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Riemannian Clustering of PolSAR Data using
the Polar Decomposition

Madalina Ciuca∗† ID Graduate Student Member, IEEE, Gabriel Vasile∗ ID , Senior Member, IEEE,
Marco Congedo ∗ ID , Michel Gay ∗ ID , Senior Member, IEEE,

Abstract—In this manuscript we propose an algorithm
for unsupervised classification of PolSAR data, on the
manifold of Hermitian positive definite matrices obtained
from the polar decomposition of the scattering matrix. The
method uses a geodesic metric for evaluating similarity of
Hermitian matrices and performs unsupervised classifica-
tion for both coherent and incoherent targets. Monostatic,
full-polarimetric, real and simulated datasets are used for
testing the proposed method. With Gaussian clutter, the
technique is able to retrieve classification maps similar to
those obtained using the standard Wishart algorithm. A
refinement of classification results is shown for a simulated
dataset with four classes. For real PolSAR data, the final
classification better preserves the texture information of the
original image. As a result, an improved separation is shown
between nearby areas of lower intensity, as, for example,
vegetation fields.

Index Terms—clustering, PolSAR, unsupervised classifi-
cation, scattering matrix, polar decomposition, Hermitian
factor, unitary factor, Riemannian distance, affine invariant
metric, geodesics, Riemannian k-means, PolBaRi, Bretigny,
Foulum.

I. INTRODUCTION

POlarimetric Synthetic Aperture Radar (PolSAR) data
records the scattering diversity by measuring the

electromagnetic response in two orthogonal polarization
bases. The target decomposition algorithms are generally
employed in the polarimetric signature analysis. They can
be either coherent or incoherent. The distinction depends
on whether the scattering or the covariance1 matrices are
used, respectively. While the first is a directly measured
quantity for a full-polarimetric PolSAR pixel, the latter
is a second-order statistical estimate.
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1also coherency. In the current text, mentioning one automatically
implies the other, as they have similar statistical properties. Mathemat-
ical definitions are reported in Annex A.

A. Related work

One important application in PolSAR data analysis is
classification. While both supervised and unsupervised
methods are popular and have various levels of accuracy,
this article will focus only on the case of unsupervised
classification. Particularly, clustering techniques are dis-
cussed.

1) PolSAR clustering: In computer science, clustering
methods are divided into several groups, as for example:
partitional, hierarchical, density, grid or model-based [1].
While such methods are popular for PolSAR unsuper-
vised classification, centroid-based approaches belonging
to the partitional category are the most prevalent. A
generic scheme of a centroid-based clustering algorithm
is presented in Fig. 1.

The introduction of the Wishart classifier has been a
major milestone in PolSAR unsupervised classification
[2], [3]. It was shown to represent an optimal Bayesian
classifier, considering that the scattering vectors are mod-
elled by zero mean complex circular Gaussian vectors,
completely characterized by their covariance matrix [2].
The distance metric is known as the Wishart similarity
measure (eq. 26). The initialization of the centroids is
obtained by the H−α decomposition [4]. This is applied
as a prerequisite and an estimate centroid is provided for
each class in the H − α plane (which fixes the no. of
clusters, K = 8). After each run, the centroids are updated
by averaging the redistributed matrices using complex
multilooking.

With the constant increase in spatial resolution, differ-
ent non-Gaussian clustering strategies have been adopted
for PolSAR data classification. Based on the conven-
tional product model, we can distinguish two main
directions in introducing heterogeneity. By adopting ei-
ther non-Gaussian target vectors (such as K-, Kummer-
U, G0-distributed clutter models) or compound covari-
ance/coherencies (like scale mixtures, G0- or K-Wishart
models) different classification algorithms have been
proposed [5]–[10].

Being simple and effective, the Wishart classifica-
tion still remains one of the most employed clustering
methods in practical applications. Its popularity and
fundamental importance has been proven also by many
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Fig. 1
Generic scheme of a centroid-based clustering algorithm for PolSAR data.

publications, which by modifying one or more stages
in the generic schema (Fig. 1) have arrived to new or
improved versions. Notable changes can be found in
the: a) initialization and number of clusters [11]–[13],
b) class assignment logic [12], or c) the distance metric.
Nonetheless, the latter deserves a discussion on its own.

2) Distance metrics for PolSAR data: Based on the
optimization strategy employed, the two main groups
of PolSAR distances are stochastic and geometric. The
Wishart similarity measure is probably the most used
stochastic similarity/dissimilarity measure with both un-
supervised and supervised methods. As the statistics
of the scattering vector/covariance matrices have been
improved, the distance metrics used in classification (or
filtering) algorithms have also evolved. Non-exhaustive
examples of such metrics are the revised-Wishart, the
Bartlett, the Hellinger, the Kullback-Leibler, the Bhat-
tacharyya, the Rényi or the Chi-square, either with a local
[14] or a non-local approach [15].

Geometric metrics are optimized with respect to a
specific geometric space and usually allow the com-
putation of the shortest path. Some examples are the
Euclidean, the Riemannian affine invariant (introduced
in Section II), the log-Euclidean, or the angular geodesic
[13] distances.

A concise indexing of similarity/dissimilarity mea-
sures used in PolSAR is available in [16], while a more
in-depth review can be found in [17].

B. Contribution of this paper

This paper presents a new framework for geometrical
k-means PolSAR clustering based on two important
aspects: 1) the polar decomposition mathematical prop-
erties and 2) the Riemannian geometry. This framework
is no longer based on the use of covariance/coherency
matrices. Instead, we directly exploit the scattering ma-
trix by applying the polar decomposition. We study the

properties of the two decomposition factors and conclude
that only the Hermitian factor can serve as a rotation-
invariant input for the clustering method.

No data vectorization is performed (compared to the
case of constructing the scattering vectors), and the algo-
rithm is designed to exploit the geometrical embedding
of the Hermitian factors, which are inherently located on
a Riemannian manifold. Instead of statistically averag-
ing the scattering vectors (as for covariance/coherency
matrix estimation), a local mean (i.e., barycenter) is
computed based on a geodesic distance associated to
the manifold. In other words, the algorithm does not
modify, but takes advantage of both the algebraic and the
geometric structure of its input features. No underlying
statistical (homogeneous or heterogeneous) clutter model
is therefore assumed.

Both simulated and real full-polarimetric PolSAR data
are employed for validation. The proposed method is
tested against the results obtained using the classical k-
means framework with two alternative distance metrics:
one stochastic – Wishart similarity measure and one
geometric – angular geodesic. With real data, we observe
it recovers the texture information and some of the details
lost in the second order statistical approach.

The reminder of this paper is organized as follows.
Section II offers some background on the use of the polar
decomposition. It then focuses on defining concepts and
tools necessary for applying the Riemannian manifolds
theory with PolSAR data. Finally, it introduces the de-
scription of our proposed method. Section III analyses
the experimental results. The conclusion and perspectives
for future work are discussed in Section IV.

II. FROM COHERENT POLAR DECOMPOSITION TO
CLASSIFICATION ON A RIEMANNIAN MANIFOLD

A. The polar decomposition
Any complex square matrix S ∈ Cn×n can be decom-

posed using the polar decomposition as the product of
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two factors: a unitary matrix (U, UU
H

= I, U ∈ Cn×n)
and a Hermitian matrix (H, H

H

= H, H ∈ Cn×n). H
is positive semi-definite (PSD), thus we have v

H

Hv ≥ 0
for any nonzero column with complex elements vector1,
v ∈ C. In any unitarily invariant norm, U is the
nearest unitary matrix to S [18]. The influence of the
two factors is interpreted as follows: the unitary factor
performs a rotation, while the Hermitian factor acts as a
stretching/deformation.

There exist two different forms of this factoriza-
tion, with (1) being known as the left polar decom-
position and (2) as the right polar decomposition:

S = UH (1) S = KU. (2)

The left/right Hermitian factors are obtained as: H =
(S

H

S)1/2 and K = (SS
H

)1/2. If S is a normal matrix
(i.e., it verifies S

H

S = SS
H

), it immediately follows that
H = K. For all other S matrices, S

H

S is similar to
SS

H

. This means that H and K are themselves similar
(i.e., have the same eigenvalues and the same number of
independent eigenvectors). By using the properties of the
unitary U factor, (1) can be written using a mathematical
artifice, as: S = UHU

H

U = (UHU
H

)U = KU. As a
result, K = UHU

H

= UHU−1, which is the similarity
equivalence.

From a mathematical perspective, the polar decom-
position has a close connection to the Singular Value
Decomposition (SVD), from which it can be computed.
As a direct consequence, this decomposition can be
inherently applied to any complex matrix. While the
Hermitian factor (H or K) from the decomposition is
always unique, the unitary term is unique only if matrix
S is non-singular.

In PolSAR, the polar decomposition has been gen-
erally used as a coherent technique, allowing feature
extraction from the scattering matrix, S ∈ C2×2. Since
there are no constraints in applying the factorization, it
can be used for both symmetric/asymmetric, or other-
wise, monostatic/bistatic scattering matrices.

The pioneering works of Carrea et al. [19], [20] have
initially described the behaviour of the two decomposi-
tion factors. The Hermitian positive semi-definite matrix
is referred as a "boost" matrix.
References therein [21]–[23] express the scattering ma-
trix polar decomposition using the formalism of quater-
nions and derive descriptive features from the polar fac-
tors. They propose both a coherent approach on single-
look (also, 1-look) quad-pol(arimetric) data, as well as a
generalization for incoherent multi-look data.

1Notation: Boldface is used for vectors and matrices, with the first
using lowercase and the second upper-case letters.
I denotes the identity matrix of size n × n. Known operators are:
(·)T as the transpose, (·)∗ as the complex conjugate, and (·)H as the
conjugate-transpose. || · ||F refers to the Frobenius norm, while | · | is
the absolute value.

In optical polarimetry, the polar decomposition splits a
complex 2×2 Jones matrix in a retarder (i.e., the unitary
matrix) and a diattenuator (i.e., the Hermitian matrix).
The same significance is attributed to the two products
obtained from decomposing a nondepolarizing Mueller
matrix [24], while a generalized polar decomposition
(retarder, diattenuator and depolarizer factors extraction)
is further proposed for a general Mueller matrix. Classi-
fication is performed coherently (i.e., in a pixel-by-pixel
manner) in [25], on real PolSAR data in Mueller matrix
format, following the above-mentioned generalized polar
decomposition model.

In the proposed method, we use the polar decompo-
sition of the scattering matrix, but apply the clustering
technique only to the Hermitian terms. In the current
form, the unitary factor is removed before clustering.
More details of the algorithm implementation are given
in Subsection II-E.

B. Riemannian manifold and corresponding distances

It is well known that positive-definite matrices are
naturally embedded in a non-linear, smooth differentiable
manifold. On such a manifold, the shortest path connect-
ing any two points is named a geodesic: it is not a straight
line, as in the Euclidean space, but a path which follows
the curvature of the space.

Applying a suitable metric on the tangent bundle
yields a Riemannian manifold, P(n). The best-known
metric used for the PSD manifold is the affine invariant
Riemannian metric (AIRM) [26].

For any two positive definite matrices A and B, AIRM
yields a closed-form distance measure

dgeod,P(n)(A,B) = || log(A−1/2BA−1/2)||F , (3)

which can be interpreted as a similarity/dissimilarity cri-
terion. Operator log(X) represents the matrix logarithm.
For positive-definite matrices it is usually computed
using the eigenvalue decomposition: X = VDV

H

, D =
diag(λ1, λ2, ..., λn) and the usual logarithm function.
The operator diag(·) returns a diagonal matrix having
the elements inside parenthesis on the main diagonal.
Then, Dlog = diag(log(λ1), log(λ2), ..., log(λn)) and

log(X) = V ·Dlog ·V
H

. (4)

The AIRM geodesic distance complies to several
invariance properties such as self-duality, congruence
invariance, joint homogeneity and determinant identity,
among others [26]. In particular, the congruence (or,
affine) invariance reads

dgeod,P(n)(JAJ
H

,JBJ
H

) = dgeod,P(n)(A,B), (5)

for any non-singular matrix J.
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For real PolSAR data, due the presence of noise (ther-
mal or speckle), the Hermitian factors of the observed
scattering matrices are always positive definite. They lie
on a PSD Riemannian manifold with dimension n = 3.
We can associate to any general matrix H,

H =

(
h11 h12

h∗12 h22

)
, (6)

a point in R3, according to the mapping [27]:

F(H) =
1√
2
[h12 + h∗12, h22 − h11, h22 + h11] . (7)

For m positive definite matrices {H1,H2, ...,Hm},
m > 2, the Riemannian barycenter, i.e., geometric center
of mass or geometric mean, is a point H0 which attains
the minimum value of [28]

argmin
H0

m∑
i=1

dgeod,P(n)(H0,Hi)
2. (8)

It is worth mentioning that the Riemannian mean
presents some invariant properties. Among others [27]:
• permutation invariance:
H0 is still the solution considering any rearrange-
ment of the original set {Hi}, 1 ≤ i ≤ m.

• congruence invariance:
Changing the matrix set to {VHiV

H}, 1 ≤ i ≤ m,
V non-singular, the barycenter changes accordingly,
becoming VH0V

H

.
• inversion invariance:
H−10 is the corresponding barycenter for the set of
inverse matrices {H−1i }, 1 ≤ i ≤ m.

It was shown that in the Riemannian manifolds of
positive-definite matrices, the solution to the minimiza-
tion problem in (8) always exists and is unique [29],
[30]. While there is no closed-form solution, convergent
results are obtained by iterative minimization methods
[27], [30], as the gradient descent.

C. Unitary manifold and corresponding distances

On the manifold of unitary matrices, U(n), the
geodesic distance between two generic matrices A and
B is [29]:

dU (A,B) = || log(A
H

B)||F . (9)

The space of unitary matrices is a Lie group, endorsed
with a Lie algebra. Computing the barycenter of p unitary
matrices {U1,U2, ...,Up} is addressed often in relation
to the properties of this Lie space. The barycenters are
computed using a distance-minimization method, similar
to the Hermitian case by (8). Sometimes a projective
iteration algorithm (i.e., based on projections to the Lie
algebra and back into the Lie group) is used for the task

[29]. To the best of our knowledge, there is no closed-
form solution neither for this computation.

The update rule for calculating the average of matrices
{Uj}, 1 ≤ j ≤ p used in the current experiments is:

Uk+1 = Uk · exp

 1

N

∑
j=1

log(U
H

kUj)

 . (10)

Operator exp(·) represents the matrix exponential and is
the inverse operation of log(·). These two operations no
longer have a simplified form with unitary matrices.

Notice that, for computing the barycenter in the man-
ifold of unitary matrices, a simple gradient descent may
not always converge due to numerical problems. In this
work we focus mostly on the Hermitian factors, but
compute the barycenter of unitary factors for illustration
purposes. Therefore, while more sophisticated solutions
may exist, they are not addressed here.

Given the interpretation of a unitary matrix as a com-
plex rotation matrix (normal rotation and phase terms),
we argue there is a significant advantage in eliminating
this rotation from the original scattering matrix.

D. Hermitian matrices and Riemannian geometry in
PolSAR

It has been more than a decade since the Riemannian
manifold embedding is used with PolSAR data, exclu-
sively in evaluating the coherency/covariance matrices.
In the general literature, we have identified different
methodologies proposed for this manifold embedding.
Some methods operate directly on the Riemannian mani-
fold (M1, Table IV, Appendix A-A), while others operate
with projections (i.e., onto the tangent space or onto
other known geometric spaces). The method proposed
by the current paper fits the first direction. A short
literature review, with techniques and applications that
use Riemannian geodesics in PolSAR data manipulation
techniques is given below and in Table IV, Appendix
A-A.

In [31], [32], Formont et al. challenge the use of the
popular Wishart similarity for measuring the similarity
between PolSAR covariance matrices. They modify the
Wishart unsupervised classification algorithm of [3] and
introduce AIRM as distance metric. Other examples
which use the metric for clustering applications are in
[33], [34].

In [35], [36], the AIRM distance is used in Pol-
SAR/PolInSAR time-series unsupervised classification
with a binary partition tree algorithm applied in the space
of covariance matrices. Another method, the nearest
regularized subspace, is also modified to incorporate the
same manifold metric [37].
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The supervised classification of PolSAR data via dic-
tionary learning, the SVM technique and the AIRM
metric is employed in [38], [39].

For adaptive PolSAR speckle filtering, [40], [41] pro-
pose a modified mean shift algorithm. The method uses
a different geodesic distance measure, the log-Euclidean
Riemannian metric and its corresponding gradient, when
calculating the local maximum point required by the
implementation. This metric is also used for PolSAR
supervised classification, e.g., with dictionary learning
and the SVM method [42].

Therefore, techniques based on the use of PSD man-
ifold metrics are reported in PolSAR both with pre-
processing (i.e., filtering) and data analysis applications
performed in the space of n × n, n ∈ {3, 4} covariance
matrices.

E. Proposed method

The classical k-means algorithm is an iterative, par-
titioning clustering technique which separates the input
data X = {xi} , i ∈ [1, N ] into K classes [43], [44].
The method operates by attributing a sample xi from the
dataset to class K through the minimization of a cost
function

∑K
k=1 d(xi,Ck), with respect to each cluster

centroid Ck, k ∈ [1,K].
We propose a novel algorithm for unsupervised clas-

sification which performs k-means clustering on the
Riemannian manifold of Hermitian polar factors. Three
different processing stages can be identified:

Step 1: The scattering matrix is decomposed using
the left1 polar decomposition (1), to obtain the Hermitian
and unitary factors.

Step 2: An identification of coherent scatterers
based on the 98th percentile criterion proposed by Lee
et al. [45] is performed, at first. As in the original
algorithm, a 3 × 3 boxcar neighbourhood is used. The
pixels fulfilling the criterion are considered to represent
coherent targets. For them, no additional steps are needed
and the Hermitian factors are used directly for clustering
(Step 3). With all other pixels, barycenters are otherwise
computed. This is the analogous of a N-look geometrical
center of mass estimation in the manifold of Hermitian
polar factors. The barycenters are computed through an
iterative method (8) applied in square, local, sliding
neighbourhoods of fixed size. The operation of evaluating
the Riemannian barycenters in the manifold of Hermitian
factors is designated henceforth by acronym PolBaRi
(POLar decomposition BArycenters estimation on the
RIemannian manifold).

1Since similar results have been obtained when considering al-
ternatively the left or right polar decomposition, we refer hereafter
exclusively to the use of the left polar factorization.

Step 3:
A modified k-means algorithm is applied to our

set of points containing barycenters and coherent Her-
mitian factors. The computation is kept into the na-
tive Riemannian manifold of positive-definite matri-
ces using the AIRM metric to evaluate intercluster
separation. Here, the class centers are randomly ini-
tialised using the k-means++ [46] seeding with the
AIRM distance. Progressively, each (barycenter) ma-
trix from the set obtained in Step 2 is allocated to
one of the K classes and the cluster centers are up-
dated. The operation is repeated until the interclass
transfer is lower than a predefined threshold (Fig. 1).

The suggested algorithm is distinct from other PolSAR
Riemannian manifold methods. The state-of-art review
in Section II has evidenced the existence of PolSAR
studies using Riemannian distances and/or Riemannian
classifiers in the space of covariance/coherency matrices,
only. In contrast, we propose to obtain rotation invariant
Hermitian factors from the scattering matrix and manip-
ulate such matrices through geometrical averaging and
geometric-based clustering techniques.

III. RESULTS AND DISCUSSION

The algorithm introduced in Subsection II-E is now
evaluated on both simulated and real PolSAR data.
Each case is addressed in a different subsection. The
conventional Wishart classifier, applied on the space of
covariance matrices, is used as a benchmark.
In a different subsection we introduce a sample gradient
computation technique based on the Sobel kernels, which
evaluates the gradient directly on the manifold space.

A. Simulated datasets

Simulated polarimetric data is obtained through two
different methods, as detailed by Subsections III-A1 and
III-A2.

1) Simulated data with different intensities and co-
variance matrices: The first simulation technique is
a classical method used in the literature [47]–[49]. It
allows one to create synthetic responses of polarimetric
channels with known statistics, i.e., having a known
covariance/coherency matrix. In our example, we model
four different Gaussian regions, arranged concentrically,
as shown in Fig. 2a. The intensity is varied linearly
from one region to another, with the region bounded
by the image border and the second annulus having
the highest intensity [48]. The simulated dataset serves
as benchmark. The multivariate Gaussian clutter is still
the most used statistical model for PolSAR data and
represents the best-of-fit distribution for the case of
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(a) (b) (c)

Actual class [%]
1 2 3 4

W
is

ha
rt

1 91.45 0 8.55 0
2 0 99.77 0 0.23
3 0 0 99.46 1.54
4 0 1.2 0.14 96.7

Pr
op

os
ed

1 99.66 0 0.34 0
2 0 98.81 0 1.19
3 0.5 0 98.82 0.7
4 0 0.57 0.65 98.78

(d)

Avg. class accuracy Kappa index
Wishart 96.845 0.9736
Proposed 99.017 0.9835

(e)Fig. 2
Simulated data - Dataset 1.
(a) 1-look Span [dB]. (b) Wishart Classifier. (c) Proposed method: PolBaRi+Riemannian k-means. (d) Matrices of
per-class accuracy. (e) Average class accuracy and kappa coefficients.
(Colour correspondence: 1: magenta, central circle; 2: turquoise, corners; 3: yellow, central annulus; 4: light orange,
exterior annulus).

homogeneous regions. With such a statistical model,
the Wishart classifier is known to provide the optimum
solution [2].

Figs. 2b and 2c display the results obtained using the
Wishart classifier and the proposed method, respectively.
For both algorithms, the number of expected classes
is provided as input parameter. Table 2d contains the
percentages of per-class accuracy obtained from the
confusion matrices of each classifier. The results are quite
similar. With the proposed method, the identification of
pixels inside a given class has at least a 98% accuracy,
the true-positive percentages being here slightly more
homogeneous than with the Wishart classifier. The kappa
coefficient has also been computed (Table 2e).

2) Simulated monostatic backscattering response of a
dihedral: With the second simulated dataset, the polari-
metric signature of a monostatic right-angle dihedral is
modelled. Using an electromagnetic simulation software
(CST Microwave Studio), the scattered electric field
of the dihedral can be obtained from a diverse range
of monostatic directions. In the simulations, the object
is placed in the centre of the coordinate system and
rendered from perfect electric conductor (PEC) material.
A spherical coordinate system, described by parame-
ters (θ, φ) is used. The simulator returns the estimated
complex electric field response and, subsequently, the
elements from the scattering matrix (linear polarisation)
are themselves estimated.

Fig. 3a displays the absolute value of the backscattered
electric field, for the right-angle dihedral. The maximum
value is obtained for the central point, with coordinates

(θ, φ) = (0◦, 0◦). This corresponds to the monostatic
canonical dihedral scattering direction, in a plane orthog-
onal to the dihedral’s bisector.

In PolSAR, the response of a dihedral describes an ele-
mentary scattering mechanism, known as double bounce.
Identifying the mechanism in the multichannel SAR
image is often done indirectly, by computing descriptive
parameters. With coherent targets, one such parameter is
the αCloude value [50]:

αCloude = cos

(
1√
2

|Shh + Svv|
|S|F

)−1
, (11)

which is fixed at 90◦ for the double bounce case. In
Fig. 3b the αCloude parameter is estimated for each
monostatic direction. It is observed that the deviation
from the theoretical value remains acceptable (αCloude

∈ [85◦, 90◦]) when θ, φ ∈ [−45◦, 45◦]. In contrast,
for very skewed directions (incidence/scattering predom-
inantly on the exterior edges of the two plates composing
the dihedral), the mechanism changes, as expected.

In order to account for noise variation, we do not use
directly this simulated data for PolBaRi+Riemannian
k-means classification. Instead, at each pixel, multiple
Gaussian estimates of the monostatic polarimetric
channels are generated by the same method used to
obtain the first simulated dataset. After this stage, the
PolBaRi estimation is performed pixel-based and the
Riemannian k-means is applied. The number of classes
is varied between 2-5 (Figs. 2c-f) in order to test the
results. Even with the increase in the total number of
classes, the technique steadily identifies at the same
locations the two main scattering mechanisms shown in
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(a) (b)

(c) (d) (e) (f)

(g)

Fig. 3
Simulated data - Dataset 2.
(a) Absolute value of the scattered Efield, estimated by the simulation software. (b) αCloude angles from estimated
scattering matrices. (c-f) Riemannian k-means clustering result (variable number of classes between 2-5).
(g) Upper: αCloude profile cut variation; Middle: Riemannian distance between barycenters along red profile cut in
(c) and centroid of the class in yellow. Lower: Angular geodesic distance between barycenters along red profile cut
in (c) and centroid of the class in yellow.

Fig. 3b. We refer here to the central region of uniform
scattering mechanism (in yellow), which corresponds
to the double bounce response, as confirmed by the
αCloude parameter (Fig. 3b), and the second mechanism
(i.e., single bounce), identified at the four exterior
corners.

A data profile-cut is extracted along the middle hori-
zontal line in Fig. 3b (position marked on left-side with
green arrow). This corresponds to backscattering direc-
tions presenting right/left variations in azimuth angle,
with respect to the monostatic canonical position of the
dihedral.

Considering the Hermitian barycenters estimated along
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the selection line for the k-mean results with two classes
(left-side red arrow and dashed line in Fig. 3c), two intra-
class normalized geometric distances are evaluated. For
barycenter estimation, the PolBaRi method is applied to
the simulated multi-dimensional Gaussian samples (49
initial values at each point).

The αCloude values are displayed in the upper sub-
figure of Fig. 3g, in the same green colour. The lower
subfigures in Fig. 3g contains the normalized AIRM and
normalized angular geodesic distances between each of
the selected barycenters and the final Hermitian k-means
centroid of the corresponding class (i.e., yellow class
from Fig. 3c).

While the αCloude green curve is quite deterministic,
both geometric distances (AIRM in red and angular
geodesic in magenta) present a random variation. This is
plausibly influenced by the two distinct methods based
on which the data was obtained. The αCloude parameter
is evaluated directly on the scattering matrices estimated
from the electromagnetic simulator. The geometric dis-
tances display quite similar intra-class results.

B. Manifold Gradient with Sobel Kernel

For an extended evaluation of Hermitian and unitary
barycenters, a gradient assessment is performed in each
manifold space. Because convergence did not occur in
all cases for the algorithm employed in evaluating the
unitary barycenters, a coherence mask selection is used
so that the points that do not satisfy convergence are
masked out. As example, for Dataset 2 such points are
marked with red in Fig. 4c. They represent around 21.5%
of all evaluated points, with the rest verifying unitary
convergence.

TABLE I
Vertical Sobel kernel.

-1 0 1
-2 0 2
-1 0 1

TABLE II
Horizontal Sobel kernel.

-1 -2 -1
0 0 0
1 2 1

The classical Sobel operator [51], [52], known primar-
ily for edge detection in digital image processing, pro-
poses a sample computation of the first order derivative.
It operates with two 3 × 3 kernel filters (Tables I, II).
Each of them, used as a sliding window, is convoluted
with a spatial neighbourhood of the same size to produce
the vertical and horizontal gradient components.

We propose an adaptation for gradient computation
on the (Hermitian/unitary) manifold. The same weights
as in the Sobel kernels multiply barycenter matrices
within a 3 × 3 spatial neighbourhood, while an adequate
metric is used for distance dissimilarity (AIRM with
Hermitian matrices and (9) with unitary matrices). Both

the vertical (GV) and the horizontal (GH) manifold
gradient components are evaluated.

Considering Pi,j a (Hermitian/unitary) barycenter ma-
trix located on row i, column j. The following expres-
sions can be written:

Gi,j
V = d(Pi,j

↑ ,P
i,j
↓ ), (12) Gi,j

H = d(Pi,j
→,Pi,j

←), (13)

where

Pi,j
↑ = Pi-1,j-1 + 2Pi-1,j +Pi-1,j+1 (14)

Pi,j
↓ = Pi+1,j-1 + 2Pi+1,j +Pi+1,j+1 (15)

Pi,j
← = Pi-1,j-1 + 2Pi,j-1 +Pi+1,j-1 (16)

Pi,j
→ = Pi-1,j+1 + 2Pi,j+1 +Pi+1,j+1. (17)

and the magnitude of the gradient is

G =

√
GH

2 +Gv
2. (18)

For simulated Dataset 2, Figs. 4a and 4b display
the absolute values of the manifold Sobel gradient (18)
for the Hermitian and unitary barycenters, respectively.
While the Hermitian gradient reproduces the structural
information of the simulated data, there is no visual
information offered by the unitary gradient. Such result
offers a strong motivation for the choice of using only
the Hermitian factor information for data clustering.

C. Real datasets
This subsection illustrates the performance of the pro-

posed clustering algorithm on real monostatic PolSAR
data. The first dataset is full-polarimetric, obtained by
the Onera RAMSES airborne X-Band radar instrument,
over a test site in Brétigny-sur-Orge (France). It is
characterized by a resolution of approximate 1.5 m, in
both azimuth and range [53].

Foremost, the discussion is extended for the Hermitian
and unitary barycenters assessment, now in the context of
the real dataset. Afterwards, the results for the clustering
method are evaluated.

1) Hermitian barycenters gradient and unitary
barycenters parameter estimation: Fig. 5 presents the
Hermitian barycenters Sobel gradient estimate (absolute
value, [dB]) for the Brétigny dataset. The shape of the
three important structures from the image (horizontal
West-Center, left-oblique North-West and right-oblique
North-East) is easily distinguished, as well as the field
contours. Bright pixels are clearly isolated. A threshold
selection may allow for an extraction of coherent
scatterers positions similar to that obtained by the 98th

percentile criterion.
Firstly, we aim to assess by a different method any

contextual information present with the unitary barycen-
ters. The points for which the barycenters are not con-
vergent are masked-out and can be observed in white in
Figs. 6a and 6b ( 25% of the image pixels) .
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(a) (b) (c)

Fig. 4
Simulated data - Dataset 2. (a) Hermitian barycenters gradient - magnitude [dB]. (b) Unitary gradient - magnitude
[dB]. (c) Convergence mask for unitary barycenters.

Fig. 5
Brétigny Dataset. Riemannian gradient using the Sobel
filter kernels - Magnitude [dB].

Starting from a complex unitary matrix, U ∈ C2×2,
with

U =

(
u11 u12

u21 u22

)
=

(
|u11| · eiφ1 |u12| · eiφ2

|u21| · eiφ3 |u22| · eiφ4

)
. (19)

The phase normalized unitary matrix Uph− can be
written in parametric form [54]:

Uph− = U

(
e−iφ1 0
0 e−iφ4

)
=

(
|u11| |u12| · ei(φ2−φ4)

|u21| · ei(φ3−φ1) |u22|

)
(20)

=

(
cos θ − sin θ · e−iϕ

sin θ · eiϕ cos θ

)
(21)

After performing the phase normalization, as in (20),
the angular θ and phase ϕ parameters are easily obtained
for the unitary barycenters of the real dataset. The results
are in Fig. 6a and Fig. 6b, respectively, with histograms
below the main figures.

The θ angle parameter takes values below 25◦ (Fig.
6c), while the phase absolute values are normally spread
in the entire [0◦, 180◦] interval (Fig. 6d). As example,
we can observe the zone corresponding to the building
located West-Center, where multiple coherent scatterers
are present (red ellipse selection). Here, the θ values
approach zero degrees. The phase values present also
an extreme (i.e. ± 180◦). Such observations indicate
that the phase normalized unitary barycenters at those
locations are (almost) identity matrices. In turn, this may
also imply that the original unitary polar factors, used
in estimating the barycenters, are themselves close to
identity. For such a case, the Hermitian polar factors are
completely descriptive and (almost) equal to the original
scattering matrices. This result confirms the choice from
the design of the PolBaRi algorithm of performing the
pre-selection of coherent scatterer and attributing to
those locations directly the Hermitian factor, without
barycenter estimation.

Removing the effect of rotations imposed on the line-
of-sight backscattering direction as well as the search
of rotation invariant descriptors is of particular interest
in polarimetric radar applications. The topic has a sig-
nificant line of work associated for both coherent and
incoherent PolSAR decompositions [55], [56].

In monostatic PolSAR, the term rotation invariant
(roll-invariant) is generally used to distinguish a result
which does not incorporate the target’s rotation angle
around the Line of Sight (LOS). Since in the monostatic
case this rotation around the LOS has the same effect as
an antenna rotation around the same axis, this is equiva-
lent to a rotation of the received signal. Because of this,
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(a) (b)

(c) (d)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90[deg.]

median notches: [4.99°, 5.04°] [25%, 75%] [9%, 91%] outliers

(e)

0 30 60 90 120 150 180[deg.]

median notches: [90.25°, 90.4°] [25%, 75%] [9%, 91%] outliers

(f)

Fig. 6
Brétigny Dataset. (a) Angles obtained from the normalized unitary barycenter matrices [degrees]. (b) Phase values
obtained from the normalized unitary barycenter matrices [degrees].
Following statistics are computed excluding white-masked values: (c) Histogram of angles from (a). (d) Histogram
of absolute phases from (b). (e) Notches boxplot with mean and median values for angles in (a). (f) Notches boxplot
with mean and median values for absolute phase values in (b).

the target-measurement equivalence rotation compensa-
tions are very common. This has been applied in PolSAR
with scattering matrices [50], covariance/coherency ma-
trices [12], Kennaugh matrices [57], alike.

Moreover, the rotation invariance is a property used for
both targets and descriptive parameters. The computation
technique of some parameters may inherently eliminates
rotations (e.g., the eigen-decomposition applied to the
covariance matrix, which assures that the entropy and
average alpha angles are invariant [50]), while for others,
the orientation-compensation is applied as prerequisite.

With the proposed polar decomposition, we have
shown that the unitary matrices can be described by two

random phases and two parametric values (an angle and
a phase). With coherent scatterers, discarding the unitary
polar factor does not produce significant changes, while
for other scatterers the removal of unwanted rotations
from the original scattering matrix is highly beneficial.
Evidence from both simulated and real data shows that
the contextual and spatial information is preserved by
the Hermitian polar term. Such observations legitimize
the key role of the Hermitian barycenters with the
proposed clustering method.

Figs. 7a and 7b compare the results of two different
boxcar "averaging" operations. Each image displays the
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absolute values of the first data channel.
For obtaining Fig. 7a, the arithmetic mean of scattering

matrices (Brétigny dataset) has been computed inside
a 7 × 7 (pixels) moving window. Otherwise, Fig. 7b
contains absolute values (log scale) of the first element
of the estimated Hermitian barycenters.

In Fig. 7a, the amplitude levels of the different zones
are quite similar, which determines that most zones
appear mixed up. Coherent scattering points, having a
higher amplitude, remain clearly visible. On the contrary,
a larger dynamic range is evident for the barycenter
image in Fig. 7b. Alongside the scatterers of high in-
tensity, the shape and structure of other parts from the
original image are clearly distinguishable, for example
with vegetation parcels and roads.

The visual inspection proposed between a spatial
arithmetic average of scattering matrices and a spatial
geometric estimation of a Hermitian centroids shows
superior results for the second approach. In light of
this comparison, a similarity may be drawn with the
results from [58]. The reference compares the difference
between arithmetic and geometric averages of single
channel multi-temporal SAR series. Improved results in
terms of speckle variation and signal to noise ratio are
reported for the geometric mean computation, as long
as the SAR images from the acquisitions stack remain
similar, with no significant permanent changes.

2) Classification results:
In the following, the clustering results obtained by

the proposed and the benchmark algorithms are com-
pared. The Riemannian barycenter estimation requires a
spatially moving window averaging, while the Wishart
implementation performs the boxcar moving averaging
to compute the sample coherency matrices. The same
size of the moving window, 7 × 7, is used with both
implementations.

Figs. 7c and 7d display the classification results for
the classical Wishart and the proposed method, respec-
tively. The Wishart estimation operates with 8 classes.
The same number has been considered for the Pol-
BaRi+Riemannian k-means implementation. The classes
are sorted in an ascending order (blue to yellow).

The global positioning of classes in the two images is
similar. One major visual difference concerns the bow-
shaped field in the North of Fig. 7d, which is assigned to
a distinct class. This is the case with other small zones,
attributed by the Wishart classification to the 8th, yellow
class. Overall, the classification of coherent scatterers
appears to be enhanced by the PolBaRi+Riemannian k-
means method.

Considering, as examples, the horizontal West-Center
oriented building and the oblique North-East parking
space, the classes identified by the proposed method at
the location are in close proximity, while the Wishart

classifier brings more distant ones together. However, as
the final scattering mechanism interpretation may not be
quite the same for the two classifiers and in the absence
of a ground truth for the dataset acquisition, there is no
categorical validation for the classes.

Without doubt, the most striking difference in the in-
terpretation offered by the two classifiers, is textural. The
Wishart result is smooth, largely homogeneous, while
the proposed algorithm provides a more heterogeneous
result, conserving some of the texture and details of
the original image. For example, in the left-side of the
parking space (North-East), near the road border, there is
an area covered by trees. The Wishart classifier identifies
a small group of trees to the south of the parking lot
and where some pixels of higher intensity are present,
while identification is minimum in the area left to the
parking lot. The proposed method better represents the
information from the area, even if the pixels are of lower
intensity. As second example, one can observe that the
roads (contours in Fig. 5) blend with the background
yellow class in the Wishart classification, whereas they
are clearly distinguishable in the PolBaRi+Riemannian
k-means result. In the original image they too are repre-
sented by pixels of lower intensity.

For completeness, a second real dataset is presented,
the well-known PolSAR EMISAR Foulum. This is a
C-Band observation over a vegetation-dominated area,
with crop fields, forests, a lake and some small urban
settlements.

Fig. 8a shows the h1,1 data channel from the Her-
mitian barycenter estimates. The PolBaRi+Riemannian
k-means clustering result is presented in Fig. 8b and
the Wishart k-means clustering is illustrated in Fig.
8c. An additional geometric metric has been used for
qualitative evaluation, the angular geodesic [13]. The
results are displayed in Fig. 8d. For comparison purposes,
this latter implementation is based on the same k-means
framework/initialization, as in the case of Wishart. For
display aesthetic, classes are sorted here in descending
order (blue to yellow).

With respect to the Wishart classification, the texture
information is better preserved when using both geo-
metrical distances. However, the PolBaRi+Riemannian
k-means exhibits the best accuracy as it is able to dis-
criminate crop fields which are not retrieved by the other
two methods, using the same number of clusters. For
example, the L-shaped areas near the image center are
correctly separated by the yellow and dark blue classes
[59]. In proposed ground-truths of the dataset, the two
fields have distinct type of crops, beet and winter wheat.
This is in accordance with the results obtained using
the compound Gaussian mixtures classification model
[8], which nonetheless has a higher decrease in spatial
resolution.
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(a) (b)

(c) (d)

Fig. 7
Brétigny Dataset. (a) S11 boxcar average (amplitude, [dB]). (b) Hermitian barycenters (h11, amplitude, [dB]). (c)
Wishart result. (d) PolBaRi+Riemannian k-means result.

Given the geometrical nature of the proposed k-means
clustering, it is straightforward to define a simple ob-
jective criterion for data-driven evaluation of the clas-
sification result. By modifying the Calinski-Harabasz
(variance ratio) criterion [60] with the AIRM metric, we
obtain:

CHk =
varB
varW

· N −K

K − 1
, (22)

varB =

K∑
i=1

ni · dgeod,P(n)(Ci,Htot)
2, (23)

varW =

K∑
i=1

∑
Hj∈Ci

dgeod,P(n)(Hj,Ci)
2, (24)

where N is the total number of pixels in the PolSAR
image, K is the number of clusters, Htot is the overall
barycenter of the sample PolSAR data and ni refers to
the number of observations in cluster i, of centroid Ci.

In order to find the correct number of classes, different
Riemannian k-mean clustering runs are operated on a
300×300 sub-image from the Foulum dataset. Fig. 9
shows the results obtained with K ∈ {4, 7, 16}. For each
K, 2×K trials have been performed and the maximum
CHk value has been computed in each case. Fig. 10a il-
lustrates the normalized index CHk as function of K. The
optimal number of classes with respect to this sub-dataset
corresponds to argmaxK(CHk) and equals 7 (Fig. 9b).
In Fig. 10b, the normalized CHk for K ∈ {8, 16} is
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Fig. 8
Foulum Dataset. (a) Hermitian barycenters (h1,1, amplitude, [dB]). (b) PolBaRi+Riemannian k-means result. (c)
Wishart result. (d) k-means with distance metric the angular geodesic distance.
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Fig. 9
Foulum Dataset - Region selection. Results of Riemannian k-mean clustering with: (a) 4 classes, (b) 7 classes, (c)
16 classes.
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Fig. 10
Foulum Dataset - AIRM Calinski-Harabasz index (normalized display) evaluation. (a) For the data selection in Fig.
9. (b) For the entire Foulum image, if K = 8 and K = 16.

computed over the full EMISAR Foulum dataset. In this
case, the K = 8 provides a much better match.

In conclusion, different data-driven clustering evalu-
ation strategies can be adopted for the positive definite
manifold geometry. One of the benefits of the proposed
geometrical clustering is that conventional criteria, such
as the Calinski-Harabasz can be used rigorously to op-
timise the K-means parameters as the AIRM is a true
distance.

IV. GENERAL REMARKS AND CONCLUSIONS

The proposed method, PolBaRi+Riemannian k-means,
is unique in several respects. It incorporates a coherent
technique operating on the original scattering matrix (i.e,
the polar decomposition) which preserves the matrix for-
mat (contrary to the incoherent decomposition methods
where data is firstly vectorized). It is to be emphasized
that the polar decomposition can be applied to both
symmetric and asymmetric scattering matrices and the
Hermitian factor is always unique. The data processing
resembles also the incoherent techniques, as it proposes

a spatial averaging processing on the Riemannian mani-
fold for calculating centroids of Hermitian factors. This
allows the applicability of the proposed method even with
distributed targets inside a scene. The AIRM Riemannian
geodesic metric is used to evaluate matrix dissimilarity
both for Hermitian polar factor centroids and in the
modified k-means algorithm.

In a distinct contribution of the paper, the AIRM
metric is applied in the development of: a) a sample
gradient algorithm based on the Sobel kernels and b)
an objective criterion, based on the Calinski-Harabasz
variance ratio, for evaluating the number of clusters. Such
implementations may prove useful in other applications
which involve computations with data embedded in the
Riemannian manifold of positive definite matrices.

The proposed clustering algorithm has been compared
against two different k-means implementations: the well-
known stochastic Wishart and the newer geometric-based
angle geodesic clustering. The performance was shown
to be competitive with simulated Gaussian clutter data -
a case for which the Wishart classifier is known to offer
optimum results. With real data, it was illustrated that the
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TABLE III
Sample covariance and coherency matrices formulas.

Scattering vector (monostatic)
[k1, k2, k3]T

Matrix form

Covariance
Ĉ = 1

N

∑N
i=1 kik

∗T
i

k = [Shh,
√
2Shv , Svv ]T

< |k1|2 > < k1k∗2 > < k1k∗3 >
< k2k∗1 > < |k2|2 > < k2k∗3 >
< k3k∗1 > < k3k∗2 > < |k3|2 >


Coherency

T̂ = 1
N

∑N
i=1 kPi

k∗TPi

kP = [Shh + Svv , Shh − Svv ,
√
2Shv ]

T

TABLE IV
Methods exploiting the geometry of the Riemannian manifold in PolSAR.

Methods type In which space do they operate? References in PolSAR lit. Metric/Measure

M1 Directly on the manifold [32], [35] AIRM
M2a Projection to the Tangent Space [40], [41] Log-Euclidean
M2b Higher dimension embedding (Kernel Hilbert Spaces) [42], [61] Stein divergence, Bartlett
M2c Lower dimension embedding - -

Riemannian k-means result integrates more of the inten-
sity, texture and details of the original PolSAR image.
This allows for a better discrimination of structures such
as roads and vegetation.

Supplementary experiments are anticipated for bet-
ter understanding the geometric properties of the two
factors from the PolSAR data polar decomposition. As
the method can be applied with both symmetric and
asymmetric scattering matrices, an envisioned extension
is for testing the results with data from quasi-monostatic
and bistatic systems. Finally, future work will address
enhancing the clustering algorithm using Gaussian and
non-Gaussian statistics on the manifold of positive defi-
nite matrices.

APPENDIX A

For compact display and completeness, we present in
the current Appendix general formulas and information
not included in the paper’s main body.

The radar scattering matrix in linear H, V polarisation
is written, as:

S =

[
Shh Shv

Svh Svv

]
(25)

The polarimetric span (i.e., total power) of a pixel
refers to the squared Frobenius norm of the correspond-
ing scattering matrix: SPAN = |Shh|2 + |Shv|2 +
|Svh|2 + |Svv|2.

Table III reports the formulas of the sample covariance
(C) and coherency (T) matrices, which although heavily
mentioned in the paper, have not been formally intro-
duced. Angle brackets < · > denote ensemble averaging
in an imaging window. k and kP are the monostatic
scattering vectors of so-called lexicographic and Pauli
bases.

An estimated complex covariance matrix Ĉ is assumed
to follow a (scaled) complex Wishart distribution, with
probability density function:

p
(
Ĉ
)
=

LqL
(
det Ĉ

)L−q

(detC)
L
Γq (L)

exp
(
−L · Tr

(
C−1Ĉ

))
,

(26)
where Γq (L) = π

q(q−1)
2

∏q−1
i=0 Γ (L− i), Γ (·) repre-

sents the standard Euler gamma function, q is the covari-
ance matrix order and L the dimension of the estimation
domain. Then, the Wishart similarity measure between
two matrices A and C following this distribution, is:

d(A,C) = ln |C|+ tr(C−1A). (27)

A. Evaluation methods and dissimilarity measures with
the Riemannian manifold

The geometric structure of an algebraic object may
sometimes impose optimal data manipulation methods,
as well as an appropriate distance measure.

Currently, for the Riemannian manifold, we can iden-
tify two major directions in the literature. On one hand,
there are methods which operate directly on the manifold
(M1 in Table IV). In such case, the shortest path between
two points (i.e., vectors/matrices) is always obtained
through a geodesic. On the other hand, there are methods
which avoid direct operations on the original Riemannian
manifold. According to [62], they are currently divided
into three categories: a) (M2a) which use the logarithmic
projection to the tangent space, b) (M2b) which propose
a higher dimensional embedding into a Reproducing
Kernel Hilbert Space (RKHS), and c) (M2c) which
perform a manifold-to-manifold mapping, given that the
second manifold space (not necessarily Riemannian) is
of lower dimension. The measures used by these methods
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are distinct and depending on the mapping they can be
Euclidean, non-Euclidean or of geodesic type. Table IV
contains examples from the PolSAR literature in which
these manipulation methods have been applied, as well
as the chosen distance measures.
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