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We investigate wind wave growth by direct numerical simulations solving for the two
phase Navier-Stokes equations. We consider ratio of the wave speed c to wind friction
velocity u∗ from c/u∗ = 2 to 8, i.e. in the slow to intermediate wave regime; and
wave steepness ak from 0.1 to 0.25; the two being varied independently. The turbulent
wind and the travelling, nearly monochromatic waves are fully coupled without any
subgrid scale models, with a turbulent boundary layer friction Reynolds number of 720.
We observe wave growth from wind energy input, in quantitative agreement with that
computed from the extracted surface pressure distribution, which confirms the leading
role of the wind pressure forcing. The phase shift and the amplitude of the surface
pressure distribution are systematically reported. We find that the wave drag force is not
a strong function of c/u∗ but closely related to ak. The wave growth rate we obtain agree
with previous experimental and numerical studies. We make an effort to clarify various
common underlying assumptions, and to reconcile the scattering of the data between
different experimental results and the theories, as we revisit this longstanding problem
with new numerical evidence.

Key words:

1. Introduction

1.1. Motivation

Wind waves, i.e. waves forced by local wind, play an active role in many air-sea
interaction processes (Sullivan & McWilliams 2010; Cavaleri et al. 2012; Deike 2022).
The growth of waves under wind forcing, however, is still an area with open questions, in
terms of the exact mechanism responsible for wave growth. A number of theories (Jeffreys
1925; Miles 1957; Belcher & Hunt 1993) of varying complexity have been proposed over
the years (see Janssen (2004) for a review) but their applicability is unclear due to lack
of direct empirical evidence. Field campaigns (Snyder et al. 1981; Donelan et al. 2006)
and laboratory scale experiments (Peirson & Garcia 2008; Grare et al. 2013; Shemer
2019; Buckley et al. 2020) have reported growth rates that can scatter by an order of
magnitude, and sometimes largely deviate from the theoretical predictions (see Peirson &
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Figure 1. A sketch of the wind-wave problem. The surface stress consists of the normal pressure
stress (psn), and the viscous stress τ ν . The correlation of the surface pressure ps (purple dotted
line) with the surface elevation slope ∂hw/∂x is generally thought to be the major contribution to
the wave growth (see (1.1)). In this paper we consider wind blowing in x direction, and therefore
no misalignment effect is discussed. The wind blows from left to right, and the maximum of the
pressure distribution is on the windward face for slow moving waves. The phase shift φp denotes
the phase lag of the pressure maximum to the wave crest.

Garcia 2008). Since the wind forcing forms the basic source term for any operational wave
model (Janssen 2004), it is important to continue to improve our physical understanding
of the dynamic processes controlling the wave growth rate in different wind-wave regimes.

1.2. Problem formulation

The dynamics of the wind wave interaction is a coupled two-phase flow, as sketched in
figure 1. The wind (of density ρa) blows across a moving wavy water surface hw(x, y, t)
(of density ρw), and the structure of the atmospheric turbulent boundary layer is altered.
The resulting wave coherent surface wind stress in turn transfers energy into the waves.
The wind stress at the surface consists of two parts, the viscous stress (τ ν) mostly in the
tangential direction, and the pressure stress (psn) in the normal direction, see figure 1. It
has been generally agreed on that for gravity waves, the wave growth mostly results from
the work done by the surface air pressure, although the wave coherent viscous stress
can play a part at low steepness and gravity-capillary waves (Peirson & Garcia 2008;
Buckley et al. 2020) and force the underlying current (Wu 1968; Lin et al. 2008; Wu &
Deike 2021). With this widely adopted assumption (which we will test explicitly in this
paper), the energy input rate can be written as (Grare et al. 2013)

Sin ≈ 〈−psn · us〉 ≈ c〈ps
∂hw
∂x
〉 (1.1)

where Sin denotes the wave-averaged rate of energy input flux. The angular brackets
denote averaging over one wavelength, and us is the surface water velocity. The part of
us that is correlated to the pressure is by linear approximation the vertical wave orbital
velocity worbit = −c(∂hw/∂x), with c the wave phase speed. Note that 〈ps∂hw/∂x〉 is
the wave drag force Fp, similar to the concept of the form drag of a blunt body.

Based on (1.1), the key to determine the rate of energy input is the correlation between
the surface pressure profile and the surface slope. Experimental measurements (Plant
1982; Peirson & Garcia 2008; Grare et al. 2013; Buckley et al. 2020; Funke et al. 2021)
have directly or indirectly estimated this correlation (more on the experimental methods
in §1.4). It is also a framework that most theoretical works have adapted.
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1.3. A brief review on the representation of surface pressure in wind wave growth
theories

We first present a brief review of some of the theories developed over the years
to describe wind wave growth, and how they have affected the representation and
comparison of experimental data.

Jeffreys (1925) was the earliest to propose what is now called the ‘sheltering hypoth-
esis’, where the surface pressure is assumed to be 90◦ out of phase with the surface, i.e.
in phase with the slope,

ps = szρa(Uz − c)2
∂hw
∂x

, (1.2)

where sz is the sheltering coefficient, and Uz a reference velocity at a given height z. The
choice of the reference velocity is not specified, and (1.2) can be interpreted as a scaling
analysis. The energy input rate Sin follows (1.1) and reads

Sin =
1

2
ρasz(ak)2c(Uz − c)2, (1.3)

assuming that the surface elevation has the sinusoidal form hw = a cos(kx). The viscous
stress input was assumed to be negligible compared to the pressure input. Jeffrey’s
original idea is that the airflow is separated behind the wave crest, and therefore, his
theory is not limited to small amplitude waves.

Miles (1957) proposed the critical layer theory through a linear stability analysis.
The airflow is assumed to be inviscid and laminar, and as a result of that assumption,
the forcing comes solely from the pressure. The shifted pressure profile is assumed the
complex form

ps = (α+ iβ)ρaU
2
refkhw (1.4)

while the surface elevation hw is

hw = aei(kx−ωt) (1.5)

Again Uref is an arbitrarily chosen reference velocity. The energy input, however, was
not computed from (1.1), but from a change to the complex wave phase speed c through
the boundary condition at the interface,

c = c0 +
1

2

ρa
ρw

(α+ iβ)(Uref/c0)2. (1.6)

where c0 is the phase speed of a free surface gravity wave. The wave energy rate of change
dE/dt (or Sin) is normalised by the wave angular frequency ω and the wave energy E in
order to yield the growth rate form of

γ =
1

ωE

dE

dt
=
Sin
ωE
≈ 2=(c)/<(c) = β

ρa
ρw

(
Uref
c

)2

, (1.7)

neglecting wave dissipation by viscosity. In another word, the perturbation grows expo-
nentially under the linear stability analysis, and finding the growth rate (per radian) γ
is equivalent to finding β, the imaginary part of the surface pressure distribution. This
requires solving the Rayleigh equation, and β was found to be related to the curvature
of the mean wind velocity profile at the critical height (where the wind speed equals the
wave phase speed).

The applicability of the critical layer theory has been questioned, as it ignores tur-
bulence effects; for short and slow travelling waves, the critical layer is very close to
the water surface (Belcher & Hunt 1993; Janssen 2004), where viscous effect might be
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important; it also does not capture the effect of finite amplitude or steep waves (Peirson
& Garcia 2008). As an improvement to Miles’ theory, Belcher & Hunt (1993) and Belcher
(1999) incorporated the turbulence’s effects and proposed the non-separated sheltering
mechanism. The turbulent boundary layer is divided into the inner surface layer, the
stress surface layer, the middle layer and the outer layer based on the asymptotic structure
of the flow. The surface pressure is

ps = (−1 + i
u2∗
U2
m

β)ρaU
2
mkhw, (1.8)

where Um is the middle layer velocity, and β was attributed to a few different mechanisms.
Since only the turbulent stress is considered, which goes to zero at the surface, the energy
input is by construction only done by the surface pressure.

All the above theories have attributed the energy input to the surface pressure forcing.
What 1.2, 1.4, 1.8 have in common is a phase shifted pressure profile, and the amplitude
of the pressure profile given by ρa times some reference velocity U2

ref (1.2 can be written

as ps = iszρa(Uz − c)2khw, and the sheltering coefficient sz is equivalent to β if Uz − c =
Uref ). Understanding what controls the phase shift and the reference velocity in various
regimes, however, is no easy work, and depends on the specific proposed mechanism, as
well as the mean wind velocity profile.

1.4. Connecting theoretical growth rate and observations

Experimental measurements of the input rate Sin have followed different approaches.
One option is to measure the correlation 〈ps∂hw/∂x〉 in 1.1 by simultaneous measurement
of the pressure and the surface elevation (Snyder et al. 1981; Donelan et al. 2006;
Grare et al. 2013). Directly measurement of the surface pressure requires complex
wave following pressure sensors, which tend to be limited in responding frequencies,
and have to be placed at a certain height above the water surface, which introduces
additional uncertainty (Donelan et al. 2006; Grare 2009). Alternatively Buckley et al.
(2020) performed PIV measurements of the air flow above the wave and estimated the
pressure forcing as residual stress or from pressure reconstruction (Funke et al. 2021).

The other option is to directly measure the wave energy growth from temporal or
spatial evolution of the surface elevation (Kawai 1979; Peirson & Garcia 2008). The wave
energy rate of change is related to the energy input rate by

Sin = D + dE/dt, (1.9)

where D is the wave dissipation term, usually estimated from the linear viscous dissipa-
tion rate (Lamb 1993)

D = 4νwk
2E (1.10)

where νw = µw/ρw is the kinematic water viscosity. The dissipation term D is small for
relatively long waves above O(1m) but not negligible in some lab scale experiments. This
method measures Sin without the assumption that the pressure forcing is the dominant
contribution (Peirson & Garcia 2008). The difficulty then resides in measuring the small
fraction of change in the wave amplitude given the small values of the wave growth due
to the small density ratio ρa/ρw. Uncertainties in the dissipation rate also remains, due
to the role of parasitic capillary waves or micro-breaking that can dominate over the
viscous dissipation especially in finite amplitude cases (Grare et al. 2013).

The experimental and field measurements of the energy input rate Sin have shown a
reasonable agreement with (1.7), adopting the air friction velocity u∗ as the reference
velocity (Plant 1982). The definition of u∗ is based on the total downward momentum
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transfer and carries some uncertainty itself. There are other choices of the reference
velocity, and therefore other representations of γ. For example, Donelan et al. (2006)
adopted the sheltering hypothesis and found that using the wind velocity at half the
wavelength Uλ/2 − c in (1.3) best collapsed their data.

To summarise, the experimental uncertainties, together with the indirect nature of
the estimations of the energy input rate make it difficult to directly verify a specific
growth mechanism. A direct connection to the various theories would require knowledge
of not just the wave-averaged quantity Sin, but also the phase resolved pressure profile
ps. Few experimental works (Donelan et al. (2006); Grare (2009) to our knowledge) have
discussed the pressure profile itself, due to the difficulty of pressure measurement.

Numerical simulations have much to offer in this regard, and can focus on either
the wind or the wave side. Simulations focused on the turbulent airflow over a wavy
boundary (stationary or with prescribed wave motion) have been conducted using both
direct numerical simulations (DNS) (e.g. Sullivan & McWilliams 2010; Kihara et al.
2007; Yang & Shen 2010) and large eddy simulation (LES) (e.g. Yang et al. 2013). They
provide detailed information about the wave induced perturbation and stresses, and the
wave growth is inferred from 1.1. DNS does not require subgrid scale models but is limited
by the high computational cost associated with high Reynolds number. Wall modelled
LES, on the other hand, is able to simulate much higher Reynolds number flows, but
the subgrid scale models for wave drag is still under development (Deskos et al. 2021;
Aiyer et al. 2021). Most importantly, wall modelled LES, by design, does not offer enough
insight into the dynamics of wave growth since the wall models assume knowledge of this
process (Piomelli & Balaras 2002). Wall resolved LES has been applied to the study of a
broadband wave field growth (Yang et al. 2013), but it is also restricted in the Reynolds
number similar to DNS. Simulations focused on the wave evolution usually simplify the
wind effects into a forcing at the water top boundary, either as solely a phase-shifted
pressure distribution (Fedorov & Melville 1998; Zdyrski & Feddersen 2020), or as both
pressure and viscous shear stress distribution (Tsai et al. 2013). This requires the stress
distribution as prior knowledge, which as we have discussed, is far from understood.

Almost the entirety of the numerical work has been limited to one side of the problem,
and there has been very few numerical simulations of the fully coupled wind wave
interaction. To our knowledge, the only numerical works where both the wind and the
growth of the surface waves are directly resolved are in the context of the very initial
wave generation (Lin et al. 2008; Li & Shen 2022).

What distinguishes this work from previous numerical works is therefore the fully-
coupled approach. We extend our earlier 2D study with linear-shearing laminar wind
forcing (Wu & Deike 2021) to a 3D turbulent boundary layer wind forcing. We use a
volume of fluid (VoF) method to reconstruct the interface and access the wave growth,
including the case of steep waves. We can access the wave growth from directly observable
wave evolution, in addition to inferring it from the pressure-slope correlation. This allows
us to verify the assumption (1.1) that Sin mostly results from the pressure stress. We also
discuss the spatial structure of the pressure field and phase shift with the wave profile.
We study independently the effects of two key parameters, the wave steepness ak and
the ratio between the wave phase speed and the wind friction velocity c/u∗ (referred to
as wave age in wind wave literature). In experiments, the two parameters are connected
by the fetch-limited relation, and therefore their respective effects are hard to separate.

The paper is structured as follows. In §2 we introduce the numerical setup. In §3 we
define the wave averaged quantities of interests: the wave energy, and the momentum and
energy fluxes. We cross-check the wave growth obtained from wave surface elevation and
from the pressure-slope correlation. In §4 we present the surface pressure distribution
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(phase shift and amplitude) for different c/u∗ and ak values. In §5 we discuss the scaling
of the wave drag force, and the energy input rate with c/u∗ and ak. We compare with
previous data sets and discuss the implications for possibly applicable theories.

2. Direct numerical simulation of fully coupled wind and waves

We present direct numerical simulations of fully coupled wind forced water waves.
We solve the two-phase Navier-Stokes equations with the Basilisk solver (Popinet 2009,
2015, 2018; Fuster & Popinet 2018), with a momentum conserving scheme (Zhang et al.
2020) and a geometric volume of fluid (VoF) method to reconstruct the interface. We
use adaptive mesh refinement (AMR) which allows us to reduce the computational cost
when solving such a multi-scale problem. The methods have been extensively validated
and applied to wave breaking (Deike et al. 2015, 2016; Mostert & Deike 2020; Mostert
et al. 2022), two-phase turbulent flow (Rivière et al. 2021; Perrard et al. 2021; Farsoiya
et al. 2021), and atmospheric turbulent boundary layer (van Hooft et al. 2018).

2.1. Numerical setup

The computation domain is of size L0×L0×L0, with four waves in the x direction of
wavelength λ = L0/4 (wave number k = 2π/λ = 8π/L0). The depth of the resting water
is Hw = L0/2π, while the height of the airflow is Ha = L0(1− 1/2π) (see figure 2). The
top and the bottom are both free slip boundary conditions, while the front and back, left
and right are periodic boundary conditions.

The turbulent boundary layer and the waves are initialised independently. We force
the turbulence with a pressure gradient (similar to a canonical channel flow), which sets
the nominal friction velocity u∗ (i.e. total wall stress τ0)

τ0 = ρau
2
∗ = Ha

∂p

∂x
. (2.1)

The friction Reynolds number is defined as

Re∗ =
ρau∗Ha

µa
, (2.2)

and set to 720 for all cases, defining the viscous length scale δν = νa/u∗ = Ha/720. We
have validated the solver against a canonical flat wall case with Re∗ = 180 (Kim et al.
1987) (see appendix A for details). The mean wind velocity profile of such a channel flow
follows the law of the wall, and is similar to that of laboratory wind wave experiments
(e.g. Buckley et al. 2020).

The wave initial condition is given by a third order Stokes wave similar to Wu &
Deike (2021), with initial steepness ak. It is kept stationary until the turbulence reaches
a statistical steady state. Then, the wave is released at t = 0, travelling with a phase
speed given by the free surface dispersion relation

c =
√
g/k + σk/ρw, (2.3)

where g is the gravitational acceleration and σ is the surface tension. The orbital velocity
is initialised with the corresponding velocity field of the third order Stokes wave (see Wu
& Deike 2021).

Since we initialise the waves with a solution of the free surface gravity wave equation,
we expect the flow field to self-adjust under wind forcing during the very early stage of
the simulation. The turbulent boundary layer also goes through a relaxation period when
the near-wall flow adjusts to the moving boundary. Therefore, the first two wave periods
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Figure 2. Snapshots of wave growth. There are four waves in the computational domain, and
the height of the water and the half channel height for the air are shown. The colours indicate the
instantaneous horizontal wind velocity, and the surface water velocity, respectively. The waves
grow in amplitude and become short crested, a characteristic of wind waves. At later stage,
the waves also appear to be three-dimensional because of the development of an underwater
turbulent boundary layer, although any 3D effects are not discussed in the current paper.

are not considered in the data analysis. Since the wave period T = 2π/ω is very large
compared to the inner turbulent time scale tν = νa/u

2
∗, it is enough time for the near wall

turbulence to reach equilibrium with the moving waves. The equilibrium is also checked
by examining the mean velocity profiles. After that, the waves and the turbulence interact
in a fully coupled way without any prescribed interfacial conditions. We note that the
whole simulation is transient by nature, meaning that the wave amplitude changes with
time, despite over a much longer time scale than both the turbulence time scale and the
wave period.

The non-dimensional numbers relevant for the waves are

Bo =
(ρw − ρa)g

σk2
, Rew =

ρwcλ

µw
. (2.4)

In all the cases presented in this paper, the Bond number Bo = 200 so that the waves
are in the gravity wave regime, and we have verified that further increasing Bo does
not affect the results presented here (see appendix A). The density ratio ρa/ρw is set
to air-water conditions 1/850, while the viscosity ratio µa/µw is always larger than 50
and is adjusted to set the air friction Reynolds number Re∗ (2.2) and the wave Reynolds
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ak c/u∗ kδν* klc a/∆ δν/∆ k∆

0.10 2,4,6,8

0.029 0.44

4.1

1.2 0.025
0.15 2,3,4,6,8 6.1
0.20 2,4,6,8 8.1
0.25 2,4,6,8 10.2

Table 1. A table of controlling parameters ak and c/u∗, and relevant length scales. The
third and fourth columns are the viscous wall unit δν = νa/u∗ and the capillary length

scale lc = 2π
√
σ/(ρw − ρa)g relative to 1/k respectively, showing the physical relevance of the

parameters. They are controlled by Re∗ = 720 and Bo = 200 and kept constant. The last three
columns are a, δν and k relative to the smallest grid size ∆, showing the numerical resolution.
In the simulations, ∆ = L0/2

N , where N = 10 is the maximum refinement level of the octree
adaptive grid. *For wall modelled LES, the roughness length kz0 is usually reported instead of
kδν . If we use the z0 = 0.11νa/u∗ = 0.11δν conversion for flat smooth surface, kz0 = 0.003.
Also notice that these length scale are not changed when we change c/u∗ because k is fixed, in
contrast to the realistic situation, where wave number k is smaller for fast moving waves.

number Rew (2.4) independently. The wave Reynolds number is kept at Rew ≈ 105. Note
that the value of Rew gives the linear dissipation rate (per radian) due to viscosity γd

γd = −4νwk
2/ω =

8πck

Rew
/ω = 8π/Rew (2.5)

and D = γdωE (equivalent to 1.10).
Notice that the velocity ratio (wave age) c/u∗ is varied by changing c, while keeping

u∗ constant, independently of the steepness ak. This configuration allows to resolve the
turbulent air flow and capture the wave growth for c/u∗ ranging from 2 to 8 and ak from
0.1 to 0.25. Table 1 summarizes the simulation conditions, together with the characteristic
length scales of the turbulence δν and the capillary length lc, relative to wave number k
and to the smallest grid size ∆.

3. Direct observation of the wind wave growth and the surface stress

3.1. Directly observed wave growth

Figure 2 shows the wave surface evolving due to the turbulence forcing, with growth
and steepening as the wind keeps blowing. The waves can be considered approximately
monochromatic in the simulation, since the development of higher frequency ripples and
3D structure do not occur until later stage, and the downshift of peak frequency is
constrained by the periodic boundary condition. However, the wave shape changes and
becomes short-crested, which is a feature of wind waves. We quantify the growth of the
waves through the time evolution of the water surface elevation hw(x, y, t), which we use
to directly compute the wave energy (neglecting the surface tension energy):

Erms(t) = ρwg〈h2w(x, y, t)〉. (3.1)

with the spatial wave averaging of a quantity q, in the x− y plane, being defined as

〈q〉 =
1

L2
0

∫ L0/2

−L0/2

∫ L0/2

−L0/2

q dxdy (3.2)

Figure 3 shows the time evolution of Erms(t) for three different c/u∗ cases, with initial
wave steepness ak = 0.2. The smallest wave age case has the strongest wind forcing, and
therefore the largest growth rate. The c/u∗ = 8 case presents an almost exact balance
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Figure 3. Wave energy normalised by initial energy E0 ≡ Erms(t = 0), as a function of time,
directly computed from water surface height output hw(x, y, t), for three different wave c/u∗
= 2,4,8, and initial steepness ak = 0.2. The solid curves are exponential fits to the points,
although we caution that the growth rates are so small that for the exponential growth cannot
be distinguished definitively from a linear growth. The c/u∗ = 2 case grows the fastest while
the c/u∗ = 8 case is very slowly decaying. Note that both E0 and ω change with c/u∗ because
g is changed in the numerical setup (see §2).

between the wind input and viscous dissipation, resulting in a nearly constant wave
energy with time. From this directly observed wave growth, we can measure a temporal
rate of change of energy dE/dt (here after we omit the subscript rms for brevity). The
wave growth is rather slow, and happens over O(10) wave periods and O(100) to O(1000)
turbulent time scale tν . This slow change in the wave energy is related to the small density
ratio ρa/ρw, which implies weak air-water coupling; see (1.7).

3.2. Wind surface stress

Apart from the direct surface elevation hw, we extract the surface stress from the
simulation. The wind stress at the surface consists of two parts, the pressure variation
τp (i.e. drag force) and the viscous stress τν (see Grare et al. 2013; Peirson & Garcia
2008):

τp = −psn, τν = µa(∇ua + ∇uaT )n = (τνx, τνy, τνz) (3.3)

where ua is the air velocity vector, ps is the surface pressure, n is the normal vector of
the water surface.

Figure 4 shows the instantaneous stress fields projected onto a wave following surface
very close (4∆) to the water surface. Since the plane is in the viscous sublayer, it is
considered close enough to the actual surface that the turbulent stress can be ignored.
Both the pressure and the shear stress present clear wave coherent patterns, while also
having 3D structures due to the turbulence. For example, the streaks shown in figure
4(b) are about 100δν apart, which is consistent with the typical structure of wall bounded
turbulent flows. There is an-order-of-magnitude difference between the pressure and shear
stress (but not their horizontal projection in (3.4)). The maximum of the pressure appears
on the windward face, which is left to the grey line indicating the wave crest in figure 4;
this gives rise to the non-zero correlation in (1.1). The viscous shear stress also reaches
maximum near the wave crest due to the straining of the shear layer.

From the stress field we can compute the wave averaged integral quantities: the
momentum flux (total stress τtotal) and the energy flux (input rate Stotal). The total
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Figure 4. Instantaneous pressure (a) and the horizontal component of viscous stress (b)
projected onto the wave following surface 4∆ = 0.1/k above the water surface, at ωt = 38,
for the case of c/u∗ = 2 and a0k = 0.2. Notice that there is one order of magnitude difference
in the colour scale range. The grey lines show where the wave crests are. There are clearly wave
coherent patterns.

horizontal wind stress

τtotal = 〈τp · ex〉+ 〈τν · ex〉 = 〈ps
∂hw
∂x
〉+ 〈τνx〉 ≡ Fp + Fs, (3.4)

is the sum of the form drag force per unit area Fp and the averaged viscous stress in the
horizontal direction Fs. Notice that the linear approximation (dη/dx� 1) is considered.

This stress (momentum) partition is closely related to, but different from the energy
input partition. The total energy input rate by the wind stress (into both waves and
underwater drift layer) is a product of the stress and the surface water velocity

Stotal = 〈τtotal · us〉 = 〈−pn · us〉+ 〈τν · us〉 ≡ Sp + Ss. (3.5)

The part of us that correlates with the pressure is the vertical orbital velocity worbit,
which gives (1.1); the part of us that correlates with the viscous stress, however, contains
both the wave horizontal orbital velocity uorbit and the drift velocity ud:

Ss = 〈τν · us〉 ≈ 〈τνxusx〉 = 〈τνxuorbit〉+ 〈τνxud〉 ≡ Ss,w + Ss,d, (3.6)

where Ss,w and Ss,d denote the energy input by the viscous shear stress into the waves
and the drift respectively. The development of the drift is discussed in Wu & Deike
(2021), and here we focus on the energy input into the waves

Sin = Sp + Ss,w = c〈ps
∂hw
∂x
〉+ 〈τνxuorbit〉. (3.7)

Notice that the assumption Sp = cFp means that the pressure induced form drag
contributes solely to the wave growth, while only a small variation of the viscous shear
stress is correlated with uorbit and can contribute to the wave growth (Peirson & Garcia
2008). In other words, it is not the mean stresses but the correlated part of the stresses
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Figure 5. (a) The instantaneous pressure energy input rate Sp = cFp = c〈ps∂hw/∂x〉 closely
follows the instantaneous wave energy growth rate (corrected with dissipation) Sin = dE/dt+D
for c/u∗ = 2 (dark orange) and c/u∗ = 4 (light orange); both are of ak = 0.2. The curves are
smoothed out using a moving window averaging. The variation in Sp is mostly due to turbulence
fluctuation. (b) The ratio between the averaged pressure energy input rate Sp and the total input
rate Sin = (E(t1)− E(t2))/(t1 − t2) +D computed over 10 wave periods. The ratio stays close
to 1 for all the simulation cases with some variations.

with the wave surface velocity that contributes to the wave energy growth. In reality, Fp
and Fs are of the same order of magnitude, but Sp is generally thought to play a dominant
role over Ss,w (i.e. Sin ≈ Sp), as mentioned in the introduction. We will examine both
the momentum and the energy partitions using the simulation data.

In this paper we refer to the form drag Fp as the wave drag force, and drag coefficient as
the ratio Fp/τtotal. Note that the wave drag force in the literature sometimes refers to the
effective stress that contributes to the wave growth (from the energy flux Sin, instead of
the momentum flux partition), and includes the pressure and the wave coherent viscous
stress (Peirson & Garcia 2008; Grare et al. 2013; Melville & Fedorov 2015; Buckley et al.
2020, etc.),

τw = Sin/c = Fp + Sw,s/c. (3.8)

3.3. Wave energy growth rate vs pressure input rate

The direct wave growth and surface stress extracted from the simulation and intro-
duced in §3 offer two ways of computing the energy input rate into the wave Sin. First,
we compute dE/dt from figure 3 and correct for the dissipation (1.9); and second we
extract the surface pressure ps and compute the correlation (1.1).

Figure 5(a) shows a comparison of the results obtained using the two methods. The
wind input rate Sin(t) computed with (1.10) is plotted with dotted lines, and the pressure
input rate Sp(t) computed with (1.1) is with crosses, for c/u∗ = 2 and 4. In both cases,
the pressure input Sp closely follows the wave energy growth rate Sin, although there is
a small gap for the c/u∗ = 2 case. A further demonstration of the dominant role of the
pressure term is shown in figure 5(b), where we plot the ratio Sp/Sin averaged over 10
wave periods for all the cases. The ratio is very close to 1 for most cases, indicating that
the pressure input Sp is the major energy input term in Sin. Again, the smallest wave
age cases (c/u∗ = 2) present the largest difference (Sp/Sin = 0.8) and indicate that the
wave coherent viscous stress might start to play a role in the strongly forced cases.

Note that at high c/u∗, uncertainties in the budget are related to uncertainties of
the decay rate for finite amplitude waves, which get amplified by the large E for the
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fast travelling waves, together with the very small decay rate which are also hard to
accurately capture numerically. Furthermore, the viscous stress input Ss could potentially
be negative for these fast travelling cases.

We want to point out that the dissipation correction is necessary in our cases, as
the dissipation is non-negligible due to the limited Rew. Although the wave Reynolds
number Rew is constant (and therefore γd is the same for different cases by (2.5)), we
still have different values of D for different cases of different wave frequency ω and initial
energy E0. The faster travelling waves have higher E0 and therefore higher D, and the
relative change in energy is much smaller. This relative change in energy (per radian) is
reflected by the parameter γ (defined in 1.7). The underlying assumption of (1.7) is that
the wave growth is exponential, and γ represents the exponential growth rate per radian.
In our simulations, we find that the growth rates are so small that for most cases, this
exponential growth cannot be distinguished from a linear growth, and the growth rate
computed by γ′ = Sin/(ωE0) shows more directly the trend of Sin. There is an uptake
of Sin as the instantaneous amplitude slowly increase over the interval of about 10 wave
periods for the c/u∗ = 2 case; in contrast, Sin stays almost constant for the c/u∗ = 4
case, as the amplitude growth is so small that its effect on Sin is negligible.

The analysis above involves wave averaged quantities (Sp, E, etc.), and overall, Sp
does plays a dominant role in wave growth.

4. Surface pressure distribution

4.1. Definitions

We now analyse the detailed structure of the surface pressure distribution ps relative to
hw, as it reveals the dynamics of the wind wave interaction. The structure of the pressure
field is shown in figure 4(a) and clearly contains wave-induced signals, while also being
influenced by the instantaneous turbulence. To distinguish the wave-induced effect from
the turbulent fluctuation, we introduce phase averaging. For any quantity q(x, y, z), the
phase average is

q̄(θ, z) =
1

NwL0

Nw−1∑
n=1

∫ L0/2

−L0/2

dy q(x = λ(n+ θ/2π), y, z), (4.1)

where λ = 2π/k = L0/4 is the wavelength of the initial waves, and Nw = 4 is the number
of waves in the x direction. The phase θ can be extracted from the surface elevation
hw(x, y, t) and is therefore generalizable to cases which are not strictly sinusoidal.

The surface pressure can be generally described as the sum of different frequency
modes,

ps(θ, t) =

∞∑
n=1

p̂n cos(nθ + φpn) (4.2)

where φpn is the pressure phase shift and p̂n is the pressure amplitude of mode n.
Meanwhile, the surface elevation can be written as

hw(θ, t) =

∞∑
n=1

an cos(nθ + φn), (4.3)

with hw(θ, t) ≈ a cos(θ) since the surface elevation hw is largely monochromatic in our
simulation (and we can always shift the reference point so that the phase φ1 is zero).

Once given the surface pressure distribution ps (4.2), the wave drag force Fp (3.4)
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Figure 6. Vertical velocity field, streamline and 1D stress distribution for three different wave
ages c/u∗ = 2, 4, 8. Top row: solid black lines in the top row are streamlines in the moving wave
frame of reference (i.e. plotted with w̄ and ū − c), and the colour shows the phase averaged
vertical velocity w̄. Notice that the higher the c/u∗, the further the wave induced perturbation
extends above the waves. Middle row: The asymmetric pressure distributions (green lines) that
result from the distorted streamlines. The purple line is the shear stress. ak = 0.1. The phase
shift φp between the pressure ps and the water surface elevation hw gives rise to the drag force
and energy input. Bottom row: the shape of the ps distribution is consistent across different
steepness, shown by different colours. The amplitude, however, seems to increase from low
(ak = 0.1) to moderate (ak = 0.15) steepness, but not change much from moderate to high
steepness (ak = 0.2, 0.25). The grey lines in all plots indicate the wave surface position, with
exaggerated steepness.

becomes

Fp = 〈ps
∂hw
∂x
〉 ≈

∞∑
n=1

p̂n annk〈cos(nθ + φpn) sin(nθ + φn)〉 (4.4)

= p̂1 ak〈cos(θ + φp1) sin(θ)〉 =
1

2
ak p̂1 sin(φp1), (4.5)

and Sp follows as Sp = cFp. Finding the drag force and the pressure input rate now
simplifies to finding the pressure perturbation amplitude p̂1 and the phase shift φp1 that
correspond to wave number k. Notice how a non-zero phase shift φp is necessary for a
non-zero Fp and Sp. Since (4.4) shows that only the principal mode (n = 1) contributes to
the wave growth, we then focus on how p̂1 and φp1 depend on c/u∗ and ak qualitatively.

4.2. Streamline and asymmetric pressure patterns

Figure 6 top row shows the phase averaged vertical velocity w̄, for three flow conditions
(c/u∗=2,4,8; ak=0.1). The alternating patterns demonstrate the perturbation by the
waves, as opposed to uniform zero for a flat surface. In the slowest wave cases (i.e. c/u∗ =
2), the alternating sign mostly comes from the straining and relaxing of the shear layer
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(because the airflow follows the boundary shape). In the intermediate wave speed cases
(c/u∗ = 4 and 8), the wave orbital velocity becomes significant and it leaves an imprint
on the airflow (because the airflow follows the vertical motion of the boundary). Here we
are plotting below kz = 3, however we noticed that the wave induced perturbation in w̄
extends higher up with increasing c/u∗, to almost kz = 2π, in the c/u∗ = 8 case.

In figure 6 top row we also plot the streamlines in the wave frame of reference (i.e with
w̄ and ū− c). There are recirculation cells because the vertical velocity is of alternating
signs, and the horizontal velocity changes sign at some height. This height is often called
the critical height, and it depends on the value of c/u∗. The higher c/u∗ is, the further
away the critical height is from the water surface. These recirculating cells generate the
pressure variation ps at the water surface, plotted in the middle row of figure 6 with
green lines.

The middle row of figure 6 is the averaged stress distribution for both the pressure
and the viscous shear stress (shown in fig. 4). We see clearly that the pressure maximum
is on the windward face, and the phase shift is marked by φp1. Notice that even for
the smallest steepness case (ak = 0.1), the shapes of the pressure distribution are not
sinusoidal. For example, at c/u∗ = 2, the trough of the pressure signal is rather flat,
which is a sign of a certain level of flow separation or non-separated sheltering. For
the c/u∗ = 8 cases, the pressure distribution is tilted forward. Only in the c/u∗ = 4
case does the pressure distribution roughly resembles a sinusoidal wave. The pressure
structures are in qualitative agreement with those found in simulations (Yang & Shen
2010; Kihara et al. 2007) and experiments (Mastenbroek et al. 1996) with corresponding
c/u∗. The non-sinusoidal pressure shape is the signature of higher frequency modes and
would contribute to the growth of corresponding wave frequencies.

The bottom row shows how the 1D pressure distribution changes with different ak,
ranging from 0.1 to 0.25 (colour coded). The shapes are similar for the same c/u∗, with
the amplitude of the pressure variation increasing with wave steepness ak. The largest
difference is between ak = 0.1 and the other three ak values, where the amplitude of the
pressure seems to saturate at high ak.

4.3. Pressure amplitude and phase shift

Figure 7 shows the pressure amplitude p̂1 and phase shift φp1 as a function of c/u∗ and
ak. These quantities are computed by Fourier transform of the phase averaged surface
pressure ps. The ‘surface’ is defined as the wave following surface 4∆ = 0.1/k away from
the air water interface. We have tested the sensitivity to the location within the first
8 grid points and it does not present much difference (as long as we are in the viscous
layer).

Figure 7(a) shows that the amplitude p̂1 first increases with c/u∗ until c/u∗ ≈ 6 and
then decreases, for all steepness ak. Figure 7(b) shows that the phase shift φp1 follows
the opposite trend. The net result is that the the drag force shown in figure 7(c) is not
a strong function of c/u∗, which is in agreement with previous studies in the slow wave
regime. Figure 7(c) also confirms (4.4): the dotted and solid lines show the single mode
representation and the integral representation of wave drag force Fp respectively, which
agree very well, even when the pressure distribution is not necessarily sinusoidal.

Taking a closer look at the phase shift, it is around 90 degree for the strongest forcing
cases c/u∗ = 2, and then goes under 90 degree between c/u∗ = 2 and 6, and then slightly
above 90 degree at c/u∗ = 8. This indicates that the sheltering mechanism is dominant
in the strong forcing conditions, and that the theories based on linear stability analysis
might be at work in the higher wave age cases. (more on this in §5.3). Good agreement
was found with results from Kihara et al. (2007) (marked with black crosses) at ak = 0.1
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Figure 7. (a): Pressure amplitude p̂1 normalised by the nominal wall stress τ0 = ρau
2
∗, and in

addition ak, plotted against c/u∗. (b): Pressure phase shift φp1 as a function of c/u∗. Notice that
because of the Fp = (1/2)p̂1 ak sin(φp1) relation, the drag force is the largest when φp = 90◦,
and zero when φp = 0◦ or 180◦. The results of Kihara et al. (2007) of Re∗ = 180 and ak = 0.1
are plotted with black crosses. (c)The wave drag force Fp is not a strong function of c/u∗ for all
the steepness ak. We also show the full integral value 〈ps∂hw/∂x〉 in comparison to the single
mode representation (1/2)p̂1ak sin(φp1). The markers and colours are the same with those in
figure 5(b) and 6.

obtained at Re∗ = 180, suggesting that the phase shift might not be sensitive to the
Reynolds number.

The pressure amplitude p̂1 is normalised by akτ0 in figure 7(a), and this choice is made
by a commonly adopted scaling argument. Intuitively, and also used in the theoretical
studies mentioned in §1.3, the pressure variation amplitude should scale with ρa(ak)U2

ref

(1.4), with Uref being some characteristic wind velocity (not necessarily the friction
velocity u∗). From figure 7(a) we see that this scaling does not collapse p̂1 with respect
to ak, at least not when u∗ is used. Now defining the ratio between p̂1 and akρau

2
∗ as P ,

P = p̂1/akρau
2
∗. (4.6)

This ratio P represents (Uref/u∗)
2, the ratio between the should-be characteristic velocity

Uref and the friction velocity u∗. From figure 7 (a) we see that P ranges from around 15
to 45, indicating that Uref/u∗ is around 4 to 7.
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Figure 8. The wave form drag Fp (or wave drag τw defined by 3.8) as a proportion of the
total stress τ0, plotted as a function of wave steepness ak. Our data points are marked with the
solid triangles and the colours denote c/u∗. Other numerical data: stars Kihara et al. (2007),
c/u∗ = 2, 4, 8, mostly overlapping with the ak = 0.1 results; pentagons, Yang & Shen (2010),
c/u∗ = 2. Experimental results: solid circles, Peirson & Garcia (2008); solid crosses, experimental
observation from Mastenbroek et al. (1996); plus signs, numerical prediction from Mastenbroek
et al. (1996); light crosses, Grare et al. (2013); open diamond, Buckley et al. (2020); open
squares, Funke et al. (2021). The last two data sets denoted with open marks are purely wind
generated waves, and the Grare et al. (2013) data set has mixed types, while the others are
all mechanically generated waves (or similar numerical setups). Dashed line: the quadratic
representation Fp = 1/2β(ak)2 with a constant β; solid line: the Belcher correction 5.2.

5. Scaling the wave drag force Fp and the energy input rate Sin

In this section, we discuss the parameterization of the wave drag force Fp and the
energy input rate Sin as functions of c/u∗ and ak, and compare our results to those from
the literature.

5.1. Wave drag Fp/τ0

We have shown that the drag is not a strong function of c/u∗ in the slow wave regime.
However, it is strongly dependent on the steepness. Figure 8 shows the drag coefficient
Fp/τ0 as a function of the wave steepness ak. Since the amplitude changes very slowly in
most cases, the initial steepness is a good enough representation of the transient a(t)k.
For the small steepness regime (ak < 0.2), the data roughly scales with (ak)2, with some
small variation in different c/u∗,

Fp ∼ (ak)2τ0. (5.1)

More specifically the prefactor is 1/2P sin(φp), with P defined in 4.6. For higher steepness
ak = 0.2, 0.25, we see a plateau in Fp/τ0 and a clear departure from the (ak)2 scaling,
and slightly larger variation with c/u∗. This plateau is very likely due to the fact that
the flow is mostly separated.

Figure 8 also shows numerical and experimental data from the literature. Our results
agree very well with previous numerical studies across different ak. The ak = 0.1 results
is very close to those from Kihara et al. (2007), and the ak = 0.25 results are within
the range of those reported by Yang & Shen (2010). Note that Kihara et al. (2007);
Yang & Shen (2010) performed DNS with Re∗ = 180, which is four times smaller than
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the current study. It suggests that the Fp/τ0 as a function of ak may not be strongly
Reynolds number dependent.

For comparison with experimental studies, we note that some of the data plotted in
figure 8 are actually τw defined by (3.8) instead of Fp. Since we have already verified that
the pressure is responsible for over 80% of the energy flux, the Fp and τw values do not
differ by much for the cases discussed here; at least the small difference does not affect
the general trend of Fp/τ0 with increasing ak.

Peirson & Garcia (2008) (solid circles) measured τw by the spatial wave energy growth,
and their data match with ours quite well. They also suggested a correction to the (ak)2

relation inspired by (Belcher 1999), with two fitted parameters βf and βt

τw/τ0 = (βf + βt)(ak)2/[2 + βf (ak)2] (5.2)

that seem to fit a compilation of the data sets well (see their figure 5). This correction
is plotted with the solid line in figure 8. The other experimental studies have reported
a wave drag coefficient somewhat higher. Mastenbroek et al. (1996) measured the wave
drag coefficient by using a fixed pressure probe at a fixed height kh = π, and Grare et al.
(2013) used PIV viscous stress measurement, pressure with fixed or wave following probe
for different subset data. Buckley et al. (2020) and Funke et al. (2021) were obtained
from the same data set; Buckley et al. (2020) used PIV viscous stress measurement
and computed pressure as a stress residual, while Funke et al. (2021) reconstructed the
pressure field by solving the Poisson equation.

From the synthesis of data, we can see that the numerical estimations of Fp/τ0 are in
general lower than the experimental measured ones; and that the ones inferred from the
wave growth seem to be lower than the ones measured from the air stress in experiments.
There are also significant scatters within experimental data using different methods to
measure the stress (PIV viscous stress, pressure with fixed or moving probes), that are
beyond the scatters that might be introduced by different wave ages. Although we have
verified using our simulation that the measurement of Fp directly from the air stress
or indirectly from the wave growth should be consistent, there remain a few possible
reasons for the scatters in the experimental data: one is the existence of 3D smaller
scale waves (roughness elements) that increases the drag; the other is the uncertainty
caused by the air side measurement, especially the pressure extrapolation error from a
finite height to the surface, discussed in Donelan et al. (2006) and Grare et al. (2013). A
further examination of the extrapolation error will require a study of the vertical pressure
structure.

5.2. Growth rate γ

The energy input by pressure is closely linked to the wave drag force by Sp = cFp; or
considering the more general definition of wave drag (3.8), the total wind input is Sin =
cτw. The two are used interchangeably in the present discussion, i.e. Sin = cτw ≈ cFp.

We have seen that the drag force Fp is not a strong function of c/u∗, so the pressure
energy input rate Sp = cFp increases with c/u∗ as shown in the inset of figure 9, i.e. in
the slow wave regime, the energy flux is higher for waves travelling faster (at a fixed u∗).
This could appear in contradiction to the observation that the slowest travelling waves
have the fastest growing energy curve in figure 3. This is however not self-contradicting,
because the curves in figure 3 reflect the relative rate of change of energy, which is Sin
further normalised by the total energy E, and E is larger for faster waves. (Note that
in figure 3, since we consider the net energy growth, another factor that is the viscous
decay is also larger for the faster waves, since γd is constant in our simulation).

This normalisation by the total energy E and angular frequency ω, i.e. the definition
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Figure 9. Inset figure shows the energy input rate Sp increasing with increasing c, while the
main plot shows the non-dimensional growth rate (γ) decreasing with increasing c/u∗. The
grey line is the (u∗/c)

2 fitting. It demonstrates that the non-dimensional growth rate scaling is
dominated by the ωE normalisation.

of growth rate per radian γ = Sin/(ωE), was introduced by Miles (1957), and is based
on the assumption that the growth is exponential. Considering the definitions of wave
energy and the gravity wave dispersion relation,

E =
1

2
ρwga

2, ω = kc =
√
gk (5.3)

and using the assumption that Fp ∼ (ak)2 (which we have seen to be failing at high ak),
and by introducing the prefactor β (Miles 1957), we obtain

Fp =
1

2
β(ak)2τ0 =

1

2
β(ak)2ρau

2
∗, (5.4)

which becomes

γ =
Sin
ωE

=
cFp
ωE

= β
ρa
ρw

(u∗
c

)2
. (5.5)

It is worth noticing that this relationship, widely used in the literature, presents some
strong self-correlation between the normalisation of Sin by ω in the left hand side and
the phase speed c = ω/k on the right hand side. The resulting (u∗/c)

2 scaling is reflected
in figure 9.

The representation of (5.5) in figure 10 is often taken as an indirect proof of Miles’
theory. Plant (1982) compiled laboratory and field measurements known to the date
(plotted in grey symbols in figure 10), which became the benchmark and established
the (u∗/c)

2 scaling, although the empirical range of β (indicated in grey dotted lines) is
higher than the original prediction from Miles (1957).

We caution that while the (u∗/c)
2 scaling seems to hold, there is a wide scatter in the

β value at a given value of u∗/c, with sometimes over an order of magnitude variation.
We also note that alternatives for the reference velocity have been proposed (e.g. the
sheltering coefficient at half wavelength by Donelan et al. (2006) or the middle layer
velocity from Belcher (1999)), and the reported values of the β parameter by experimental
and numerical studies could be presented in terms of another reference velocity, leading
to estimations of the sheltering coefficient (see Peirson & Garcia (2008) and Yang et al.
(2013) for example).

A large contributing factor to the scatter is the role of the wave steepness at a given
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wave age, as already discussed by Peirson & Garcia (2008); Buckley et al. (2020). The
steepness is indicted in figure 10 with different shades of red for the data sets where the
wave steepness can be identified. As we have mentioned, the assumption that the wave
drag force scales with the steepness (ak)2 does not hold for moderate to high steepness
(ak > 0.15).

The other factor is again, the uncertainty in the pressure-slope correlation (1.1)
measurements. The data sets compiled by Plant (1982) were all obtained by measuring
the aerodynamic pressure, with either fixed or wave following probes. This is to some
extent due to the difficulty in directly measuring the wave growth as an alternative: for
the fast moving waves, measuring the extremely small growth in amplitude is prone to
errors; and for the less controlled field campaigns, it is hard to single out the wind input
from the nonlinear interactions and dissipation. It is of crucial importance, therefore,
that we find ways to quantity the uncertainties in these pressure measurements.

In summary, the (u∗/c)
2 scaling in figure 10, despite being robust because of the

normalisation, inherits the uncertainty reflected in figure 8. The normalisation of Sin
by ω and E following (1.7) is questionable with the growth rate being very small due
to the small density ratio ρa/ρw so that the exponential growth cannot be verified in a
convincing way; and the normalisation makes the γ parameter too skewed by the wave
characteristics.

We want to mention that it remains to be studied how the results from the current
study and the other lab experiments with nearly monochromatic wave trains can be
extended to broadband ocean waves spectrum. The method to date (Snyder et al. 1981;
Donelan et al. 2006; Yang et al. 2013) is to keep the linear assumption, and the correlation
term 1.1 becomes the cross-spectrum

Q(ω) = 〈ps(ω)hw(ω)∗〉. (5.6)
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Interestingly, the only numerical study of a broad spectrum wave field from Yang et al.
(2013) (blue crosses) reported growth rate of very similar magnitude to our study.
The numerical methods are very different: the points from Yang et al. (2013) are from
computing (5.6) in one run for different wave frequency ω, while the points in our study
are from different runs with different initial c/u∗ and ak. The steepness a(ω)k is not
reported in Yang et al. (2013), therefore it is hard to draw a definite conclusion.

5.3. The range of phase shift φp and implications for potential theories

Finally, we discuss the implication of numerical results for different theories men-
tioned in the introduction §1.3. The air pressure distribution is of critical importance
to understanding both the wave growth and the wave drag force. It also provides
insights into the airflow structure, and therefore can be used to validate or invalidate
theories. By comparing our real number representation (4.2), (4.6) to the complex number
representation (1.4) there is the correspondence that

β = P sin(φp1), α = P cos(φp1) (5.7)

and

φp1


= π/2 if α = 0

∈ (0, π/2) if α/β > 0

∈ (π/2, π) if α/β < 0

(5.8)

We have based the discussion around the imaginary part of the pressure distribution β,
which is the 90◦ out of phase part with the surface (i.e. in phase with the surface slope).
It is always positive for the slow moving waves because of the direction of the energy
flux. The real part α, although not contributing to the growth, is informative if we want
to determine the phase φp.

There has not been much discussion on α, although recently Bonfils et al. (2021) used
an asymptotic method to solve the Rayleigh equation and they pointed out that the real
part α, which is often neglected, changes the wave phase speed, and that α can be positive.
They have also argued that for strong forcing case, α is around 0, which validates Jeffrey’s
sheltering hypothesis. This observation agrees with our results. However, the phase shift
reported in different experiments are usually in the (π/2, π) range (Donelan et al. 2006;
Grare 2009). Since our data are in excellent agreement with Kihara et al. (2007) on the
phase shift, it suggests that some processes from the laboratory experiments are different
than in these numerical simulation (which could be related to three dimensional small
scale wave structure).

To summarize, the 90◦ phase shift, together with the pressure distribution that closely
resembles a separated flow supports the Jeffrey’s sheltering hypothesis for the strongly
forced waves (c/u∗ 6 2). It is also where we see the smallest Sp/Sin ratio, which indicates
that the wave coherent viscous stress starts to play a role. The effect of viscous shear stress
can be included in the sheltering parameter (1.3) as Jeffrey’s original scaling analysis does
not exclude the viscous shear stress. The transitional regime (2 6 c/u∗ 6 4) results in
φp1 ∈ (0, π/2). Only based on the phase shift, it does not seem to be explained by any
existing theories, since both Miles’s critical layer theory and Belcher’s non-separated
sheltering theory predict a negative α. Above the intermediate wave regime (c/u∗ > 8),
the phase shift φp1 becomes slightly above 90◦, which suggests that the above two theories
could potentially apply.
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6. Conclusion

We have presented direct numerical simulations of wind waves forced by a turbulent
boundary layer, by solving the two-phase Navier-Stokes equations. Leveraging these fully
resolved and coupled two-phase DNS, we directly compare the wave energy growth
against the pressure input. We discuss the detailed pressure distribution (amplitude
and phase) together with the integral quantities (drag force and energy input rate),
for a wide range of wave steepness ak and wave age c/u∗. The wave energy input rate
is closely linked to the drag force and we discuss the scalings of the drag force and
energy input rate with both ak and c/u∗. The pressure distribution at the surface is of
particular interest because it gives rise to both the wave growth and the wave drag force,
and is a quantity extremely hard to measure experimentally. Our results compare well
to previous experimental and numerical works and feed into the ongoing discussions on
the exact mechanism responsible for wave growth under various wind forcing regimes. In
the strongly forced case, the pressure forcing agrees with the description of the sheltering
effect proposed by Jeffrey.
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Appendix A. Validation of the numerical method

A.1. Using adaptive mesh refinement in wall turbulence simulation

In this study, we use Basilisk, a tree-based adaptive mesh refinement (AMR) solver to
simulate a turbulent boundary layer flow. AMR exploits the fact that the dynamically
active scales in the boundary layer is distributed inhomogeneously, and therefore the
computation can be accelerated using a more refined grid near the wall and less refined
grid away from the wall. Few work has used AMR to the simulation of a turbulent
boundary layer, as far as we know, except for van Hooft et al. (2018) where AMR was
used to perform large eddy simulation of the atmospheric boundary layer. We note that
Perrard et al. (2021); Rivière et al. (2021); Farsoiya et al. (2021) have used AMR for
an homogeneous and isotropic turbulence box and demonstrated the accuracy of the
methods by considering the second order structure function scaling.

Here, we directly solve the Navier-Stokes equation without any subgrid scale models,
and we validate our approach against existing direct numerical simulation from Kim
et al. (1987) and verify that we reproduce the major features of the canonical turbulent
wall-bounded flows.

When simulating wall-bounded turbulent flows, the commonly adopted strategy to
increase the near-wall resolution is to use (prescribed) non-uniformly spaced grid in
the wall normal direction (e.g. Chebyshev grid in Kim et al. (1987)), while keeping the
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Case (Lx, Ly, Lz)/δ δν/∆

Kim et al. (1987) (Re∗ = 180) (4π, 2π, 1) z+1 = 20*

N=7 N=8 N=9 N=10 N=11

One-phase (Re∗ = 180) (2, 2, 1) 0.36 0.71 1.42

One-phase (Re∗ = 720) (2, 2, 1) 0.36 0.71 1.42

Two-phase (Re∗ = 720) (2π/(2π − 1), 2π/(2π − 1), 1) 0.60 1.2 2.4

Table 2. The number of grid points per viscous unit (δν/∆) for different configurations and
refinement levels. *The first grid spacing (often denoted as z+1 ) is not exactly comparable to the
resolution in the AMR case: because stretched grid used in the spectral method, the grid size
increases as it goes away from the wall.

spacing uniform in the streamwise and the spanwise directions. The adaptive mesh of
Basilisk uses a different real-time adapting strategy based on the idea of wavelets. It was
developed by Popinet (2003, 2009), with recent discussion in Popinet (2015) and van
Hooft et al. (2018). Briefly speaking, once given the up-sampling (U) and down-sampling
(D) operator (which are usually second-order) for computing a certain field (f) when the
grid is refined and coarsened, the mesh is controlled by two parameters, the refinement
criteria ε and the maximum level of refinement N . If the field is of size L0, the smallest
grid size is ∆ = L0/2

N . For a given cell i at level n, the discretization error is given by
the absolute difference between the down-sampled and then up-sampled value and the
original value (van Hooft et al. 2018),

χin = |U(D(f in))− f in| (A 1)

If χin is smaller that 2/3ε, the ith grid is coarsened to level n− 1; if χin is bigger that ε,
the ith grid is coarsened to level n+ 1 (only if n+ 1� N); otherwise the ith grid is kept
at level n.

A.2. Comparison to canonical channel flow with Re∗ = 180

To demonstrate that the turbulent boundary layer is resolved properly with the
adaptive mesh, we perform a set of single phase channel flow simulations of Re∗ = 180,
and compare our results to the canonical DNS of a channel flow using a spectral method
by Kim et al. (1987). In addition to validating our numerical method, the cases shown
here also provide the benchmarks of how the controlling parameters of the adaptive mesh
(i.e. refinement level N and error tolerance ε) affect the simulated flow.

The mean horizontal velocity ū and the rms of velocity fluctuation urms, vrms and
wrms are plotted in figure 11(a) and (b) respectively. They both agree well with Kim
et al. (1987), although there is a small difference in magnitude in the rms velocity. The
mean profile converges at even very coarse grid spacing (N = 7), which is an intriguing
feature of AMR. The Reynolds stress shown by figure 12 also agrees with the reference
case from Kim et al. (1987), despite taking longer to converge.

Notice that the refinement criteria ε has the same unit as the field f . In the DNS of a
turbulent channel flow case, we have found by trial and error that the ε value that works
the best for the velocity field is around 0.3u∗. It refines the near wall region without
too much refinement in the centre of the channel. This is expected because the friction
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Figure 11. Turbulence statistics of one-phase channel flow, N = 9 and ε = 0.3u∗. (a)
Mean horizontal velocity in wall unit. z+ = z/δν ; ū+ = ū/u∗. (b) Velocity fluctuation. Blue:
u+
rms = urms/u∗; orange: v+rms = vrms/u∗; green: w+

rms = wrms/u∗. Black lines in both (a) and
(b) are from Kim et al. (1987).
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Figure 12. The Reynolds stress −u′v′ normalised by total wall stress. The solid black line is
from Kim et al. (1987). The computational domain in the AMR solver is by default cubed, and
therefore limited in the streamwise and spanwise sizes. It causes the second order statistics to
converge more slowly. Averaged over 10 eddy turnover time Te, with Te defined as Te = δ/u∗.

velocity u∗ is the characteristic velocity scale in the boundary, but we comment that the
particular prefactor is likely to change for different configurations and Reynolds numbers.

A.3. Convergence between one-phase and two-phase cases at Re∗ = 720

The cases in the paper are run with the two-phase configuration at N = 10 and
ε = 0.3u∗ (see table 2). We have also tested that the one-phase and two-phase flat wall
cases agree with each other, and that the mean profile converges at N = 9, 10, 11 (see
figure 13 (a)). Figure 13 (b) shows how the rms velocity is effected by the maximum
refinement level N and error tolerance ε. A slightly larger ε results in higher horizontal
rms velocity in the outer region. Overall the difference is small and the rms velocity is
well converged between different N and ε.

A.4. Convergence verification for the moving wave cases

We verify that the wave averaged quantities (energy and wave drag force) exhibit good
convergence between the N = 10 and 11 cases, as we show in figure 14. The results are
also not sensitive when the Bond number is increased, as shown with different shades of
green, confirming that the results in the paper apply in the gravity-capillary to gravity
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Figure 13. (a) Mean horizontal velocity for the Re∗ = 720 cases. Green curve: single phase with
N = 9, ε = 0.3u∗; red and blue dots: two phase cases with flat surface (the same configuration
as all the moving wave cases), ε = 0.1u∗ at N = 10 and 11 respectively. (b) The rms velocity
for the single phase cases, under different maximum refinement levels N and error tolerances ε.
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Figure 14. Left: convergence of the wave energy for different refinement levels N and Bond
numbers Bo. The energy evolution converges at higher Bond number. Right: convergence of the
wave drag force. The symbols are the same with the left plot. ak = 0.15, c/u∗ = 2.

wave regime. Some variations in the wave drag force are seen, related to the chaotic
variations of the instantaneous flow.
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scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917, A40.
Shemer, L. 2019 On Evolution of Young Wind Waves in Time and Space. Atmosphere 10 (9),

562.
Snyder, R. L., Dobson, F. W., Elliott, J. A. & Long, R. B. 1981 Array measurements of

atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 1–59.
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of Winds and Currents Coupled to

Surface Waves. Annu. Rev. Fluid Mech. 42 (1), 19–42.
Tsai, W.-T., Chen, S.-M., Lu, G.-H. & Garbe, C. S. 2013 Characteristics of interfacial

signatures on a wind-driven gravity-capillary wave: CHARACTERISTIC SIGNATURES
ON A WIND WAVE. J. Geophys. Res. Oceans 118 (4), 1715–1735.

van Hooft, J. A., Popinet, S., van Heerwaarden, C. C., van der Linden, S. J. A., de
Roode, S. R. & van de Wiel, B. J. H. 2018 Towards Adaptive Grids for Atmospheric
Boundary-Layer Simulations. Boundary-Layer Meteorol 167 (3), 421–443.

Wu, J. 1968 Laboratory studies of wind–wave interactions. J. Fluid Mech. 34 (1), 91–111.
Wu, J. & Deike, L. 2021 Wind wave growth in the viscous regime. Phys. Rev. Fluids 6 (9),

094801.
Yang, D., Meneveau, C. & Shen, L. 2013 Dynamic modelling of sea-surface roughness for

large-eddy simulation of wind over ocean wavefield. J. Fluid Mech. 726, 62–99.
Yang, D. & Shen, L. 2010 Direct-simulation-based study of turbulent flow over various waving

boundaries. J. Fluid Mech. 650, 131–180.
Zdyrski, T. & Feddersen, F. 2020 Wind-induced changes to surface gravity wave shape in

deep to intermediate water. J. Fluid Mech. 903, A31.
Zhang, B., Popinet, S. & Ling, Y. 2020 Modeling and detailed numerical simulation of the

primary breakup of a gasoline surrogate jet under non-evaporative operating conditions.
International Journal of Multiphase Flow 130, 103362.


	1. Introduction
	1.1. Motivation
	1.2. Problem formulation
	1.3. A brief review on the representation of surface pressure in wind wave growth theories
	1.4. Connecting theoretical growth rate and observations

	2. Direct numerical simulation of fully coupled wind and waves
	2.1. Numerical setup

	3. Direct observation of the wind wave growth and the surface stress
	3.1. Directly observed wave growth
	3.2. Wind surface stress
	3.3. Wave energy growth rate vs pressure input rate

	4. Surface pressure distribution
	4.1. Definitions
	4.2. Streamline and asymmetric pressure patterns
	4.3. Pressure amplitude and phase shift

	5. Scaling the wave drag force Fp and the energy input rate Sin
	5.1. Wave drag Fp/0
	5.2. Growth rate 
	5.3. The range of phase shift p and implications for potential theories

	6. Conclusion
	Appendix A
	A.1. Using adaptive mesh refinement in wall turbulence simulation
	A.2. Comparison to canonical channel flow with Re*=180
	A.3. Convergence between one-phase and two-phase cases at Re*=720
	A.4. Convergence verification for the moving wave cases


