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Abstract—In this manuscript we propose an algorithm1

for unsupervised classification of PolSAR data, on the2

manifold of Hermitian positive definite matrices obtained3

from the polar decomposition of the scattering matrix. The4

method uses a geodetic metric for evaluating similarity of5

Hermitian matrices and performs unsupervised classifica-6

tion for both coherent and incoherent targets. Monostatic,7

full-polarimetric, real and simulated datasets are used for8

testing the proposed method. With Gaussian clutter, the9

technique is able to retrieve classification maps similar to10

those obtained using the standard Wishart algorithm. A11

refinement of classification results is shown for a simulated12

dataset with 4 classess. While the Wishart classifier attains13

an average class accuracy of almost 97%, the proposed14

method reaches almost 99%. For real PolSAR data, the15

final classification better preserves the texture information16

of the original image. As a result, an improved separation17

is shown between nearby areas of lower intensity, as for18

example vegetation fields.19

Index Terms—PolSAR, scattering matrix, polar decom-20

position, Hermitian factor, unitary polar factor, Riemannian21

distance, affine invariant metric, geodesics, Riemannian k-22

means, PolBaRi, Bretigny, X-Band.23

I. INTRODUCTION24

THe interpretation of Polarimetric Synthetic Aperture25

Radar (PolSAR) data is mainly based on the extrac-26

tion of parameters, to which physical/geometrical proper-27

ties are assigned. Classical descriptors of PolSAR images28

are the scattering matrix and/or the covariance/coherency29

matrices.30

The decomposition algorithms proposed for parame-31

ters extraction can be divided into two general categories:32

coherent and incoherent, depending on whether they use33

the scattering or the covariance1 matrices, respectively.34

In PolSAR, the backscattering depends primarily on35

Manuscript received Month Day, Year; revised Month Day, Year.
M. Ciuca is with Laboratoire Grenoble Images Parole Signal Automa-
tique (GIPSA-lab), Univ. Grenoble Alpes, CNRS, Grenoble INP, 38000
Grenoble, France, and with the Department of Telecommunications,
University Politehnica of Bucharest, 060032 Bucharest, Romania.
G. Vasile, M. Congedo and M. Gay are with Laboratoire Greno-
ble Images Parole Signal Automatique (GIPSA-lab), Univ. Greno-
ble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France (email:
surname.name@grenoble-inp.fr).

1also coherency. In the current text, mentioning one, automatically
implies the other. Mathematical definitions are reported in Annex A.

the nature of the imaged targets and on the dimension 36

of the resolution cell. The information from only the 37

target scattering vectors is often insufficient for reliable 38

polarimetric features extraction. With distributed targets, 39

the backscattering is characterized by incoherent target 40

decompositions, obtained by means of PolSAR covari- 41

ance matrices. As a downside, the resolution of the 42

original image can be greatly degraded and small features 43

can no longer be recovered in incoherent processing due 44

to complex multi-looking. 45

This paper proposes a new method that exploits di- 46

rectly the scattering matrix by applying the polar de- 47

composition. The Hermitian factors, inherently located 48

on a Riemannian manifold, are used for classification. 49

This method can be applied with both coherent and 50

incoherent targets. Experimental results show that it can 51

recover the texture-driven information and details lost 52

when exploiting second order statistics and improve, as 53

a result, the interpretability of the original polarimetric 54

dataset. We compare the classification results of the 55

proposed method with those obtained using the classical 56

Wishart method. For validation, both simulated and real 57

full-polarimetric PolSAR data are employed. 58

The reminder of this paper is organized as follows. 59

Section II offers some background on the use of the polar 60

decomposition. It then focusses on defining concepts and 61

tools necessary for applying the Riemannian manifolds 62

theory with PolSAR data. Finally, it introduces the de- 63

scription of our proposed method. Section III analyses 64

the experimental results. The conclusion and perspectives 65

for future work are discussed in Section IV. 66

II. FROM POLAR DECOMPOSITION TO 67

CLASSIFICATION ON A RIEMANNIAN MANIFOLD 68

A. The polar decomposition 69

Any complex square matrix S ∈ Cn×n can be decom- 70

posed using the polar decomposition as the product of 71

two factors: a unitary matrix (U, UUH = I, U ∈ Cn×n) 72

and a Hermitian matrix (H, HH = H, H ∈ Cn×n). H is 73

positive semi-definite (PSD), thus we have vHHv ≥ 0 74

https://orcid.org/0000-0002-3260-2204
https://orcid.org/0000-0002-6458-3634
https://orcid.org/0000-0003-2196-0409
https://orcid.org/0000-0003-1748-0955


2

for any nonzero column with complex elements vector1,75

v ∈ C. U is the nearest unitary matrix to S in any76

unitarily invariant norm [1]. The influence of the two77

factors is interpreted as follows: the unitary factor per-78

forms a rotation, while the Hermitian factor acts as a79

stretching/deformation.80

There exist two different forms, with eq. 1 being known81

as the left polar decomposition and eq. 2 as the right82

polar decomposition:83

S = UH (1) S = KU. (2)84

With respect to the left/right Hermitian factors, we can85

write: H =
√
SHS and K =

√
SSH.86

From a mathematical perspective, the polar decompo-87

sition has a close connection to the Singular Value88

Decomposition (SVD), from which it can be computed.89

As a direct consequence, this decomposition can be90

inherently applied to any complex matrix. While the91

Hermitian factor obtained from the decomposition is92

always unique, the unitary term is unique only if matrix93

S is non-singular.94

In PolSAR, the polar decomposition has been gen-95

erally used as a coherent technique, allowing feature96

extraction from the scattering matrix, S ∈ C2×2. Since97

there are no constraints in applying the factorization, it98

can be used for both symmetric/asymmetric, or other-99

wise, monostatic/bistatic scattering matrices.100

The pioneering works of Carrea et al. [2], [3] have101

initially described the behaviour of the two decomposi-102

tion factors. The Hermitian positive semi-definite matrix103

is referred as a "boost" matrix.104

Reference [4], [5] express the scattering matrix polar105

decomposition using the formalism of quaternions and106

derive descriptive features from the polar factors. They107

propose both a coherent approach on single-look (also, 1-108

look) quad-pol(arimetric) data, as well as a generalization109

for incoherent multi-look data.110

In optical polarimetry, the polar decomposition splits111

a complex 2 × 2 Jones matrix in a retarder (i.e., the112

unitary matrix) and a diattenuator (i.e., the Hermitian113

matrix). The same significance is attributed to the two114

products obtained from decomposing a nondepolarizing115

Mueller matrix [6], while a generalized polar decom-116

position (retarder, diattenuator and depolarizer factors117

extraction) is further proposed for a general Mueller118

matrix. Classification is performed coherently (i.e., in a119

pixel-by-pixel manner) in [7], on real PolSAR data in120

Mueller matrix format, following the above-mentioned121

generalized polar decomposition model.122

1Notation: Boldface is used for vectors and matrices, with the first
using lowercase and the second uppercase letters.
I denotes the identity matrix of size n × n. Known operators are:
(·)T as the transpose, (·)∗ as the complex conjugate and (·)H as the
conjugate-transpose. || · ||F refers to the Frobenius norm, while | · | is
the absolute value.

In the proposed method, we use the polar decompo- 123

sition of the scattering matrix, but apply the clustering 124

technique only to the Hermitian terms. This effectively 125

remove the unitary factor, treated here as a nuisance 126

parameter. More details of the algorithm implementation 127

are offered in Subsection II-E. 128

B. Riemannian manifold and corresponding distances 129

It is well known that positive-definite matrices are 130

naturally embedded in a non-linear, smooth differentiable 131

manifold. On such a manifold, the shortest path connect- 132

ing any two points is named a geodesic: it is not a straight 133

line, as in the Euclidean space, but a path which follows 134

the curvature of the space. 135

Applying a suitable metric on the tangent bundle 136

yields a Riemannian manifold, P(n). The best-known 137

metric used for the PSD manifold is the affine invariant 138

Riemannian metric (AIRM) [8]. 139

For any two positive definite matrices A and B, AIRM 140

yields a closed-form distance measure 141

dgeod,P(n)(A,B) = || log(A−1/2BA−1/2)||F , (3)

which can be interpreted as a similarity/dissimilarity cri- 142

terion. Operator log(X) represents the matrix logarithm. 143

For positive-definite matrices it is usually computed 144

using the eigenvalue decomposition: X = VDVH, D = 145

diag(λ1, λ2, ..., λn) and the usual logarithm function. 146

Operator diag(·) returns a diagonal matrix having the 147

elements inside parenthesis on the main diagonal. Then, 148

Dlog = diag(log(λ1), log(λ2), ..., log(λn)) and 149

log(X) = V ·Dlog ·VH. (4)

The AIRM geodesic distance complies to several 150

invariance properties such as self-duality, congruence 151

invariance, joint homogeneity and determinant identity, 152

among others [8]. In particular, the congruence (or, 153

affine) invariance reads 154

dgeod,P(n)(JAJH,JBJH) = dgeod,P(n)(A,B), (5)

for any non-singular matrix J. 155

For real PolSAR data, due the presence of noise (ther- 156

mal or speckle), the Hermitian factors of the observed 157

scattering matrices lie on the Riemannian manifold of 158

positive definite matrices with dimension n = 3. We can 159

associate to any general matrix H in this space, 160

H =

(
h11 h12

h∗12 h22

)
, (6)

a point in R3, according to the mapping [9]: 161

F(H) =
1√
2
[h12 + h∗12, h22 − h11, h22 + h11] . (7)

For m positive definite matrices {H1,H2, ...,Hm}, 162

m > 2, the Riemannian barycenter, i.e., geometric center 163



3

of mass or geometric mean, is a point H0 which attains164

the minimum value of [10]165

argmin
H0

m∑
i=1

dgeod,P(n)(H0,Hi)
2. (8)

It is worth mentioning that the Riemannian mean166

presents some invariant properties, as follows [9]:167

• permutation invariance:168

H0 is still the solution considering any rearrange-169

ment of the original set {Hi}, i ∈ 1,m.170

• congruence invariance:171

Changing the matrix set to {VHiV
H}, i ∈ 1,m,172

V non-singular, the barycenter changes accordingly,173

becoming VH0V
H.174

• inversion invariance:175

H0
−1 is the corresponding barycenter for the set of176

inverse matrices {Hi
−1}, i ∈ 1,m.177

It was shown that in the Riemannian manifolds of178

positive-definite matrices, the solution to the minimiza-179

tion problem in eq. 8 always exists and it is unique [11],180

[12]. While there is no closed-form solution, convergent181

results are obtained by iterative minimization methods182

[9], [12], as the gradient descent.183

C. Unitary manifold and corresponding distances184

On the manifold of unitary matrices, U(n), the185

geodesic distance between two generic matrices A and186

B can be given as [11]:187

dU (A,B) = || log(AHB)||F . (9)

The space of unitary matrices is a Lie group. Also, it is188

endorsed with a Lie algebra. Computing the barycenter of189

p unitary matrices {U1,U2, ...,Up} is addressed often190

in relation to the properties of this Lie space, but two191

main groups of methods are present in the literature.192

The first direction proposes to compute the barycenters193

by distance minimization (similar to eq. 8). The second194

direction, based on projections to the Lie algebra and195

back into the Lie group (retraction-lifting) [11] proposes196

a fixed point iteration algorithm. With both directions,197

no closed-form solutions are known.198

The update rule for calculating the average of matrices199

{Uj, j ∈ 1, p} in the retraction-lifting manner is given200

by:201

Uk+1 = Uk · exp( 1
N

∑
j=1

log(Uk
HUj)). (10)

Operator exp(·) represents the matrix exponential and202

is the inverse operation of log(·).203

Notice that, for computing the barycenter in the man-204

ifold of unitary matrices, a simple gradient descent may205

not always converge due to numerical problems. In206

this work we focus on the Hermitian factors only and 207

we compute the barycenter of unitary factors just for 208

illustration purposes. Therefore, while more sophisticated 209

algorithmic solutions exist, we did not implement them. 210

Given the interpretation of a unitary matrix as a 211

rotation matrix, we argue there is a significant advantage 212

in eliminating this rotation from the original scattering 213

matrix. 214

D. Hermitian matrices and Riemannian geometry in 215

PolSAR 216

It has been more than a decade since the Riemannian 217

manifold embedding is used with PolSAR data, exclu- 218

sively in evaluating the coherency/covariance matrices. 219

In the general literature, we have identified different 220

methodologies proposed for this manifold embedding. 221

Some methods operate directly on the Riemannian man- 222

ifold (M1, Table IV, Annex A-A), while others operate 223

with projections (i.e., onto the tangent space or onto other 224

known geometric spaces). The method proposed by the 225

current paper fits the first direction. A short literature 226

review, with techniques and applications from PolSAR 227

exploiting directly the Riemannian embedding, is given 228

below. In Table IV, Annex A-A, references that relate to 229

the other types of methods are provided. 230

In [13], [14], Formont et al. challenge the use of the 231

popular Wishart distance for measuring the similarity 232

between PolSAR covariance matrices. They modify the 233

Wishart unsupervised classification algorithm of [15] and 234

introduce the AIRM metric for distance calculation and 235

determining class membership of a certain pixel. 236

In [16], the AIRM distance is used in a binary partition 237

tree algorithm for classifying covariance matrices of 238

PolSAR/PolInSAR time-series, while [17] uses this same 239

metric for determining the optimum cut of such partition 240

trees. 241

For adaptive PolSAR speckle filtering, [18], [19] pro- 242

pose a modified mean shift algorithm. The method uses 243

a different geodesic distance measure, the log-Euclidean 244

Riemannian metric and its corresponding gradient, when 245

calculating the local maximum point required in the 246

implementation. 247

Therefore M1-type techniques are reported in PolSAR 248

with both preprocessing (i.e., filtering) and classification 249

applications performed in the space of n×n, n ∈ {3, 4} 250

covariance matrices. 251

E. Proposed and comparative methods 252

1) PolBaRi+Riemannian k-means: We propose a 253

novel algorithm for unsupervised classification, which 254

performs clustering on the Riemannian manifold of 255

Hermitian polar factors. Three different processing 256
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(a) (b) (c)

Actual class [%]
1 2 3 4

W
is

ha
rt

1 91.45 0 8.55 0
2 0 99.77 0 0.23
3 0 0 99.46 1.54
4 0 1.2 0.14 96.7

Pr
op

os
ed

1 99.66 0 0.34 0
2 0 98.81 0 1.19
3 0.5 0 98.82 0.7
4 0 0.57 0.65 98.78

(d)

Fig. 1
Simulated data - Dataset 1.
(a) 1-look Span [dB]. (b) Wishart Classifier. (c) Proposed method: PolBaRi+Riemannian k-means. (d) Confusion
matrix. (Colour correspondence: C1: magenta, central circle; C2: turquoise, corners; C3: yellow, central annulus;
C4: light orange, exterior annulus).

stages can be identified:257

258

Step 1: The scattering matrix is decomposed using259

the left1 polar decomposition (eq. 1); the Hermitian and260

unitary factors are obtained.261

Step 2: An identification of coherent scatterers262

based on the 98th percentile criterion proposed by Lee263

et al. [20] is performed, at first. As in the original264

algorithm, a 3 × 3 boxcar neighbourhood is used. The265

pixels fulfilling the criterion are considered to represent266

coherent targets. For them, no additional steps are267

needed and the Hermitian factors are used directly for268

clustering (Step 3). With all other pixels, barycenters269

are otherwise computed. This is the analogous of a270

N-look geometrical center of mass estimation in the271

manifold of Hermitian polar factors. The barycenters are272

computed through an iterative method (eq. 8) applied273

in square, local, sliding neighbourhoods of fixed size.274

The operation of evaluating the Riemannian barycenters275

in the manifold of Hermitian factors is designated276

henceforth by acronym PolBaRi (POLar decomposition277

BArycenters estimation on the RIemannian manifold).278

Step 3: The classical k-means algorithm is279

an iterative, partitioning clustering technique which280

separates the input data X = {xi} , i ∈ [1, N ] into K281

classes [21], [22]. The method operates by attributing282

a sample xi from the dataset to class K through the283

minimization of a cost function
∑K

k=1 d(xi,Ck). This284

function calculates the sum of squared errors with285

respect to each cluster centroid Ck, k ∈ [1,K].286

A modified k-means algorithm is applied to our set287

of points containing barycenters and coherent Hermitian288

factors. The computation is kept into the native Rieman-289

nian manifold of positive-definite matrices by choosing290

1Since similar results have been obtained when considering alter-
natively the left or right polar decompositions, we refer hereafter
exclusively to the use of the left polar factorization.

an appropriate distance measure. Therefore, the AIRM 291

metric is used to evaluate intercluster separation. Here, 292

the class centers are randomly initialised. Progressively, 293

each (barycenter) matrix from the set obtained in Step 294

2 is allocated to one of the K classes and the cluster 295

centers are updated. The operation is repeated until the 296

interclass transfer is lower than a predefined threshold. 297

298

299

The suggested algorithm is distinct from other PolSAR 300

Riemannian manifold methods. The state-of-art review in 301

Subsection II-D has evidenced the existence of PolSAR 302

studies using Riemannian distances and/or Riemannian 303

classifiers in the space of covariance/coherency matrices, 304

only. In contrast, we propose to obtain rotation invariant 305

Hermitian factors from the scattering matrix and manip- 306

ulate such matrices through geometrical averaging and 307

geometric-based clustering techniques. 308

2) Wishart classifier: The introduction of the Wishart 309

classifier has been a major milestone of PolSAR image 310

classification [15], [23]. To this day, the method remains 311

popular among unsupervised classification techniques 312

used in PolSAR. It operates on the set of covariance 313

matrices using as distance measure 314

d(A,Ck) = ln |Ck|+ tr(Ck
−1A), (11)

based on the property that the covariance matrices gen- 315

erally obey a complex Wishart distribution. Here, A is a 316

generic covariance matrix and Ck is the centroid of class 317

K. The method has been shown to represent an optimal 318

Bayesian classifier considering that scattering vectors 319

are modelled by zero mean complex circular Gaussian 320

vectors, completely characterized by their covariance 321

matrix [23]. 322

Usually, the algorithm operates with 8 distinct classes. 323

The centroids of these classes are not randomly ini- 324

tialized, but the H − α decomposition is applied as a 325
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prerequisite [24]. After performing the classification, the326

initial centroid values are obtained by averaging of all327

matrices attributed into the 8 zones of the H − α plane.328

III. RESULTS AND DISCUSSION329

The algorithm introduced in Subsection II-E is now330

evaluated on both simulated and real PolSAR data.331

Each case is addressed in a different subsection. The332

conventional Wishart classifier, applied on the space of333

covariance matrices, is used as a benchmark.334

In a different subsection we introduce a sample gradient335

computation technique based on the Sobel kernels, which336

evaluates the gradient directly on the manifold space.337

A. Simulated datasets338

Simulated polarimetric data is obtained through two339

different methods, as detailed by Subsections III-A1 and340

III-A2.341

1) Simulated data with different intensities and co-342

variance matrices: The first simulation technique is343

a classical method used in the literature [25]–[27]. It344

allows one to create synthetic responses of polarimetric345

channels with known statistics, i.e., having a known346

covariance/coherency matrix. In our example, we model347

four different Gaussian regions, arranged concentrically,348

as shown in Fig. 1a. The intensity is varied linearly349

from one region to another, with the region bounded350

by the image border and the second annulus having351

the highest intensity [26]. The simulated dataset serves352

as benchmark. The multivariate Gaussian clutter is still353

the most used statistical model for PolSAR data and354

represents the best-of-fit distribution for the case of355

homogeneous regions. With such a statistical model,356

the Wishart classifier is known to provide the optimum357

solution [23].358

359

Figs. 1b and 1c display the results obtained using the360

Wishart classifier and the proposed method, respectively.361

For both algorithms, the number of expected classes has362

been provided as input. Table 1d contains the confusion363

matrices for each classification. The results are similar.364

With the proposed method, the identification of pixels365

inside a given class has at least a 98% accuracy, the366

true-positive percentages being here slightly more ho-367

mogeneous than with the Wishart classifier.368

2) Simulated monostatic backscattering response of a369

dihedral: With the second simulated dataset, the polari-370

metric signature of a monostatic right-angle dihedral is371

modelled. Using an electromagnetic simulation software372

(CST Microwave Studio), the scattered electric field373

of the dihedral can be obtained from a diverse range374

of monostatic directions. In the simulations, the object375

is placed in the centre of the coordinate system and376

rendered from perfect electric conductor (PEC) material. 377

A spherical coordinate system, described by parame- 378

ters (θ, φ) is used. The simulator returns the estimated 379

complex, electric field response and subsequently, the 380

elements from the scattering matrix (linear polarisation) 381

are themselves estimated. 382

Fig. 2a displays the absolute value of the backscattered 383

electric field, for the right-angle dihedral. The maximum 384

value is obtained for the central point, with coordinates 385

(θ, φ) = (0o, 0o). This corresponds to the monostatic 386

canonical dihedral scattering direction, in a plane orthog- 387

onal to the dihedral’s bisector. 388

In PolSAR, the response of a dihedral describes an ele- 389

mentary scattering mechanism known as double bounce. 390

Identifying the mechanism in the multichannel SAR 391

image is often done indirectly, by computing descriptive 392

parameters. With coherent targets, one such parameter is 393

the αCloude value [28]: 394

αCloude = cos

(
1√
2

|Shh + Svv|√
SPAN (S)

)−1
, (12)

which is fixed at 90o for the double bounce case. 395

In Fig. 2b the αCloude parameter is estimated at 396

each incidence/scattering direction. It is observed 397

that the deviation from the theoretical value remains 398

acceptable (αCloude ∈ [85o, 90o]) for monostatic 399

directions θ, φ ∈ [−45o, 45o]. In contrast, for very 400

skewed directions (incidence/scattering predominantly 401

on the exterior edges of the two plates composing the 402

dihedral), the mechanism changes, as expected. 403

In order to account for noise variation, we do not use 404

directly this simulated data for PolBaRi+Riemannian 405

k-means classification. Instead, at each pixel, multiple 406

Gaussian estimates of the monostatic polarimetric 407

channels are generated by the same method used for 408

Simulated Dataset 1. After this stage, the PolBaRi 409

estimation is performed at each pixel and then, the 410

Riemannian k-means is applied. The number of classes 411

is varied between 2-5 (Figs. 2c-f) in order to test the 412

results. It is interesting to observe that the classification 413

is persistent in identifying the two principal classes 414

corresponding to the extreme scattering mechanisms of 415

Fig. 2b. We refer here to the central region of uniform 416

scattering mechanism (in yellow), which corresponds 417

to the double bounce response, as confirmed by the 418

αCloude parameter (Fig. 2b), and the second mechanism 419

(i.e., single bounce), identified at the four exterior 420

corners. 421

422

We extract a data profile cut along the middle horizon- 423

tal line in Fig. 2b (position marked on left-side with green 424

arrow). This corresponds to backscattering directions pre- 425

senting right/left variations in azimuth angle, with respect 426

to the monostatic canonical position for the dihedral. 427
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(a) (b)

(c) (d) (e) (f)

(g)

Fig. 2
Simulated data - Dataset 2.
(a) Absolute value of the scattered Efield, estimated by the simulation software. (b) αCloude angles from estimated
scattering matrices. (c-f) Riemannian k-means clustering result (variable number of classes between 2-5).
(g) Upper: αCloude profile cut variation; Lower: Riemannian distance between barycenters along red profile cut (c)
and yellow class centroid.

The αCloude values are displayed in the upper sub-428

figure of Fig. 2g, in the same green colour. Considering429

the Hermitian barycenter matrices along the same line430

for the k-mean estimation with two classes (marked431

with left-side red arrow and dashed line in Fig. 2c),432

the Riemannian dissimilarity measure is computed and433

displayed. The lower subfigure of Fig. 2g contains the434

normalized AIRM distances between each of the selected435

barycenters and the final Hermitian k-means centroid436

of corresponding class (i.e., yellow class from Fig. 2c).437

While the manifold normalized distance (red, Fig. 2g)438

presents a random variation, that of the αCloude green439

curve is quite deterministic. This is plausibly influenced440

by the two distinct methods based on which the data was 441

obtained. The αCloude parameter is evaluated directly 442

on the scattering matrices estimated from the electro- 443

magnetic simulator, while the PolBaRi method applied 444

to multiple Gaussian samples is used for computing the 445

barycenters. 446

It can be inferred that both parameters offer an iden- 447

tification with high confidence level of the scattering 448

mechanism and clustering group, respectively. However, 449

the dissimilarity measure has a much lower standard 450

deviation than that of the coherent alpha parameter. 451



7

B. Manifold Gradient with Sobel Kernel452

For an extended evaluation of Hermitian and unitary453

barycenters, a gradient assessment is performed in each454

manifold space. Because the convergence did not occur455

in all cases for the algorithm employed in evaluating the456

unitary barycenters, a coherence mask selection is used,457

so that the points which do not satisfy convergence are458

masked out. As example, for Dataset 2 such points are459

marked with red in Fig. 3c. They represent around 21.5%460

of all evaluated points, with the rest verifying unitary461

convergence.462

463

TABLE I
Vertical Sobel kernel.

-1 0 1
-2 0 2
-1 0 1

TABLE II
Horizontal Sobel kernel.

-1 -2 -1
0 0 0
1 2 1

464

465

The classical Sobel operator [29], [30], known primarily466

for edge detection in digital image processing, proposes467

a sample computation of the first order derivative. It468

operates with two 3 × 3 kernel filters (Tables I, II). Each469

of them, used as a sliding window, is convoluted with a470

spatial neighbourhood of the same size to produce the471

vertical and horizontal gradient components.472

We propose an adaptation for gradient computation on473

the (Hermitian/unitary) manifold. The same weights as474

in the Sobel kernels multiply barycenter matrices within475

a 3 × 3 spatial neighbourhood, while an adequate metric476

is used for distance dissimilarity (AIRM with Hermitian477

matrices and eq. 9 with unitary matrices). Both the478

vertical (GV) and the horizontal (GH) manifold gradient479

components are evaluated.480

Considering Pi,j a (Hermitian/unitary)481

barycenter matrix located on row i, column482

j. The following expressions can be written:483

GH
i,j = d(Pi,j

↑ ,P
i,j
↓ ),

(13)
GV

i,j = d(Pi,j
→,Pi,j

←),
(14)

484

where

Pi,j
↑ = Pi-1,j-1 + 2Pi-1,j +Pi-1,j+1 (15)

Pi,j
↓ = Pi+1,j-1 + 2Pi+1,j +Pi+1,j+1 (16)

Pi,j
← = Pi-1,j-1 + 2Pi,j-1 +Pi+1,j-1 (17)

Pi,j
→ = Pi-1,j+1 + 2Pi,j+1 +Pi+1,j+1. (18)

and the magnitude of the gradient is485

G =

√
GH

2 +Gv
2. (19)

For simulated Dataset 2, Figs. 3a and 3b display the486

absolute values of the manifold Sobel gradient (eq. 19)487

for the Hermitian and unitary barycenters, respectively.488

While the Hermitian gradient reproduces the structural489

information of the simulated data, there is no visual 490

information offered by the unitary gradient. Such result 491

offers a strong motivation for the choice of using only 492

the Hermitian factor information for data clustering. 493

C. Real dataset 494

Here we illustrate the performance of the proposed 495

algorithm on real monostatic PolSAR data. The dataset 496

is full-polarimetric, obtained by the Onera RAMSES 497

airborne X-Band radar instrument, over a test site in 498

Brétigny-sur-Orge (France). It is characterized by a res- 499

olution of approximate 1.5 m, in both azimuth and range 500

[31]. 501

Foremost, the discussion is extended for the Hermitian 502

and unitary barycenters assessment, now in the context of 503

the real dataset. Afterwards, the results for the clustering 504

method are evaluated. 505

1) Gradient of Hermitian barycenters and unitary 506

barycenters parameter estimation: Fig. 4 presents the 507

Hermitian barycenters Sobel gradient estimate (absolute 508

value, [dB]) for the Brétigny dataset. The shape of the 509

three important structures from the image (horizontal 510

West-Center, left-oblique North-West and right-oblique 511

North-East) is easily distinguished, as well as field 512

contours. Moreover, bright pixels are clearly isolated. 513

A threshold selection may allow for an extraction of 514

coherent scatterers positions similar to that obtained by 515

the 98th percentile criterion. 516

While the gradient evaluation shows again that 517

the unitary barycenters do not provide contextual 518

information (data not shown), we aim to assess if 519

they offer any other relevant information. The points 520

for which unitary barycenters are not convergent are 521

masked-out and can be observed in white in Figs. 5a 522

and 5b. 523

524

Starting from a complex unitary matrix, U ∈ C2×2,
with

U =

(
u11 u12

u21 u22

)
=

(
|u11| · eiφ1 |u12| · eiφ2

|u21| · eiφ3 |u22| · eiφ4

)
. (20)

The phase normalized unitary matrix Uph− can be
written in parametric form [32]:

Uph− = U

(
e−iφ1 0
0 e−iφ4

)
=

(
|u11| |u12| · ei(φ2−φ4)

|u21| · ei(φ3−φ1) |u22|

)
(21)

=

(
cosθ −sinθ · e−iϕ

sinθ · eiϕ cosθ

)
(22)
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(a) (b) (c)

Fig. 3
Simulated data - Dataset 2. (a) Hermitian barycenters gradient - magnitude [dB]. (b) Unitary gradient - magnitude
[dB]. (c) Convergence mask for unitary barycenters.

Fig. 4
Brétigny Dataset. Riemannian gradient using the Sobel
filter kernels - Magnitude [dB].

After performing the phase normalization, as per eq.525

21, the angular θ and phase ϕ parameters are easily526

obtained for the unitary barycenters of the real dataset.527

The results are in Fig. 5a and Fig. 5b, respectively, with528

histograms below the main figures. It is to be mentioned529

that with the Brétigny dataset about 25% of the image530

pixels do not attain unitary barycenter convergence.531

The θ angle parameter takes values below 25o (Fig.532

5c), while the phase is normally spread in the entire [0,533

180o] interval (Fig. 5d). As example, we can observe534

the zone corresponding to the building located West-535

Center, where multiple coherent scatterers are present536

(red ellipse selection). There, the θ values approach537

zero degrees. The phase values present also an extreme538

(i.e. ± 180o). Such observations indicate that the phase539

normalized unitary barycenters at those locations are540

(almost) identity matrices. In turn, this may also im-541

ply that the original unitary polar factors, used in the 542

barycenters calculation, are themselves close to iden- 543

tity. For such a case, the Hermitian polar factors are 544

completely descriptive and (almost) equal to the original 545

scattering matrices. Moreover, this confirms the choice 546

from the design of the PolBaRi algorithm of performing 547

the pre-selection of coherent scatterer and attributing to 548

those locations directly the Hermitian factor, without 549

barycenter estimation. 550

Removing the effect of rotations imposed on the line- 551

of-sight backscattering direction as well as the search 552

of rotation invariant descriptors is of particular interest 553

in polarimetric radar applications. The topic has a 554

significant line of work associated for both coherent and 555

incoherent PolSAR decompositions [33], [34]. We have 556

shown that the unitary matrices can be described by two 557

random phases and two parametric values (an angle and 558

a phase). With coherent scatterers, discarding the unitary 559

polar factor does not produce significant changes, while 560

for other scatterers the removal of unwanted rotations 561

from the original scattering matrix is highly beneficial. 562

Evidence from both simulated and real data shows that 563

the contextual and spatial information is preserved by 564

the Hermitian polar term. Such observations legitimize 565

the key role of the Hermitian barycenters with the 566

proposed classification method. 567

568

Figs. 6a and 6b compare the results of two different 569

boxcar "averaging" operations. Each image displays the 570

absolute values inside each first channel from the data 571

cube results. 572

For obtaining Fig. 6a, the arithmetic mean of scattering 573

matrices (Brétigny dataset) has been computed inside 574

a 7 × 7, locally moving window. Otherwise, Fig. 6b 575

contains absolute values (log scale) of the first element 576

of the estimated Hermitian barycenters. 577

In the first picture (first row, left image, Fig. 6), there 578
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(a) (b)

(c) (d)

Fig. 5
Brétigny Dataset. (a) Angles obtained from the normalized unitary barycenter matrices [degrees]. (b) Phase values
obtained from the normalized unitary barycenter matrices [degrees]. (c) Histogram of angles from (a) (excluding
white-masked values). (d) Histogram of absolute phases from (b) (excluding white-masked values).

is a low dynamic range, with amplitude levels of the579

different zones being mixed up. Only scattering points,580

originally of high amplitude, remain clearly visible. On581

the contrary, a higher dynamic range is evident in the582

neighbouring barycenter image (first row, right image,583

Fig. 6). Alongside the scatterers of high intensity, the584

shape and structure of other parts from the original image585

are clearly distinguishable, for example with vegetation586

parcels and roads.587

The visual inspection proposed between a spatial588

arithmetic average of scattering matrices and a spatial589

geometric estimation of a Hermitian centroids shows590

superior results for the second approach. In light of this591

comparison, a similarity may be drawn to the results from592

[35]. The reference compares the difference between593

arithmetic and geometric averages of single channel594

multi-temporal SAR series. Improved results in terms of595

speckle variation and signal to noise ratio are reported596

for the geometric mean computation, as long as the SAR597

images from the acquisitions stack remain similar, with598

no significant permanent changes.599

2) Classification results: 600

In the following, we compare the clustering results 601

obtained by the proposed and benchmark algorithms on 602

the real X-Band dataset. Both implementations require a 603

spatially moving window averaging operation. With the 604

Wishart implementation this is performed in a boxcar 605

neighbourhood of coherency matrices, while PolBaRi 606

requires it for the Hermitian barycenters estimation. The 607

same size of the moving window, 7 × 7, is used with 608

both implementations. 609

610

Figs. 6c and 6d display the classification results 611

for the classical Wishart and the proposed method, 612

respectively. The Wishart estimation operates with 8 613

classes. The same number has been considered for the 614

PolBaRi+Riemannian k-means implementation. The 615

classes are sorted in an ascending order (blue to yellow). 616

617

The global positioning of classes in the two images is 618

similar. One major visual difference concerns the bow- 619

shaped field in the North of Fig. 6d, which is assigned to 620
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(a) (b)

(c) (d)

Fig. 6
Brétigny Dataset. (a) S11 boxcar average (amplitude, [dB]). (b) h11 barycenters (amplitude, [dB]). (c) Wishart
classifier result. (d) PolBaRi+Riemannian k-means classification result.

a distinct class. This is the case with other small zones,621

attributed by the Wishart classification to the 8th, yellow622

class. Overall, the classification of coherent scatterers623

appears to be enhanced by the PolBaRi+Riemannian k-624

means method.625

Considering as examples the horizontal West-Center626

oriented building and the oblique North-East parking627

space, the proposed method identifies, at the locations,628

classes in close proximity while the Wishart classifier629

brings more distant ones together. However, as the final630

scattering mechanism interpretation may not be quite631

the same for the two classifiers and in the absence of632

a ground truth for the dataset acquisition, the truthful633

validation of classes proximity is not possible.634

Without doubt, the most striking difference in the 635

interpretation offered by the two classifiers, is textural. 636

The Wishart result is unduly smooth, largely homoge- 637

neous, while the proposed algorithm provides a more 638

heterogeneous result, conserving some of the texture and 639

details of the original image. For example, in the left- 640

side of the parking space (North-East), near the road 641

border, there is an area covered by trees. The Wishart 642

classifier identifies a small group of trees to the south 643

of the parking lot and where some pixels of higher 644

intensity are present, while identification is minimum 645

in the area left to the parking lot. Contrastingly, the 646

proposed method better represents the information from 647

the area, even if the pixels are of lower intensity. As 648
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second example, one can observe that the roads (contours649

in Fig. 4) blend with the background yellow class in the650

Wishart classification, whereas they are clearly distin-651

guishable in the PolBaRi+Riemannian k-means result. In652

the original image they too are represented by pixels of653

lower intensity.654

IV. GENERAL REMARKS AND CONCLUSIONS655

The proposed method, PolBaRi+Riemannian k-means,656

is unique in several respects. It incorporates a coherent657

technique operating on the original scattering matrix (i.e,658

the polar decomposition) and preserving the matrix for-659

mat (contrary to the incoherent decomposition methods660

where data is firstly vectorized). It is to be emphasized661

that the polar decomposition can be applied to both662

symmetric and asymmetric scattering matrices and the663

Hermitian factor is always unique. The method resembles664

also the incoherent techniques, as it proposes a spatial665

averaging processing on the (Riemannian) manifold for666

calculating centroids of Hermitian factors. This allows667

the applicability of the method even with distributed668

targets inside a scene. The dissimilarity between two ma-669

trices from the manifold is evaluated using a Riemannian670

metric both for Hermitian polar factor centroids and in671

the modified k-means algorithm.672

In a distinct contribution of the paper, the Riemannian673

metric is applied in the development of a sample gradient674

algorithm based on the Sobel kernels. It is used for spatial675

change evaluation with Hermitian and unitary barycenter676

results. This implementation may prove useful for other677

applications requiring a gradient computation on data678

embedded in a Riemannian manifold structure.679

The clustering algorithm’s performance has been com-680

pared against the well-known Wishart algorithm with681

both simulated and real monostatic full-polarimetric im-682

ages. The performance was shown to be competitive,683

with simulated Gaussian clutter data - a case for which684

the Wishart classifier is known to offer optimum re-685

sults. With real data, it was illustrated that the Pol-686

BaRi+Riemannian k-means result integrate more of the687

intensity, texture and details of the original PolSAR im-688

age. This allows for a better discrimination of structures689

such as roads and vegetation.690

Supplementary experiments are anticipated for better691

understanding the geometric properties of the two factors692

from the polar decomposition of PolSAR data, as well693

as improvements in runtime of algorithms and with the694

unitary factor convergence. As the method can be applied695

with both symmetric and asymmetric scattering matrices,696

an envisioned extension is for testing the results with data697

from quasi-monostatic and bistatic systems.698

APPENDIX A 699

For compact display and completeness, we present in 700

the current Appendix general formulas and information 701

not included in the paper’s main body. 702

The radar scattering matrix in linear H, V polarisation 703

is written, as: 704

S =

[
Shh Shv

Svh Svv

]
(23)

The polarimetric span (i.e., total power) of a pixel 705

refers to the squared Frobenius norm of the correspond- 706

ing scattering matrix: SPAN = |Shh|2 + |Shv|2 + 707

|Svh|2 + |Svv|2. 708

Table III reports the formulas of the sample covariance 709

(C) and coherency (T) matrices, which although heavily 710

mentioned in the paper, have not been formally intro- 711

duced. Angle brackets < · > denote ensemble averaging 712

in an imaging window. k and kP are the monostatic 713

scattering vectors of so-called lexicographic and Pauli 714

bases. 715

A. Evaluation methods and dissimilarity measures with 716

the Riemannian manifold 717

The geometric structure of an algebraic object may 718

sometimes impose optimal data manipulation methods, 719

as well as an appropriate distance measure. 720

721

Currently, for the Riemannian manifold, we can iden- 722

tify two major directions in the literature. On one hand, 723

there are methods which operate directly on the manifold 724

(M1 in Table IV). In such case, the shortest path between 725

two points (i.e., vectors/matrices) is always obtained 726

through a geodesic. On the other hand, there are methods 727

which avoid direct operations on the original Riemannian 728

manifold. According to [39], they are currently divided 729

into three categories: a) (M2a) which use the logarithmic 730

projection to the tangent space, b) (M2b) which propose 731

a higher dimensional embedding into a Reproducing 732

Kernel Hilbert Space (RKHS), and c) (M2c) which 733

perform a manifold-to-manifold mapping, given that the 734

second manifold space (not necessarily Riemannian) is 735

of lower dimension. The measures used by these methods 736

are distinct and depending on the mapping they can be 737

Euclidean, non-Euclidean or of geodesic type. Table IV 738

contains examples from the PolSAR literature in which 739

these manipulation methods have been applied, as well 740

as the chosen distance measures. 741
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TABLE III
Sample covariance and coherency matrices formulas.

Scattering vector (monostatic)
[k1, k2, k3]T

Matrix form

Covariance
C = 1

N

∑N
i=1 kik

∗T
i

k = [Shh,
√
2Shv , Svv ]T

< |k1|2 > < k1k∗2 > < k1k∗3 >
< k2k∗1 > < |k2|2 > < k2k∗3 >
< k3k∗1 > < k3k∗2 > < |k3|2 >


Coherency

T = 1
N

∑N
i=1 kPi

k∗TPi

kP = [Shh + Svv , Shh − Svv ,
√
2Shv ]

T

TABLE IV
Methods exploiting the geometry of the Riemannian manifold in PolSAR.

Methods type In which space do they operate? References in PolSAR Metric/Measure

M1 Directly on the manifold [14], [16] AIRM
M2a Projection to the Tangent Space [18], [19] Log-Euclidean
M2b Higher dimension embedding (Kernel Hilbert Spaces) [36]–[38] Stein divergence, Bartlett
M2c Lower dimension embedding - -
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