-zero

divisor. Assume that R/tR has global homological dimension ≤ d and the localiza-

tion R[t−1] has global homological dimension ≤ d + 1. Then R has global homological

dimension ≤ d+ 1.
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Proof. (i) Let Spec(R) denote as usual the set of prime ideals of R. For p ∈ Spec(R),
denote by Rp the localization of R at p. It is well-known that R has global homological
dimension ≤ d if and only if for any p ∈ Spec(R), Rp has global homological dimension
≤ d.

(ii) Let p ∈ Spec(R) and assume that t /∈ p. Then Rp ≃ (R[t−1])p has global homological
dimension ≤ d+ 1.

(iii) Let p ∈ Spec(R) and assume that t ∈ p. In this case, Rp/tRp ≃ (R/tR)p has
global homological dimension ≤ d. This implies that Rp is a regular local ring of global
homological dimension ≤ d+ 1.

Proposition 4.8 (see [KS12, Lem. 7.1.3] in the symplectic case). One has

(a) the C~-algebroid AΛ/X is right and left Noetherian,

(b) gr~(N ) ∈ Db
coh(gr~AΛ/X) for any N ∈ Db

coh(AΛ/X).

Proof. (a) follows from Proposition 4.1 since A is Noetherian by Theorem 3.12, gr≥0AΛ/X

is Noetherian by Lemma 4.6 and the IkΛ’s are coherent AX-modules since they are co-
herent OX-modules.

(b) Let us represent N by a complex L
•

bounded from above of locally free AΛ/X -
modules of finite rank. Then H i(L

•

) ≃ 0 for i ≪ 0. Replacing L
•

with τ≥jL
•

for j ≪ 0 we find a bounded complex L
•

of coherent AΛ/X -modules for which ~ is
injective. Now gr~(N ) is represented by the complex L

•

/~L
•

and the result follows.

(c) Let d denote the projective dimension

In the sequel, for N ∈ Db(AΛ/X) we set

grΛ(N ) := gr~(DL

L
⊗

AΛ/X
N ) ≃ DΛ

L
⊗

gr~(AΛ/X )
gr~(N ).(4.6)

Corollary 4.9. If N ∈ Db
coh(AΛ/X), then grΛ(N ) ∈ Db

coh(DΛ) and char(grΛ(N )) is a
closed C×-conic complex analytic subset of T ∗Λ.

Proof. By Proposition 4.8 (b) and Lemma 4.6 (e), gr~N is locally quasi-isomorphic to
a bounded complex of projective gr~AΛ/X -modules of finite type. To conclude, note

that if P is a projective gr~AΛ/X-modules of finite type, then DΛ

L
⊗

gr~(AΛ/X )
gr~(P) is

concentrated in degree 0 and is DΛ-coherent. The result for char(grΛ(N )) follows.

Proposition 4.10 (see [KS12, Prop. 7.1.8] in the symplectic case). Let N be a coherent

AΛ/X-module. Then

RHom
AΛ/X

(N ,L ) ∈ Db(C~

X),(4.7)

SS(RHom
AΛ/X

(N ,L )) = char(grΛN ).(4.8)

Proof. (i) One has

RHom
AΛ/X

(N ,L ) ≃ RHom
DL

(DL

L
⊗

AΛ/X
N ,L ).

12



Set F = RHom
DL

(DL

L
⊗

AΛ/X
N ,L ). Then F ∈ D+(C~

X), F is cohomologically com-

plete by Proposition 3.3 and gr~(F ) ≃ RHom
DΛ

(grΛN ,OΛ).

(ii) We have gr~F ∈ Db(C~

X) by Lemma 4.6 (c). This implies (4.7) by Proposition 3.5.

(iii) We have SS(F ) = SS(gr~(F )) by Proposition 3.7. On the other hand, gr~(F ) ≃
RHom

DΛ
(grΛN ,OΛ) and the microsupport of this complex is equal to char(grΛN )

by [KS90, Th 11.3.3].

Definition 4.11. A coherent AΛ/X-submodule N of a coherent A loc
X -module M is

called an AΛ/X -lattice of M if N generates M as an A loc
X -module.

One easily proves that if N is an AΛ/X -lattice of M , then char(gr~N ) depends
only on M .

Notation 4.12. For a coherent A loc
X -module M , one sets charΛ(M ) := char(grΛN )

for N a (locally defined) AΛ/X -lattice of M .

4.3 Reminders on holonomic DQmodules

We shall recall here the main results of [KS12, Ch. 7].
In this subsection, we assume that X is symplectic and that Λ is Lagrangian. In

this case, gr~(AΛ/X) ≃ DΛ as an algebroid and thus grΛ(N ) ≃ gr~(N ).

Definition 4.13. Assume that X is symplectic and Λ is Lagrangian. An object N

of Db
coh(AΛ/X) is holonomic if gr~(N ) belongs to Db

hol(DΛ).

Theorem 4.14 (see [KS12, Th. 7.1.10]). Assume that X is symplectic. Let N be a

holonomic AΛ/X-module.

(a) The objects RHom
AΛ/X

(N ,L ) and RHom
AΛ/X

(L ,N ) belong to Db
Cc(C

~

Λ) and

their microsupports are contained in char(gr~N ).

(b) There is a natural isomorphism in Db
Cc(C

~

Λ)

RHom
AΛ/X

(N ,L ) ∼−→ D′
X

(
RHom

AΛ/X
(L ,N )

)
[dX ].(4.9)

The crucial result in order to prove Theorem 4.16 below is the following.

Proposition 4.15 (see [KS12, Prop. 7.1.16]). Assume that X is symplectic and Λ is

Lagrangian. For a coherent A loc
X -module M , we have

codim charΛ(M ) ≥ codimSupp(M ).

The next result is a variation on a classical theorem of [Kas75] on holonomic D-
modules.

Theorem 4.16 (see [KS12, Th. 7.2.3]). Assume that X is symplectic. Let M and N

be two holonomic A loc
X -modules. Then
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(i) the object RHom
A loc

X
(M ,N ) belongs to Db

Cc(C
~,loc
X ),

(ii) there is a canonical isomorphism:

RHom
A loc

X
(M ,N ) ∼−→

(
D′

XRHom
A loc

X
(N ,M )

)
[dX ],(4.10)

(iii) the object RHom
A loc

X
(M ,N )[dX/2] is perverse.

5 Proof of the main theorems and an example

5.1 Proof of Theorem 1.2

In this subsection, X is again a complex Poisson manifold endowed with a DQ-algebroid
AX .

By using the diagonal procedure, we may assume that L = L loc
0 with L0 an AX -

module simple along Λ. By the hypothesis, we may find an AΛ/X-lattice N of M .
Set

F0 := RHom
AΛ/X

(N ,L0), F := RHom
A loc

X
(M ,L ) ≃ F loc.(5.1)

One knows by Theorem 4.16 that F |Y ∈ Db
Cc(C

~,loc
Y ∩Λ) and one knows by Proposition 4.10

and Corollary 4.9 that SS(F0)×Λ (Λ∩ Y ) is Lagrangian and subanalytic in T ∗Λ. Since
SS(F ) ⊂ SS(F0) by Proposition 3.6, it remains to apply Corollary 2.4.

5.2 Proof of Theorem 1.3

In this subsection, X is a quasi-compact separated smooth algebraic variety over C

endowed with the Zariski topology. For an algebraic variety X , one denotes by Xan the
complex analytic manifold associated with X and by ρ : Xan −→ X the natural map.
There is a natural morphism ρ−1OX −→ OXan

and it is well-known that this morphism
is faithfully flat (cf [Ser56]).

Lemma 5.1. Let AX be a DQ-algebroid on X. Then there exists a DQ-algebroid AXan

on Xan together with a functor ρ−1AX −→ AXan
. Moreover such an AXan

is unique up

to a unique isomorphism.

Proof. First, consider a star algebra A = (O~

X , ⋆) on a smooth algebraic variety X .
The star product is defined by a sequence of algebraic bidifferential operators {Pi}i
(see [KS12, Def. 2.2.2]) and one defines a star algebra A an = (O~

Xan
, ⋆) on Xan by using

the same bidifferential operators.
There exists an open (for the Zariski topology) covering X =

⋃
i∈I Ui such that, for

each i, there exists an object si of the category AX(Ui). Then Ai := End(si) is a star
algebra. For i, j ∈ I, since si|Ui∩Uj

and sj |Ui∩Uj
are locally isomorphic, there exists an

open covering Ui ∩ Uj =
⋃

a∈Aij
Ua
ij such that setting Uij =

⊔
a∈Aij

Ua
ij , there exist an

isomorphism αij : si|Uij
∼−→ sj |Uij

. Then we have

aijk := αijαjkαki ∈ End(si|Uijk
) = Ai(Uijk),
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where Uijk = Uij ×X Ujk ×X Uki.
Hence we have an isomorphism βij : Ai|Uij

∼−→ Aj|Uij
defined by Ai ∋ a 7→ αij ◦ a ◦

α−1
ij ∈ Aj . Moreover they satisfy the compatibility condition:

βijβjkβki = Ad(aijk) ∈ End(Ai|Uijk
).

Then the data ({Ui}, {Uij}, {Ai}, {βi.j}, {aijk}) satisfies the compatibility condition.
Conversely, we can recover AX from such data (see [KS12]).

On (Ui)an we can define A an
i . Similarly we can extend βij to βan

ij : A an
i |(Uij)an

∼−→

A an
j |(Uij)an Finally we have aijk ∈ Ai(Uijk) ⊂ A an

i

(
(Uijk)an

)
, Then the data

({(Ui)an}, {(Uij)an}, {A
an
i }, {β

an
i.j}, {aijk})

satisfies the compatibility condition, and it defines a DQ-algebroid AXan
on Xan.

Proposition 5.2. The algebroid AXan
is faithfully flat over ρ−1AX .

Proof. It is enough to prove that for each x ∈ X , AXan,x is faithfully flat over AX,x.
This follows from [KS12, Cor. 1.6.7] since AX,x/~AX,x ≃ OX,x is Noetherian, AXan,x

is cohomologically complete and finally AXan,x/~AXan,x ≃ OXan,x is faithfully flat over
OX,x.

For an AX-module M we set

Man := AXan
⊗ρ−1AX

ρ−1
M .

Proof of Theorem 1.3. As in the proof of Theorem 1.2, we may assume that L ≃ L loc
0

where L0 is a simple AX-module along a smooth algebraic Lagrangian manifold Λ, the
module M remaining algebraically good. Choose an AΛ/X -lattice N of M . Let

Fan := RHom
A loc

Xan

(Man,Lan) ≃ RHom
AΛ/Xan

(Nan, (L0)an)
loc.(5.2)

By Proposition 4.10 we know that SS(Fan) ⊂ char(grΛNan) and this set is contained in
char(grΛN ) which is an algebraic Lagrangian subvariety of T ∗Λ. To conclude, apply
Corollary 2.5.

Remark 5.3. (i) If one assumes that M and L are simple modules along two smooth
algebraic varieties Λ1 and Λ2 of X , which is the situation appearing in [GJS19], there
is a much simpler proof. Indeed, it follows from [KS12, Th. 7.4.3] that in this case

SS(F ) ⊂ C(Λ1,Λ2),(5.3)

the Whitney normal cone of Λ1 along Λ2 and this set is algebraic. Hence, it remains to
apply Corollary 2.5. Note that Th. 7.4.3 of loc. cit. is a variation on [KS08].

(ii) Also remark that (5.3) is no more true in the general case of irregular holonomic
modules and until now, there is no estimate of SS(F ), except of course, the fact that it
is a Lagrangian set.
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5.3 An example

Consider the Poisson manifold X = C4 with coordinates (x1, x2, y1, y2), the Poisson
bracket being defined by:

{x1, x2} = 0, {y1, x1} = {y2, x2} = x1,
{y1, y2} = y2, {y1, x2} = y2, {y1, x2} = {y2, x1} = 0.

(5.4)

Denote by AX the DQ-algebra defined by the relations y1 = ~x1∂x1
, y2 = ~x1∂x2

, that
is,

[x1, x2] = 0, [y1, x1] = [y2, x2] = ~x1, [y1, y2] = ~y2,
[y1, x2] = ~y2, [y1, x2] = [y2, x1] = 0.

(5.5)

Hence, Y = {x1 6= 0} is the symplectic locus X \Xns of the Poisson manifold X . Set
Λ = {y1 = y2 = 0}. Then Λ ∩ Y is Lagrangian in Y .

Define the AX-module L by L = AX · u with the relations y1u = y2u = 0. Then
L ≃ O~

Λ and for a(x) ∈ O~

Λ, one has
{
y1a(x)u = ~x1

∂a
∂x1

u

y2a(x)u = ~x1
∂a
∂x2

u.

Now define the left AX module M by M = AX ·v with the relations (y1+~)v = y2v = 0.
Then the complex below, in which the operators act on the right

0 Moo AX
oo A

⊕2
X

•





y1 + ~

y2





oo AX
• (y2,−y1)

oo 0oo(5.6)

is a free resolution of M .
Hence, the object RHom

AX
(M ,L loc) is represented by the complex (the operators

act on the left)

0 // O
~,loc
Λ 



x1∂x1
+ 1

x1∂x2





•

// (O~,loc
Λ )⊕2

(x1∂x2 ,−x1∂x1 ) •
// O

~,loc
Λ

// 0.(5.7)

Since x1∂x1
O

~,loc
Λ + x1∂x2

O
~,loc
Λ = x1O

~,loc
Λ and O

~,loc
Λ /x1O

~,loc
Λ ≃ O

~,loc
Λ∩{x1=0}, we have

Ext2
AX

(M ,L loc) ≃ O
~,loc
Λ∩{x1=0}.

This example shows that RHom
AX

(M ,L loc) does not belong to Db
Cc(C

~,loc).
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