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We revisit a classical crossword filling puzzle which already appeared in Garey&Jonhson's book.

We are given a grid with n vertical and horizontal slots and a dictionary with m words and are asked to place words from the dictionary in the slots so that shared cells are consistent. We attempt to pinpoint the source of intractability of this problem by carefully taking into account the structure of the grid graph, which contains a vertex for each slot and an edge if two slots intersect. Our main approach is to consider the case where this graph has a tree-like structure. Unfortunately, if we impose the common rule that words cannot be reused, we discover that the problem remains NP-hard under very severe structural restrictions, namely, if the grid graph is a union of stars and the alphabet has size 2, or the grid graph is a matching (so the crossword is a collection of disjoint crosses) and the alphabet has size 3. The problem does become slightly more tractable if word reuse is allowed, as we obtain an m tw algorithm in this case, where tw is the treewidth of the grid graph. However, even in this case, we show that our algorithm cannot be improved to obtain fixed-parameter tractability. More strongly, we show that under the ETH the problem cannot be solved in time m o (k) , where k is the number of horizontal slots of the instance (which trivially bounds tw).

Motivated by these mostly negative results, we also consider the much more restricted case where the problem is parameterized by the number of slots n. Here, we show that the problem does become FPT (if the alphabet has constant size), but the parameter dependence is exponential in n 2 . We show that this dependence is also justified: the existence of an algorithm with running time 2 o(n 2 ) , even for binary alphabet, would contradict the randomized ETH. Finally, we consider an optimization version of the problem, where we seek to place as many words on the grid as possible.

Here it is easy to obtain a 1 2 -approximation, even on weighted instances, simply by considering only horizontal or only vertical slots. We show that this trivial algorithm is also likely to be optimal, as obtaining a better approximation ratio in polynomial time would contradict the Unique Games Conjecture. The latter two results apply whether word reuse is allowed or not.

Introduction

Crossword puzzles are one-player games where the goal is to fill a (traditionally twodimensional) grid with words. Since their first appearance more than 100 years ago, crossword puzzles have rapidly become popular. Nowadays, they can be found in many newspapers and magazines around the world like the New York Times in the USA, or Le Figaro in France.

Besides their obvious recreational interest, crossword puzzles are valued tools in education [START_REF] Crossman | The crossword puzzle as a teaching tool[END_REF] and medicine. In particular, crossword puzzles participation seems to delay the onset of memory decline [START_REF] Pillai | Association of crossword puzzle participation with memory decline in persons who develop dementia[END_REF]. They are also helpful for developing and testing computational techniques; see for example [START_REF] Christopher | Nested rollout policy adaptation for Monte Carlo tree search[END_REF]. In fact, both the design and the completion of a puzzle are challenging. In this article, we are interested in the task of solving a specific type of crossword puzzle.

There are different kinds of crossword puzzles. In the most famous ones, some clues are given together with the place where the answers should be located. A solution contains words that must be consistent with the given clues, and the intersecting pairs of words are constrained to agree on the letter they share. Fill-in crossword puzzles do not come with clues. Given a list of words and a grid in which some slots are identified, the objective is to fill all the slots with the given words. The list of words is typically succinct and provided explicitly.

In a variant of fill-in crossword puzzle currently proposed in a French TV magazine [12], one has to find up to 14 words and place them in a grid (the grid is the same for every instance, see Figure 1 for an illustration). The words are not explicitly listed but they must be valid (for instance, belong to the French language). In an instance of the game, some specified letters have a positive weight; the other letters have weight zero. The objective is to find a solution whose weight -defined as the total sum of the letters written in the gridis at least a given threshold.

The present work deals with a theoretical study of this fill-in crossword puzzle (the grid is not limited to the one of Figure 1). We are mainly interested in two problems: Can the grid be entirely completed? How can the weight of a solution be maximized? Hereafter, these problems are called Crossword Puzzle Decision and Crossword Puzzle Optimization (CP-Dec and CP-Opt in short), respectively. CP-Dec is not new; see GP14 in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. The proof of NP-completeness is credited to a personal communication with Lewis and Papadimitriou. Thereafter, an alternative NPcompleteness proof appeared in [START_REF] Engel | On computer integrated rationalized crossword puzzle manufacturing[END_REF] (see also [10]). Other articles on crossword puzzles exist and they are mostly empirically validated techniques coming from Artificial Intelligence and Machine Learning; see for example [START_REF] Matthew | Search lessons learned from crossword puzzles[END_REF][START_REF] Meehan | Constructing crossword grids: Use of heuristics vs constraints[END_REF][START_REF] Michael | Solving crosswords with PROVERB[END_REF][START_REF] Melissinos | Crossword puzzles as a constraint problem[END_REF][START_REF] Christopher | Nested rollout policy adaptation for Monte Carlo tree search[END_REF][START_REF] Rigutini | Automatic generation of crossword puzzles[END_REF] an references therein.

Our Results

Our goal in this paper is to pinpoint the relevant structural parameters that make filling crossword puzzles intractable. We begin by examining the structure of the given grid. It is natural to think that, if the structure of the grid is tree-like, then the problem should become easier, as the vast majority of problems are tractable on graphs of small treewidth. We only partially confirm this intuition: by taking into account the structure of a graph that encodes the intersections between slots (the grid-graph) we show in Section 3 that CP-Opt can be solved in polynomial time on instances of constant treewidth. However, our algorithm is not fixed-parameter tractable and, as we show, this cannot be avoided, even if one considers the much more restricted case where the problem is parameterized by the number of horizontal slots, which trivially bounds the grid-graph's treewidth (Theorem 4).

More devastatingly, we show that if we also impose the natural rule that words cannot be reused, the problem already becomes NP-hard when the grid graph is a matching for alphabets of size 3 (Theorem 6), or a union of stars for a binary alphabet (Theorem 5). Hence, a tree-like structure does not seem to be of much help in rendering crosswords tractable.

We then go on to consider CP-Opt parameterized by the total number of slots n. This is arguably a very natural parameterization of the problem, as in real-life crosswords, the size of the grid can be expected to be significantly smaller than the size of the dictionary. We show that in this case the problem does become fixed-parameter tractable (Corollary 9), but the running time of our algorithm is exponential in n 2 . Our main result is to show that this disappointing dependence is likely to be best possible: even for a binary alphabet, an algorithm solving CP-Dec in time 2 o(n 2 ) would contradict the randomized ETH (Theorem 12). Note that all our positive results up to this point work for the more general CP-Opt, while our hardness results apply to CP-Dec.

Finally, in Section 5 we consider the approximability of CP-Opt. Here, it is easy to obtain a 1 2 -approximation by only considering horizontal or vertical slots. We are only able to slightly improve upon this, giving a polynomial-time algorithm with ratio 

Problem Statement and Preliminaries

We are given a dictionary D = {d 1 , . . . d m } whose words are constructed on an alphabet L = {l 1 , . . . l }, and a two-dimensional grid consisting of horizontal and vertical slots. A slot is composed of consecutive cells. Horizontal slots do not intersect each other; the same goes for vertical slots. However horizontal slots can intersect vertical slots. A cell is shared if it lies at the intersection of two slots. Unless specifically stated, n, m and denote the total number of slots, the size of D, and the size of L, respectively. Finally, let us mention that we consider only instances where the alphabet is of constant size, i.e., = O(1).

In a feasible solution, each slot S receives either a word of D of length |S|, or nothing (we sometimes say that a slot receiving nothing gets an empty word). Each cell gets at most one letter, and the words assigned to two intersecting slots must agree on the letter placed in the shared cell. All filled horizontal slots get words written from left to right (across) while all vertical slots get words written from top to bottom (down).

There is a weight function w : L → N. The weight of a solution is the total sum of the weights of the letters placed in the grid. Observe that, for a given solution, the total weight of all filled-in words is not the same as the weight of this solution as, in the latter, the letters of the shared cells are counted only once.

The two main problems studied in this article are the following. Given a grid, a dictionary D on alphabet L, and a weight function w : L → N, the objective of Crossword Puzzle Optimization (CP-Opt in short) is to find a feasible solution of maximum weight. Given a grid and a dictionary D on alphabet L, the question posed by Crossword Puzzle Decision (CP-Dec in short) is whether the grid can be completely filled or not? Two cases will be considered: whether each word is used at most once, or if each word
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Filling Crosswords is Very Hard can be assigned multiple times. In this article, we will sometimes suppose that some cells are pre-filled with some elements of L. In this case, a solution is feasible if it is consistent with the pre-filled cells. Below we propose a first result when all the shared cells are pre-filled.

Proposition 1. CP-Dec and CP-Opt can be solved in polynomial time if all the shared cells in the grid are pre-filled, whether word reuse is allowed or not.

Proof. If word reuse is allowed, then for each combination of letters placed in these cells, we greedily fill out the rest of each slot with the maximum value word that can still be placed there. This is guaranteed to produce the optimal solution. On the other hand, if word reuse is not allowed, we construct a bipartite graph, with elements of D on one side and the slots on the other, and place an edge between a word and a slot if the word can still be placed in the slot. If we give each edge weight equal to the value of its incident word reduced by the weight of the letters imposed by the shared cells of the slot, then an optimal solution corresponds to a maximum weight matching.

One can associate a bipartite graph, hereafter called the grid graph, with each grid: each slot is a vertex and two vertices share an edge if the corresponding slots overlap. The grid (and then, the grid graph) is not necessarily connected.

Let us also note that so far we have been a bit vague about the encoding of the problem.

Concretely, we could use a simple representation which lists for each slot the coordinates of its first cell, its size, and whether the slot is horizontal or vertical; and then supplies a list of all words in the dictionary and an encoding of the weight function. Such a representation would allow us to perform all the basic operations needed by our algorithms in polynomial time, such as deciding if it is possible to place a word d in a slot S, and which letter would then be placed in any particular cell of S. However, one drawback of this encoding is that its size may not be polynomially bounded in n + m, as some words may be exponentially long.

We can work around this difficulty by using a more succinct representation: we are given the same information as above regarding the n slots; for each word we are given its total weight; and for each slot S and word d, we are told whether d fits exactly in S, and if yes, which letters are placed in the cells of S which are shared with other slots. Since the number of shared cells is O(n 2 ) this representation is polynomial in n + m and it is not hard to see that we are still able to perform any reasonable basic operation in polynomial time and that we can transform an instance given in the simple representation to this more succinct form.

Hence, in the remainder, we will always assume that the size of the input is polynomially bounded in n + m.

We will rely on the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF], which states the following:

Conjecture 2. Exponential Time Hypothesis: there exists an > 0, such that 3-SAT on instances with n variables and m clauses cannot be solved in time 2 (n+m) .

Note that it is common to use the slightly weaker formulation which states the ETH as the assumption that 3-SAT cannot be solved in time 2 o(n+m) . This is known to imply that k-Independent Set cannot be solved in time n o(k) [START_REF] Cygan | Parameterized Algorithms[END_REF]. We use this fact in Theorem 4. In Section 4 we will rely on the randomized version of the ETH, which has the same statement as Conjecture 2 but for randomized algorithms with expected running time 2 (n+m) .

When the Grid Graph is Tree-like

In this section we are considering instances of CP-Dec and CP-Opt where the grid graph is similar to a tree. First, we give an algorithm for both problems in cases where the grid graph L. Gourvès, A. Harutyunyan, M. Lampis, and N. Melissinos 48:5

has bounded treewidth and we are allowed to reuse words and we show that this algorithm is essentially optimal. Then, we show that CP-Dec and CP-Opt are much harder to deal with, in the case where we are not allowed to reuse words, by proving that the problems are NP-hard even for instances where the grid graph is just a matching. For the instances such that CP-Dec is NP-hard, we know that CP-Opt is NP-hard. That happens because we can assume that all the letters have weight equal to 1 hence a solution for CP-Dec is an optimal solution for CP-Opt.

Word Reuse

We propose a dynamic programming algorithm for CP-Opt and hence also for CP-Dec.

Note that it can be extended to the case where some cells of the instance are pre-filled.

Theorem 3. If we allow word reuse, then CP-Opt can be solved in time (m+1) tw (n+m) O (1) on inputs where tw is the treewidth of the grid graph.

Proof. As the techniques we are going to use are standard we are sketching some details. For more details on tree decomposition (definition and terminology) see [START_REF] Cygan | Parameterized Algorithms[END_REF]Chap. 7]. Assuming that we have a rooted nice tree decomposition of the grid graph, we are going to perform dynamic programming on the nodes of this tree decomposition. For a node B t of the given tree decomposition of the grid graph we denote by B ↓ t the set of vertices of the grid graph that appears in the nodes of the subtree with B t as a root. Since each vertex of the grid graph corresponds to a slot, we interchangeably mention a vertex of the grid graph and its corresponding slot. In particular, we say that a solution σ assigns words to the vertices of the grid graph, and σ(v) denotes the word assigned to v.

For each node B t of the tree decomposition we are going to keep all the triplets (σ, W, W t ) such that:

σ is an assignment of words to the vertices of B t ;

W is the weight of σ restricted to the vertices appearing in B t ;

and W m is the maximum weight, restricted to the vertices appearing in B ↓ t , of an assignment consistent with σ.

In order to create all the possible triplets for all the nodes of the tree decomposition we are going to explore the nodes from leaves to the root. Therefore, each time we visit a node we assume that we have already created the triplets for all its children. Let us explain how we deal with the different types of nodes.

In the Leaf nodes we have no vertices so we keep an empty assignment (σ does not assign any word) and the weights W and W m are equal to 0.

For an Introduce node B t we need to take in consideration its child node. Assume that u is the introduced vertex; for each triplet (σ, W, W m ) of the child node we are going to create all the triplets (σ , W , W m ) for the new node as follows. First we find all the words d ∈ D that fit in the corresponding slot of u and respect the assignment σ (i.e., if there are cells that are already filled under σ and d uses these cells then it must have the same letters). We create one triplet (σ , W , W m ) for each such a d as follows:

We set σ (u) := d and σ (v

) := σ(v) for all v ∈ B t \ {u}.
We can easily calculate the total weight, W , of the words in B t where the shared letters are counted only once under the assignment σ .

For the maximum weight W m we know that it is increased by the same amount as W ; so

we set W m = W m + W -W .
Observe that we do not need to consider the intersection with slots whose vertices appear in B ↓ t \ B t as each node of a tree decomposition is a cut set.
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Finally, we need to take in consideration that we can leave a slot empty. For this case we create a new word d * which, we assume that, fits in all slots and d * has weight 0. Because the empty word has weight 0, W and W m are identical to W and W m so for each triplet of the child node, we only need to extend σ by assigning d * to u. In the case we assign the empty word somewhere we will consider that the cells of this slot are empty unless another

word d = d * uses them.
For the Forget nodes we need to restrict the assignments of the child node to the vertex set of the Forget node, as it has been reduced by one vertex (the forgotten vertex), and reduce the weight W (which we can calculate easily). The maximum weight is not changed by the deletion.

However, if we restrict the assignments we may end up with several triplets (σ, W, W m ) with identical assignments σ. In that case we are keeping only the triplet with maximum W m . Observe that we are allowed to keep only triplets with the maximum W m because each node of a tree decomposition is a cut set so the same holds for the Forget nodes. Specifically, the vertices that appear in the nodes higher than a Forget node B t of the tree decomposition do not have edges incident to vertices in B ↓ t \ B t so we only care for the assignment in B t .

Finally, we need to consider the Join nodes. Each Join node has exactly two children.

For each possible assignment σ on the vertices of this Join node, we create a triplet iff this σ appears in a triplet of both children of the Join node.

Because W is related only to the assignment σ, it is easy to see that it will be the same as in the children of the Join node. So we need to find the maximum weight W m . Observe that between the vertices that appear in the subtrees of two children of a Join node there are no edges except those incident to the vertices of the Join node. Therefore, we can calculate the maximum weight W m as follows: first we consider the maximum weight of each child of the Join node reduced by W , we add all these weights and, in the end, we add again the W .

It is easy to see that this way we consider the weight of the cells appearing in each subtree without those of the slots of the Join node and we add the weight of the words assigned to the vertices of the Join node in the end.

For the running time we need to observe that the number of nodes of a nice tree decomposition is O(tw • n) and all the other calculations are polynomial in n + m so we only need to consider the different assignments for each node. Because for each vertex we have |D| + 1 choices, the number of different assignments for a node is at most (|D| + 1) tw+1 .

It seems that the algorithm we propose for CP-Dec is essentially optimal, even if we consider a much more restricted case. This problem is well-known to be W[1]-hard and not solvable in |V | o(k) time under the ETH [START_REF] Cygan | Parameterized Algorithms[END_REF]. We assume without loss of generality that |E| = k. Furthermore, we can safely assume that G has no isolated vertices.

We first describe the grid of our construction which fits within an area of 2k -1 lines and 2|E| -1 columns. We construct:

1. k horizontal slots, each of length 2|E| -1 (so each of these slots is as long horizontally as the whole grid). We place these slots in the unique way so that no two of these slots are in consecutive lines. We number these horizontal slots 1, . . . , k from top to bottom.
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2. |E| vertical slots, each of length 2k -1 (so each of these slots is long enough to cover the grid top to bottom). We place these slots in the unique way so that no two of them are in consecutive columns. We number them 1, . . . , |E| from left to right.

Before we describe the dictionary, let us give some intuition about the grid. The main idea is that in the k horizontal slots we will place k words that signify which vertices we selected from the original graph. Each vertical slot represents an edge of E, and we will be able to place a word in it if and only if we have not placed words representing two of its endpoints in the horizontal slots.

Our alphabet has two letters, say 0, 1. In the remainder, we assume that the edges of the original graph are numbered, that is, E = {e 1 , . . . , e |E| }. The dictionary is as follows:

1. For each vertex v we construct a word of length 2|E| -1. For each i ∈ {1, . . . , |E|}, if

the edge e i is incident on v, then the letter at position 2i -1 of the word representing v is 1. All other letters of the word representing v are 0. Observe that this means that if e i is incident on v and we place the word representing v on a horizontal slot, the letter i will appear on the i-th vertical slot. Furthermore, the word representing v has a number of 1s equal to the degree of v.

2.

We construct k + 1 words of length 2k -1. One of them is simply 0 2k-1 . The remaining are 0 2j-2 10 2k-2j , for j ∈ {1, . . . , k}, that is, the words formed by placing a 1 in an odd-numbered position and 0s everywhere else. Observe that if we place one of these k words on a vertical slot, a 1 will be placed on exactly one horizontal slot.

This completes the construction. We now observe that the k horizontal slots correspond to a vertex cover of the grid-graph. Therefore, if the reduction preserves the answer, the hardness results for k-Independent Set transfer to our problem, since we preserve the value of the parameter.

We claim that if there exists an independent set of size k in G, then it is possible to fill the grid. Indeed, take such a set S and for each v ∈ S we place the word representing v in a horizontal slot. Consider the i-th vertical slot. We will place in this slot one of the k + 1 words of length 2k -1. We claim that the vertical slot at this moment contains the letter 1 at most once, and if 1 appears it must be at an odd position (since these are the positions shared with the horizontal slots). If this is true, clearly there is a word we can place. To see that the claim is true, recall that since S is an independent set of k distinct vertices, there exists at most one vertex in S incident on e i .

For the converse direction, recall that |E| = k. This implies that if there is a way to fill out the whole grid, then words representing vertices must go into horizontal slots and words of length 2k -1 must go into vertical slots. By looking at the words that have been placed

in the horizontal slots we obtain a collection of k (not necessarily distinct) vertices of G.

We will prove that these vertices must actually be an independent set of size exactly k. To see this, consider the i-th vertical slot. If our collection of vertices contained two vertices incident on e i , it would have been impossible to fill out the i-th vertical slot, since we would need a word with two 1s. Observe that the same argument rules out the possibility that our collection contains the same vertex v twice, as the column corresponding to any edge e i incident on v would have been impossible to fill.

No Word Reuse

If a word cannot be reused, then CP-Dec looks more challenging. Indeed, in the following theorem we prove that if reusing words is not allowed, then the problem becomes NP-hard
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Filling Crosswords is Very Hard even if the grid graph is acyclic and the alphabet size is 2. (Note that if the alphabet size is 1, the problem is trivial, independent of the structure of the graph).

Theorem 5. CP-Dec is NP-hard, even for instances where all of the following restrictions apply: (i) the grid graph is a union of stars (ii) the alphabet contains only two letters (iii)

words cannot be reused.

Proof. We show a reduction from 3-Partition. Recall that in 3-Partition we are given a collection of 3n distinct positive integers x 1 , . . . , x 3n and are asked if it is possible to partition these integers into n sets of three integers (triples), such that all triples have the same sum.

This problem has long been known to be strongly NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] and NP-hardness when the integers are distinct was shown by Hulett et al. [START_REF] Hulett | Multigraph realizations of degree sequences: Maximization is easy, minimization is hard[END_REF]. We can assume that 3n i=1 x i = nB and that if a partition exists each triple has sum B. Furthermore, we can assume without loss of generality that x i > 6n for all i ∈ {1, . . . , 3n} (otherwise, we can simply add 6n to all numbers and adjust B accordingly without changing the answer).

Given an instance of 3-Partition as above, we construct a crossword instance as follows.

First, the alphabet only contains two letters, say the letters * and !. To construct our dictionary we do the following:

1. For each i ∈ {1, . . . , 3n}, we add to the dictionary one word of length x i that begins with ! and n -1 words of length x i that begin with * . The remaining letters of these words are chosen in an arbitrary way so that all words remain distinct.

2.

For each i, j, k ∈ {1, . . . , 3n} with i < j < k we check if

x i + x j + x k = B.
If this is the case, we add to the dictionary the word * 2i-2 ! * 2j-2i-1 ! * 2k-2j-1 ! * 6n-2k . In other words, we constructed a word that has * everywhere except in positions 2i -1, 2j -1, and 2k -1.

The length of this word is 6n -1. Let f be the number of words added to the dictionary in this step. We have f ≤ ( 3n 3 ) = O(n 3 ).

We now also need to specify our grid. We first construct f horizontal slots, each of length 6n -1. Among these f slots, we select n, which we call the "interesting" horizontal slots.

For each interesting horizontal slot, we construct 3n vertical slots, such that the i-th of these slots has length x i and its first cell is the cell in position 2i -1 of the interesting horizontal slot. This completes the construction, which can clearly be carried out in polynomial time.

Observe that the first two promised restrictions are satisfied as we have an alphabet with two letters and each vertical slot intersects at most one horizontal slot (so the grid graph is a union of stars).

We claim that if there exists a partition of the original instance, then we can place all the words of the dictionary on the grid. Indeed, for each i, j, k ∈ {1, . . . , 3n} such that {x i , x j , x k } is one of the triples of the partition, we have constructed a word of length 6n -1 corresponding to the triple (i, j, k), because

x i + x j + x k = B.
We place each of these n words on an interesting horizontal slot and we place the remaining words of length 6n -1 on the non-interesting horizontal slots. Now, for every i ∈ {1, . . . , 3n} we have constructed n words, one starting with ! and n -1 starting with * . We observe that among the interesting horizontal slots, there is one that contains the letter ! at position 2i-1 (the one corresponding to the triple containing x i in the partition) and n -1 containing the letter * at position 2i -1.

By construction, the vertical slots that begin in these positions have length x i . Therefore, we can place all n words corresponding to x i on these vertical slots. Proceeding in this way we fill the whole grid, fulfilling the third condition.

For the converse direction, suppose that there is a way to fill the whole grid. Then, vertical slots must contain words that were constructed in the second step and represent integers x i , while horizontal slots must contain words constructed in the first step (this is a consequence of the fact that x i > 6n for all i ∈ {1, . . . , 3n}). We consider the n interesting horizontal slots. Each such slot contains a word that represents a triple (i, j, k) with

x i + x j + x k = B.
We therefore collect these n triples and attempt to construct a partition from them. To do this, we must prove that each x i must belong to exactly one of these triples. However, recall that we have exactly n words of length x i (since all integers of our instance are distinct) and exactly n vertical slots of this length. We conclude that exactly one vertical slot must have ! as its first letter, therefore x i appears in exactly one triple and we have a proper partition.

Actually, the problem remains NP-hard even in the case where the grid graph is a matching and the alphabet contains three letters. This is proved for grid graphs composed of T s, where a T is a horizontal slot solely intersected by the first cell of a vertical slot.

Theorem 6. CP-Dec is NP-hard, even for instances where all of the following restrictions apply: (i) each word can be used only once (ii) the grid is consisted only by T s and (iii) the alphabet contains only three letters.

Remark 7. Theorem 4 can be adjusted to work also for the case where word reuse is not allowed. We simply need to add a suffix of length log m to all words of length 2k -1 and add rows to the grid accordingly. Hence, under the ETH, no algorithm can solve this problem in time m o (k) , where k is the number of horizontal slots.

Finally, observe that by filling the slots of a vertex cover of the grid graph, all the shared cells are pre-filled. Since there are at most m k (where k is the size of the vertex cover) ways to assign words to these slots, by Proposition 1, we get the following corollary.

Corollary 8. Given a vertex cover of size k of the grid graph we can solve CP-Dec and

CP-Opt in time m k (n + m) O (1) . Furthermore, as vertex cover we can take the set of horizontal slots.

Therefore, the bound given in Remark 7 for the parameter vertex cover is tight.

Parameterized by Total Number of Slots

In this section we consider a much more restrictive parameterization of the problem: we consider instances where the parameter is n, the total number of slots. Recall that in Theorem 4 (and Remark 7) we already considered the complexity of the problem parameterized by the number of horizontal slots of the instance. We showed that this case of the problem cannot be solved in m o (k) and that an algorithm with running time roughly m k is possible whether word reuse is allowed or not.

Since parameterizing by the number of horizontal slots is not sufficient to render the problem FPT, we therefore consider our parameter to be the total number of slots. This is, finally, sufficient to obtain a simple FPT algorithm.

Corollary 9.

There is an algorithm that solves CP-Dec and CP-Opt in time O * ( n 2 /4 ),

where n is the total number of slots and the size of the alphabet, whether word reuse is allowed or not.

Even though the running time guaranteed by Corollary 9 is FPT for parameter n, we cannot help but observe that the dependence on n is rather disappointing, as our algorithm is exponential in the square of n. It is therefore a natural question whether an FPT algorithm for this problem can achieve complexity 2 o(n 2 ) , assuming the alphabet size is bounded. The main result of this section is to establish that this is likely to be impossible. We are now ready to prove the main theorem of this section.

I S A

Theorem 12. Suppose the randomized ETH is true. Then, there exists an > 0 such that CP-Dec on instances with a binary alphabet cannot be solved in time 1) . This holds also for instances where all slots have distinct sizes (so words cannot be reused).

2 n 2 • m O(
Proof. Suppose for the sake of contradiction that for any fixed > 0, CP-Dec on instances with a binary alphabet can be solved in time 2 n 2 • m O (1) . We will then contradict Lemma 11.

In particular, we will show that for any we can solve Sparse 3-SAT in time 2 N , where N is the upper bound on the number of variables and clauses. Fix some > 0 and suppose that φ is an instance of Sparse 3-SAT with at most N variables and at most N clauses,

where N is a perfect square. Recall that the variables are given partitioned into

√ N sets, V 1 , . . . , V √ N and the clauses partitioned into √ N sets C 1 , . . . , C √ N .
In the remainder, when we write V (C j ) we will denote the set of variables that appear in a clause of C j . Recall that the partition satisfies the property that for all i, j ∈ [

√ N ] we have |V i ∩ V (C j )| ≤ 1.
Suppose that the variables of φ are ordered x 1 , x 2 , . . . , x N .

We construct a grid as follows: for each group V i we construct a horizontal slot and for each group C j we construct a vertical slot, in a way that all slots have distinct lengths. More What remains is to describe the dictionary.

For each i ∈ [ √ N ] and for each assignment function σ : V i → {0, 1} we construct a word w σ of length 2 √ N + 2i. The word w σ has the letter 0 in all positions, except positions

2j -1, for j ∈ [ √ N ].
For each such j, we consider σ restricted to V i ∩ V (C j ). By the properties of Sparse 3-SAT, we have

|V i ∩ V (C j )| ≤ 1. If V i ∩ V (C j ) = ∅ then we place
letter 0 in position 2j -1; otherwise we set in position 2j -1 the letter that corresponds to the value assigned by σ to the unique variable of

V i ∩ V (C j ).
For each j ∈ [ √ N ] and for each satisfying assignment function σ : V (C j ) → {0, 1}, that is, every assignment function that satisfies all clauses of C j , we construct a word w σ of length 5 √ N + 2j. The word w σ has the letter 0 in all positions, except positions 2i -1,

for i ∈ [ √ N ]. For each such i, we consider σ restricted to V i ∩ V (C j ). If V i ∩ V (C j ) = ∅
then we place letter 0 in position 2i -1; otherwise we set in position 2i -1 the letter that corresponds to the value assigned by σ to the unique variable of

V i ∩ V (C j ).
The construction is now complete. We claim that if φ is satisfiable, then it is possible to fill out the grid we have constructed. Indeed, fix a satisfying assignment σ to the variables of φ. For each i ∈ [ √ N ] let σ i be the restriction of σ to V i . We place in the i-th horizontal slot the word w σi . Similarly, for each j ∈ [ √ N ] we let σ j be the restriction of σ to V (C j ) and place w σ j in the j-th vertical slot. Now if we examine the cell shared by the i-th horizontal and j-th vertical slot, we can see that it contains a letter that represents σ restricted to (the

unique variable of) V i ∩ V (C j ) or 0 if V i ∩ V (C j ) = ∅,
and both the horizontal and vertical word place the same letter in that cell.

For the converse direction, if the grid is filled, we can extract an assignment σ for the variables of φ as follows: for each x ∈ V i we find a C j such that x appears in some clause of C j (we can assume that every variable appears in some clause). We then look at the cell shared between the i-th horizontal and the j-th vertical slot. The letter we have placed in that cell gives an assignment for the variable contained V i ∩ V (C j ), that is x. Having extracted an assignment to all the variables, we claim it must satisfy φ. If not, there is a group C j that contains an unsatisfied clause. Nevertheless, in the j-th vertical slot we have placed a word that corresponds to a satisfying assignment for the clauses of C j , call it σ j .

Then σ j must disagree with σ in a variable x that appears in C j . Suppose this variable is part of V i . Then, this would contradict the fact that we extracted an assignment for x from the word placed in the i-th horizontal slot.

Observe that the new instance has n = 2 √ N slots. If there exists an algorithm that solves CP-Dec in time 2 n 2 m O (1) for any > 0, we set = /8 (so only depends on )

and execute this algorithm on the constructed instance. We observe that m ≤ 2

√ N • 7 √ N ,
and that 2 n 2 ≤ 2 N/2 . Assuming that N is sufficiently large, using the supposed algorithm for CP-Dec we obtain an algorithm for Sparse 3-SAT with complexity at most 2 N . Since we can do this for arbitrary , this contradicts the randomized ETH.

Approximability of CP-Opt

This section begins with a 1 2 + O( 1 n ) -approximation algorithm which works when words can, or cannot, be reused. After that, we prove that under the unique games conjecture, an approximation algorithm with a significantly better ratio is unlikely. where the words selected for G i are excluded from D). Each slot of j =i G j gets the empty word.

Theorem 13. CP-Opt is ( 1 2 + 1 2(εn+1) )-approximable
Since |G i | ≤ k v , guessing an optimal choice of words for G i by brute force requires at most m kv combinations. This is done r v times (once for each G i ). The maximum matching runs in time O((m + n) 2 • mn). In all, the time complexity of the algorithm is

O(m kv • r v • (m + n) 2 • mn) ≤ O(m 1/ε • εn • (m + n) 2 • mn).
Assume that, given an optimal solution, W * H and W * V are the total weight of the words assigned to the horizontal and vertical slots, respectively, both including the shared cells.

Furthermore, let W * S be the weight of the letters assigned to the shared cells in the optimal solution. Observe that the weight of the optimal solution is W * H + W * V -W * S and the weight of our solution is at least

W * H + 1 rv (W * V -W * S ).
We repeat the same process, but the roles of vertical and horizontal slots are interchanged.

Fix a parameter k h := min( For each G i , guess an optimal choice of words and complete this partial solution by filling the vertical slots. Each slot of j =i G j gets the empty word.

Using the same arguments as above, we can conclude that the time complexity is

O(m 1/ε •εn•(m+n) 2
•mn) and that we return a solution of weight at least

W * V + 1 r h (W * H -W * S ).
Finally, between the two solutions, we return the one with the greater weight. It remains to argue about the approximation ratio. We need to consider two cases:

W * H ≥ W * V and W * V > W * H . Suppose W * H ≥ W * V .
The first approximate solution has value

W * H + 1 rv (W * V -W * S ) ≥ 1+1/rv 2 (W * H +W * V -W * S ). If k v = n-h then r v = 1
and our approximation ratio is 1. Otherwise,

k v = 1 ε and r v = n-h 1/ε ≤ n-h 1/ε + 1 = n-h+ 1/ε 1/ε . It follows that 1 rv ≥ 1/ε n-h+ 1/ε . Use n -h + 1/ε ≤ n + 1 ε and 1/ε ≥ 1/ε to get that 1 rv ≥ 1/ε n+1/ε = 1 εn+1 . Our approximation ratio is at least 1+1/(εn+1) 2 . Suppose W * V > W * H . The second approximate solution has value W * V + 1 r h (W * H -W * S ) > 1+1/r h 2 (W * H + W * V -W * S ). If k h = h, then our approximation ratio is 1. Otherwise, k h = 1 ε
and, using the same arguments, our approximation ratio is at least 1+1/(εn+1)

2

.

Note that 1+1/(εn+1) 2 ≤ 1. In all, we have a 1+1/(εn+1)

2 -approximate solution in O(m 1/ε • εn • (m + n) 2 • mn) for all ε ∈ (0, 1].
The previous approximation algorithm only achieves an approximation ratio of Proof. Fix an > 0. We will later define an appropriately chosen value ∈ (0, ) whose value only depends on . We present a reduction from a Unique Label Cover instance, as described in Theorem 14. In particular, suppose we have an instance G = (V, E), with

|V | = n, alphabet [R]
, such that (under UGC) it is NP-hard to distinguish if there exists a set V of size (1 -)n that satisfies all its induced constraints, or if all sets V of size n induce at least one violated constraint for any assignment. Throughout this proof we assume that n is sufficiently large (otherwise the initial instance is easy). In particular, let n > 20 .

We construct an instance of the crossword puzzle that fits in an N × N square, where N = 4n + n 2 . We number the rows 1, . . . , N from top to bottom and the columns 1, . . . , N from left to right. The instance contains n horizontal and n vertical slots. For i ∈ [n], the i-th horizontal slot is placed in row 2i, starting at column 1, and has length 2n + n 2 + i.

For j ∈ [n], the j-th vertical slot is placed in column 2j, starts at row 1 and has length 3n + n 2 + j. Observe that all horizontal slots intersect all vertical slots and in particular, for all i, j ∈ [n] the cell in row 2i, column 2j belongs to the i-th horizontal slot and the j-th vertical slot. Furthermore, each slot has a distinct length, as the longest horizontal slot has length 3n + n 2 while the shortest vertical slot has length 3n + n 2 + 1.

We define the alphabet as Σ = [R] ∪ { * }. Before we define our dictionary, let us give some intuition. Let V = {v 1 , . . . , v n }. The idea is that a variable v i ∈ V of the original instance will be represented by both the i-th horizontal slot and the i-th vertical slot. In particular, I S A A C 2 0 2 1 48:14 Filling Crosswords is Very Hard we will define, for each α ∈ [R] a pair of words that we can place in these slots to represent the fact that v i is assigned with the value α. We will then ensure that if we place words on both the i-th horizontal slot and the j-th horizontal slot, where (v i , v j ) ∈ E, then the assignment that can be extracted by reading these words will satisfy the constraint π (vi,vj ) .

The extra letter * represents an indifferent assignment (which we need if (v i , v j ) ∈ E).

Armed with this intuition, let us define our dictionary. This completes the construction. Suppose now that V = {v 1 , . . . , v n } and that we started from the Yes case of Unique Label Cover, that is, there exists a set V ⊆ V such that |V | ≥ (1 -)n and all constraints induced by V can be simultaneously satisfied. Fix an assignment σ : V → [R] that satisfies all constraints induced by V . For each i ∈ [n] such that v i ∈ V we place in the i-th horizontal slot (that is, in row 2i) the word d (i,σ(vi)) . For each j ∈ [n] such that v j ∈ V we place in the j-th vertical slot the word d (j,σ(vj )) . We leave all other slots empty. We claim that this solution is valid, that is, no shared cell is given different values from its horizontal and vertical slot. To see this, examine the cell in row 2i and column 2j. If both of the slots that contain it are filled, then v i , v j ∈ V . If (v i , v j ) ∈ E and i = j, then the cell contains * from both words. If i = j, then the cell contains σ(v i ) from both words. If i = j and (v i , v j ) ∈ E, then the cell contains σ(v i ). This is consistent with the vertical word, as the constraint π (vi,vj ) is assumed to be satisfied by σ. We now observe that this solution covers at least 2(1 -)n 3 cells, as we have placed 2(1 -)n words, each of length at least n 2 + 2n, that do not pairwise intersect beyond their first 2n characters.

Suppose now we started our construction from a No instance of Unique Label Cover.

We claim that the optimal solution in the new instance cannot cover significantly more than half the cells. In particular, suppose a solution covers at least (1 + )n 3 + 10n 2 cells. We claim that the solution must have placed at least (1 + )n words. Indeed, if we place at most (1 + )n words, as the longest word has length n 2 + 4n, the maximum number of cells we can cover is (1 + )n(n 2 + 4n) ≤ (1 + )n 3 + 4(1 + )n 2 < (1 + )n 3 + 10n 2 . Let x be the number of indices i ∈ [n] such that the supposed solution has placed a word in both the i-th horizontal slot and the i-th vertical slot. We claim that x ≥ n. Indeed, if x < n, then the total number of words we might have placed is at most (n -x) + 2x < (1 + )n, which contradicts our previous observation that we placed at least (1 + )n words. Let V ⊆ V be defined as the set of v i ∈ V such that the solution places words in the i-th horizontal and vertical slot. Then |V | ≥ n. We claim that it is possible to satisfy all the constraints induced by V in the original instance, obtaining a contradiction. Indeed, we can extract an assignment for each v i ∈ V by assigning to v i value α if the i-th horizontal slot contains the word d (i,α) . Note that the i-th horizontal slot must contain such a word, as these words are the only ones that have an appropriate length. Observe that in this case the i-th vertical slot must also contain d (i,α) . Now, for v i , v j ∈ V , with (v i , v j ) ∈ E we see that π Therefore, in the No case, it must be impossible to fill more than (1 + )n 3 + 10n 2 cells.

The only thing that remains is to define . Let C be the total number of cells in the instance. Recall that we proved that in the Yes case we cover at least 2(1 -)n 

Conclusion

We studied the parameterized complexity of some crossword puzzles under several different parameters and we gave some positive results followed by proofs which show that our algorithms are essentially optimal. Based on our results the most natural questions that arise are: What is the complexity of CP-Dec when the grid graph is a matching and the alphabet has size 2? Can Theorem 12 be strengthened by starting from ETH instead of randomized ETH? Can we beat the 1/2 approximation ratio of CP-Opt if we restrict our instances? Can Theorem 14 be strengthened by dropping the UGC? Furthermore, it would be interesting to investigate if there exist non trivial instances of the problem that can be solved in polynomial time.

Finally, we could consider a variation of the crossword puzzle problems where each word can be used a given number of times. This would be an intermediate case between word reuse and no word reuse.

Figure 1

 1 Figure 1Place valid words in this grid. In a possible instance, letters S, U, I, V, R, E, and T have weight 7, 5, 4, 2, 6, 1, and 3, respectively. Any other letter has null weight. Try to obtain at least 330 points.

Theorem 4 .

 4 CP-Dec with word reuse is W[START_REF] Melissinos | Crossword puzzles as a constraint problem[END_REF]-hard parameterized by the number of horizontal slots of the grid, even for alphabets with two letters. Furthermore, under the ETH, no algorithm can solve this problem in time m o(k) , where k is the number of horizontal slots.Proof. We perform a reduction from k-Independent Set, where we are given a graph G = (V, E) with |V | vertices and |E| edges and are looking for an independent set of size k.

  precisely, the i-th horizontal slot, for i ∈ [ √ N ] is placed on row 2i -1, starts in the first column and has length 2 √ N + 2i. The j-th vertical slot is placed in column 2j -1, starts in the first row and has length 5 √ N + 2j. (As usual, we number the rows and columns top-to-bottom and left-to-right). Observe that all horizontal slots intersect all vertical slots;in particular, the cell in row 2i -1 and column 2j -1 is shared between the i-th horizontal and j-th vertical slot, for i, j ∈ [ √ N ]. We define L to contain two letters {0, 1}.

  in polynomial time, for all ε ∈ (0, 1]. Fix some ε ∈ (0, 1]. Let k v := min( 1 ε , n -h) and r v := n-h kv , where h is the number of horizontal slots in the grid. Create r v groups of vertical slots G 1 , . . . , G rv such that |G i | ≤ k v for all i ∈ [r v ] and G 1 ∪ . . . ∪ G rv covers the entire set of vertical slots. For each G i , guess an optimal choice of words, i.e., identical to a global optimum, and complete this partial solution by filling the horizontal slots (use the aforementioned matching technique

For

  each i ∈ [n], for each α ∈ [R] we define a word d (i,α) of length 2n + n 2 + i. The word d (i,α) has the character * everywhere except at position 2i and at positions 2j for j ∈ [n] and (v i , v j ) ∈ E. In these positions the word d (i,α) has the character α.For each j ∈ [n], for each α ∈ [R] we define a word d (j,α) of length 3n + n 2 + j. The word d (j,α) has the character * everywhere except at position 2j and at positions 2i for i ∈ [n] and (v i , v j ) ∈ E. In position 2j we have the character α. In position 2i with (v i , v j ) ∈ E, we place the character β ∈ [R] such that the constraint π (vi,vj ) is satisfied by assigning β to v i and α to v j . (Note that β always exists and is unique, as the constraints are permutations on [R], that is, for each value α of v j there exists a unique value β of v i that satisfies the constraint).

  (vi,vj ) is L. Gourvès, A. Harutyunyan, M. Lampis, and N. Melissinos 48:15 satisfied by our assignment, otherwise we would have a conflict in the cell in position (2i, 2j).

3 2 ( 1 -

 321 cells and in the No case at most (1 + )n 3 + 10n 2 cells. So we need to define such that )n 3 ≥ (1 -)C and (1 + )n 3 + 10n 2 ≤ ( 1 2 + )C. To avoid tedious calculations, we observe that 2n 3 ≤ C ≤ 2n 3 +8n 2 . Therefore, it suffices to have 2(1-)n 3 ≥ 2(1-)(n 3 +4n 2 ) and (1 + )n 3 + 10n 2 ≤ (1 + 2 )n 3 . The first inequality is equivalent to ( -)n ≥ 4(1 -) and the second inequality is equivalent to (2 -)n ≥ 10. Since we have assumed that n ≥ 20/ , it is sufficient to set = /2.

A C 2 0 2 1 48:10 Filling Crosswords is Very Hard Overview Our

  hardness proof consists of two steps. In the first step we reduce 3-SAT to a version of the same problem where variables and clauses are partitioned into O( √ n + m)groups, which we call Sparse 3-SAT. The key property of this intermediate problem is that interactions between groups of variables and groups of clauses are extremely limited. In particular, for each group of variables V i and each group of clauses C j , at most one variable of V i appears in a clause of C j . We obtain this rather severe restriction via a randomized reduction that runs in expected polynomial time. The second step is to reduce Sparse 3-SAT to CP-Dec. Here, every horizontal slot will represent a group of variables and every

	vertical slot a group of clauses, giving O(	√	n + m) slots in total. Hence, an algorithm for
	CP-Dec whose dependence on the total number of slots is subquadratic in the exponent will
	imply a sub-exponential time (randomized) algorithm for 3-SAT. The limited interactions
	between groups of clauses and variables will be key in allowing us to execute this reduction
	using a binary alphabet.		
	Let us now define our intermediate problem.

Definition 10. In Sparse 3-SAT we are given an integer n which is a perfect square and a 3-SAT formula φ with at most n variables and at most n clauses, such that each variable appears in at most 3 clauses. Furthermore, we are given a partition of the set of variables V and the set of clauses

C into √ n sets V 1 , . . . ,

V √ n and C 1 , . . . , C √ n of size at most √ n each, such that for all i, j ∈ [ √ n] the number of variables of V i which appear in at least one clause of C j is at most one. Now, we are going to prove the hardness of Sparse 3-SAT, which is the first step of our reduction. Lemma 11. Suppose the randomized ETH is true. Then, there exists an > 0 such that Sparse 3-SAT cannot be solved in time 2 n .

  1 ε , h). Create r h := h k h groups of horizontal slots G 1 , . . . , G r h such that |G i | ≤ k h for all i ∈ [r h ] and G 1 ∪ . . . ∪ G r h covers the entire set of horizontal slots.

  (u,v) which can be seen as a permutation on[R]. The vertices of G are considered as variables of a constraint satisfaction problem, which take values in[R]. Each constraint π (u,v) defines for each value of u a unique value that must be given to v in order to satisfy the constraint. The goal is to find an assignment to the variables that satisfies as many constraints as possible. The Unique Games Conjecture states that for all > 0, there exists R, such that distinguishing instances of Unique Label Cover for which it is possible to satisfy a (1 -)-fraction of the constraints from instances where no assignment satisfies more than an -fraction of the constraints is NP-hard. In this section we will need a slightly different version of this conjecture, which was defined byKhot and Regev as the Strong Unique Games Conjecture. Despite the name, Khot and Regev showed that this version is implied by the standard UGC. The precise formulation is the following: There exists a set V ⊆ V with |V | ≥ (1 -)|V | and an assignment for V such that all constraints with both endpoints in V are satisfied. (No case): For any assignment to V , for any set V ⊆ V with |V | ≥ |V |, there exists a constraint with both endpoints in V that is violated by the assignment.Using the version of the UGC given in Theorem 14 we are ready to present our hardness of approximation argument for the crossword puzzle.

	Theorem 14. [Theorem 3.2 of [9]] If the
	Unique Games Conjecture is true, then for all > 0 it is NP-hard to distinguish between
	the following two cases of instances of Unique Label Cover G = (V, E):
	(Yes case):
	1 2 + O( 1 n ), 2 as n increases. At first glance this is quite disappointing, as someone can which tends to 1 observe that a ratio of 1 2 is achievable simply by placing words only on the horizontal or the
	vertical slots of the instance. Nevertheless, we are going to show that this performance is
	justified, as improving upon this trivial approximation ratio would falsify the Unique Games
	Conjecture (UGC).
	Before we proceed, let us recall some relevant definitions regarding Unique Games. The
	Unique Label Cover problem is defined as follows: we are given a graph G = (V, E), with

some arbitrary total ordering ≺ of V , an integer R, and for each (u, v) ∈ E with u ≺ v a 1-to-1 constraint π Theorem 15. Suppose that the Unique Games Conjecture is true. Then, for all with 1 4 > > 0, there exists an alphabet Σ such that it is NP-hard to distinguish between the following two cases of instances of the crossword problem on alphabet Σ : (Yes case): There exists a valid solution that fills a (1 -)-fraction of all cells. (No case): No valid solution can fill more than a ( 1 2 + )-fraction of all cells.

Moreover, the above still holds if all slots have distinct lengths (and hence reusing words is trivially impossible).