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Abstract

Given a topological space X, a thickening kernel is a monoidal presheaf on
(R>p,+) with values in the monoidal category of derived kernels on X. A bi-
thickening kernel is defined on (R, +). To such a thickening kernel, one naturally
associates an interleaving distance on the derived category of sheaves on X.

We prove that a thickening kernel exists and is unique as soon as it is defined on
an interval containing 0, allowing us to construct (bi-)thickenings in two different
situations.

First, when X is a “good” metric space, starting with small usual thicken-
ings of the diagonal. The associated interleaving distance satisfies the stability
property and Lipschitz kernels give rise to Lipschitz maps.

Second, by using [GKS12], when X is a manifold and one is given a non-
positive Hamiltonian isotopy on the cotangent bundle. In case X is a complete
Riemannian manifold having a strictly positive convexity radius, we prove that
it is a good metric space and that the two bi-thickening kernels of the diagonal,
one associated with the distance, the other with the geodesic flow, coincide.
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Introduction

The aim of this paper is to construct (and then to study) a kernel associated with
a small thickening of the diagonal of a space X and, as a byproduct, an interleaving
distance on the derived category of sheaves on X. Such a kernel is constructed in
essentially two rather different situations: first when X is a metric space by using the
distance, second when X is a manifold and one is given a non positive Hamiltonian
isotopy of the cotangent bundle. When X is a Riemannian manifold and the isotopy is
associated with the geodesic flow, we prove that the two kernels coincide.

The interleaving distance introduced by F. Chazal et al. in [CCSGT] has be-
come a central element of TDA and has been actively studied since then [BBKIS,
BP19,BL, BG18]. It was generalised to multi-persistence modules by M. Lesnick in
[Les12, Les15]. Categorical frameworks for the interleaving distance have then been
proposed in [BdSS15,dSMS18]. In his thesis [Curl4], J. Curry proposed an approach
of persistence homology via sheaf theory. In [KS18], the author developed derived
sheaf-technics for persistent homology and defined a new interleaving distance for the
category of derived sheaves on a real normed vector space by considering thickenings as-
sociated with the convolution by closed balls of radius @ > 0. This distance is sometimes
called the convolution distance for sheaves and has recently been applied to question of
symplectic topology (see for instance [AI17]). For a survey of the links between the (1-
dimensional) interleaving distance, sheaf theory and symplectic topology, see the book
by J. Zhang [Zha20].

Let X be a “good” topological space and denote as usual by DP(ky) the bounded
derived category of sheaves of k-modules on X, for a commutative unital ring of finite
global dimension k. We define a thickening kernel on X as a monoidal presheaf K defined
on the monoidal category (R, +) with values in the monoidal category (D®(kxxx), o)
of kernels on X (see Definition 1.2.2). When this presheaf extends as a monoidal
presheaf on (R, +), we call it a bi-thickening kernel of the diagonal.

To a thickening kernel, one naturally associates an interleaving distance distx on
DP(kx).

Our first result (Theorem 1.2.3) asserts that a thickening kernel exists and is unique
(up to isomorphism) as soon as it is constructed on some interval [0, ax]| (with ax > 0).

This theorem allows us to construct a (bi-)thickening kernel in two different situa-
tions. First in § 2, when X is what we call here a good metric space (see Definition 2.1.1).
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Second in § 3, when X is a real manifold and one is given a non-positive C'"*°~function
h: T*X — R, where T* X is the cotangent bundle with the zero-section removed.

(1) Assume that (X, dx) is a good metric space and denote by A, the closed thick-
ening of radius a > 0 of the diagonal. The hypothesis that (X,dy) is good implies
in particular that ka, oka, ~ ka,,, for a,b sufficiently small. Applying our first the-
orem, we get a thickening kernel R on (Rsg,+) or, under mild extra-hypotheses, a
bi-thickening. In this case, for a < 0 small, &, is, up to a shift and an orientation, the
kernel associated with an open thickening of the diagonal.

We obtain several results on the associated interleaving distance, some of them
generalizing those of [KS18]. We prove in particular a stability theorem (Theorem 2.4.1)
which asserts that given two kernels K; and Ky on Y x X and a sheaf F' on X, then
disty (K o F, Ky o F') < disty « x/x (K71, K2) where disty, x/x is a relative distance. We
also introduce the notion of a d-Lipschitz kernel on Y x X and show that such a kernel
induces a Lipschitz map for the interleaving distances (Theorem 2.5.4). In both cases
(stability and Lipschitz) we also obtain similar results for non proper composition, but
then we need to assume that our spaces are manifolds and the differential of the distance
does not vanish. Indeed, in this situation, our proofs are based on Theorem 1.1.6
which asserts that under some microlocal hypotheses, non proper composition becomes
associative.

(2) Assume now that X is a real manifold and one is given a C*-function h: 7*X —
R, homogeneous of degree 1 in the fiber such that the flow ® of the Hamiltonian vector
field of h is an Hamiltonian isotopy defined on T*X x I for some open interval I
containing 0. This flow gives rise to a Lagrangian manifold A € T*X x T*X x T*I.
Thanks to the main theorem of [GKS12], there exists a unique kernel K" € D™ (kxx xx1)
micro-supported by A and whose restriction to ¢ = 0 is ka. Moreover, since h is not
time depending, this kernel satisfies K" o K[! ~ K | for a,b small. Assuming h is non-
positive, there are natural morphisms K}* — K for a < b and using our first theorem
we get a bi-thickening kernel &”.

When X is a complete Riemannian manifold having a strictly positive convexity
radius, we prove (Theorem 3.2.3) that it is a good metric space and the associated
thickening kernel is a bi-thickening, denoted here £4'. We have thus two bi-thickening
kernels in this case, 845 and &", the last one being associated with the geodesic flow
(corresponding to h(x,&) = —||£]|.). We prove in Theorem 2.7.4 that these two kernels
coincide.

In the course of the paper, we treat some easy examples and in particular we prove
that the Fourier-Sato transform, an equivalence of categories for sheaves on a sphere
and the dual sphere, is an isometry when endowing these spheres with their natural
Riemannian metric. Indeed, the Fourier-Sato transform is nothing but the value at 7/2
of the thickening kernel of the Riemannian sphere.
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1 Sheaves and the interleaving distance

1.1 Sheaves

In the sequel, we denote by pt the topological space with a single element. For a topo-
logical space X, we denote by ax: X — pt the unique map fromt X to pt. We denote
by Ax, or simply A, the diagonal of X x X and by dx or simply ¢ the diagonal embed-
ding. If X is a C*°-manifold, we denote by 7mx: T*X — X its cotangent bundle and
by T*X the cotangent bundle with the zero-section removed. Recall that a topological
space X is good if it is Hausdorff, locally compact, countable at infinity and of finite
flabby dimension.

We consider a commutative unital ring of finite global dimension k and a good
topological space X. We denote by D(ky) the derived category of sheaves of k-modules
on X and simply call an object of this category “a sheaf”. We shall almost always work
in the bounded derived category D’(kx) but we shall also need to consider the full
subcategory D™®(ky) of D(ky) consisting of locally bounded objects, that is, objects
whose restriction to any relatively compact open subset U of X belong to DP(ky)
(see [GKS12, Def. 1.12]).

We shall freely make use of the six Grothendieck operations on sheaves and refer
to [KS90]. In particular, we denote by wx the dualizing complex and we use the duality
functors

D'y = R#om(+,kx), Dx =RHFom(+,wx).

For a locally closed subset A C X, we denote by kx the sheaf on X which is the
constant sheaf with stalk k on A and 0 elsewhere. If there is no risk of confusion, we
simply denote it by k4. If F' is a sheaf on X, one sets Fy :== F' ® k. We also often
simply denote by F ® L the derived tensor product when L is of the type k4 up to a
shift or an orientation. As usual, we denote by RI'(X; ) and RI'.(X; +) the derived
functors of global sections and global sections with compact supports.

When X is a C"*°-manifold, we shall make use of the microlocal theory of sheaves,
following [KS90, Ch. V-VI]. Recall that the micro-support SS(F) of a sheaf F' is a
closed R*-conic subset of T* X, co-isotropic for the homogeneous symplectic structure
of T*X (we shall not use here this property). We shall also use the notation SS(F) :=
SS(F)NT*X. We shall also encounter cohomologically constructible sheaves for which
we refer to loc. cit. § 3.4. Recall that, on a real analytic manifold, R-constructible
sheaves (see loc. cit. Ch. VIII) are cohomologically constructible.

Kernels

Given topological spaces X; (i = 1,2,3) we set X;; = X; x X, Xjo3 = X5 X Xo x X;.
We denote by ¢;: X;; — X; and ¢;;: X123 — Xj; the projections.

We shall often write for short D; instead of D, as well as for similar notations such
as for example D] or D;;.



1.1 Sheaves

For A C X5 and B C Xa3 one sets Ao B = q13(q15' AN go3 B):

X123

(1.1) n lm&

X12 X13 X23-

When the spaces X;’s are real manifolds, one denotes by p;;: T X123 — T7X;; the
projection and we also define

Piaj T X193 — T*Xij> ($1>$2,$3;51,§2,§3) = (ifi,l"j; —fufj)

the composition of p;; with the antipodal map of T*X;.
For A C T* X5 and B C T* X935 one sets

A6B = plg(pl_zlA N p2_a13B)

For good topological spaces X;’s as above, one often calls an object K;; € Db(kXZ.j)
a kernel. One defines as usual the composition of kernels

L
(1.2) K12§K23 = Rau3,(¢15 K12 ® qo3 Ka3).

If there is no risk of confusion, we write o instead of .

It is sometimes natural to permute the roles of X; and X;. We introduce the notation

v: Xig — Xoy, ($1,SL’2) — (332,331)7
v: Xiog — Xao1, ($1,$2,$3) — ($3,36’2,SL’1)-

(1.3)
Since v and v are involutions, one has
(1.4) v*zvg,v_lzv!, Ve > 1, vt
Using (1.4), one immediately obtains:

Proposition 1.1.1. Let K;; € Db(kXij), i=1,2, j=1i+1 and set K;;:=v.K;;. Then

U*(K12 <2> K23) ~ Ko <2> K.

In the sequel, we shall need to control the micro-support of the composition. Let
X; and Kj;; be as above i = 1,2, j =i+1. Let A;; = SS(K;;) C T*X;; and assume that

(15) (i) @3 is proper on gr," supp(Ki2) N ga3 supp(Kas),
. (11) p1_21A12 mp;algAgg N (T;(le X T* Xy X T;QX;),) - T;ﬁ% (Xlgg).

Proposition 1.1.2. Assume (1.5). Then

(16) SS(K12<2>K23) C A128A23.

bt



1.1 Sheaves

Proof. This follows from the classical bounds to the micro-supports of proper direct
images and non-characteristic inverse images of [KS90, § 5.4]. Q.E.D.

The next lemma will be useful.
Lemma 1.1.3. Let A C X9 and B C Xa3 be two closed subsets.

(a) Assume that qi3 is proper on A Xx, B = q;3 AN gy B. Then there is a natural
morphism Kao,p — kaokp.

(b) Assume moreover that the fibers of the map q13: Ax x, B — Ao B are contractible.
Then kAoB = kA OkB.

Proof. (a) Set C = q;37 AN gy B. Then q13(C) = Ao B and k¢ ~ 3 ka ® ¢33 kp. By
the hypothesis, the set g3 q13(C) is closed and contains C. Therefore, the morphism
ql_glkm(c) — k¢ defines by adjunction the morphism k4. 5 — Rqus, (¢75 ka®qp k) <
k4 okp (recall that ¢;3 is proper on ().

(b) is clear. Q.E.D.

It is easily checked, and well-known, that the composition of kernels is associative,
namely given three kernels K;; € Db(kXZ.J.), 1=1,2,3, j =i+1 one has an isomorphism

(1.7) (K12<2>K23)<§K34 = K12(2>(K23(§K34)7
this isomorphism satisfying natural compatibility conditions that we shall not make
here explicit.

Of course, this construction applies in the particular cases where X; = pt for some

i. For example, if K € D"(ky,,) and F' € D"(ky,), one usually sets ®x(F) = KoF.
Hence

L
(1.8) Pp(F)=KoF =Rq,(K ® ¢, ' F).

It is natural to consider the right adjoint functor Wy of the functor ®x (see [KS90,
Prop. 3.6.2]) given by

(1.9) Uk (G) = Rgp RAom (K, q, G).

Given three spaces X; (i = 1,2,3) and kernels K; on Xj5 and K3 on Xo3, one has
(by (1.7) or [KS90, Prop. 3.6.4])

(110) (szoq)Kl 2q)KgoI{p \I]K1O\IIK2 2\111{20[{1‘

Proposition 1.1.4. Let K € DP(kxxx) and F € DP(kx). Then Dx(®Pg(F)) ~
\IIU*K(DXF>'

Proof. One has the sequence of isomorphisms
L
Dx(®x(F)) =~ RAom(Rqn(K ®q¢,'F),wx)

L
~ RqRAom (K @ ¢y 'F,wxxx)

Rq1, Rom (K, RA#om (¢; ' F, qywyx))
qu*R%ﬂom (K, q2! DxF)

12

12

Q.E.D.



1.1 Sheaves

Also note that when X, = pt, that is, F, K € D(ky), then
L
(1.11) FoK ~RI.(X;F®K).

Non proper composition

In many situations, the non proper composition is useful. For K; € D"(ky,,) and
K, € D"(kx,,), one sets

n L
(1.12) Ky '© Ky = Raus, (415 K1 ® g5 Ka).

One shall be aware that in general, this composition is not associative. However, under
suitable hypotheses, it becomes associative.
Consider the diagram of good topological spaces

X123
/1/ qig \23\
(1.13) X X X
. 12 13 23
e
TN T
1

X X3

Note that the squares (X12, Xo, Xo3, X123), (X12, X1, X13, X123) and (X13, X3, Xo3, X123)
are Cartesian.

Lemma 1.1.5. Let X; (i = 1,2,3) be three C®-manifolds. Let K, € D°(ky,,) and
K, € D*(kx,,). Assume that K is cohomologically constructible and SS(K1)N(Tx, X1 X
T*Xg) C T)?12X12. Then

L L
Rai2, (¢15 K1 @ ¢33 K2) ~ K @ Ruz, 455 K.
Proof. Applying [KS90, Prop. 5.4.1], we have

SS(q;leg) C T;;lel X T*ng,
SS(gs Rri, K) C Ty, Xy x T*Xo.

Since Rqi2,q53 K2 =~ ¢4 Rr1, Ko and SS(Rqi2,G53 K2) = SS(Rqi2,q45 Ka), we get:
(1.14) SS(Rqi2,¢53 K>2) C T, X1 x T* Xo.

Applying [KS90, Cor. 6.4.3] we get by the hypothesis and (1.14)

L
(115) Kl (%9 RQ12*Q2_31K2 ~ RJom (DllzKl, qug*q;glKg).
Moreover, the hypothesis implies SS(D, K1) N (T%, X1 X T*X,) C T, X12, hence

SS(ql_;D/lzKl) N T)*(le X T*ng C T;(123X123’

7



1.2 Monoidal presheaves

The sheaf K; being cohomologically constructible on X5, the sheaf q1_21K 1~ K Mky,
is cohomologically constructible on Xj23. Applying again [KS90, Cor. 6.4.3], we get

L
Rotom (g5 D1, K, 92_31K2) = D/123Q1_21D,12K1 ® Q2_31K2
L
~ 1) K1 ® ¢33 K.
To conclude, note that
R%fom (D/12K1, RQ12*Q2_31K2). ~ qu*R%%m (ql_21D/12K1, q2_31K2)
L
~ Rau2. (g1 K1 @ ¢33 Ka).
Using (1.15), the proof is complete. Q.E.D.
Theorem 1.1.6. Let X; (i =1,2,3,4) be four C*-manifolds and let K; € D*(kx, ., )
(1 =1,2,3). Assume that Ky is cohomologically constructible, ¢ is proper on supp(K7)
and SS(Kl) N (T;;—le X T*X2> C T;(—12X12. Then
Kl %p(KQ rg) Kg) ~ (Kl nOp KQ) rg) Kg.
2 3 2 3
Proof. We shall assume for simplicity that X, = pt. Consider Diagram 1.13. Then:
n n L n
K é)(Kz é)Kg) = Rq1, (K1 @ ¢ ' (K> ng))
Lo Lo
= R, (K1 @ ¢ 'Rr (K @1y ' K3))

L e ko
Rar, (K1 @ Rgi2,q55 (K2 @ 15 ' K3))

12

12

B R - T |
Ra1, Rz, (415 K1 @ 35 Ko @ o575 ' K)
B N [ NS T |
Rp1.Raqus. (Q12 K1 ® qy3 K2 ® qy3 Dy K3)
L L
~ Rp1.(Raus (12 K1 © g5 Kz) © py ' K)

Lo up Lo
a Rp1*((K1<23K2) ® py ' K3) ~ Rpy, (K3 ° Ky) @ p; ' K3).

12

In the first isomorphism, we have used ¢, 'Rri, ~ Rqi2,¢43 , which follows from the iso-
morphism g3 Rry, =~ Rqi2,¢55 - In the second isomorphism, we have used Lemma 1.1.5.
In the fourth isomorphism, we have used the fact that ¢35 is proper on supp(ql_le 1)-
Finally, in the sixth isomorphism we have again used the fact that ¢3 is proper on

supp gy (K1).
Note that the same proof holds without assuming X, = pt. In this case replace
Xi, Xi; and X3 with X4, X4 and Xjo34, respectively. Q.E.D.

1.2 Monoidal presheaves

We shall use the theory of monoidal categories and refer to [Kas95] and [KS06, Ch. IV].
Note that



1.2 Monoidal presheaves

e monoidal categories are called tensor categories in [KS06],

e to a monoidal category (%, ®) is naturally attached an isomorphism of functors
([KS06, Def. 4.2.1]) a(X,Y, Z): (X®Y)®Z = X ®@(Y ® Z) satisfying the usual
compatibility conditions,

e to a monoidal category with unit (%, ®, 1) are naturally attached two functorial
isomorphisms r: X ® 1 — X and 1: 1 ® X — X, denoted respectively o and /3
in [KS06, Lem. 4.2.6].

Example 1.2.1. (i) We regard the ordered set (R, <) as a category that we simply
denote by R and we regard R, as a full subcategory. The categories R and Rxg
endowed with the addition map + are monoidal categories with unit, denoted (R, +)
and (Rso, +), respectively.

(i) Let X be a good topological space. The category (D(kxyx,o)) is a monoidal
category with unit the sheaf ka.

(iii) If o is a category, then the category (Fct(/, @7),0) is a monoidal category with
unit the object id,,.

Let I be a closed interval of R. We assume
(1.16)  either I =[0,a] or I = [—a, a] for some a > 0.

We consider [ as an ordered set and we denote by I< the associated category, a full
subcategory of (R, <). Hence, Ob(I<) = I and Hom,_(a,b) = pt or = @ according
whether @ < b or not. Although it has not been precisely defined, we shall look at /<
as a “partially monoidal subcategory of (R, +)”.

Let (¢, ®) be a monoidal category and consider a presheaf K on /< with values in
€. For a € I, we write K, instead of K(a). Hence, we have “restriction” morphisms
Pap: Kp = K, for a,b € I,a < b satisfying the usual compatibility relations p, ;0 pp. =
Pac for a < b <cand p,, = id.

Definition 1.2.2. Let (¢, ®,1) be a monoidal category with unit.
(a) A monoidal presheaf (K, ¢g, ¢2) on I< with values in € is the data of :
(1) a presheaf K on I< with value in €,
(2) an isomorphism ¢g: 1 =% K,
(3) an isomorphism ¢s(a,b): K, ® K, = K., for a,b such that a,b,a +b € I,
these data satisfy the following conditions:

(i) the diagram below commutes for all a,b,a’,b' € I such that a < da/, b < ¥V,
a,b,a’,V,a+b,a +V €1I:

¢2(a’,b")

Koy ® Ky 2 Ky
Pa,a! DPp,b! l lpa+b,a’+b’
$2(a,b)
Ka X Kb ~ Ka+b-

9



1.2 Monoidal presheaves

Here, the vertical arrows are induced by the restriction morphisms.

(ii) For all a, b, c € I such that a+b,b+c,a+b+c € I, the diagram below commutes

a(K(vivaC)
_—

(Ko ® Kp) @ K. K, ® (K, ® K.)

. (a,b)®idl lid B2 (b,c)
Koy @ K, K, ® Kpie
. (a+b,c)l \L(ﬁz(a,b—l—c)
Koypre Koypre-

(iii) For all a € I, the diagrams below commute

IK(L TKq

1® K, K, K, 1 K,
do®idg, l ‘ idg, ®¢ol ‘
Ko K, 2% K, K, ® Ky 2% K,

(b) Let K and K’ be two monoidal presheaves on /<. A morphism of monoidal
presheaves n: K — K’ is a morphism such that for every a,b € I such that a+b € [
the following diagram commutes

K, ® K, —" - K' @ K!
@mml l%ww

Na+b /
Koty Kot

(c) We denote by Fun®(I°P, €) the category whose objects are the monoidal presheaves
on /< with values in 4" and the morphisms are the morphisms of monoidal presheaves.

Assuming that I = [0, a], the inclusion functor i,: I< — R induces a functor

(1.17) iy s Fun®(RY, €) — Fun®(I°°, %), F +— F oi,.
Similarly, if I = [—a, ], the inclusion functor j,: I< < R>( induces a functor
(1.18) 7% Fun® (R, €) — Fun®(I®, %), F + F o j,.

Theorem 1.2.3. Assuming that I = [0, ], the functor i¥, in (1.17) is an equivalence
of categories. Similarly, assuming that I = [—a«,a, the functor ji in (1.18) is an
equivalence of categories.

Proof. (A) Let us first treat the case I = [0, a].
It follows from [Kas95, Ch XI.5] that we can assume that % is a strict monoidal category.
We set A = £.

10



1.2 Monoidal presheaves

(i) We start by showing that i is essentially surjective. For that purpose, given a
monoidal presheaf K on I, we will construct a monoidal presheaf &: R>y — ¢ such
that it R ~ K.

(i)—(a) For a > 0 we write a = n\ + r, with 0 <r, < A. Then, one sets

(1.19) R =K,® - 9K\® K,,.
—_——

n

(i)—(b) We now construct the restriction morphisms p,p. For a < b < A, p,; is given
by the definition of the presheaf K. Let us write a = m -A+r, and b =n-X+rn,
with 0 < 74,7, < A. Since 0 < a < b, m < n. If m = n, then r, < r, and we set
Pap = (idK, )™ 0 pror,-

Now assume m > n. Notice that

-ﬁb ~ (K)\)Om OKA O(K)\)o(n—m—l) OKrb
ﬁa ~ (K)\>OmOK7‘a O(K())o(n—m—l) OKO.

. —m—1
Hence, we set pap := (idk, )°™ © proa ©(Pox)° """ 0 Po,r,.-

(i)—(c) Let us construct the isomorphisms ¢o(a1,as): K, @ Ray = Raytay, fOr ag, a9 €
]RZO' Write

a;=n;-a+r;, 0<r,<X\ i=1,2.

ri, A éy (i)
Since r; + A < o, K, ® K ¢2(: ) K, 4 R K, ® K,.. We set

S; = ¢2_1()\, ’f’i) o QSQ(’I’};, )\)
Let n € N and consider the map
Vi = (1P ®s;) 0. 0 (idf @s; @ i T P) oo (s; @ idP ).
We now define the map ¢o(ag, as): Rey ® Ry — Rayta, Dy setting
¢2(a1, a2) = (idK;Q(Tq«FnQ) ®¢2(T1, 7”2)) o (ld}%zl ®7vb1,n2 X idKr2>-

By construction, ¢;(aq,as) is an isomorphism.

It is straightforward to check that £ is a monoidal presheaf on R>( and that i} & ~
K.
(ii)-(a) Let us prove that ¥ is faithful. Let f,g: 8 — & be two monoidal morphisms
between monoidal presheaves on Rsg. Assume that i} (f) = i%(g). Hence, for every
0<a<a, f, =g, and it follows from the definition of a monoidal morphism that for
every b € Rso, fo = gs.
(ii)-(b) Let us show that 7}, is full. Let & & € Fun®(R%,, %) and let f: i’ & — i’ R be
a monoidal morphism. For a € Rxg, we write a = n\ + 7, with 0 < r, < A\. We define
the morphism f, as the composition

;\®n®f7‘a

Ro = A" ® Ry, R @ R~ &
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1.3 Thickening kernels and interleaving distance

The family of morphisms (f,)acr., defines a monoidal morphism § : & — &' such that

Za(f) =f.

(B) Assume now that I = [—a,a]. Part (A) of the proof applies when replacing the
interval [0, a] and R>q with the interval [—a, 0] and R<,. Then combine these two cases.
Q.E.D.

1.3 Thickening kernels and interleaving distance

Let us first recall that a categorical axiomatic for interleaving distances was developed
in [BdSS15,dSMS18]. Here, we do not work in an abstract categorical setting but re-
strict ourselves to the study of kernels for sheaves, a natural framework for applications.

Definition 1.3.1. Let X be a good topological space.

(a) A thickening kernel is a monoidal presheaf £ on (Rx, +) with values in the monoidal
category (DP(kxxx),0).

(b) The thickening kernel K is a bi-thickening kernel if it extends as a monoidal presheaf
on (R, +).

In the sequel, for a thickening (resp. a bi-thickening) kernel R, one sets 8, = £(a)
for a > 0 (resp. for a € R).
In other words, a thickening kernel is a family of kernels &, € D®(kxy) satisfying

ﬁa Oﬁb ~ ﬁa_;_b, ﬁo ~ kA for a c RZO

and the compatibility conditions of Definition 1.2.2.
We shall often simply write “a thickening” instead of “a thickening kernel ”.

Remark 1.3.2. Let I = [0,a]. Note that if the thickening (or the bi-thickening) &
exists, then it is uniquely defined by its restriction to [0, ], up to isomorphism. This
last isomorphism is unique in the following sense.

Denote by K; the monoidal presheaf a — ka, on I<. Given two thickenings K, and
Ko and isomorphisms of monoidal presheaves

92ﬁ1|]i>K[, 9/1ﬁ2|[i)K],

then there exists a unique isomorphism of monoidal presheaves \: 8 =% K, such that
A =0""10o60. (Here we use the notation «|; instead of i’ as in (1.17).)

Example 1.3.3. (i) The constant presheaf a — ka is a thickening kernel called the
constant thickening on X and simply denoted ka (or ka, if necessary).

(ii) Let X; (i = 1,2) be two good topological spaces and let &; be a thickening kernel
on X;. Then K& X R, is a thickening kernel on X; x X5. This applies in particular when
R; is the constant thickening on X; or Xs.

(iii) Let (X, dx) be a metric space. We shall prove in Theorem 2.1.6 below that, under
suitable hypotheses, there exists a thickening kernel & with K, = ka, for 0 < a < ay.

12



For S a good topological space, we sometimes denote by R¢ x/s the thickening kernel
ka, X R.

(iv) Another example of a thickening kernel will be given in § 3.1 in which we use the
kernel of [GKS12] associated with a Hamiltonian isotopy.

The next definition is mimicking [KS18, Def. 2.2].
Definition 1.3.4. Let £ be a thickening kernel on X, let F, G € D"(kx) and let a > 0.

(a) One says that F' and G are a-isomorphic if there are morphisms f: 8,0 F —
G and ¢g: R,0G — F which satisfy the following compatibility conditions: the
composition

fogoF 221 g 0G4 F
and the composition

R2GOGM>RGOFL>G

coincide with the morphisms induced by the canonical morphism pg9,: 82, — Ro.

(b) One sets
distg(F, G) = inf<{+oo} U{a € Rsp; F and G are a—isomorphic})

and calls distg(+, *) the interleaving distance (associated with RK).

Note that if F' and G are a-isomorphic, then they are b-isomorphic for any b > a.
The next result show that the interleaving distance distg is a pseudo-distance on
D" (k).

Proposition 1.3.5. Let & be a thickening kernel on X and let F,G,H € D"(kx).
Then

(i) F and G are 0-isomorphic if and only if F ~ G,
(il) distg(F,G) = distg(G, F),
(iii) distg(F,G) < distg(F, H) + distg(H, G).
The proof is straightforward.

Remark 1.3.6. It is proved in [PSW21] that if X, is a b-analytic manifold (see
[Sch20]) endowed with a good distance, the pseudo-distance distg becomes a distance
when restricted to the category DR_.(kx. ) of sheaves constructible up to infinity. In
particular, on any real analytic manifold X, distg becomes a distance when restricted
to constructible sheaves with compact support. Let us also mention the paper [Crul9]
in which it is shown that the category D3 .(kx) is not metrically complete.

2 The interleaving distance on metric spaces

From now on and until the end of this section, unless otherwise stated, we assume that
X is a good topological space.

13



2.1 'Thickening of the diagonal

2.1 Thickening of the diagonal

Let (X, dx) be a metric space. For a > 0, 2o € X, set

( Bu(w) = {z € X;dx(x0,2) < a},

B (o) = {z € X;dx(xo,x) < a}, (here, a > 0),
Ay ={(z1,22) € X x X;dx(21,22) < a},
A ={(z1,12) € X x X;dx(x1,72) < a}, (here, a > 0),
7 = {(l’l,l'g,t) e X x X x Rzo;dx(l'l,l’g) <t t< Oéx},
Qr = {(l’l,l’g,t) e X x X x ]R>();dx(l'1,l'2) <t t< Oéx}.

(2.1)

\

Definition 2.1.1. A metric space (X, dy) is good if the underlying topological space is
good and moreover there exists some ax > 0 such that for all 0 < a,b with a+b < ay,
one has

(i) for any xy, z2 € X, B,(x1) N By(x2) is contractible or empty (in
particular, for any = € X, B,(z) is contractible),

(ii) the two projections ¢; and ¢y are proper on A,
(111) Aa o Ab = Aa—i—b-

(2.2)

Clearly, in this definition, ax is not unique. In the sequel, if we want to mention
which ax we choose, we denote the good metric space by (X, dx, ax).

Let U be an open subset of a real C%-manifold M. Recall (see [KS90, Exe. I11.4])
that U is locally cohomologically trivial (l.c.t. for short) in M if for each # € U \ U,
(RI'g(kar))e ~ 0 and (RIy(kar)). >~ k.

We shall say that U is locally topologically convex (L.t.c. for short) in M if each z €
M admits an open neighborhood W such that there exists a topological isomorphism
¢: W =5V, with V open in a real vector space, such that ¢(/W NU) is convex. Clearly,
if U is L.t.c. then it is l.c.t.

Moreover, the natural morphism ky — kj; defines a section of Hom (ky, ky) ~
Hom (ky ® kg7, kar), hence defines the morphisms:

kU — D/]\/[kU? kﬁ — D/]\/[kU

When U is l.c.t., then these morphisms are isomorphisms. If moreover, U is l.t.c., then
these sheaves are cohomologically constructible.
We shall also encounter the hypotheses:

( The good metric space X is a C%-manifold and
(a) for 0 < a < ay, the set A? is L.t.c. in X x X,
(2.3) (b) the set QT is Lt.c. in X x X x] — 00, ax]|.

(c¢) For z,y € X, setting Z,(z,y) = B.(x) N BS(y), one has
RINX:Kkz,(2y) =0 for z #yand 0 < a < ay.

Therefore
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2.1 'Thickening of the diagonal

Lemma 2.1.2. Let (X,dx) be a good metric space satisfying (2.3).

(a) The sheaves ka, and kas are cohomologically constructible and dual one to each
other for the duality functor D'y, .

(b) The sheaves kz and kq+ are cohomologically constructible and dual one to each
other for the duality functor D'y v, g.

The next hypothesis will be used in order to apply Theorem 1.1.6 and we shall give
in Lemma 2.1.3 below a natural criterion in order that it is satisfied.

(2.4) {The good metric space X is a C"*°-manifold and, for 0 < a < ay,

SS(ka,) N (T X x T*X) C Th, X x X.

Lemma 2.1.3. Let (X,dx) be a good metric space. Assume that X is a C*°-manifold,
the distance function f:=dx: X x X — R is of class C* on W := A°\ A for a < ax
and the partial differentials d,f and d,f do not vanish on W. Then (2.4) is satisfied.

Proof. Apply [KS90, Prop. 5.3.3]. Q.E.D.

We shall obtain in Theorems 2.6.1 and 3.2.3 large classes of examples in which
hypotheses (2.2), (2.3) and (2.4) are satisfied.

Lemma 2.1.4. Let (X,dx) be a good metric space.
(a) For every a,b >0, ka, oka, >~ ka, oka,.
(b) For any 0 < a,b with a +b < ax,

(2.5) ka, oka, ~ka,,,

and the correspondence a — ka, defines a monoidal presheaf on [0, ax| with values
in the monoidal category (D®(Kxxx),0).

Proof. (a) Recall Notations (1.3). Since v™'ka, =~ k,-1(a,) = ka,, the result follows.
(b) We shall follow the notations of (1.1) (with X; = X for all 7). Setting A, X2 A, =

szlAa N qz_g,lAb, we have
Dk, © gk, ~ k
Q1o Kn, ® Goz Ka, ™= KA, xon,-

The map q13: A, X2 Ay = Ay is proper, surjective and has contractible fibers by Hy-
pothesis (2.2). Therefore, Rqi3/ka,x,a, ~ ka,,, by Lemma 1.1.3. The other conditions
in Definition 1.2.2 are easily checked. Q.E.D.

We shall refine Definition 1.3.1.
Definition 2.1.5. Let (X, dx, ax) be a good metric space.

(a) A metric thickening kernel of the diagonal is a thickening kernel whose restriction
to [0, ax] is isomorphic to the monoidal presheaf a — ka, on [0, ax].
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2.1 'Thickening of the diagonal

(b) A metric bi-thickening kernel is a bi-thickening kernel whose restriction to Rsq is
a metric thickening kernel.

When there is no risk of confusion, (that is, almost always) we shall simply call a
metric thickening kernel, “a thickening”.

Note that if the metric thickening (or bi-thickening) exists, then it is unique up to
isomorphism. This last isomorphism is unique in the sense of Remark 1.3.2.

Theorem 2.1.6. Let (X, dx, ax) be a good metric space. There exists a metric thicken-
ing R of the diagonal. Moreover, for each a > 0, the two projections q1,q2: X x X — X
are proper on supp Rq.

Proof. The first part of the statement follows from Lemma 2.1.4 and Theorem 1.2.3.
The properness of ¢; and go on supp K, for 0 < a < « follows from Hypothesis (2.2).
The general case follows from the construction of the kernel. Q.E.D.

Corollary 2.1.7. In the preceding situation, let Y be a good topological space and let
L e Db(kXXy). Then

RaoL 5 R, 0 L fora > 0.

Non proper composition for the distance kernels

Proposition 2.1.8. Let (X,dx,ax) be a good metric space satisfying (2.3) and (2.4).
Then for a > 0, and for smooth real manifolds X; (i = 2,3) setting X = X1, we have
for any L; € D*(kx,,) withi=1,2, j =i+1,

Ro0(Ly © L) ~ (Ra 0 Ly) © Lo.

Proof. (i) Assume first that 0 < a < ay. In this case, R, = ka, is cohomologically
constructible and ¢; is proper on its support. Using hypothesis (2.4), we may apply
Theorem 1.1.6.

(ii) Assume that the result has been proved for &, (for any kernels L; and Ls) for some
b > 0 and let us prove that it is true for Ky, as soon as 0 < a < ax. We have

Rpia0(L10 Lo) = Ryo(Re0(L1 0 L)) = Ry o((Re0L1) 0 Ly)
~ (Rbo(ﬁaOLl))r(leLg ~ (ﬁa_i_bOLl)rg)LQ
Q.ED.

Thickening and convolution

In [KS18], the space X is the Euclidian space R"™ and the composition ka, o is replaced
by the convolution kg, * where B, is the closed ball of center 0. One can proceed
similarly if the good metric space (X, dy) is a topological group.
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2.2 Bi-thickening of the diagonal

Definition 2.1.9. A good metric group (X, dx,m,e), or simply (X,dy) for short, is
a good metric space (X, dx) which is a topological group for the topology induced by
the distance, with multiplication m and neutral element e, and such that the distance
is bi-invariant. In other words,

dx(l’l, 1'2) = dx(l'll'g,l’gl'g) = dx(l'gl’l, 1'3113'2) fOI" T1,T9,T3 € X
One defines the convolution of F,G € D*(ky) by
F+G:=Rm(FRG).

Proposition 2.1.10. Assume that X is a good metric group. Let B, be the closed ball
of radius a centered at the unit e. There is a canonical isomorphism of functor

ka, 0~ kp, *.
Proof. Consider the map v: X x X — X x X, (21, 22) = (2125 ", 72). One has A, =
v7lgrH(Ba), v oyt ~ ¢y and mowv = q;. Therefore, for F' € DP(kyx),
kp, xF = Rmi(kp, X F)
~ RmRuv(v ¢ kg, ® ¢ 'F) ~ ka,oF.

We have used Ruvy(v ¢, 'kp, ®¢; ' F) ~ ¢; 'kp, ® Ruigy ' F ~ kg, K gy ' F which follows
from v o vt ~id. Q.E.D.

2.2 Bi-thickening of the diagonal

In this subsection, (X, dx, ax) is a good metric space satisfying (2.3). When necessary,
we denote by X; (i =1,2,...) various copies of X.
For a > 0, we define the functors £, and R, by

L
(2.6) £, =Pg, = R,0= qu,(ﬁa ®qy t( )), R, = Vg, = R, RHAom (ﬁa, q (-))
Recall that the functor 2R, is right adjoint to the functor £, (see [KS90, Proposition
3.6.2]).

Lemma 2.2.1. Let (X,dx,ax) be a good metric space satisfying (2.3). For 0 < a <
ax, ka, o(kas ® 5 wx) ~ ka.
Proof. Set S, = qi3 Aa N o3 A2. We have

ka, okas = Rauz(02ka, ® ga3kas) ~ Rausks,
Let (71,23) € X1 X X3 and set Z, = ¢35 (21, 23) N S,. Then Z, = B,(x1) N BS(x3) and
it follows from the hypothesis that (RqisKs, )@, ) =~ RI'(X2;kz,) ~ 0 for o # 3.
Therefore, Rqi3/kg, is supported by A C X;3 and we get
Rausi(ks, ® g5 'wx) =~ Rauai((ks, ® ¢i3ka) ® g5 wx)
~ R‘qls!(kSaﬂqulA ® q;lWX) = ka.

The last isomorphism is associated with the morphism kj -1\ ® ¢ wx — qiska
which is deduced from the morphism k, -1, — ¢z ka. (Recall that Z, N g3 A is
open in ¢z A.) Q.E.D.
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2.2 Bi-thickening of the diagonal

For 0 <a < ax set R, = ka, and for 0 < a < ax, set R_, = kao ®q2_1wX.

Lemma 2.2.2. Let (X,dx,ax) be a good metric space satisfying (2.3). The map
a — R, defines a monoidal presheaf on [—ax, ax] with values in the monoidal category

(DP(kxxx),0).

Proof. (i) For 0 < b < a, ka, o(kap ®¢; 'wx) =~ ka, ,. This follows from Lemmas 2.1.4
and 2.2.1 and ka, okay >~ ka, , oka, okag.

(ii) For 0 < a,b,a +b < ax, kaso(kag ® gy 'wx) ~ kas, . This follows from (i),

L
Lemma 2.1.4 and (kag ® ¢ 'wx) o(kas ® ¢y 'wx) ®ka,,, =~ ka.

L

(iii) For 0 < b < a < ax, kas oka, ~ kao . Indeed, apply kae , ® ¢5 'wx o to both

sides of (ii). Q.E.D.
Applying Theorem 1.2.3, we get:

Proposition 2.2.3. Let (X,dx,ax) be a good metric space satisfying (2.3). Then
R extends as a metric bi-thickening kernel and, for 0 < a < ax, one has R_, =~
ke ®q2_1wX. Moreover, R, ~ K_,0 fora > 0.

There is indeed a better result. Set
(27) 1= (—Oéx,Oéx).
Theorem 2.2.4. Let (X, dx,ax) be a good metric space satisfying (2.3). There ezists
an object K% € DP(kxxxxs) and a distinguished triangle

_ +1
(2.8) Kiax @< @ 'wx = K= Kjaywasn = -

In particular, K% y—qy ~ R, fora € I.
Proof. We shall mimick the construction in [GKS12, Exa. 3.10]. We have the isomor-
phism
(29) Rotom (kAX{t=0}7 kXxXxR) = kAx{t:O} & Q2_1w®_1 [_1]
Indeed, kax g0y =~ kalky—gy and it follows from [KS90, Prop. 3.4.4] that D'y, v, p(kaX
k{t:()}) ~ D/X><XkA X Dka{t:()}. Moreover, DlXxXkA ~ 5)(!5)!( kX><X >~ kA ® qz_le and
D],Rk{t=0} >~ k{t:()} [—1]

By Lemma 2.1.2, we also have the isomorphism
(210) R ¢om (k{dx(x7y)§_t}, kXxXxR) ~ k{dx(x,y)<—t} te (—CL, 0)

These isomorphisms together with the morphism k4, (»y)<—} — kaxq—oy induce
the morphism ka =0y ® ¢ WG -1] — K{dy(zy)<—1}- Hence, we obtain

K(ax(@y<ty = Kaxii=0p = Kiax(@g)<—t) @@ wx[+1]

Denoting by 1 the composition, we get the distinguished triangle (2.8). Q.E.D.
Remark 2.2.5. It would be possible to extend K to a sheaf 89' € D™®(kxxxr) by
using Theorem 1.2.3 and using the monoidal category (DP(kxxxxr), ch), where & is an

operation adapted from [Tam12|, composition with respect to X and convolution with
respect to R.
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2.3 Properties of the interleaving distance

2.3 Properties of the interleaving distance

We shall extend to metric spaces a few results of [KS18, § 2.2]. In this section, (X, dx)
is a good metric space and R is the metric thickening of the diagonal. Recall the
interleaving distance distg of Definition 1.3.4. We set

(211) diStX = diStﬁ.
Lemma 2.3.1. Let F' € DP(ky) and let a > 0. Then
RI(X; Ra0 F) % RI(X; F) and RTW(X; R0 F) % RIL(X; F).

Proof. Tt follows from the definition of the functor K, that is it enough to check these
isomorphisms for 0 < a < ay, thus replacing K, with ka,. Consider the Cartesian
diagram

q1 X
X/
pt

Using the fact that ¢; and ¢» are proper on A, we get the isomorphisms

L L

RI(X;ka, o F) ~ Ry, Raqi(ka, ®¢3'F) ~ Res, Rau, (ka, ® ¢; ' F)
L L

~ Rq;,Ree,(ka, ® ¢ 'F) ~ Rqy Rz (ka, ® g5 ' F)

L
~ Ry, (Rgaka, ® F)
~ Rq, F ~RI'(X;F).

Here we use the isomorphism Rgaka, ~ kx which follows from the fact that the fibers
of ¢go: A, — X are compact and contractible.
A similar proof holds for RI'.(X; F). Q.E.D.

Proposition 2.3.2. Let F,G € DP(ky). If distx(F,G) < +oo, then RI'(X; F) =~
RI(X;G) and RT.(X; F) ~ RT.(X;G).

Proof. This follows immediately from the definition of the distance and Lemma 2.3.1.
Q.E.D.

Proposition 2.3.3. Let F' € D"(ky) and assume that supp(F) C B(zg,a) with a <
ax. Set M = RI'(X; F') and denote by M,, the sky-scraper sheaf at {xo} with stalk M.
Then distx (F, M,,) < a.

We shall mimick the proof of [KS18, Exa. 2.4].
Proof. We have

kAa o Mxo x~ MB(xo,a)v
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2.3 Properties of the interleaving distance

the constant sheaf on B(xg,a) with stalk M extended by 0 outside of B(zg,a).
Denote by ax: X — pt the unique map from X to pt. The morphism a)_(lRa x«F =
F defines the map Mx — F and F' being supported in B(zg,a), we get the morphism
g:. kAa OMIO ~ MB(mo,a) — I
On the other hand, we have

L
(ka, © F)zy 2 R (g ' (20); ka, ® g3 ' F)

L
~ RF({ZL’Q} X X; {1'0} X kB(mo,a) ® Q2_1F)
~ RI'(B(zg,a); F) ~ M

which defines f: ka, o F' — M,,. One easily checks that f and g satisfy the compati-
bility conditions in Definition 1.3.4. Therefore distx (F, M,,) < a. Q.E.D.

(2.12)

In particular, a non-zero object can be a-isomorphic (see Definition 1.3.4) to the zero
object.

Corollary 2.3.4. Let F,G € DP(kx) and assume that there exists a ball By, (a) with
a < ax which contains the supports of F' and G. Then distx (F,G) < oo if and only if
RI(X; F) ~ RI'(X; G).

Proof. (i) Assume M :=RI'(X; F) ~ RI'(X;G). Then
diStx(F, G) S diStx(F, M:cg) + diStx(G, Mxo)
and it remains to apply Proposition 2.3.3.

(ii) The converse assertion is nothing but Proposition 2.3.2. Q.E.D.

Corollary 2.3.5. Consider two distinguished triangles Fy — Fy — F3 *L and Gi —

Gy — G Lo D"(kx). Assume that there exists a ball B,,(a) with a < ax
which contains the supports of all sheaves F;,G; (i = 1,2,3) and also assume that
distx (F;, G;) < oo for i =1,2. Then distx(F3,G3) < 00.

Proof. 1t follows from Corollary 2.3.4 that RI'(X; F;) ~ RI'(X; G;) for ¢ = 1,2. Since
the functor RI'(X; ) is triangulated, this isomorphism still holds for i« = 3. Then the
result follows again from Corollary 2.3.4. Q.E.D.

Locally constant sheaves

Recall that an object L € D"(ky) is locally constant (resp. constant) if, for all j € Z,
H(L) is a locally constant (resp. constant) sheaf.

Lemma 2.3.6. Let L € D(kx) and assume that L is locally constant. Let a > 0.
Then K,oL == L.

Proof. We may choose a such that a < ax and replace K, with ka,. It is then enough
to prove that, for x € X, the natural morphism (ka, o L), — L, is an isomorphism.
We may also assume that L is a constant sheaf in a neighborhood of B,(z). Then
by (2.12), we get

(ka, o L), ~ RI'(B,(z); L) ~ L,.
Q.E.D.

20



2.4 The stability theorem

Proposition 2.3.7. Let F,G € D"(ky). Assume that F is locally constant and that
distx (F, G) is finite. Then F is a direct summand of G. In particular, if both F and
G are locally constant, then F ~ G.

Proof. By the hypothesis and Lemma 2.3.6 we have morphisms F' — G — F such that
the composition is an isomorphism. Q.E.D.

It follows that the interleaving distance is not really interesting when considering locally
constant sheaves.

2.4 The stability theorem

Let X be a good topological space and let (Y, dy) be a good metric space. We denote
by &Y the kernel on Y x Y. It defines an endofunctor of DP(kxy), K + K o &,. We
then get a pseudo-distance on DP (kxxy) that we call a relative distance and denote by

diStXXy/X.

Theorem 2.4.1 (The stability theorem). Let X be a good topological space and let
(Y,dy) be a good metric space. Let K, Ky € D’(kyyx) and let F € DP(kx). Then

(a) disty (Kq o F, Kyo F) < disty.x/x (K1, K»).
(b) Assume moreover that X and Y are C*-manifolds and that (Y, dy) satisfies (2.3)
and (2.4). Then disty (K, 0 F, Ky 6 F) < disty . x/x (K1, K2).
Proof. (a) We have
RV o(K;oF)~ (RY o K;)oF, i=1,2.

Then the result follows immediately from Definition 1.3.4.
(b) The proof is the same as in (a) after replacing o with o and using Proposition 2.1.8.
Q.E.D.

Let X and Y be as above and let fi, fo: X — Y be two continuous maps. As usual,
one sets

dist(f1, f2) = sup dy (f1(x), fa(x)).

zeX

Corollary 2.4.2 ((The metric stability theorem, see [KS18, Th. 2.7])). Let X be a good
topological space and let Y be a (real, finite dimensional) normed vector space, dy the
associated distance. Then disty (Rf1,F,Rfo F) < dist(f1, f2). If X is a C*°-manifold
and Y is an Fuclidian vector space, the same result holds with R f, replaced with R f,.

Proof. Let a = dist(fi, f2). Of course, we may assume that a < oo. Denote by I'; the
graph of f; in Y x X. Then

(2.13) Iy, C AY Ty, i,7 € {1,2}.
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2.4 The stability theorem

Moreover, for f = f; or f = f,, one has
(214) kA(}; Oka ZkA}{ol"f'

Set K; = kr, (i =1,2). By (2.13) and (2.14) , we get morphisms kay o Ky, — K,
and kay o Ky, — K, satisfying the conditions of Definition 1.3.4. Therefore,

(215) diStyxx/X(Kfl, KfQ) S a = diSt(fl, fg)

Since RfjF ~ K;o F and Rf; . F ~ K; ki F', the result follows from Theorem 2.4.1 since
hypotheses (2.3) and (2.4) are satisfied if Y is an Euclidian vector space. Q.E.D.

Remark 2.4.3. In [KS18, Th. 2.7] the proof for R f, and R f; is almost the same and X
is only assumed to be a good topological space. The reason why the non proper case is
easier in the situation of [KS18] is that these authors use the convolution functor kg, *
instead of ka, o.

More precisely, consider the diagram in which Y is a real finite dimensional normed
vector space, Y and Y; are two copies of Y and s is the map (y1,y2) — y1 + ya2, s13 is

the map (y1,x,y2) — (y1 + y2, T):

YI x X xY,
P12 l D23
S$13
Yio Y xX X xY,
\1l \hl Xz\\
s P2
Y X Ys.

Let F' € DP(ky), K € DP(ky,xx) and denote by B, the closed ball of Y; with center 0
and radius a > 0. Set for short kp := kpg,. Then

n L
kp* (K0 F) ~ Rs,(kpRRg, (K ®q'F))

12

L
RS*Rplg*(kB X (K X ql_lF))
L
Rp1,Rs13. (kg X (K ® ¢, ' F))

12

L
Rpi, Rsis, (kg X K) @ si3py ' F)

12

12

L n
Rp1.(Rsis.(kp R K) @ p; ' F) ~ (kg K) 0 F.

Here, the 2nd isomorphism follows from the fact that kg being cohomologically con-
structible, the functor kg X « commutes with (non proper) direct images thanks
to [KS90, Prop. 3.4.4]. The 5th isomorphism follows from the fact that s is proper
on supp(kp X K).
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2.5 Lipschitz kernels

2.5 Lipschitz kernels
A general setting

We consider two good metric spaces (X, dy) and (Y, dy). To avoid confusion, we denote
by ax and ay the constants appearing in (2.2), by AX and AY the thickenings of the
diagonals, by &5 and R the associated thickening kernels and by py, and p}, the
restriction functors. Recall the notation for F' € DP(ky)

(I)K(F) =KoF.

Definition 2.5.1. Let 6 > 0 and let K € DP(ky,x). We say that K is a d-Lipschitz
kernel from X to Y if there exists p > 0 such that p < ax and dp < ay and there
are morphisms of sheaves o,: &Y o K — K o 8% for 0 < a < p satisfying the following
compatibility relations:

(i) for 0 < a < b < p, the diagram of sheaves commutes:
RY oK -2~ Kogf

(2.16) Pg;jbl lpﬁb
Ay o K 7"~ Ko 8%,

(ii) for 0 < a, b and a+ b < p, the diagram of sheaves commutes:

ﬁ}/;)oa'a O'boﬁg(

CHICY ¢ RY o Ko &X KogRX,.

(2.17)

Ta+b

A Lipschitz kernel is a §-Lipschitz kernel for some ¢ > 0.

Note that thanks to the hypothesis that a < ax, we could have written kx instead
of & and similarly with Y instead of X. We have chosen to use the notation & thanks
to the next lemma.

Remark 2.5.2. Of course, a Lipschitz kernel form X to Y is not necessarily a Lipschitz
kernel from Y to X. However, when there is no risk of confusion, we shall simply call
K “a Lipschitz kernel”.

Lemma 2.5.3. If K is a Lipschitz kernel, then for all a > 0 there are morphisms
of sheaves 0,: 8, 0o K — K o &% and moreover (2.16) and (2.17) are satisfied for all
a,b>0.

Sketch of proof. Assume we have constructed the morphisms o, for a < A and let
0 < b < p. One defines the morphism

Tatd: Ry 0K = kay 0 &5, 0K
— kyr o Ko &Y
&b
— Kokpx of) ~ KofY,.

The fact that o, is well-defined and the verification of the compatibility relations (2.16)
and (2.17) are left to the reader. Q.E.D.
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2.5 Lipschitz kernels

The next result is essentially a reformulation in the language of kernels of [dSMS18,
Th. 4.3].

Theorem 2.5.4 ((The functorial Lipschitz theorem)). Let (X, dx) and (Y, dy) be good
metric spaces and let K € D(kyyx) be a d-Lipschitz kernel from X toY. Let Fy, Fy €
D" (k).

(a) One has disty (K o Fy, K o Fy) < § - distx (Fy, F).

(b) Assume moreover that X and Y are C*-manifolds satisfying (2.3) and (2.4).
Then disty (K '© Fy, K 6 Fy) < 6 - distx(Fy, F3).

Proof. (a) Let Iy, Fy, € DP(ky) and assume that I} and F, are a-isomorphic. Hence,
there are morphisms

fiROo0F = F, g foF—F

satisfying the conditions of Definition 1.3.4. Applying the functor Ko we get the
morphisms given by the dotted arrows

KoﬁfoFlleoFg KoﬁfoFngoFl
; 7

ﬁ};oKo..Fl ﬁ};loKo..Fé

Now consider the diagram

KoﬁzaoFl ¢K(£a(f)) KOﬁZ(OF2MKOF1.
7
Sf (oa)] UQT
Y (@
ﬁ};oKoﬁffoFl a2 (/) };loKon
Sg/a(o'a)]\
R0 Ko Fl

The two diagrams with dotted arrows commute by the definition of the dotted arrows
and the square diagram commutes by Definition 2.5.1 (i). The composition of the two
vertical arrows is given by oy, by Definition 2.5.1 (ii). The composition of the two
horizontal arrows is given by pfoa. Therefore, the composition of the two dotted arrows
is given by pgf%am = p(’)f%a. The same result holds when interchanging the roles of F}
and Fj.

(b) The proof is the same as in (a) after replacing o with o and using Proposition 2.1.8.
Q.E.D.

In particular, we get:
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2.5 Lipschitz kernels

Corollary 2.5.5. Assume that K € D"(kyx) is a §-Lipschitz kernel from X toY and
that there exists a 0~*-Lipschitz kernel L € D*(kxyy) fromY to X such that ®p . ~
idpb(kyy- Then for Iy, Iy € DP(kx), one has disty (K o [y, K o Fy) = § - distx (I, F3).

If X and Y are C*°-manifolds satisfying (2.3) and (2.4), then the same result holds
for K o I replaced with KSF.

Lipschitz correspondences

As above, we denote by X; and Y; (i = 1,2) two copies of X or Y. We keep the
assumptions and notations of the beginning of this section.
We assume to be given a subset S of Y x X and consider the diagram

(218) Yig X Xl }/2 X X12
Al})/ C Yo p\r S C Yo x Xy QIS Aé( C X
Y1 x X, Yy x Xy

We set
AY xy S =p5 (A) Npys(S) C Yia x X1, S xx AX = ¢51(S) N gz (AY) C Vs x X1

Note that AY oS = pi3(A} xy S) and SoAX = ¢3(S xx AX) are contained in
Y1 x X7 =Y, x Xy =Y x X. We shall consider one of the hypotheses (2.19) or (2.20)
below for some constants p,d > 0 such that p < ax and dp < ay.

(a) S is a closed subset of Y x X

) (b) the fibers of the projection pi3: A} Xy S — A} oS are contractible or
empty for 0 < b < ay,
(c) SoAX C AY oS for a < p.

(2.19

(a) S is a closed subset of Y x X
(2.20) < (b) there a closed embedding ¢: Y5 X X159 < Yj9 X X; such that pj3ot = ¢i3,
(c) o(S xx AX) C AY, xy S for a < p.

Theorem 2.5.6. Let S C Y x X and consider constants p,6 > 0 such that p < ax
and §p < ay. One makes either hypothesis (2.19) or hypothesis (2.20). Then kg €
D"(kyx) is a 6-Lipschitz kernel from X to Y.

Proof. (i) It is enough to construct a natural morphism of sheaves

(2.21) kay oks = ksokax for a < p (which implies da < ay).

1n)—(a ssume (2. . Dince the closed set o5 contains the closed set S o we
(ii)—(a) A (2.19). Since the closed set AY oS ins the closed set o A,
have a morphism of sheaves

(2.22) kA}S’ oS kSoAff-
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2.5 Lipschitz kernels

By Lemma 1.1.3 and the hypothesis, there is an isomorphisms and a morphism
kA}’aoS ~ kAaya oks, kgonx = ksokax.

Together with (2.22), this defines (2.21).

(ii) —(b) Assume (2.20). By this hypothesis, there is a natural morphism

(2.23) kAéanYS — tkgx ax.

Now remark that
k x ~ gk 5 Tk k ~ ptk 5 Ak
SxxAX == (12 Ks @ (o3 Kax, AY xy 8 = P12 Kax & Pag Ks.

By (2.23), we get the morphisms
L
kay oks =~ Rpug(pkax @ poyks) = Rpigikay «y s
L
— Rplgzb*ksmagf = Rplggb*(ql_zlks ® QQ_glkAgf)

L
~ qugl(qﬁlks ® q2_31kA§) ~ksokax.
We have thus constructed the morphism (2.21). Q.E.D.
Let f: X — Y be a continuous map. We set I'y = {(f(z),z) € Y x X}.

Corollary 2.5.7. Let f: (X,dx) — (Y,dy) be a 6-Lipschitz map. Then kr, is a 0-
Lipschitz kernel from X to Y.

Proof. (i) We shall check (2.19) with S =TI'y. Of course, this set is closed in ¥ x X.
(ii) Let us check (2.19) (b). One has

Ay xy S ={(y1,y2,2) €Y XY x X;dy(y1,y2) < b,yo = f(2)}.
For (y1,7) € Ay oS, qi3 (y1,2) N AY xy S is the set yo = {f(2)} if dy (y1,92) < b and
is empty otherwise.
(iii) Let us check (2.19) (c¢). One has

Aj 08 ={(y.2) €Y x X;3Y €Y, dy(y.y) < da, y' = f(x)},

SoAX. = {(1y2) €Y x X3’ € X, dy(z,2') < a, y = f(/)}.
Let (y,x) € So A and let 2/ € X be such that dx(x,2') < a, y = f(2'). Set v/ = f(z).
Then dy (y,y') < da since f is §-Lipschitz and therefore (y,z) € AY oS. Q.E.D.

Example 2.5.8. Let X = S', Y = R? and denote by S the graph of the embedding
j: St < R2. Then kg € DP(ky,x) is a d-Lipschitz kernel from X to Y with ¢ = %
and defines a fully faithful functor.

Corollary 2.5.9. Let (X,dx) and (Y,dy) be good metric spaces and let f: X — Y be
a 6-Lipschitz map. Let Iy, Fy € DP(ky).

(a) One has disty (RfiFy, RfiFy) <6 - distx (F, F).

(b) If moreover, X andY are C*°-manifolds satisfying hypotheses (2.3) and (2.4), then
diSty(Rf*Fl, Rf*FQ) S 0 - diStx(Fl, Fg)

Proof. First remark that for every F' € D’(kx), RfiF ~ kr, o F' and Rf.F' ~ kr, SF.
Then apply Corollary 2.5.7 and Theorem 2.5.4. Q.E.D.
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2.6 Some elementary examples

2.6 Some elementary examples
Vector spaces

The interleaving distance for sheaves on a (finite dimensional) real normed vector space
has been studied with great details in [KS18] and in fact this paper is a special case
and a guide for the present one. In loc. cit. the composition ka, o was replaced by the
convolution kg, which is equivalent (see Proposition 2.1.10). When the norm is not
Euclidian, we get an example where the whole theory developed here applies although
the metric space is not associated with a Riemannian manifold.

The next result is obvious.

Proposition 2.6.1. Let X = V be a real finite dimensional Fuclidian vector space
and let dx be the associated distance. Then (X,dx) satisfies hypotheses (2.2), (2.3)
and (2.4).

In the situation of Proposition 2.6.1, the bi-thickening kernel is given by

Q] - kAa 1fa20,
“ kAga[n] if a < 0.

More precisely, in this situation, the sheaf &' is described, up to isomorphism,
in [GKS12, Exa. 3.11] by the distinguished triangle in DP(kgnygnxr):

is 1
K{jo—yi<—ty[n] = K5 = Koy —

The real line

Let X = R be the real line. Recall that, k being a field, one has an isomorphism
(2.24) F~ @Hﬂ j] for F € DP(ky).

Hence, the study of objects of D”(ky) is reduced to that of objects of Mod(kx). But,
as it is well-known, there exist non zero morphisms between objects concentrated in
different degrees.

Constructible sheaves with compact support on R (over a field) are classified via the
famous theorem of Crawley-Boevey [CB14]. See also [Guil9] for a formulation in the
language of constructible sheaves and see [KS18, Th. 1.17] for the case of not necessarily
compactly supported sheaves. Distances on such sheaves are studied with great details
in [BG18]. Recall that in this setting the thickening of the identity is provided by the
following family of endofunctors of DP(kg), kp,*, a > 0, where B, = [—a, a).

2.7 Example: the Fourier-Sato transform

Consider first the topological n-sphere (n > 0) defined as follows. Let V be a real vector
space of dimension n+1, set V.= V\ {0} and S:=V/R* where R* is the multiplicative
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2.7 Example: the Fourier-Sato transform

group R.q. Define similarly the dual sphere S*, starting with V*. The sets
(2.25) P={(y,z) € S" x S;(y,z) >0}, I={(y,x) € S" x8;(y,x)> 0},
are well-defined. We define the kernel

(2.26) Ki = k; ® (ws- R kg).

Note that K; ~ R#Zom (kp,ws« Kkg), which is in accordance with [GKS12, eq (1.21)].
Moreover, K; ~ k; [n] up to the choice of an orientation on S*.
The Fourier-Sato transform g and its inverse v are the functors

(227) 3'/\ = kp o: Db(ks) — Db(ks*)Z o K[ = S'V

Theorem 2.7.1 (see [SKK73]). The functor §" and the functor §¥ are equivalences of
categories quasi-inverse to each other.

We shall give a proof of this result at the same time as we shall prove Theorem 2.7.4
below.

Now, we consider the n-sphere S" of radius 1 embedded in the Euclidian space R**!
and endowed with its canonical Riemannian metric. Denoting by || - || the Euclidian
norm on R"*! the map

R™IN\{0} = 8", x> /|||

identifies the topological sphere 8™ = (R"™! \ {0})/R™ and the Euclidian sphere S™.

The isomorphism R™ ~ R™ induces the isomorphism S" ~ S™* and we shall identify
these two spaces. When there is no risk of confusion, we write for short S:=S". Recall
that (using the notations defined in (3.8)):

Tini(S") =T, Teony(S™) = /2.
The next result is obvious and is also a corollary of Theorem 3.2.3.

Proposition 2.7.2. The metric space S satisfies (2.2), (2.3) and (2.4) when choosing
as < /2.

In particular, S™ admits a bi-thickening {£;}er.
Lemma 2.7.3. For 0 < a <b< /2, one has kas oka, [n] ~ ka, .
Proof. Consider the diagram
SxSxS

q12 q23

A CSxS S xS SxS DA,

For x1,z3 € S, set for short

Plo=AyN(Sx{zs}), If =AN({z1} xS).
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Denote by ¢35 the restriction of ¢13 to AS xs Ay. Then
Gz (x1,13) = {23 € S;ds(z1, 72) < a,ds(zs, x3) < b}

In other words, G5 (z1,73) is the intersection of an open ball of radius a and a closed
ball of radius b with a < b. It follows that

k[—-n] ifds(z,z3) <b—a
RI.(I* xs P’k = ’ ’
(s, s Fryi koxexs) {0 otherwise.

Q.E.D.

Theorem 2.7.4. The equivalence §" given by Theorem 2.7.1 induces an isometry
(D"(ks), dists) =2 (D"(ks-), distg-).

Proof of both Theorems 2.7.1 and 2.7.4 . Let us identify S” and the dual sphere S™*.
Then the sets P and I of (2.25) may be also defined as:

(2.28) P={(z,y) € S xS;ds(z,y) <7/2}, I={(r,y) €S xS;ds(x,y) <7/2}.

Since kAﬂ/z ~ kAW/4 o kAW/4 we have kp ~ R, /5. (It was not possible to deduce directly
this result form (2.28) since ag < 7/2.) Therefore kp o is an isometry and the inverse
of kp is given by R_, /o which is isomorphic to K7. Q.E.D.

Remark 2.7.5. A similar result holds for the Radon transform on real projective
spaces.

3 The interleaving distance associated with a Hamil-
tonian isotopy

3.1 General case

Let us briefly recall the main result of [GKS12] § 3. Consider a real C'"*°-manifold X,
its cotangent bundle mx: T*X — X endowed with the Liouville form ay and an open
interval I of R containing 0. Set as above T*X = T*X \ T%X, where T5X is the
zero-section, and still denote by 7x: T*X — X the projection. When there is no risk
of confusion, we may write 7 instead of mx.

Assume to be given a real C*°-function h: T*X x I — R homogeneous of degree 1
with respect to the fiber variable. Let ®, denote the flow associated with the Hamil-
tonian vector field H,. We assume that &, is well-defined on the open interval I C R.
Hence,

(3.1) Op: T*X x [ - T*X
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3.1 General case

and [GKS12, hypothesis (3.1)] is satisfied, that is, setting wn; = Pu(-,t), pus is a
homogeneous symplectic isomorphism of 7*X for each t € I and ¢, g = idju . To @y,
one associates

o, . )
Vg, = %: T*X x I —TT*X.

One recovers h by h = (ax, vs,).
Denote by Ay, C T*X xT*X xT*I the smooth conic Lagrangian manifold associated
with @, (see [GKS12, Lem. A.2]):

(3'2) Ah = {((I)h(l’, 5, t)> (Ia _€)> (t’ _h(éh(za 5, t)>t)))§ (l’,f) € T*X>t S [}

The main result of loc. cit. (see [GKS12, Th. 3.7]) is the existence of an object K" €
D™ (kxyxxxs) (denoted K therein) characterized by the two properties:

(3.3) SS(K™) € ApU Ty x5 s (X x X x I) and K"|—0y ~ ka.

Now we assume that

(3.4) {h is not time-depending, homogeneous of degree 1 with respect to the
"/ Uiber variable and the hamiltonian flow ® is well-defined on 7*X x R.

Note that since h is not time-depending, the hamiltonian flow & is well-defined on
T*X x R as soon as it is well-defined on T*X x I for some open interval I containing
0.

One has

(3-5) ¢h,a © ¢h,b = ¢h,a+b-

Therefore the object K" belongs to D™ (kxy xxr)-
For a € R, we set K" = K"|,_,.

Lemma 3.1.1. Assuming (3.4), we have the isomorphisms
(3.6) K!'oK}'~ K, fora,beR.

Proof. By (3.5), the two isotopies {®p 0 Pptter and {Pp o4t beer coincide. Their as-
sociated kernels are respectively K" o K" and T,,(K"), where T, is the translation
(x,2',t) — (z,2',t+ a). These two kernels are micro-supported by A and their restric-
tion at t = —a are isomorphic to k. They are thus isomorphic by the unicity of kernels
satisfying (3.3) and restricting to t = b, we get (3.6). Q.E.D.

Now we assume
(3.7) {the function h is non-positive.

In the sequel, we denote by (t;7) the coordinates on T*R. Therefore, A; C T*X x
T*X x TR and it follows from [GKS12, Prop. 4.8] that for a < b € R there are

natural morphisms
h h
pa,b . Kb _) KCL 3

satisfying the compatibility conditions of Theorem 1.2.2. Therefore we have:
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3.2 The case of Riemannian manifolds

Theorem 3.1.2. Assume to be given a real non-positive C®-function h: T*X — R
homogeneous of degree 1 in the fiber variable such that the associated flow ®y, is defined
on T*X x I for an open interval I containing 0. Then the family {Kh") cr defines a
monoidal presheaf 8" on (R, +) with values in (DP(kxxx), o).

(Recall that for a monoidal presheaf £ on (R, +) one sets R, := £(a).)

Remark 3.1.3. One shall not confuse the monoidal presheaf &, a presheaf on the
monoidal ordered set (R, +) with values in D®(kx x) and K", an object of D' (ky x xxr)-
The object K" is explicitly calculated in [GKS12, Exa. 3.10, 3.11] for the cases of the
Euclidean space and the Euclidian sphere.

Definition 3.1.4. We denote by dist;, the pseudo-distance on D"(kx) associated with
the monoidal presheaf &" (see Definition 1.3.4).

Remark 3.1.5. The notion of non-positive isotopy is due to [EKP06]. Let us also
mention that several distances naturally appear in symplectic topology (see for example
the recent paper [RZ]). As far as we know, the pseudo-distance dist;, on sheaves on X
is new.

3.2 The case of Riemannian manifolds

In this Section, we shall use some classical results of Riemannian geometry, referring
to [DC92, Chal6].

Consider a Riemannian manifold (X, g) of class C* and denote by dy its associated
distance. We assume

(X, g) is complete and has a strictly positive convexity radius 7cony,

(3.8) hence strictly positive injectivity radius riy;.

Recall that reony < 3 (see [Ber76]).

(3.9) For (X, g) satisfying (3.8), we choose 0 < arx < Teony-

Note that a compact Riemannian manifold satisfies hypothesis (3.8).

Consider the cotangent bundle 7" X and its zero-section T%X. The isomorphism
TX =5 T*X endows T*X with a metric and we denote by ||£||, the norm of the vector
EelrX

For the reader’s convenience, we recall some of the notations (2.1) and introduce
some New ones:

Bq(xo) = {z € X;dx(zo,2)
Bi (o) = {z € X;dx(zo,2)
Ag ={(z1,22) € X x X;dx(21,22) < a},
(3.10) A = {(x1,22) € X X X dX(:)sl,xg) < a},
Sa (:)30) ={r € X;dx(xp,z) = a},
By (r) = {(z;§) € T"X; |[¢]|l. <7},
[ Sx(r) = {(;€) € T" X5 [[¢][ = r}-
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3.2 The case of Riemannian manifolds

We also introduce the sets:
(1 =] =iy Tingl,  IF =)0, 1, T =], 0],
J=XxXxI, JF=XxXxI?F
Z =A{(z,y,t) € Jydx(x,y) <t < 7T},
Qf = {(z,y,t) € J;dx(x,y) < t},
Q= {(l’,y,t) € J; dx(l','y) < _t}>
| A={((%;6),t) e T"X X L; |[¢{]]. <t < rinj}

(3.11)

Let us recall the construction of the exponential map. Consider the function
. 1
(312 X SR (€)= gl

Denote by X; the Hamiltonian vector fields of f and by ®; the flows associated to this
vector fields. In the literature (see e.g., [MS10, Exa. 1.1.23], [Pat99, p. 15]), the flow
®, is known (via the isomorphism T'X ~ T*X) as the geodesic flow of the Riemannian
manifold (X, g).
The exponential map ey, given by
Ef(l', Sa t) =Tx© (I)f(l’, 5, t)>

is well-defined for ¢ € R. The well-known theorem (see loc. cit.) which asserts that the
geodesic flow coincides with the hamiltonian flow of the function f may be translated
as follows.

Lemma 3.2.1. The map
(3.13) Eef:T"X xI—J=XxXxI, Eiz,&1t)=(ef(,§1),2,1)
s well-defined and induces C*-isomorphisms

By (r) x {t} ~ A} x {t} forr < riy; and all t.

The proof of the next lemma is due to Stéphane Guillermou. It is much simpler
than an earlier proof of ours.

Lemma 3.2.2. Let (X,g) be a Riemannian manifold satisfying (3.8) and let ax be
as in (3.9). Let x and y in X with x # y and set Z,(x,y) = B.(x) N Bu(y). Then
RI'(X;kz,(2y) ~ 0. In other words, (2.3)(c) is satisfied.

Proof. (i) We may assume

for any xq,z9 in W with x; # x5, there exists a unique geodesic
(3.14) l(z1,29) C W with z1, 25 € (21, 22),
for T1,T2,T3 in W, if d(l‘l, 1’3) = d(.flfl, LUQ)"‘CZ(LUQ, Ig) then To € l(l’l, Ig).

Let us introduce some notations:
Za - Za(xay)>
M ={zd(x,z) =d(y,2)},
MI = {Z? d(!)ﬁ',Z) < d(y,Z)}, My = {Z7d(l’, Z) > d(ya Z)}>
7' =M, N B,(y), Z"=B(x)NM,.
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Note that Z, = Z' U Z", Z' is open in Z, and Z" is closed in Z,.
(ii) It follows from (3.14) that

for any geodesic I(z, 2), I(z, z) N M has at most one point, and similarly
(3.15) !
with I(y, 2).

Indeed, let 21,20 € l(z,2) N M. Then d(z,z) = d(x,2) + d(22,21) or d(z,23) =
d(z, z1)+d(z1, 29) or d(z1, 22) = d(z1, x)+d(x, 22). Assume for example the first equality.
Since 21,25 € M, we get d(y,z1) = d(y, z2) + d(z2, 21) which implies that the geodesic
(y, z1) contains zo. Since there is at most one geodesic containing both z; and 25, we
find that y € l(x, z) which implies z; = 2.
(iii) Let us prove that RI'(X;kz) ~ 0. Let p: By(y) \ {y} — Sa(y) be the map
which sends z € B,(y) \ {y} to p(2) € l(y,2) N Sa(y). It follows from (3.15) that the
fibers of p intersect Z’ along a unique interval and this interval is half-open. Since
y ¢ Z, we have RI['(X;ky) ~ RI(B,(y):kz) ~ RI(B.(y) \ {y}:kz). Moreover,
RI(Ba(y) \ {y}; kz) = RI'(Sa(y); Rpkz) ~ 0.
(iv) Let us prove that RI'(X;kz») >~ 0. Let ¢: By(x) \ {x} — Su(x) be the map which
sends z € B,(z) \ {y} to p(z) € l(z,2) NS,(x). It follows from (3.15) that the fibers of
q intersect Z” along a unique interval and this interval is half-open.

Since 2 ¢ Z, we have R[(X;kzv) o~ RI(By(z):kzn) ~ RI(By(z) \ {z};kzn).
Moreover, RI'(B,(z) \ {z}; kz») ~ RI'(S.(2); Rgikz») ~ 0.

+1

(v) The result then follows from the distinguished triangle ky» — ky, — kzv —.
Q.E.D.

Theorem 3.2.3. Let (X, g) be a real Riemannian manifold satisfying (3.8) and let ax
be as in (3.9). Then hypotheses (2.2), (2.3) and (2.4) are satisfied.

Proof. (A) Let us prove (2.2).

(a)—(i) Let x; and x5 in X. Since a,b < ayxy < Tcony, the ball B,(z1) and B,(x9)
are geodesically convex. Hence, their intersection is either empty or also geodesically
convex and geodesically convex sets are contractible.

(a)—(ii) The closed and bounded subsets are compact by the Hopf-Rinow Theorem.
Therefore, condition (ii) is satisfied.

(a)—(iii) Let us prove that for (x1, z3) € Ay, there exists o € X such that dy (1, x2) <
a and dx(xs, r3) < b. Without loss of generality we can assume that dx(x1, z3) = a+b.
Since X is complete, it follows from the Hopf-Rinow Theorem that x; and x3 can
be joined by a minimal geodesic v: [0,1] — X. Then d(xy,7(t)) will take all values
between 0 and a + b. Let t5 € [0, 1] such that d(z1,7(t2)) = a. Since 7 is also minimal
on every subinterval of [0, 1] it is minimal on [t9, 1]. Then, dx(z2,z3) = 0.

(B) Let us prove (2.3)(b). The set 7 is, in a neighborhood of Ax {0} and locally in X x
X xR, C*-isomorphic to the open set {(x,&,t);||¢]|. < t}. By the Morse lemma with
parameters (see [Hor85, Lem. C.6.1 and its proof]) this last set is locally topologically
convex since, in a local chart, it is isomorphic to a constant cone {((z;¢),?);|¢|| < t}
associated with the standart Euclidian metric.

33



3.3 Comparison of the two kernels on Riemannian manifolds

(C) Let us prove (2.3)(a). By Lemma 3.2.1, we are reduced to prove the result after
replacing A, with B%(a) in which case the proof is similar to (B).

(D) The hypothesis (2.3)(c) is satisfied thanks to Lemma 3.2.2.

(E) The hypothesis (2.4) follows from Lemma 2.1.3. Indeed, the distance function
fi=dx: X x X — Risof class C* on W:= A%\ A for a < ax and we are reduced
to check that for any given y € X, the differential of the function = — g(z) = dx(y, =)
does not vanish for 0 < dy(z,y) < ax. By composing with the exponential map, we
are reduced to prove the same result on 77X in which case it is clear. Q.E.D.

Notation 3.2.4. We shall denote by a — &45!, ¢ € R the bithickening of the diagonal
given by Theorems 3.2.3 and Proposition 2.2.3.

3.3 Comparison of the two kernels on Riemannian manifolds

In this subsection, (X, ¢g) denotes a Riemannian manifold with associated distance dx.
We shall always assume (3.8).
Recall the function f and the flow @ defined in (3.12), and consider the function

(3.16) h: T'X =R, h(x,€) = —[¢]]a

Denote by X} the Hamiltonian vector fields of A and by ®; the flow associated to this
vector fields. Since h is homogeneous of degree 1 in £ and f is homogeneous of degree
2 in &, we have for A > 0

' Dp(x, 15 AE) = A~ Oyp(z, At; §).
(Of course, in the formula above, A acts on the fiber variables.)
Since f = —%h2, the Hamiltonian vector fields of f and h are related by X; =

—hX}, = [[¢]| Xp. In particular, we see that X and X, are tangent to the unit co-sphere
S%(r) and their restrictions to S% (1) coincide. It follows that @ (x,t;&) = @g(x,t;¢)
if ||¢|]| = 1 and, by homogeneity, using (3.17)

(3.18) ®u(x,t;8) = |[€]le - Pyl i ) = [lElla - @p(x §) for £ # 0.

13 t
s TTEl o 1
|1€]]= |1€]]=
By the hypothesis (3.8), we get
Lemma 3.3.1. Hypothesis (3.4) is satisfied for h.

Denote as above by Aj the Lagrangian manifold given by (3.2). One has

(3.19) Ap = {(®n(z, &, 1), (2, =€), (£, [1E]])); (x,€) € T* Xt € R}

Denote by K" the quantization of Aj, and by & the monoidal presheaf on (R, +) with
values in DP(kyyx,©0) associated with K" constructed in Theorem 3.1.2 and denote
by K4 the monoidal presheaf associated with the good metric space (X,dy) (see
Theorem 3.2.3 and Notation 3.2.4).

With Notations (3.11), the distinguished triangle (2.8) reads as

(3.20) Ko- @ ¢ ' wy — K* = ky =5 .

34



3.3 Comparison of the two kernels on Riemannian manifolds

Lemma 3.3.2. Assume (3.8). One has A, NT*Jt = SS(k) N T*J*.
Proof. (i) Recall that

(321) Ah = {((I)h(l’, 5, t)> ([L’, _€)> (t’ _h(éh(xagat)); (IL’,S)) € T*X?t € I}
In particular,
T (A NTJT) = Ep({[I€]le < t}) = 0Q.

(ii) The set 2™ is a smooth hypersurface of J* and it follows from [KS90, Prop. 8.3.10]
that A, NT*J* is one half of T, J*. Since Ay, C {7 > 0}, A, is the interior conormal
to 0T, Q.E.D.

Denote by j: J* < J the open embedding.
Lemma 3.3.3. One has ky ~ Rj,j k.

Proof. One has kq+ =~ 517 'kq+. Applying the duality functor DY, .z we get the
result by Lemma 2.1.2. (Recall that, setting M = X x X xR, D}, 0o ji ~ Rj, oD),. )
Q.E.D.

In the proof of the next lemma, we shall use the operation + defined in [KS90, § 6.2].
Lemma 3.3.4. One has
(a) SS(kz) N~ (X x X x {0}) C {(x,2,0:§, =& 7); 7 = [[¢].},
(b) One has SS(ko-) N7~ H(X x X x {0}) C {(z,2,0;§, =&, 7); 7 = [[¢]]}-
Proof. (a) Recall (3.19). We have in a neighborhood of t = 0

ot
€1

(3.220, = {(= €+ te(x,t,€), 2, €+ tn(x,t,€), =€ [[€]].); (2,€) € T" X, t € R}.

This implies
(Ap N T* ) H{(2,9,0;0,0,7 > 0)} C {(2,2,0;, =&, 7); 7 > [|€]]}-

To conclude, apply [KS90, Th. 6.3.1] together with Lemmas 3.3.2 and 3.3.3.

(b) follows from (a) by applying the duality functor (using Lemma 2.1.2) together with
v, where v is the map (z,y,t) — (z,y, —t). Q.E.D.

Lemma 3.3.5. Let p = (x,2,0;&, =&, 7) with T > ||€||.. Then
(a) the natural morphism Kz — kax (o} is an isomorphism in DP(ky;p).

(b) the natural morphism Ky =0} ® g w1 — K{dy (zy)<—t} @5 an isomorphism
in DP(ky;p).
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Proof. (a) Similarly as in part (C) of the proof of Theorem 3.2.3, the set Z is, in a
neighborhood of A x {0} and locally on X x X x R, C*-isomorphic to the set A
of (3.11). We are thus reduced to prove a similar result with Z and A x {0} replaced
with A and T% X x {0}. In this case, the result follows from Lemma 3.3.6 below.

(b) follows from (a) by applying the duality functor, using Lemma 2.1.2. Q.E.D.

Lemma 3.3.6. Let E be a vector bundle over X and let v C E be a closed convex
proper cone containing the zero-section X. Let p € T*E xp X with p € Int(y°). Then
the natural morphism k., — kx is an isomorphism in D®(kg; p).

Proof. We may assume that £ = X x V for a real vector space V. Let us choose local
coordinates on X and identify 7%V with VxV*. Then p = ((x;&), (0,7)) € T*X xVxV*.
By [KS90, Lem. 3.7.10], the Fourier-Sato transform interchanges the two objects k,
and ky(oy of DP(kg) with the two objects kino and kpg- of D(kp-). Hence, applying
Th. 5.5.5 and formula (5.5.6) of loc. cit., we are reduced to prove that the natural
morphism Ky — kg is an isomorphism in DP(kg:;q) with ¢ = ((x;€),(n,0)) €
T*X xV* xV, which is obvious since the two sheaves are isomorphic in a neighborhood
of any point (x,7n) € X X Inty°. Q.E.D.

Recall the sheaf K% constructed in Theorem 2.2.4 and the monoidal presheaf £4st.
Theorem 3.3.7. Let (X, g) be a complete Riemannian manifold satisfying (3.8). Then
(a) One has the isomorphism K"|; ~ K9|;.

(b) the two monoidal presheaves K" and KU are isomorphic.

Proof. (i) Of course, (b) follows from (a). By the unicity result in [GKS12, Prop. 3.2 (iii)],
it remains to prove that

(3.23) SS(KY) C Ay,.

(ii) It follows from the distinguished triangle (3.20) that K9|;+ ~ kyz|;+ and it then fol-
lows from Lemma 3.3.2 that (3.23) is true on J*. Moreover, SS(K?|,-) = v(SS(K9|;+))
where v is the map (z,y,t;&,n,7) — (y,x,—t;n,&, 7). Since v(Ay) = Ap, we get
that (3.23) is true on J~.

(iii) One has SS(KY) N7~ Y X x X x {0}) C {(z,2,0;¢, =&, 7);7 > ||€]].} thanks to
Lemma 3.3.5. The natural morphism 1: k; — kq- ®¢5 'wx [+1] is an isomorphism by
Lemma 3.3.5. This implies (3.23). Q.E.D.
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