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Ecosystems represent archetypal complex dynamical
systems, often modelled by coupled differential
equations of the form

dxi
dt

= xiφi(x1, · · · , xN ) ,

where N represents the number of species and xi,
the abundance of species i. Among these families
of coupled differential equations, Lotka-Volterra (LV)
equations, corresponding to

φi(x1, · · · , xN ) = ri − xi + (Γx)i,

play a privileged role, as the LV model represents
an acceptable trade-off between complexity and
tractability. Here, ri is the intrinsic growth of species i
and Γ stands for the interaction matrix: Γij represents
the effect of species j over species i. For large
N , estimating matrix Γ is often an overwhelming
task and an alternative is to draw Γ at random,
parameterizing its statistical distribution by a limited
number of model features. Dealing with large random
matrices, we naturally rely on Random Matrix Theory
(RMT).
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The aim of this review article is to present an overview of the work at the junction of theoretical
ecology and large random matrix theory. It is intended to an interdisciplinary audience
spanning theoretical ecology, complex systems, statistical physics and mathematical biology.

1. Introduction: Complex networks, randomness and large
dimension

(a) Goals of this study
Ecosystems can be seen as archetypal complex dynamical systems, as they usually consist
of a large number of interacting components with heterogeneous properties. In the present
article, these components are species or sub-populations that evolve according to their
own demographic dynamics and interact through various mechanisms (such as competition,
predation or facilitation). These dynamics generally take the form:

dxi
dt

= xiφi(x1, · · · , xN ) (1.1)

where xi(t) represents the (dimensionless) abundance or density of species i population, the
function φi encapsulates all the sources of growth and mortality, and N is the (large) number of
interacting species. We focus in this article on the Lotka-Volterra (LV) model [1,2] which writes:

φi(x) := φLVi (x) = ri − xi + (Γx)i , (1.2)

where ri represents the intrinsic growth rate of species i and Γ = (Γij) is a N ×N matrix with
Γij representing the effect of species j on species i, see Section 2 for a detailed introduction of the
LV model.

Historically, LV model was designed to understand the interaction between two species
(N = 2), which abundances often show an oscillating behavior (think of the celebrated Hare-Lynx
example [3]). In this study, we will focus on large foodwebs (N� 1), equilibria and their stability.
Oscillating behaviors in large dimension are beyond the scope of this survey but are discussed
in the "open problems" section (Section 6(b)). In the Supplementary Material File (referred to as
Supp-Mat file in the sequel) [4, Section 2], we provide a brief presentation of the N = 2 case.

Notice that φi, often referred to as the net growth rate:

φi =
1

xi

dxi
dt

represents the growth rate of abundance xi, i.e. its per capita rate of abundance change.
Equation (1.1) incorporates two essential properties of biological dynamics: first, a species can

be extinct (equilibrium at xi = 0), and second, a small population xi→ 0 displays an exponential
growth or decay with rate φi |xi=0 referred to as the invasion growth rate (e.g. [5,6], see also the
Supp-Mat file [4, part 4(d)]).

To analyze and model such complex dynamical systems, a set of formal tools, including
network theory, dynamical systems and Random Matrix Theory (RMT), have proven successful
across a variety of scientific disciplines. This review is meant to offer a constructive viewpoint
on the connection between these mathematical tools, especially RMT, and ecological systems,
addressed to an interdisciplinary audience spanning theoretical ecology, complex systems,
statistical physics and mathematical biology. We propose to focus on formal problems inspired
by complex ecosystems, with the ultimate aim of answering ecological questions regarding the
conditions of species coexistence, community diversity and ecosystem stability.

Through the prism of the Lotka-Volterra model with random interactions, our aim here is to
give a diverse overview of concepts and questions that have proven fruitful in that line of work.
In particular, we wish to point out results that we conjecture may also hold qualitatively, or even
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quantitatively, beyond this particular model, in the hope that such “universal”1 behaviors might
be shown in the future to capture some aspects of real ecosystems.

The connection of this model to empirical data is an important question which is beyond the
scope of this review. We discuss this aspect in the discussion section (Section 6).

(b) Historical context
The first eminent proponent of applying results from complex dynamical systems to ecosystems
was Robert May [7]. Inspired by the success of RMT for modelling unknown interactions in
complex physical systems, such as large atomic nuclei [8], he argued as follows:

Obs Empirical observation: ecosystems with a large number of species appear to exist and persist
for long times.

Hyp 1 If we assume that species abundances are poised at some dynamical equilibrium x∗ =

(x∗1, · · · , x∗N ) with all x∗i > 0
dxi
dt

= x∗i φi(x
∗) = 0 (1.3)

Hyp 2 If we assume that their interactions are sufficiently complex to be modelled as random, i.e.
more precisely, that the Jacobian matrix governing the linearized dynamics around the
equilibrium

Jij =
∂(xiφi)

∂xj
(x∗) (1.4)

is modelled as{
Jii = −1 +MiiCii
Jij = MijCij (i 6= j)

i.e. J =−I + C ◦M

where the random variables Mij are independent identically distributed (i.i.d.) centered
random variables of variance V , Cij are i.i.d. with Bernoulli distribution with parameter
C, called the connectance (such that a species has N × C links on average), and ◦ denote
the Hadamard product of matrices (pointwise multiplication of entries),

Res Then the equilibrium is stable for NCV < 1 and unstable for NCV > 1.

A formal presentation of May’s result, in particular at a probabilistic level and emphasising
the role of the large dimension of N , is provided in Supp-Mat file [4], (Section 1, Prop. 1.2).

May presented his conclusion as a paradox: earlier ecologists had imagined the observed
complexity of natural ecosystems as a positive feature favoring their persistence (i.e. the more
connected and/or strongly interacting species were, the more likely they would coexist), which
could be contradicted by the loss of stability predicted in May’s simplistic model. May’s result,
however, did not spell out where in the above argument lies the “paradox”, i.e. which part of the
argument should be reevaluated in the light of empirical evidence, or instead, should lead us to
reevaluate earlier assumptions about ecosystems.

This result had a lasting influence on the theoretical ecology literature, yet it never received
clear support from ecological data [9–12]. After that, theoretical and empirical work on this topic
has been diverse in scope and focus, but can be interpreted as questioning each of the four points
summarized above2. In response to Obs, ecosystems might be less diverse and complex than they
appear [13] (e.g. few species may coexist at any location, or species may exist in large number N
but with low interaction variance V ). Contra Hyp 1, real ecosystem dynamics might be far from
1Beware that in RMT, universality has a different meaning: for a given random matrix, a result is universal if it does not
depend on the distribution of the underlying random variables but only on its first moments.
2May’s own interpretation was probably focused on the third (Nature had to employ “devious strategies”, in his words, to
allow high-diversity ecosystems to exist in a stable equilibrium).
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May's intuition: assuming an equilibrium with random-like features,
                      it should generically be unstable for high diversity

effective diversity
(number and variance
of interactions and species)

stable unstable

What May did
not discuss:

     before
Dynamics leading up to equilibrium:
- other qualitative transitions?
- do we lose coexistence?
- does structure emerge?

    after
- do species go extinct,
      reducing diversity?
- do species survive, but in
      a fluctuating state?

May threshold

Figure 1: Schematic cartoon of early arguments from randomness in complex ecological systems.
Robert May (1972) used a mathematical result to anchor a broader qualitative intuition: assuming
a system with random features at dynamical equilibrium, there is an axis of effective diversity
(equal to the product NCV in his model), combining system size (species number) and statistics
(notably variance) of interaction, along which a qualitative transition from stability to instability
is expected. Yet how likely is such an equilibrium to arise in the first place, and are there other
qualitative transitions along this axis (or other axes that are as broadly relevant)?

equilibrium, e.g. dominated by transient excursions [14]. Contra Hyp 2, ecological interactions
might be structured so that the resulting dynamics deviate importantly from predictions from
full randomness [15] (suggesting a greater role of non-random structure in ecology). Finally, even
admitting Res, the loss of stability when NCV > 1 does not imply the extinction of species: the
ecosystem may still persist in a steady out-of-equilibrium state [16], and thus this mathematical
statement may not be interpreted ecologically as a limit on a realistic number of species.

The discussion that May’s result generated [17,18] also highlights the issues arising from
misunderstanding mathematical notions of equilibrium existence, equilibrium stability, and
system persistence, as well as the gap between measurable quantities in ecology and those
relevant to the analysis of ODEs [19–21]. However, the “May-Wigner transition” was an
influential result because, while it was proven for a particular case (a random linearized
dynamical system), there were many reasons – both mathematical and empirical, from successes
of RMT in other fields – to conjecture that it could have far broader generalizations.

(c) Qualitative questions
May’s original work did not actually state what happens in arbitrary nonlinear ecological
dynamics, besides the fact that it may exhibit a transition to instability (cf. Fig. 1). For instance,
can some species go extinct without a loss of stability? [22–24].

One aim of this review is to show that such questions, which cannot be addressed in May’s
setting, can be and have been fruitfully studied in subsequent decades using the LV model (2.1).
A model that is simple, can be derived as an approximation of individual-based models (see
Supp-Mat file [4, Section 3]), and is rich enough to demonstrate various dynamical phenomena.

Another important line of inquiry that has grown in response to May’s work on stability
has focused on imposed structure, searching for various deviations from full randomness that
might possibly allow to restore feasibility, stability, or both. These structural features can be
motivated by empirical networks, such as reproducing in broad strokes the hierarchical or group
structure of a foodweb [25], the size-dependence of trophic interactions [26], or accounting for the
spatial structure of ecosystems [27,28]. They can also arise from theoretical mechanisms, such as
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interactions deriving from underlying ecological traits and niches [29], or their evolution [30,31].
We will discuss results and questions arising when we allow a combination of deterministic
structure and randomness in Lotka-Volterra systems, see Sections 4 and 6(a).

(d) Outline of the article
In Section 2, we introduce the LV system of coupled differential equations. We discuss and
motivate the large random interactions model, and introduce two such models, with independent
interactions (i.i.d. model), and correlated reciprocal interactions (elliptic model). In Section 3,
we present results for the two reference models (i.i.d. and elliptic) and address the question of
the existence of a unique equilibrium x∗ = (x∗i ) for a LV system with random interactions and
its stability, that is the conditions for which x(t)→x∗. We also focus on the feasibility of the
equilibrium, that is the conditions for which no species vanishes at the equilibrium: x∗i > 0 for all
i. If feasibility is not reached, we describe the composition of the equilibrium in terms of surviving
species x∗i > 0 and vanishing species x∗i = 0, together with various properties of the equilibrium.
Beyond i.i.d. and elliptic models, there is a need to consider more realistic structures of interaction
matrices which take into account important features of real foodwebs. In Section 4, we focus
on sparse models and kernel matrices. We present a quick survey of the related literature in
theoretical ecology and recall associated basic RMT results. In Section 5, we extend Lotka-Volterra
models by adding extra randomness yielding to stochastic differential equations (SDEs).

Finally, we summarize in Section 6 what has been covered in this review and what has not. We
also present some directions of investigation and open problems of interest.

We briefly describe the Supplementary Material File [4] which contents complete the main
exposition. In [4, Section 1], we present May’s model. In [4, Section 2], we present the deterministic
LV model of size 2, for pedagogical purpose. [4, Section 3] establishes the connexion between
individual-based models and LV model, while [4, Section 4] shows how individual-based models
studied at different asymptotics yield community models with noise. In [4, Section 5], we
provide mathematical details related to Section 4, in particular a certain type of deterministic
networks and kernel matrices. More precisely, concerning the latter, we emphasize the connexion
between general kernel matrices and Marchenko-Pastur distribution associated to large random
covariance matrices.

2. The Lotka-Volterra model

(a) The Lotka-Volterra system of differential equations
We are interested in many-species ecological dynamics and our main object of study will be the
following LV system of differential equations:

dxi
dt

= xi (ri − xi + (Γx)i) , (2.1)

where i∈ [N ] := {1, · · · , N} and x= (x1, · · · , xN ). The parameter N represents the number of
species, supposed large, xi = xi(t) is a dimensionless quantity evolving in time t, in relation with
the abundance of species i, ri represents the intrinsic growth of species i and Γ = (Γij) is aN ×N
matrix reflecting the interaction effect of species j on the growth of species i:

(Γx)i =
∑
j

Γijxj .

Notice that if there are no interactions, i.e. Γ = 0, we recover for each species the standard
logistic (Verhulst) differential equation which in particular reflects the limited amount of available
resources.
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Using φLVi (x) := ri − xi + (Γx)i introduced in (1.2), Eq. (2.1) follows the generic form

dxi
dt

= xiφ
LV
i (x) ,

introduced in (1.1) with φLVi representing the net growth rate of species i.
As mentioned above, we detail in [4, Section 3] how this LV model naturally emerges from

an individual-based model when we consider a certain asymptotics of the birth, death and
interaction rates. Let us also formalise in Remark 2.1 below how one can obtain the dimensionless,
normalized system of equations (2.1), where each species has a comparable importance, from a
similar system dealing with the actual abundances of species.

Remark 2.1 (Obtaining the dimensionless LV model (2.1)). In ecology, a natural formalization of the
LV model involving the actual abundances or densities Xi of the modelled species reads as:

dXi
dt

=Xi
[
ri −DiXi + (MX)i

]
, (2.2)

where ri is species i intrinsic growth rate, Di is species i density-dependent term and M is the matrix of
interaction coefficients. In order to obtain the dimensionless version of the Lotka-Volterra model presented
in Equation (2.1), the following changes of variables are needed:

xi :=DiXi , Γij :=Mij/Dj . (2.3)

Plugging these new variables into Eq. (2.2), one obtains Eq. (2.1).

In a large ecosystem consisting of N species (N� 1), the precise knowledge of the interaction
matrix Γ = (Γij) among these species is often out of reach. An interesting alternative is to model
the N ×N matrix Γ with random entries and to rely on RMT. The statistical properties of the
entries may then reflect a partial knowledge on the ecological interaction network.

(b) Two random interactions models
In this section, we precisely describe two models for the matrix Γ with random interactions. The
first is the simplest theoretical baseline of i.i.d. entries with zero mean, while the second model
is a natural extension that allows to represent more types of ecological interactions [32]. Other
(more involved) models will be discussed in Section 4.

Independent and Identically Distributed entries.

In this model, the entries Γij are i.i.d., with a N -dependent common distribution and can be:

(i) Γij =
Aij√
N

or (ii) Γij =
Aij

αN
√
N

(2.4)

where the Aij ’s are i.i.d., EAij = 0, EA2
ij = 1 and a distribution independent from N .

In the case (i), the N−1/2-normalization casts matrix Γ = A√
N

into the framework of RMT,
where the limiting properties of the spectrum and eigenvectors of matrix Γ are well described.

The circular law (cf. [33]) asserts that the spectrum of Γ converges toward the uniform
distribution on the disk of radius 1, see Fig. 2-(a). Moreover, denote by ρ(Γ ) Γ ’s spectral radius:

ρ(Γ ) := max{|λ(Γ )| , λ(Γ )∈C eigenvalue of Γ},

then its asymptotic behaviour is well-known: ρ(Γ )
a.s−−−−→

N→∞
1 , where a.s−−→ stands for the almost

sure convergence. As a consequence, matrix Γ has a non-vanishing macroscopic effect on the
dynamical system (2.1) even for large N .

In the case (ii), there is an extra normalization term αN which may or may not depend on N .
If it does not depend on N , then it is simply a parameter that allows to tune the variance of the



7

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(a) ξ = 0 (b) ξ =−0.5 (c) ξ = 0.5

Figure 2: Spectrum of 500× 500 centered random matrices with (a) N−1/2-normalized i.i.d.
standard Gaussian entries, (b) elliptic distribution ξ =−0.5, (c) elliptic distribution ξ = 0.5. The
points represent the eigenvalues. The solid curve represents the boundary of the support of (a)
the circular law (uniform law on the disc), (b) and (c) the elliptic distribution with parameter ξ.

entries since var(Γij) = 1
α2N

. If αN grows to infinity asN→∞, it has the effect of asymptotically
squeezing to zero the contribution of the interaction matrix Γ as

ρ(Γ ) =
ρ(A/

√
N)

αN
−−−−→
N→∞

0 .

Despite this, we will see in Section 3(d) that α∗N =
√

2 log(N) is the threshold to reach feasibility
(no vanishing species - see the formal definition in Section 3(a)-(ii)).

The elliptic model.

Two assumptions of the i.i.d. model are commonly relaxed to describe a wider range of ecological
scenarios. First, while the i.i.d. model assumes that interactions have zero mean, ecological
networks often contain interactions with a prescribed sign. Second, the i.i.d. model enforces the
reciprocal interactions Γij and Γji to be uncorrelated. However, a large literature, for random
as well as for deterministic interactions, deals with symmetric matrices Γij = Γji , which can for
instance arise in ecology in the case of competition [34], or skew-symmetric matrices Γij =−Γji
[35], which were originally proposed for predator-prey interactions [2]. The random symmetric
case is well-known in RMT and is referred to as the Wigner model, see for instance [36, Chap. 2].

These various cases can be unified into the elliptic model [37–39], which displays a richer
statistical structure than the i.i.d. model. The entries of matrix Γ write

Γij =
Aij√
N

+
µ

N
, (2.5)

where µ is a deterministic quantity, Aij is centered with variance equal to 1. In particular, µ
N

stands for Γij ’s expectation. The second feature of the model is the existence of a correlation
between the random variables Aij and Aji (i 6= j):

corr(Aij , Aji) = ξ ∈ [−1, 1] (2.6)

while Akk and {Aij , Aji} are independent for k, i, j and i < j.
Under the elliptic model and in the case where µ= 0 and |ξ| 6= 1, the spectrum of Γ converges

toward the uniform law on the ellipse

Eξ =

{
z = x+ iy,

x2

(1 + ξ)2
+

y2

(1− ξ)2
≤ 1

}
,
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Figure 3: Spectrum of a deformed 500× 500 elliptic matrix with parameters ξ = 0.5, µ= 2. The
solid line represents ellipse Eξ , the boundary of the support of the limiting spectral distribution
for an elliptic model. Notice the extra outlier near 2 + ρ

2 as expected.

see Figure 2, (b) and (c) (hence the name). If µ> 1 and does not belong to Eξ, then it has been
shown in [40] that we witness an extra outlier located near µ+ ξ

µ (i.e. a single random eigenvalue

of Γ will converge to µ+ ξ
µ as N→∞), see Figure 3.

We may also consider this model with an extra normalization, as in (2.4)-(ii):

Γij =
Aij

αN
√
N

+
µ

N
. (2.7)

Among the key issues we will address is the study of the various regimes of the dynamical
system (2.1) with random interactions: existence of an equilibrium, study of its stability, etc.

Remark 2.2. Using random interaction models means that we hope to predict essential aspects of an
ecosystem only on the basis of statistical features of the network, rather than its detailed structure. In
May’s framework (see Sec. 1(b)), the main parameter turned out to be the complexity NCV, combining the
number N of species, the connectance C and the variance V of the interactions. The system’s equilibrium
is predicted to go from stable to unstable as its complexity parameter NCV crosses a threshold.

Our LV models are parametrized by the variance 1
α2 of the interactions, their bias µ and their

correlations ξ etc. One of our goal in the sequel will be to investigate how these parameters can be combined
to characterize the behavior of the corresponding dynamical system.

3. Equilibrium, coexistence and stability
Due to the form of the dynamical system (2.1), standard ODE results yield that ifx(t= 0) =x0 > 0

(resp. x(t= 0) =x0 ≥ 0) componentwise, then x(t)> 0 (resp. x(t)≥ 0) for all t > 0. We are thus
interested in equilibrium points x∗ = (x∗i )i∈[N ] satisfying

x∗i φ
LV
i (x∗) = x∗i (ri − x∗i + (Γx∗)i) = 0 , i∈ [N ] and x∗i ≥ 0 .

Let us present the main properties of the equilibria that have been investigated in the literature.

Outline of the section

In Section 3(a), Paragraph (iii), we list the main questions we want to address. In Section 3(c),
we provide general criteria to assess the existence of a unique stable equilibrium. In Section 3(d),
we address the question of feasibility. In Section 3(e), we provide heuristics on the number of
surviving species in the case where the equilibrium is not feasible. In Section 3(f), we present in
Table 1 an overview of the main results and remaining open questions. The phase diagram in Fig.
9 may also help the reader to navigate among the various results.
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(a) Terminology and main questions
Consider the general system (1.1). If needed, we will use φLVi instead of φi.

(i) Various notions of stability

The most common notion of stability in dynamical systems is the so-called Lyapounov stability:
The equilibrium x∗ is Lyapounov stable if for any neighborhood U of x∗, there exists a
neighborhood W of x∗ such that

x(0)∈W =⇒ x(t)∈U for all t≥ 0 .

From now on, we will simply refer to stability instead of Lyapounov stability.
The equilibrium x∗ is said to be asymptotically stable, if and only if it is stable and the

neighborhood W can be chosen so that

x(0)∈W =⇒ x(t)−−−−→
t→∞

x∗ .

One can also get interested in global stability, in the sense that x∗ is stable and

∀ x(0)∈ (0,∞)N , x(t)−−−−→
t→∞

x∗ .

The following theorem provides a necessary condition for stability to hold (notice that the result
below holds for general functions φi).

Theorem 3.1 (see Takeuchi [41], Theorem 3.2.5). Consider the system

dxi
dt

= xiφi(x1, · · · , xN ), i∈ [N ] , (3.1)

with all φi continuous. If an equilibrium point x∗ ≥ 0 of (3.1) is stable, then φi(x∗1, · · · , x∗N )≤ 0, i∈ [N ].

We will explain below how to relate Γ ’s properties and the stability of the equilibrium.

(ii) Invasion, extinction, feasability and uninvadability

An important feature of Lotka-Volterra dynamics (2.1) is the fact that species can be extinct: xi = 0

entails dxi/dt= 0 and is always a possible equilibrium value for species i. On the other hand, if
at some time xi(t)> 0, then positivity is maintained at all later times [42]. However, the solution
can tend to zero asymptotically (see also Section 5 for finite populations).

The fact that, for all species i, xi = 0 is always associated to some possible equilibria has
motivated the notion of species invasion where one takes a system where xi(0) = 0, and perturbs
it at time t by setting xi to a nonzero value. In particular, we often ask whether a species can
invade from rare, i.e. what is the asymptotic behavior when xi(t) is set to a small positive value?
This can be answered by considering the net growth rate φLVi , defined for species i in Eq. (1.2)
and representing its per capita rate of abundance change. The constant

φLVi |xi=0 = φLVi (x1, · · · , xi−1, 0, xi+1, · · · , xN ) = ri −
∑
j 6=i

Γijxj (3.2)

defines the rate of exponential growth or decay of a small population xi ≈ 0 in an environment
where the other species start with sizes given by x. This quantity is called the invasion growth
rate in the community ecology literature, or invasion fitness (or just fitness) in evolution. The net
growth rate φLVi also has a probabilistic individual-based interpretation since it is related to the
survival probability of a birth and death process that approximates locally xi(t) when xi is small
and considering that the other sizes also do not vary much (see [4, Section 4(c)]). The species is
said to be deterministically (or asymptotically) extinct if xi→ 0, and permanent otherwise [43–45].

Ecologists have investigated invasion sequences, e.g. whether different dynamics and attractors
are reached depending on the order in which species are introduced [46]. The same notions
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arise in an evolutionary context, where mutant types can be modelled as initially absent species.
Champagnat et al. [47] construct the polymorphic evolution sequence that alternates phases where
the dynamics is described by the LV system (2.1) and phases of invasion of new arriving species,
generalizing the trait substitution sequence process introduced in [45]. Merging coevolution
and invasion sequences in simulation studies has also been a long-standing endeavour among
ecologists [48–52].

Beyond deterministic extinctions and invasions, we explain in Sec. 5 and [4, Section 3] how
the expression for fitness arises in a probabilistic individual-based description and connects to
survival probability in such a context.

The notion of feasibility will refer to an equilibriumx∗ = (x∗i ) of (1.1) where all species coexist:

x∗i > 0 for i∈ [N ] .

Such an equilibrium will be called feasible.
The notion of uninvadability will refer to an equilibrium x∗ = (x∗i ) of (1.1) satisfying:

x∗i φi(x
∗) = 0 for i∈ [N ]

where either

(a) φi(x∗) = 0 and x∗i > 0, in which case the species x∗i is said to survive or
(b) x∗i = 0 and φi(x∗)≤ 0, in which case the species is said to vanish (or to be extinct).

Such an equilibrium will be called uninvadable. Notice that it is stated in Theorem 3.1 that an
equilibrium, to be stable, must be uninvadable.

(iii) Main questions we want to address

This raises a number of fundamental questions, in particular:

(i) Given parameter r and a random model for matrix Γ , is there a unique equilibrium? Is it
locally stable? globally stable ? What is the proportion of surviving species and what are
their statistical features?

(ii) Given parameter r and a random model for matrix Γ , what are the conditions to get a
feasible equilibrium? Is it unique? stable?

(iii) Given an interaction matrix Γ , can we characterize the domain of growth rates r that
allow feasibility?

We focus hereafter on questions (i) and (ii). We will not develop answers to question (iii), which
assumes that r is likely to vary with environmental conditions while Γ is biologically fixed, since
the main object of this study is LV systems when N is large and the interaction matrix Γ contains
a random component. However, extensive works on question 3 can be found elsewhere, in the
context of structural stability of LV equilibria [53,54].

There are several levels of answers to these questions, depending of the expected level of
rigor. As we will see, we can provide fairly precise mathematical answers for a narrow range
of assumptions (tight assumptions on the interactions Γ ). Theoretical physics tools and computer
experiments will substantially relax these assumptions and widen our understanding.

(b) Linear Complementarity Problem: an important concept to study
equilibrium dynamics

In this section, we provide the definition of the Linear Complementarity Problem (LCP), which
is part of the theory of mathematical programming (see [55,56] for standard references). LCP has
already been used in ecological contexts in [41, Chapter 3].
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Given a N ×N matrix M and a N × 1 vector q, we say that the LCP (M, q) admits a solution
(z, w)∈RN × RN if there exist two such vectors satisfying the following set of constraints:

w = Mz + q ≥ 0 ,

z ≥ 0 ,

wT z = 0 .

In this case, we simply write z ∈LCP (M, q) since w=Mz + q can be inferred from z.
Consider the LV dynamics (2.1). An uninvadable equilibrium x∗ = (x∗i ) (if it exists) will satisfy

x∗i φ
LV
i (x∗) = 0 ,

x∗i ≥ 0 ,

φLVi (x∗) ≤ 0

for all i∈ [N ] . (3.3)

With the explicit form of φLVi (x∗), see (1.2), this exactly means that x∗ ∈LCP (I − Γ,−r).

(c) Criteria for existence and uniqueness of a globally stable equilibrium.
As mentioned above, an equilibrium point x∗ = (x∗i ), if it exists, should satisfy

x∗i (ri − x∗i + (Γx∗)i) = 0, i∈ [N ] . (3.4)

Hence, either x∗i = 0, and the species i vanishes at equilibrium or ri − x∗i + (Γx∗)i = 0. We
a priori do not know beforehand which species vanish and which ones remain. Moreover,
uniqueness of the equilibrium may not be guaranteed.

A systematic way to find all the solutions is to arbitrarily fix the vanishing species x∗i = 0 for
i∈A, A being any subset of [N ] (2N possibilities), then to solve the remaining set of equations

rj − x∗j + (Γx∗)j = 0, j ∈Ac := [N ] \A . (3.5)

If the obtained x∗j are positive, then (0, i∈A;x∗j , j ∈A
c) is a possible solution.

Adding an uninvadability condition may considerably reduce the number of solutions, which
can then be analyzed in the LCP framework.

The following result due to Takeuchi and Adachi [41] provides a sufficient condition for the
existence of a unique equilibrium and the global stability of the LV system. It is the cornerstone
to establish single equilibrium/stability conditions for interaction matrices with random entries
and is based on the explicit construction of a Lyapunov function.

Theorem 3.2 (Takeuchi and Adachi 1980, see [41] Th. 3.2.1). Consider the system (2.1):

dxi
dt

= xi (ri − xi + (Γx)i) = xi (ri + [(−I + Γ )x]i)

and assume that there exists a diagonal matrix Υ with positive diagonal elements such that matrix
Υ (I − Γ ) + (I − Γ )∗Υ is positive definite. Then there exists a unique equilibrium point x∗ solution of
the LCP (I − Γ,−r) and this equilibrium is globally stable in the sense that it is stable and

∀ x(0)∈ (0,∞)N , x(t)−−−−→
t→∞

x∗ .

In Takeuchi’s language,−I + Γ is said to be Volterra-Lyapounov stable (VL-stable). As explained
in [41], it is in general difficult to determine whether a given matrix is VL-stable. But one can
compare it to other better known set of matrices : any negative diagonal dominant matrix, or
negative semidefinite matrix is VL-stable and conversely, if A is VL-stable then A has all its
principal minors positive. It is possible to be more precise when all off-diagonal elements have
the same sign but not in general.

Combining Theorem 3.2 and standard results in RMT on the limit of the largest eigenvalue of
a Wigner matrix, one can determine a set of parameters for which our random interaction models
are VL-stable. We prove the following result:
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Theorem 3.3 (Unique equilibrium and stability under uninvadability condition). Let αN = α be
fixed. If one of the following conditions is satisfied:

(i) Matrix Γ is given by model (2.4)-(ii) and α>
√

2 ,

(ii) Matrix Γ is given by model (2.7) and the parameters (α, µ, ξ)∈R+ × R× [−1, 1] satisfy

α>
√

2(1 + ξ) and µ<
1

2
+

1

2

√
1− 2(1 + ξ)

α2
.

Then almost surely, there exists N large enough such that the system (3.3) admits a unique solution x∗ =

(x∗i ), x∗i ≥ 0. Moreover, this equilibrium is globally stable (see Section 3(a)-(i) for the definition).

We provide the proof under Assumption (i). For the general proof, see [57, Prop. 2.6].

Elements of proof. Assume (i) and let Υ in Th. 3.2 be given by Υ = I . Compute

I − Γ + I − Γ ∗ = 2I − (Γ + Γ ∗) = 2I −
√

2

α

(
Aij +Aji√

2N

)
. (3.6)

Notice that W =
(
Aij+Aji√

2N

)
is a symmetric matrix with independent centered entries on and

above the diagonal with variance var
(
Aij+Aji√

2

)
= 1 + δij , where δij is the Kronecker symbol

with value 1 if i= j and zero else. In RMT, W is referred to as a Wigner matrix, and its properties
are well-studied. In particular, it is known that its largest eigenvalue λmax(W ) behaves as follows:

λmax(W )
a.s.−−−−→
N→∞

2 ,

see for instance [36, Theorem 5.1]. Going back to (3.6), we get:

I − Γ + I − Γ ∗ = 2I −
√

2

α
W

and the smallest eigenvalue of this matrix is

λmin

(
2I −

√
2

α
W

)
= 2−

√
2

α
λmax(W )

a.s.−−−−→
N→∞

2

(
1−
√

2

α

)
.

Taking α>
√

2 yields the desired result.

It is worth noticing that the (i) and (ii) respectively are sufficient conditions to get a unique
globally stable equilibrium but simulations and heuristic arguments (see e.g. [58]) indicate that
these conditions are not tight and one could observe a unique equilibrium for smaller α’s.

Beyond Theorem 3.2, there exists other stability criteria of a similar flavour that may be useful.
One can cite for example Goh [59] that provides stability results in the case of the existence of
a feasible equilibrium, or Champagnat et al. [60] that provide a variant to Theorem 3.2. Those
results could have similar RMT interpretations as Theorem 3.3.

(d) Unique feasible equilibrium.
Once the conditions are met so that the LV system of coupled equations admits a unique
equilibrium, a natural question arises: is this equilibrium feasible, in the sense that x∗ > 0

componentwise? A negative answer has been brought by Dougoud et al. [61] in the case where α
is fixed. As a first conclusion, getting feasibility requires α= αN ↗∞. This implies a qualitative
change in the nature of the interactions since the random part of the interaction matrix would
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have a (macroscopic) vanishing effect:

ρ(Γ ) =O
(

1

αN

)
→ 0 (i.i.d. model) , ρ(Γ ) = |µ | + O

(
1

αN

)
(elliptical model) ,

whereO stands for the standard big O notation. In Bizeul and Najim [62], the feasibility threshold
αN ∼

√
2 log(N) is established. We start with an argument of Dougoud et al. [61].

No feasibility if α is fixed.

Assume that the equilibrium point x∗ is feasible, then x∗i > 0 for i∈ [N ] and the equations (3.4)
are equivalent to the linear system

(I − Γ )x∗ = r.

Let Γ be given by the i.i.d. model (2.4). It is well-known in RMT that the spectral radius ρ(A/
√
N)

almost surely converges to 1 (see e.g. [63]). As a consequence, for every α> 1, ρ(Γ )< 1 eventually
(i.e. almost surely for large N ) and matrix (I − Γ ) is almost surely invertible for large N . Hence,
the following algebraic representation of the equilibrium:

x∗ =

(
I − A

α
√
N

)−1
r . (3.7)

In the simpler case where r= 1N , the N × 1 vector of ones, Geman and Hwang [64] have proved
that asymptotically, for every finite M ,

(x∗1, · · · , x∗M )
L−−−−→

N→∞
NM (1M , σ2αIM ) ,

where σ2α = 1
4α2−1 depends on α, NM (a, C) NM (a, C) is the multivariate normal distribution

with mean a and covariance matrix C, and L−→ stands for the convergence in distribution. As a
consequence, Dougoud et al. [61] argued that under this interaction regime (fixed α) observing a
feasible equilibrium was unlikely. In fact, the theoretical result by Geman and Hwang [64] asserts
that each component x∗i of the equilibrium asymptotically behaves as an independent Gaussian
random variable centered at 1, with a variance independent from N , hence the heuristics

P( min
i∈[N ]

x∗i > 0)'
∏
i∈[N ]

P(x∗i > 0)−−−−→
N→∞

0 .

Otherwise stated, the initial assumption that x∗ > 0 is very unlikely to happen and is
asymptotically a large deviation. This a priori analysis motivates the study of a feasible
equilibrium under the regime α= αN −−−−→

N→∞
∞.

Feasibility when αN grows to infinity.

In the case where r= 1, there is a sharp phase transition around the threshold value α∗N ∼√
2 log(N) for both models (2.4)-(ii) and (2.7). Below the threshold, there is no feasibility with

very high probability while above the threshold, feasibility occurs with probability growing to 1.

Theorem 3.4. Let Γ be given by model (2.4)-(ii) or (2.7); in the latter case assume that µ< 1. Assume
αN −−−−→

N→∞
∞ and denote by α∗N =

√
2 log(N). Let r= 1. Then x∗ given by (3.7) is well-defined and

(i) If ∃ ε > 0 such that αN ≤ (1− ε)α∗N then P(mini∈[N ] x
∗
i > 0)−−−−→

N→∞
0 ,

(ii) If ∃ ε > 0 such that αN ≥ (1 + ε)α∗N then P(mini∈[N ] x
∗
i > 0)−−−−→

N→∞
1 .

Although the full proofs of the theorem are involved, simple heuristics capture the phase
transition in the i.i.d. case and is presented hereafter.
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Remarks

• These results are established in [62] and [57] for the i.i.d. case and the elliptic case.
• In the case where r 6= 1 is still positive componentwise, there is not a sharp threshold

at α∗N =
√

2 log(N) but rather a transition buffer [α∗min,N , α
∗
max,N ] from non-feasibility

(αN <α∗min,N ) to feasibility (αN >α∗max,N ). Details can be found in [62, Section 4.2].

Heuristics to understand the phase transition in Theorem 3.4. Assume that Γ is given by model (2.4)-
(ii). In the representation (3.7) of the equilibrium, expand the inverse matrix as a Neumann series
and only consider the first order expansion:

x∗ =

(
I − A

αN
√
N

)−1
1 = 1 +

A

αN
√
N

1 + · · ·

Every component x∗k of x∗ writes

x∗k = 1 +
Zk
αN

+ · · · where Zk =

∑
j∈[N ]Akj√

N
.

Notice that the Zk’s are i.i.d.N (0, 1). Pushing the approximation and taking the minimum yields

min
k∈[N ]

x∗k ' 1 +
mink∈[N ] Zk

αN
.

Now standard results from extreme value theory yield mink∈[N ] Zk ∼−
√

2 log(N), hence

min
k∈[N ]

x∗k ' 1−
√

2 log(N)

αN
.

The relative position of αN with respect to α∗N =
√

2 log(N) yields the desired result.

(e) Unique equilibrium with vanishing species
In the case of a unique equilibrium with species vanishing when t→+∞, it is interesting to
understand some properties of the survivors such as the individual distribution of the abundance
of a given species, the number of vanishing species, etc. Various techniques (such as the replica
method from theoretical physics) yield quantitative heuristics validated by simulations. A full
mathematical analysis remains currently out of reach.

(i) Number of vanishing species.

We mentioned earlier that should the parameter α (related to the strength of the interaction) be
constant or less than

√
2 log(N), the equilibrium x∗ will feature vanishing components x∗i = 0

representing disappearing species.
In this section, we address the question of estimating the proportion of surviving species p=

p(α) as a function of parameter α. In [58], Bunin provides heuristics based on the cavity method
to address this question, while in [65], Galla establishes equations comparable to those of Bunin
based on dynamical generating functionals techniques. Both heuristics apply for the elliptical
model (2.7). For the i.i.d. model, a simple order statistics argument can be found in [66,67]. These
a priori different methods yield the same equations from which one can extract p(α).

Given the random equilibrium x∗, we introduce the following quantities:

S = {i∈ [N ], x∗i > 0} , p̂=
|S|
N

, m̂2 =
1

|S|
∑
i∈[N ]

(x∗i )2 .

Denote by Z ∼N (0, 1) and by Φ the cumulative Gaussian distribution function:

Φ(x) =

∫x
−∞

e−
u2

2

√
2π

du .
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Conjecture 3.5 (Bunin [58], Galla [65], Clenet et al. [66,67]). Let α∈
(√

2,
√

2 log(N)
)

and assume
that Γ follows Model (2.4)-(ii). The following system of two equations and two unknowns (p,m)

m
√
pΦ−1(1− p) + α= 0 , (3.8)

1 +
2m
√
p

α
E
(
Z |Z >− α

m
√
p

)
+
m2p

α2
E
(
Z2 |Z >− α

m
√
p

)
=m2 (3.9)

admits a unique solution (p∗,m∗) and the following convergence holds

p̂
a.s.−−−−→
n→∞

p∗ and m̂
a.s.−−−−→
n→∞

m∗ .

Remark 3.6. Notice that the condition α>
√

2 guarantees by Theorem 3.3 that a.s. eventually there
exists a unique equilibrium. This condition is sufficient but might not be necessary. In the simulations
hereafter, we also test the case where α∈ (1,

√
2] and observe that with high probability, there exists a

unique equilibrium and a good matching with equations (3.8)-(3.9).

Simulations. We describe the setup of simulations to be compared with the theoretical values
announced in Conjecture 3.5. Similar simulations can be found in [58].

We fix N = 1000 and draw L independent realizations of matrices A(i). We then compute the
corresponding equilibria x∗(i)(α) and their related quantities (p̂(i)(α), m̂(i)(α)) for a given α> 0.
We finally compare the empirical Monte Carlo averages:

p̂L(α) =
1

L

L∑
i=1

p̂(i)(α) and m̂L(α) =
1

L

L∑
i=1

m̂(i)(α)

to their theoretical counterparts p∗(α),m∗(α), solutions of (3.8) and (3.9). For α∈
(
√

2,
√

2 log(1000)), we consider L= 500 repeated samplings and for α∈ (1,
√

2], L= 100. As
shown in Figure 4, the matching is remarkable, even for α below

√
2.

Figure 4: The plot represents a comparison between the theoretical proportion of surviving
species p∗(α) (left) and second moment m∗(α) (right) computed as solutions of (3.8)-(3.9), and
their empirical Monte Carlo counterpart (p̂L(α), m̂L(α)). The parameter α on the x-axis ranges
from 1 to

√
2 log(N)' 3.71. The value α=

√
2 corresponds to the theoretical lower bound

provided by Theorem 3.3, which guarantees a stable equilibrium; the value α=
√

2 log(N) is
the upper-limit above which we have no extinction (p∗ = 1). Notice that for α∈ (1,

√
2], the

simulations show a remarkable matching with the heuristics despite no theoretical guarantee.
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(a) Gaussian entries. (b) Uniform entries.

Figure 5: Distribution of surviving species. The solid line represents the theoretical distribution f∗

as given by Conjecture 3.7. The histogram is built by solving the LCP problem with an interaction
matrix of size N = 2000 and parameter set to α=

√
3. In plot (A), the entries are GaussianN (0, 1)

and the interaction strength is fixed to α= 2. In plot (B), the entries are uniform U([−
√

3,
√

3])

which implies that the entries are centered with variance one.

(ii) Single species distribution.

The previous conjecture provides an estimation of the proportion of surviving species p∗(α). We
go here one step further and describe the distribution of a given abundance x∗i where index i
corresponds to a surviving species.

Conjecture 3.7. Let α∈
(√

2,
√

2 log(N)
)

and let i∈ S, i.e. i corresponds to a surviving species. Let
p∗,m∗ be the solutions of (3.8) and (3.9) and Z ∼N (0, 1). Then the distribution of x∗i is a truncated
Gaussian:

L(x∗i ) =L
(

1 +
m∗
√
p∗

α
Z

∣∣∣∣ Z >− α

m∗
√
p∗

)
.

Otherwise stated, x∗i admits the following density:

f∗(v) =
1(v>0)

Φ(−δ)
δ√
2π

exp

(
−δ

2(v − 1)2

2

)
where δ=

α

m∗
√
p∗

and Φ stands for the cumulative Gaussian distribution.

The matching between the theoretical density f∗ given in Heuristics 3.7 and a histogram of a
given equilibrium x∗ is illustrated in Figure 5. In particular, the theoretical distribution matches,
even with non-Gaussian entries (see Fig. 5b).

(iii) Interactions between survivors

When only a fraction of species survive in the unique LCP equilibrium, one can also ask how the
interactions restricted to the survivors are modified. Mathematically, this boils down to consider
the submatrix (Γij)i,j∈S . Of course, the lines and columns that are selected depend on the initial
realisation of the matrix Γ and it is not an easy task to predict the new statistical features of
the entries. Nevertheless, heuristics for these quantities have been given in [68], using the cavity
method. These authors have obtained general formulas for the model (2.5) that can be found
in [68], but for the sake of simplicity, we present it here in the case ξ = 0.

Conjecture 3.8. Let Γ be a non-centered Ginibre matrix, that is obeying model (2.5) with ξ = 0. Assume
that α∈

(√
2,
√

2 log(N)
)

and, for any i∈ [N ], ri = 1. Then, for any i, j ∈ S, i.e. i, j correspond to
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surviving species, the entry Γij is still Gaussian but with the following bias and correlation:

E[Γij |x∗]−
µ

N
=−x

∗
i − 1 + µx∗

N × (x∗)2
x∗j and Corr

[
Γij , Γik |x∗

]
=−

x∗jx
∗
k

N × (x∗)2
, (3.10)

where, for any vector x= (xi, i∈ [N ]), x2 = (x2i , i∈ [N ]) and x := 1
N

∑N
i=1 xi.

In [69], a slightly different maximum likelihood viewpoint is adopted, where the elliptic
model (2.5) is considered as a prior distribution and the corresponding posterior distribution is
computed knowing the equilibrium, formulated as a linear constraint as in (3.5). Formulas (3.10)
are recovered in this context. It is possible to study how these correlations impact spectral
properties of the restricted matrix [69,70]. Rigorous proofs remain out of reach.

(f) An overview of the results and some open questions
In the next table, we summarize some of the results presented here and list a few open questions.

α α fixed α=αN ↗∞

value
√
2

√
2 log(n)

Equilibrium OQ? unique

Feasibility OQ? no yes

Single species
distribution

OQ? truncated gaussian
vanishing

gaussian

proportion
of vanishing
species

OQ?
provided
by accurate
heuristics

all

species

are

present

Table 1: The table above summarizes the different regimes (depending on α) of the LV system
(2.1) where ri = 1 and Γ follows i.i.d. model (2.4)-(ii) with standard Gaussian entries. By "OQ?",
we mean open question; in typewriter font, the result is proven mathematically; in italics, the
result is established at a physical level of rigor.

4. Structured models
In the previous section, we have studied at large the LV system (2.1) where the matrix Γ , supposed
random, has either i.i.d. entries or follows the elliptic model, see Section 2(b). Another line of
research focused on a model of the Jacobian of the system near equilibrium:

J =−I +M (4.1)

where M is random, the question being then to understand the relative localisation of the
spectrum of M with respect to -1 to conclude on the stability of the system. This approach is
historically the first with May’s paper [7], a presentation of which is provided in [4, Section 1].

To progress toward a more realistic description of the reality, one is tempted to consider more
involved models of random matrices to take into account more properties of the complex systems
such as sparsity, existence of underlying structures, randomness beyond independence, etc.

For instance, the question of the effect of the structure of the ecological network on its
feasibility and stability already appeared in [71], where Pimm argued that connectance is not
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the only parameter that can influence the feasibility and stability of the networks, and started a
theoretical study of structured (both deterministic and random) networks.

In this section, we present a variety of random matrix models beyond the i.i.d. and elliptic ones,
highlighting their use in theoretical ecology and listing mathematical results and questions of
interest. Often, mathematical results are not directly available and massive simulations remain the
main approach to exploit the potentialities of such models. We start this collection of structured
models with a quick reminder of what ecologists understand by "sparsity", since most of the
model structures revolve around the idea of structuring where the zeros are in matrix Γ .

Sparsity in ecological networks. Empirically, in an ecosystem with N species, even if the
maximal number of interactions is N2, the real number L of nonzero interactions is often much
smaller. We define the connectance as

C =
L

N2
. (4.2)

For a LV system, this means that matrix Γ has N2 − L null entries. Although the interpretation
is less obvious for random jacobian matrices (4.1), the notion of connectance already appeared
in [7,22] and is important to model sparsity. Recently, Grilli et al. [72] worked explicitly on the
interaction matrix of a LV system and studied the stability and feasibility of the equilibrium
as a function of various parameters, among which the connectance (see also [73,74]). Based on
empirical evidence, [75] suggested that food webs can have very low connectance.

The notion of sparsity used thereafter is different from the one usually employed in
mathematics, where matrices or networks are said to be sparse when the ratio L/N2 goes to zero
with N and dense when C is of the order of a positive constant for large N , the graph is said to
be dense. In ecology, "sparse networks" are understood more broadly as networks in which not
all interactions exist (i.e. matrices with zeros). In the following, we will consider sparse networks,
in the ecological sense, with a wider range of connectance including the regime when C =O(1),
which is called dense in mathematics.

Beyond the connectance, it is possible to take into account the structure of the network by
setting some of the entries to zero, thus enforcing ecological sparsity, but in a structured manner.
For this, we may use a matrix ∆= (∆ij) where ∆ij equals 1 if species j has an effect on species
i and 0 otherwise. If one draws the system interactions as a graph, then ∆ can be interpreted as
the adjacency matrix of this graph and the interaction matrix Γ or the community matrix M can
then be represented as proportional to ∆ ◦A, with (∆ ◦A)ij =∆ijAij and A is random either
i.i.d. or elliptic. In such a model, ∆ represents the structure of the system summarizing ecological
sparsity and A the (random) intensity of the interactions.

(a) The simplest model for sparsity: Erdős-Rényi graphs
When all species play the same role in the foodweb and the only parameter of interest is the
average number of interactions for a given species, it is natural to choose ∆ as the adjacency
matrix of an Erdős-Rényi (ER) graph of size N : each coefficient of the random matrix ∆ has
probability p to be nonzero, equal to 1, and probability 1− p to be put to zero, independently of
the others. The average number of edges in the graph is pN2, hence the connectance C equal to p.

ER in the mathematical literature

ER graphs are reference models in random graphs and their geometric properties are well-known
(see e.g. [76–78]), together with the spectral properties of their adjacency matrices. In the regime
whenC =O(1),which is called dense by mathematicians, the ER matrix is a rank one deformation
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of a matrix with centered i.i.d. entries, so that we observe a circular law and one outlier. In fact,

∆√
N

=
1√
N

(∆− E∆) +
1√
N

E∆ with
∥∥∥∥ 1√

N
E∆
∥∥∥∥=
√
N C ,

where ‖ · ‖ refers to the spectral norm when applied to a matrix. Notice that the precise
understanding of the extreme eigenvalues of ∆√

CN
in sparse or very sparse regimes is still an

active subject in RMT. A concise overview can be found in the introduction of [79].

ER in the ecological literature : sparsity increases stability

As developed in [4, Section 1], the case when Mij =∆ijAij , with ∆ the adjacency matrix of a
dense ER graph and A has i.i.d. centered entries with variance V has been already considered by
May. This model is equivalent to the full model, where the entries have variance CV . In this case
sparsity increases stability: the stability condition NV C < 1 is easily satisfied for small C.

The case when ∆ is the adjacency matrix of an ER graph but the model for the matrix A

is more involved has been studied in particular in [15]. They use models for A that are of the
same flavour as the elliptic model - for example, (Aij , Aji)i<j both positive to model mutualistic
systems or with opposite sign to model a prey-predator situation. As illustrated in Figure 6, in the
mutualistic case, outliers with a large real part may strongly affect the stability. In [15], the authors
also establish an explicit stability criterion adapted to each case, generalizing May’s criterion and
emphasize again that sparsity increases stability.

(a) Predator-prey. (b) Competitive. (c) Mutualistic.

Figure 6: Spectrum of the interaction matrix for N = 1000 species. ∆ is ER symmetric with C =

0.1. For the competitive (resp. mutualistic) model, Aij =Aji with distribution −|N (0, 1)| (resp.
|N (0, 1)|) variables. For predator-prey Aij =−Aji, distribution |N (0, 1)|.

(b) Sparsity with a deterministic structure
Consider a deterministic d-regular oriented graph with N vertices, that is a graph where each
vertex i has exactly d oriented edges exiting from i and d edges coming to i. Let∆ be the adjacency
matrix of such a graph, then∆ is deterministic and has d non-null entries per row and per column
and L := d×N non-null entries overall. Parameter d which may depend on N accounts for the
sparsity of the system and in the framework of a LV system, consider the interaction matrix:

Γ =
1

α

∆ ◦A√
d

=
1

α

(
∆ijAij√

d

)
ij

,

where the Aij ’s are i.i.d. and α is an extra normalization which may depend on N . Notice that
the normalization is no longer

√
N but

√
d accounting for the fact that there are exactly d non-null

entries per row. For such a model the connectance C equals:

C =
d

N

and the interest lies in "small" values of d.
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This model has been studied by Akjouj and Najim in [80] where specific assumptions on d and
∆ are considered, namely either d is proportional to N , or d� log(N) and ∆ has a specific block
structure, cf. Model (A) in [80] and [4, Section 5(a)]. In this article, it is shown that the same phase
transition as in Theorem 3.4 occurs: Feasibility and stability hold iff α= αN �

√
2 log(N).

The spectrum of matrix ∆◦A√
d

together with the proportion of equilibria near the phase
transition thershold are plotted in Figure 7.

(a) (b)

Figure 7: Deterministic model with N = 1000, d= 10. Each species interacts with d species. Non-
null interactions are i.i.d. N (0, 1). (a) Spectrum of the 1√

d
-normalized interaction matrix. (b)

Proportion of feasible equilibrium: each point represents the proportion of feasible solutions x
over 200 realizations of random matrices ΓN for different values of κ, with αN =

√
κ log(N).

(c) Introducing modularity through Stochastic Block Model (SBM)
Beyond the ER case, when every species equally interacts with another, it is often more realistic
to consider communities within the ecosystem (also called modules), that is groups of species
sharing the same connexion patterns. This leads to the celebrated Stochastic Block Model (SBM),
introduced in [81], (see also [82,83] for reviews). Let r ∈N be the number of communities. Given

• a vector of positive real numbers (π1, · · · , πr) such that
∑r
i=1 πi = 1,

• an r × r matrix P,

the corresponding SBM is a random graph whose vertices are partitioned into r communities
C1, · · · , Cr, where each node belongs to the community Ci, i∈ {1, · · · , r}, with probability
πi. Then, an edge between a vertex u∈Ci and a vertex v ∈Cj exists with probability pij ,

independently of all other edges.

SBM in the mathematical literature

There exists a huge literature on the SBM, initially introduced to analyze social networks,
and extensively used in machine learning for modelling complex networks and address the
community detection problem. The goal there is to design algorithms to cluster the different
communities and estimate accurately matrix P , see for example [84,85].

Again using the Hadamard product ∆ ◦A, the spectrum of the adjacency matrix ∆ associated
to a SBM can be described, at least in simple cases. Consider for example a SBM with r= 2

communities of equal size (π1 = π2 = 1/2) and let(
p q

q p

)
,
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with p and q of order 0(1) (dense case). Then ∆ is a rank-two perturbation of a matrix with
centered independent entries. Depending on the values of p+q2 and p−q

2 , there can be up to two
outliers in its spectrum. As in the ER case, sparse cases has also been recently considered [86].

SBM in the ecological literature : modularity increases stability

In the seventies, May and Pimm already considered rudimental forms of the SBM into the
framework of the Jacobian model (4.1), to take into account some features of ecosystems such
as modularity and compartmental models.

In [7], May presents a simple occurrence of SBM. He considers a SBM with r modules and
a probability vector (c1, . . . , cr). This SBM corresponds to modules with no interactions, while
within the ith block made of di species, the interactions behave like an ER graph with connectance
ci and variance Vi. The stability condition reads :

max
i∈[r]

ciVidi < 1,

hence modularity increases stability. This phenomenon is illustrated in Figure (8).
In [71], Pimm addresses the following question "should model systems be organized into

compartments of species characterized by strong interactions within compartments, but weak interactions
among the compartments ?" A random version of such a model would correspond to a SBM with a
matrix P having large diagonal coefficients and small off-diagonal ones.

(a) (b)

Figure 8: SBM with two communities of 500 species, N = 1000. The probability of interactions
inside the first (resp. second) community is c1 (resp. c2) and the probability of interaction with
species of the other community is equal to q. (a) Spectrum of the interaction matrix normalized
by 1√

(c1+q)N
, where ∆ is a SBM with c1 = 0.5> c2 = 0.2> q= 0.02 and A has i.i.d. Gaussian

N (0, 1) entries. (b) Spectrum of the interaction matrix normalized by 1√
qN

where ∆ is a bipartite
symmetric model, that is a SBM with q= 0.5 and c1 = c2 = 0 and A has i.i.d |N (0, 1)| entries.

More recently, the effect of modularity on the stability of the networks is extensively explored
in [87] in the framework of a tamed version of LV equations. They evaluate modularity through
an index, introduced by [88] and, through simulations, illustrate that persistence, that is the
number of surviving species, increases with modularity in trophic networks (see also [89]) but
decreases with modularity in mutualistic networks. It would be interesting to investigate whether
mathematical results on SBM could help to understand their observations.

The question of stability can be important for plant-pollinator ecosystems, corresponding
to bipartite mutualistic networks (see e.g. [87,90]). In [90], the evolution of abundances can
be approximated, when the number of species N tends to infinity, by a kinetic integro-
differential equation where the dense graphs are replaced by graphons. The theory of graphons
is mathematically well developed but beyond the scope of this review (see for example [91]).
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(d) Nested models : a few generalist and many specialist species.
In the Erdős-Rényi model or in SBM, the network is determined by considering the absence or
presence of edges for each pair of vertices independently of the others. Other models of random
graphs are defined by specifying the degree distributions. For example in the configuration
models (also known as Molloy-Reed-Bollobás, see e.g. [76,78,92]), independent random variables
distributed with the target degree distribution are associated to each vertex and edges are formed
by pairing at random the half-edges.

By choosing heavy-tailed degree distributions, one can create a few vertices with very
high degrees (corresponding to generalist species) and a majority of vertices with low degree
(corresponding to specialists). Such ecosystems are called nested. They have been modelled and
studied, at least through simulations, see for instance [87] following [93].

Nested ecosystems can also be described through random graphs with given expected degrees.
This model is known as the Chung-Lu model : take a deterministic sequence w= (w1, . . . , wn), that
will correspond to the expected degrees and draw an edge between vertex i and vertex j with
probability wiwj/

∑n
i=1 wi independently of all other edges. If we choose all the weights to be

equal to pn, we are obviously back to the ER model with connectance p but nested ecosystems can

be modeled by choosing a power-law distribution for the weights, that iswi = c
− 1
β−1

i , for i greater
or equal to some i0. In this case, the number of species interacting with k others is proportional
to k−β . The spectrum of the adjacency matrix of such a graph has been studied in [94] where
a phase transition is shown to occur at β = 2.5 : for β > 2.5, the largest eigenvalue behaves like√
m, the maximal degree in the graph, whereas for β < 2.5, the largest eigenvalue behaves like d̄,

the weighted average of the square of the expected degrees. It would be interesting to investigate
whether these mathematical results could be effectively used in the study of nested ecosystems.

(e) Kernel matrices
Definition of the model. Part of the literature on ecological networks considers that the
interactions between two species depends on a distance between their respective values of some
functional traits. The examples that we will present below, fit into the mathematical framework
of kernel matrices. We have

Γij or Mij = f(g(xi,xj)), (4.3)

where xi is a vector modelling the traits of species i, g : Rp × Rp −→R is a symmetric function,
denoted as the kernel (corresponding to the measure of the distance), and f : R−→R a function
called the envelope. Examples are g(x,y) =xTy, or ‖x− y‖2 and f(x) = exp(ex) or (1 + x)a etc.

Kernel matrices in the mathematical literature. Among these models, the first interesting and
well studied case is the so-called Wishart case3, when g(x,y) =xTy and f(x) = x. If the entries
of the vectors are i.i.d. centered and normalized, then it is well known (see [95]) that, if the ratio
p/N of the number of traits over the number of species converges to τ, the spectrum converges
almost surely to the Marcenko-Pastur distribution. We will develop the mathematical theory of
kernel matrices in [4, Section 5(b)]. The main message is that in the RMT regime, that is when
the number of traits is large and of the same order as the number of species, and if g and f are
reasonable, they have almost no influence on the spectrum, meaning that, in the models, "any"
kernel matrix could be without harm replaced by a Wishart matrix or a Gaussian kernel matrix.

Kernel matrices for ecological networks. Dieckmann and Doebeli consider a simple co-
evolutionary model [96] (see also [6,97]) where interactions are of the form (4.3) with f(x) =

ηc exp(−x2/2σ2c ) and g(x,y) = ‖x− y‖2, ηc ∈R being the strength of the competition of
mutualism and σc > 0 being the width of the ecological niches. The function f corresponds to
a Gaussian kernel (also used in [98]). In [99], they develop a phenotype matching model, where
3That is the empirical covariance matrix of the vectorsX1, . . . , XN .
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the interaction is stronger when the traits of two species are close but also phenotype difference
(or threshold) model, in which successful interaction depends on the degree to which the trait
of the second species surpasses the trait of the first one4 (see also [100,101]). Other models
involving thresholds can be found in [102] and in [103], the models involving a combination of
characteristics of the species taken separately and a measure of the similarity between the traits.

Let us finally mention the work of [104], which lies in the LV framework, with a kernel matrix
Γ for which the distance between the traits, is determined through a distance between species in
their phylogenetic tree. The author addresses the questions of feasability and stability as we have
detailed it for the elliptic case and explicitly uses the link with Wishart matrices mentioned above.
It would be interesting to investigate how this point of view applies to other contexts.

5. Other community models with noise
The models presented in the previous sections can be complexified. For instance, in [105,106], a
dynamical system allowing to incorporate homogeneous Gaussian vector field with gradient and
solenoidal contributions (resuming to May’s equation when linearizing around critical points)
is presented. It is shown that in this case there can be a exponential number of equilibria, the
majority being unstable. Also, in [107], interactions corresponding to locally tree-like networks
are modeled, with a focus on transient early phases in Equations 2.1.

Stability questions as well as out of equilibrium studies have also been investigated in other
kinds of stochastic Lotka-Volterra systems, when not only the interaction matrix is random
but when also noise is added to the dynamics. We review different models with noise that
are obtained from individual-based stochastic models by various rescalings. The evolution is
described by stochastic differential equations (SDEs), of Feller or Ornstein-Uhlenbeck types,
see [108] for a review. Other possible equations are presented in [4, Section 3] with time-scales
separations and [109] for discussions in view of ecological systems. For such systems of stochastic
differential equations (such as the ones in Prop. 5.2 and 5.3), the notion of stability for ODEs is
replaced by the notion of equilibrium distribution – the only stationary state being often zero,
corresponding to the extinction of all species. More precisely, the solution X(t) of a stochastic
differential equation converges in distribution to the stationary probability measure µ on RN

if for every continuous bounded function f , limt→+∞ E(f(X(t)) =
∫
RN f(x)dµ(x) (see [110]).

Long time behaviour of SDEs is the subject of an abundant literature in mathematics [111,112].
The LV eq. (2.1) can arise as limits of Individual Based Models (IBM), see [6], when population

sizes are large. We introduce a scaling parameter K referred to as a carrying capacity and
assume that the N species have initially sizes of order K. The individuals can give birth to new
individuals of the same species or die. More precisely, the natural birth and death rates of an
individual of species i∈ [N ] are bKi and dKi such that bKi − d

K
i = rKi . The competition pressure

(or extra death rate) exerted by an individual of species j on an individual of species i is ΓKij , if
the latter is non positive. In case ΓKij is positive, it can be considered as an extra birth rate due
to cooperation between the species i and j. Additionally an individual of species i experiences
an intra-specific death rate proportional to the size of its species (each individual experiences an
extra death term due to the logistic competition and equal to the size of the population i over K).
The natural IBMs associated with (2.1) have two levels of stochasticity: (i) matrix ΓK is random,
(ii) the occurrence of birth/death events is random. Hereafter, we work conditionally to ΓK .

Individual-based models have long been used for simulations in Ecology [113–116], (see
[117,118] for software performing IBM simulations). By presenting the fluctuations arising in the
convergence of the IBM abundances to LV abundances, we provide a link between the equations
considered in this review and these algorithms (see [4, Part 3] for more mathematical details).

4 One can think of fruit and beak sizes in a plants-birds interaction network.
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Denote by Y Ki (t) the size of species i at time t and by Y K(t) = (Y K1 (t), · · · , Y KN (t)) the vector
of all the species’ sizes, with forall i∈ [N ], the following convergence in probability

lim
K→+∞

Y Ki (0)

K
= xi(0). (5.1)

The stochasticity of the birth and death events gives rise to an additional noise process compared
to (2.1). More precisely, Y K(t) now satisfies the following SDE: for all i∈ [N ],

dY Ki (t) =
(
rKi − Y

K
i (t)− (ΓKY K(t))i

)
Y Ki (t) dt+ dMK

i (t) , (5.2)

where MK
i is a martingale process, with E(MK

i (t)) = 0, Cov(MK
i (t),MK

j (t)) = 0 and

Var(MK
i (t)) =

1

K
E
( ∫ t

0

(
bKi + dKi + Y Ki (s) + (ΓKY K(s))i

)
Y Ki (s) ds

)
, (5.3)

(this is the analogue of Eq. (3.4) derived for N = 1 in [4, Part 3]).

We now detail two different limits that can be derived from the IBM depending on the
chosen parameters and rescalings: (i) the Lotka-Volterra ODEs (2.1) with a fluctuation process
of Ornstein-Uhlenbeck type when K→+∞without time rescaling; (ii) the Feller-type diffusions
when the birth-death dynamics is nearly critical and when time is also rescaled byK, that is when
considering the process at times Kt, t∈ [0, T ].

(a) Large population limit and fluctuation around the ODE (2.1)
First, we let K→+∞ without rescaling time and with a fixed number N of species. We consider
the rescaled process:

XK(t) :=
Y K(t)

K
.

Here, for all i, j ∈ [N ],

bKi = bi , dKi = di , ΓKij =
Γij
K

, (5.4)

where the quantities bi, di and Γij do not depend on K and ri := bi − di. Notice that the
competition term ΓKij can be understood as the extra death rate exerted by an individual of the
species j on an individual of the species i. When the population is large and of order K, the
interaction between the individuals of a given pair are weaker and therefore the competition
term is rescaled in 1/K.

An averaging phenomenon appears (similarly to the law of large numbers): from (5.3), we can
see heuristically that the noise disappear and the evolution equations (5.2) can be approximated
by Lotka-Volterra ODEs (see e.g. [119, Theorem 2.1 p.456], or for more generalizations to measure-
valued processes in [6,108,120–122] for rigorous proofs). Indeed, the variance of the martingale
part in XK

i is of order 1/K and converges to zero when K→+∞.

Proposition 5.1. Assume (5.1), (5.4) and assume that for all i∈ [N ],

sup
K∈N

E
[(
XK
i (0)

)3]
<+∞, (5.5)

then, when K→+∞, the abundance processes (XK(t))t≥0 converges uniformly on every compact time
interval [0, T ] with T > 0 (as RN -valued processes) and in probability to population densities (x(t))t≥0,
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for i∈ [N ], whose evolution is described by the system of ODEs (2.1):

dxi
dt

= xi (ri − xi + (Γx)i) , i∈ [N ]. (5.6)

Put formally, this means that

∀ε, T > 0 , P

{
sup
t≤T

∥∥∥XK(t)− x(t)
∥∥∥> ε}−−−−→

K→∞
0 .

We now consider the fluctuation process associated with this convergence:

ηK(t) =
√
K
(
XK(t)− x(t)

)
. (5.7)

It is a RN -valued vector process whose ith coordinate is
√
K(XK

i (t)− xi(t)). Another
reformulation is that the stochastic process can be expressed as:

XK(t) =x(t) +
ηK(t)√
K

.

Applying [119, Theorem 2.3, Chapter 11], we obtain that:

Proposition 5.2. Under the assumption of Proposition 5.1 and assuming that, in distribution,

lim
K→+∞

ηK0 = η0 ∈RN , (5.8)

then, when K→+∞, the process (ηK(t))t≥0 converges in distribution, and for the topology of uniform
convergence on [0, T ] for T > 0, to the solution of the Ornstein-Uhlenbeck SDE:

dη(t) =
(
r − 2x(t)− Γx(t)

)
◦ η(t) dt+ x(t) ◦

(
Γη(t)

)
dt

+ diag
(

(b+ d+ x(t) + Γx(t)) ◦ x(t)
)

dB(t) , (5.9)

with initial condition η0 defined in (5.8),B a standardN -dimensional Brownian motion, ◦ the Hadamard
product and diag(·) the diagonal matrix with diagonal entries the components of the vector in the argument.
Equivalently, the componentwise definition of η= (ηi) is given for all i∈ [N ] by:

dηi(t) =
(
ri − 2xi(t)− (Γx)i(t)

)
ηi(t) dt+ xi(t)

(
Γη(t)

)
i
dt

+
(
bi + di + xi(t) + (Γx)i(t)

)
xi(t) dBi(t) .

Conditionally on matrix Γ , the solution x(t) of (2.1) is deterministic and hence the stochastic
differential equation (5.9) is of Ornstein-Uhlenbeck type, i.e.

dη(t) =A(t)η(t)dt+Σ(t)dB(t)

where

A(t) = diag
(
r − 2x(t)− Γx(t)

)
+ diag

(
x(t)

)
Γ,

Σ(t) = diag
((
b+ d+ x(t) + Γx(t)

)
◦ x(t)

)
.

The solution is a centered Gaussian process with covariance function:

Cov
(
η(t),η(s)

)
=

∫ t∧s
0

e−
∫v
0
A(u)duΣ2(v)e−

∫v
0
A(u)dudv ,

a N ×N matrix-valued function.
This central limit theorem quantifies the convergence rate in Proposition 5.1 and allows for

example to compute confidence intervals.
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(b) Noisy versions of Lotka-Volterra equations

(i) Limiting Feller diffusion for large population with time rescaling

Another way to exhibit SDEs is to consider diffusive time rescaling in the almost-critical case
(e.g. [6, Section 4.2], when the growth rates are close to zero). More precisely, if

bKi =Kσi + bi, dKi =Kσi + di, and ΓKij =
Γij
K
, (5.10)

where σi, bi, di and Γij do not depend on K. As usual, we denote by b= (bi), d= (di), r=

(bi − di) N × 1 vectors and define the matrix Σ as the N ×N diagonal matrix with entries (σi),
i.e.Σ = diag(σi). The fact that the birth and death rates are of orderK corresponds to accelerating
the time proportionally to the factorK that also rescaling the population size. That the species i is
close to criticality appears in the fact that both the birth and the death rate have the same leading
term in Kσi with the same coefficient σi. This coefficient can depend on the species.

Proposition 5.3. Assume (5.1), (5.5) and the rates (5.10). Then, when K→+∞, the process
(XK(t))t≥0 converges uniformly on every compact time interval [0, T ] with T > 0 and in distribution to
the solution of the following Feller stochastic differential equation:

dX(t) = (r −X(t) + ΓX(t)) ◦X(t) dt+
√

2ΣX(t) ◦ dBt (5.11)

whereB is aN -dimensional standard Brownian motion independent of Γ , and where the function x 7→
√
x

is applied elementwise to the vector ΣX(t).

The random noise appearing in (5.11) comes from the rapid successions of birth and death
events in this accelerated time-scale. See [4, Part 4(a)] for details.

(ii) Variations around the Feller equations

In [123], Biroli et al. added an immigration factor λ> 0. The SDEs they consider are:

dX(t) =X(t) ◦ (1N −X(t) + ΓX(t)) dt+ λ1Ndt+ f(X(t)) ◦ dB(t), (5.12)

where B(t) is a N -dimensional standard Brownian motion independent of Γ , and where the
function f : R+→R+ is applied elementwise to any vector x= (xi), i.e. f(x) = (f(xi)).

In the framework of a symmetric interaction matrix, Biroli et al. [123] unveil, by the replica
method, the large-N system behavior of X , recovering the parameter regions for which the
system has a single equilibrium or multiple equilibria. Another generalization was done by Roy
et al. in [124], where Γ can follow the general elliptic model. These authors study the large-N
limit of the SDE (5.12) by relying on a dynamical mean field approach based on the dynamical
cavity method, as detailed in [125].

A better understanding of these results from a mathematical perspective, as well as their
generalization to more sophisticated models than the elliptical model, are interesting and useful
research directions which have not been undertaken so far to the best of our knowledge. One
of the first mathematical formalizations of this class of problems goes back to the work of Ben
Arous and Guionnet [126], who were interested in the dynamics of mean-field spin glasses. In
that setting, their analogue of our SDE (5.12) is a Langevin version of the so-called Sherrington-
Kirkpatrick model for the spin glass dynamics. In the same line of thought, Faugeras et al.
[127,128] used the approach of Ben Arous and Guionnet to study a diffusion version of the
so-called Hopfield model for biological neural networks. Details are given in [4, Part 4(b)].

6. Discussion
Our guided tour through large LV models has highlighted the importance of some features of
matrix Γ to understand the dynamics of complex ecological systems. Among these features,
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the first two statistical moments of the interactions, µ/N and σ2/(Nα2), are of paramount
importance, as well as the scaling of the normalisation applied to matrix Γ (1/N for the
deterministic part of the matrix, 1/

√
N or 1/αN

√
N for its random part).

Our review covers some key topics on the analysis of large LV models, i.e. conditions
leading to a feasible equilibrium, to a unique maximal equilibrium and the link between the
interaction matrix and equilibrium stability (Sec. 3). In Sec. 4 and [4, Section 5], we mention some
sophistications (block, trait-based, sparse matrices) of the model that can make it more realistic.
Theoretical results obtained on kernel matrices (many traits, many species) [4, Thm. 5.3] suggest
that the study of LV models obtained from trait-based interaction matrices could be simplified by
assuming that many interaction matrix spectra will resemble that of a Wishart matrix. However,
this result does not yield any direct conclusion on the feasibility of an equilibrium of the LV model,
nor does it help generalize the heuristics 3.5 to such structured models.

We have not considered models based on fully organized interaction matrices, which are not
amenable to an RMT analysis but sometimes allow some direct analysis through classic analytical
tools (e.g. Lyapunov functions, see also [129]). For instance, modelling food webs as strictly
organized by trophic levels (i.e. species from trophic level k can only be positively affected by
some species of level k − 1 and negatively affected by some species of level k + 1), it is possible
to express coexistence conditions as mathematical conditions on the covering of the food web
by pairs of interacting species [130,131]. This finding, which highlights the difficulty of having a
feasible equilibrium in level-organized food webs, hints at the potential importance of omnivory
(i.e. that interactions are not strictly organized by levels, such that a predator can also feed on the
prey of its prey species) to explain the stability of real food webs. An interesting endeavour could
be to formalize omnivory in the context of random interaction matrices in order to tease apart the
effect of omnivory from that of the food web being acyclic (which would also break the trophic
level-based nature of the interaction matrix used by [130,131]).

(a) Empirical data and real interaction networks
There is a huge literature on statistical models for ecological networks, see [132–139]. The variety
of data available and the specificity of each ecosystem explain this vast corpus, which in itself
would deserve an entire review.

Many papers consider variations of the LV system, for instance integrating functional
responses [140] (and references therein). The inference and empirical testing of models is limited
by the type and volume of data that can be obtained through the observation of natural
systems or controlled experiments. For most systems, we can only access abundances xi (often
in a single snapshot that may not be at equilibrium, less frequently in time series). For some
systems, especially with predator-prey or pollinator-plant interactions, we can also know which
interactions Γij are zero or nonzero, as species may be limited in which partners they can interact
with, but quantitative estimates of nonzero interactions remain out of reach. Therefore, exhaustive
information on parameters ri and Γij is not accessible without additional assumption [10]: the
main method for estimating them reliably is to observe the growth rates and/or equilibrium
abundances of each species in isolation and in combinations, which is only possible in small-
N experiments. Abundance distributions have been exploited to fit many other models, e.g
neutral theory [13]. Additional data may help estimation and model validation [69,141,142].
Finally, notice that although the models discussed above have a high number of parameters, their
distributions have low degrees of freedom, see for instance the elliptic model.

It is important to keep in mind that real interaction networks such as food webs are likely not
randomly structured. Interactions between species play a crucial role in their respective fitness, so
that when given sufficient variation in traits governing interaction strength, coevolution of species
will lead to particular network structures [30,31,101,143]. In the sequential invasion simulations
of food webs [31], the spectrum of the Jacobian matrix of the underlying LV system does not
converge towards an ellipsis as the number of invasion attempts increases, but rather becomes
bimodal, thus highlighting a possible structuring effect of evolution sensu lato. In another
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Figure 9: Phase diagram representing the qualitative dynamical regimes of the reference random
model (first obtained numerically in [148]).

sequential invasion model, Bastolla et al. [143] found that the evolution of food webs enforces
two constraints on species diversity through competition among species preying on the same
prey species and through an increase in competition strength at higher trophic levels due to the
propagation of fluctuations and energy dissipation. In food web models incorporating realistic,
non-invasion-based evolution, species tend to naturally group into trophic levels [30,144,145],
an absent feature in most random matrix models. The various structures described in section
4 can be used to investigate their effects on equilibria and their stability, but it is still a long
way from assessing the effects of evolutionary processes on these properties, e.g. the effect of the
speciation-to-invasion ratio on food web susceptibility to further invasions [146].

(b) Open mathematical and modelling problems

Multiple equilibria and non-equilibrium attractors

While our review focuses on conditions under which there exists a unique stable equilibrium
(Sec. 3), other regimes including multiple equilibria or non-equilibrium attractors (e.g. chaos or
cycles) have been studied using physics tools [16,123,147], see for instance Fig. 9. A mathematical
understanding of these regimes and the associated thresholds is challenging and would represent
an important step in the understanding of LV systems.

Quantitative metrics for stability

As hinted in Sec. 5 and [4, Sec. 3], other dynamical properties of LV systems (e.g. dynamics
of fluctuations around equilibria), can also be studied using stochastic differential equation
analogues to the LV ODEs. More quantitative metrics of stability are also of ecological interest, e.g.
quantifying how much attractors change in response to perturbations of model parameters [149],
assessing how much model parameters can change without changing the dynamical attractor (i.e.
structural stability, [54]), or characterizing the time and trajectory of return to an attractor after a
perturbation in the abundances (e.g. chap. 58 in [150]). When perturbations are small, one can
linearize the dynamics around an attractor, and compute stability metrics for the i.i.d. or elliptic
model [19,151,152]. Beyond the linearized regime, tools such as Freidlin-Wentzell theory can help
quantify the basins of dynamical attractors and transition times between them [153].
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Counting the number of coexisting species

In Section 3(e), we provide heuristics to compute the proportion of vanishing species for a given
equilibrium and refer to articles relying on techniques from Physics. A mathematical computation
still remains out of reach and could be phrased as understanding the properties of solutions
of Linear Complementarity Problems with random matrices as input. Part of the challenge lies
on the fact that the properties of interest of the solution of a LCP (proportion of non-vanishing
components) do not only rely on the spectral properties of the random matrices at hand. Table 1
in Section 3 lists a number of open questions when studying a specific LV model.

A mathematical understanding of the cavity method

The cavity method, originally introduced in the context of spin glasses [125], has become
extremely versatile and in general yields to closed-form expressions accurately matching
simulation results. There are quite few mathematically rigorous counterparts of the results
obtained through the cavity method (one can cite e.g. [154] for sparse graphs). In the context of
large ecosystems, we have worked in this direction in [155,156], using mathematical results on the
Approximate Message Passing algorithm to recover rigorously some equations obtained in [58]
through the cavity method. There is still much to do to get a wider mathematical formalization of
the cavity method for the analysis of non-spectral properties of large random matrix observables.
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