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Response and Long-Range Correlations
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Summary: The dynamics of two model glass-formers (3D oligomer melt and 2D polydis-
perse colloidal system) are analyzed using MD simulations. It is found that the standard
deviation of the shear modulus shows a striking peak near the glass transition Tg, which
is explained with a quantitative theory. The simulation data well below Tg suggest that
static multi-point correlations of local stress are long-range. The obtained correlation
functions of time-dependent and wavevector-resolved stress for the 2D system are in
excellent agreement with the developed theory indicating that the frozen-in stress inho-
mogeneities in the glassy state are correlated according to a power law.
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Introduction

Some liquids (in particular, polymer melts) can be easily supercooled avoiding crystallization (even if

the crystal state is favorable thermodynamically). Such supercooled liquids show dramatic slowdown

of their dynamics (reflected in a strong increase of the α-relaxation time τα) as temperature T is

cooled towards the vitrification point Tg where the system becomes kinetically arrested and forms an

amorphous solid. Below Tg the relaxation time τα exceeds the time-scale tlab accessible experimentally

(or in a computer simulation). The glass transition region around Tg is characterized by a number of

anomalies including a jump of the heat capacity, or an emergence of elasticity (of a finite quasi-static

shear modulus µ) in a nearly discontinuous manner. However, this solidification is not accompanied

by a significant change of the liquid structure which remains disordered. In particular, the static

structure factor S(q) changes very little near Tg.
[1, 2]

This common view implies that structural correlations in glass-forming systems must remain short-

range near and below Tg. There is however a growing opinion that (at least for fragile glass-formers)

the glassy structure is characterized by some (perhaps hidden and subtle) long-range correlations

that are not visible in S(q). Indeed, this idea is supported by the mosaic or random first or-

der transition (RFOT) theories [3, 4], by the concept of frustration-limited domains[5, 6] and other

approached.[3, 7, 8] In the present paper we show that investigations of stress fluctuations provide

a powerful tool to study both the emergence of shear rigidity µ at the glass transition and the



long-range structural correlations in supercooled liquids.[9, 10] We study two distinct glass-forming

systems both theoretically and using MD simulations: The first system is a 3-dimensional (3D) melt

of M oligomer chains, each of 4 beads.[10, 11] The beads interact pairwise with a Lennard-Jones

potential

uLJ(r) = 4
(

r−12 − r−6
)

(r is the distance between two particles) which was truncated at rcut = 2.3 and shifted so that

uLJ(r) = 0 for r ≥ rcut. The bond potential is harmonic, ub(r) = 0.5kbond (r − lbond)
2 with kbond =

1110 and lbond = 0.967 chosen to avoid chain crossings. The second system is a 2-dimensional (2D)

polydisperse mixture of spherical LJ particles. Each pair of particles (of sizes di and dj) interact

with energy uLJ(r/dij), where dij = (di + dj) /2.

Simulation details

The 3D system consists of M = 3072 or M = 768 4-mers. It was kept at pressure P = 0. It was

equilibrated at different temperatures T by several relaxation stages as described in refs.[11, 12]. An

ensemble of m = 100 independent configurations was produced. The stress tensor was recorded at

regular time points ti:

ti = iδt, i = 0, 1, ..∆t/δt (1)

with the step δt = 0.05LJ over the whole sampling time of ∆t = 105LJ (the time is measured using

the LJ time unit [10]). The 2D system [13, 14] involves N = 104 particles. The particle size di,

i = 1..N , is uniformly distributed between 0.8 and 1.2. The system was kept at constant external

pressure P = 2 (in LJ units). It was equilibrated using the particle swap technique.[15] Periodic

boundary conditions are always applied.

Results

Viscoelastic properties of a liquid can be characterized by the shear relaxation modulus G(t) which

is a central rheological function of a material. G(t) is closely related to the dynamical moduli G′(ω),

G′′(ω), where t is time and ω, the angular frequency. To obtain G(t) for both systems we benefit

from its relation to the temporal correlation functions of mechanical stress:

C(t) =
V

T
〈σ(t+ t′)σ(t′)〉



FIG. 1: (a) Temperature dependence of the quasi-equilibrium shear modulus µ (thick solid line shows

µ/4), its standard deviation δµ (thin solid line), and δµ
(G)
F , the theoretical Gaussian approximation

of δµF ≈ δµ (dashed curve) for the 3D 4-mer system with 12288 beads, with dilatometric Tg = 0.38.

(b) Similar dependencies of µ/8, δµ and δµ
(G)
F for the 2D polydisperse LJ system of N = 104 particles,

Tg = 0.26. In both cases the sampling time is ∆t = 105LJ. The dotted vertical lines indicate Tg.

where V is the system volume, σ(t) = σxy(t) is the shear stress (xy component) averaged over the

whole system, and the brackets 〈...〉mean averaging over the equilibrium ensemble which is equivalent

to averaging over the time t′ (below Tg we consider a quasi-equilibrium ensemble corresponding to a

particular glassy state, i.e., a metabasin in the configurational space).

The generalized relation coming from the fluctuation-dissipation theorem (FDT) [10, 12] reads:

G(t) = µA + C(t)− C(0)

where µA is the affine shear modulus providing the instantaneous stress response to a small affine

deformation of the system (µA was calculated as described before [10]). Using the above relation,

G(t) was obtained in the range 0 ≤ t ≤ 105, and then the quasi-equilibrium shear modulus µ was

calculated as a time-average of G(t):[10, 12]

µ = 〈G(ti − tj)〉 = µA − µF

where 〈...〉 here mean simple arithmetic average over i and j (cf. eq. 1), and µF = (V/T )
〈

(σ(t)− σ̄)2
〉

is the fluctuation modulus.[10, 12] The modulus µ defined above is close to G(t) for t ∼ ∆t both



above and below Tg.

The obtained T -dependencies of µ = µ(T ) are shown in Fig. 1 (thick solid curves); the dotted

vertical lines in Fig. 1 indicate Tg in energy units. It is clear that µ is very small at high T ,

but starts to grow sharply right below Tg. The standard deviation δµ of the modulus (across the

ensemble of m independent configurations) is also shown in Fig. 1 (thin curves). The peak of δµ

near Tg obtained for both systems can be explained by the rigorous theory based on the assumption

that the stress fluctuations are Gaussian.[10] The theoretical results are shown as dashed curves in

Fig. 1. While the agreement is good around Tg and above it, it is obvious that well below Tg the

simulated δµ is much higher than the theoretically predicted δµ
(G)
F . This discrepancy indicates that

stress fluctuations must be strongly non-Gaussian at low T ’s. Recalling that the Gaussian character

of random variables averaged over a large system volume V naturally comes from their short-range

correlations, the latter result also means that correlations of stress fluctuations must become long-

range well below Tg. This conclusion is also supported by the revealed system size dependence of the

non-Gaussian part (δµ
(nG)
F ) of δµF : our data show that at low temperatures δµ

(nG)
F decreases with

V slower than 1/V suggesting that the 4-point correlations of local shear stress decay with distance

r slower than 1/rD, where D = 3 is the space dimension.[10]

To study the stress correlation range for the 2D system more directly we analyzed the correlation

function of the stress tensor σαβ at different wave-vectors q (in addition to the space-averaged stress

corresponding to q = 0). For each q we define the natural coordinate system with axis 1 along the

wave-vector and axis 2 perpendicular to it. The generalized correlation functions are then defined

as

Cαβγδ(q, t) =
V

T

〈

σαβ(q, t + t′)σ∗

γδ(q, t
′)
〉

where α, β, γ, δ = 1 or 2. The simulation results for C2(t) = C2222(q, t) are shown in Fig. 2 for

q = 2π/L (L ≈ 100 is the system box size) at T = 0.3 and T = 0.24 (above and below Tg ≈ 0.26).

The theoretical results obtained using the FDT relations derived before [9] are shown in Fig. 2 as

well. An excellent quantitative agreement (with no adjustable parameters) is evident. A similar

agreement was also observed for other components of the correlation tensor Cαβγδ, other T ’s and

other wave-vectors.

It is instructive to coarse-grain the time-dependence of Cαβγδ to remove the short-time oscillations

with the period ∼ 2π/ (qcL) ∼ 10 LJ, where cL is the longitudinal sound velocity. Such smoothed

correlation functions C2∼(t) (with the coarsening time-scale tc ∼ 4π/ (qcL) ∼ 20 LJ) are also shown



FIG. 2: (a) Time-dependence of the stress correlation function C2(t) at wave-vector q = 2π/L for
the 2D polydisperse LJ system at T = 0.3 (above Tg): direct simulation data (thin solid curve),
theoretical predictions (thick dashed curve). Note that the two curves superimpose almost exactly.
Thick solid curve corresponds to the smoothed correlation function C2∼(t) with no oscillations; t is
time in LJ units, 0 < t < 105. (b) Similar data for T = 0.24 (below Tg).

in Fig. 2. The ensemble of simulation data supports the theoretical prediction [9] that the only

correlation function surviving coarse-graining at t & tc is C2222. The smoothed version of this

function, C2∼(t), just weakly depends on q for q ≪ qpeak ∼ 5 (more precisely, it is independent of q

with accuracy ∼ 5% for q . 1). This leads to the following distance dependence of the time-smoothed

correlation function of the local shear stress σxy(r, t):

〈σxy(r + r′, t+ t′)σxy(r
′, t′)〉 ≃

T

π
C2∼(t)

(

1

r2
−

8x2y2

r6

)

where r = (x, y). The above equation is valid for t ≫ tc and d ≪ r ≪ L. It means that the stress

correlations decay as 1/r2 in agreement with the previous simulation results [16] and theoretical

predictions [9].

Conclusions

For the 3D oligomer system we demonstrated that the quasi-equilibrium shear modulus µ shows

an anomalously strong dispersion near the dilatometric glass transition temperature Tg
[10, 12] and

that the system size dependence of this dispersion is indicative of the long-range 4-point static

stress-correlations below Tg (showing a slow power-law decay, possibly with an infinite correlation



length).[10] The MD results for tensorial stress correlations in the 2D polydisperse system we studied

show an excellent quantitative agreement with the theory that we developed before [9] both above and

below Tg. These new data also indicate that below Tg the time-smoothed local stresses exhibit long-

range spatial correlations decaying as 1/r2 with distance r. In other words, the inherent structures

of this system are characterized by pronounced correlations of the anisotropic stress [9] with almost

infinite range, in agreement with the behavior reported for 2D and 3D Kob-Andersen (binary LJ)

models.[16, 17]
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