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ABSTRACT 

ONERA – The French Aerospace Lab – develops 
new concepts of LiDAR imaging systems including 
new sensor technologies and data processing. The 
rising complexities and costs of high performance 
systems, and the shrinking time to design drove the 
ONERA approach. The home-grown MATLIS 
software has been evolving for the past decade. It 
allows both linear mode LiDAR and single photon 
electro-optical systems simulation (both GmAPD 
and SPL) embedded on dynamic platforms (eg. 
UAVs, Aircrafts). 

In this paper, we present an algorithm for 3D scene 
reconstruction with unprecedented lateral 
resolution. This method is suitable for Geiger mode 
Avalanche Photodiode (GmAPD) 3D focal plane 
arrays. The main idea behind of this work is 
reconstruction of higher resolution 3D images by 
sub-pixel spatial modulation. 

We manage to reconstruct sub-pixel information by 
using Compressive Sensing (CS) algorithms, such 
as Orthogonal Matching Pursuit (OMP). Then we 
have verified our theoretical approach using 
simulated 3D images generated using the MATLIS 
software from a facetted three-dimensional scene. 

 

1. INTRODUCTION 
 

1.1.    Context and motivation 
Long-range observation typically above 10 
kilometers, is necessary to anticipate potential 
threats for site surveillance (eg. drone detection) or 
aerial / maritime protection (eg. identification of 
floating debris, ship self-protection). The operational 
needs of these tasks require a persistence of the 
detection and identification function under any 
weather and illuminance conditions (eg. day, night, 
sun glare). In this context, one can notice that 
passive imagery techniques (visible or infrared) 
answer partially to the identification function. 
Operational deployment especially in weak visibility 
or strong solar illuminance variation in time as 
proven to be challenging. Active imaging as 
illustrated in Fig. 1 is less sensitive to it by the use 

and control of its own illumination source. Moreover, 
the identification function needs a good lateral and 
telemetric resolution and the image telemetry bring 
additional dimension which eases the identification. 
 

 
Figure 1 – Concept of 3D LiDAR acquisition based 

on focal plane array. 
  
 
Active imaging is governed by the capacity to 
capture laser-light backscattered by a target. The 
combined need for range, resolution and reduced 
SWaP (Size, Weight and Power) mandates the use 
of a specific sensor to image the scene. In this case, 
we focus on systems using GmAPD sensor, 
capable of statistically detecting fractional photons 
return levels. These sensors have some drawbacks. 
GmAPDs are limited to a few large pixels (up to 
128x32 pixels), which gives an insufficient 
resolution for the identification function. In section 2, 
we will show how this can be alleviated by using CS 
to increase the resolution at the cost of a spatial 
modulator and a fast algorithm. 
 
Moreover, those sensors, in gated mode, are only 
capable of capturing the first triggering event. The 
low dynamic range and temporal correlation 
complicate the application of CS to such a 3D 
imagery. In section 3, we will explain these 
difficulties in more detail and our approach to solve 
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them. Then in section 4 we illustrate, our approach 
by reconstruct with increased resolution an image at 
a range of 10 km on simulated data. 
 
2. COMPRESSIVE SENSING 
 
2.1.   General concept 
CS can be considered as an acquisition technique 
that compresses the signal during the acquisition 
process in order to acquire already compressed 
information and then uses of a L1 optimization 
algorithm to reconstruct the acquired information.  
The main concepts of CS were developed between 
2005 and 2009 by three mathematicians (Candès, 
Tao and Romberg) [1-3] and in parallel by Donoho 
since 2006 [4]. CS uses the sparsity of the scene on 
a certain basis (which may be unknown) and the 
inconsistency between this basis and a specific 
measurement basis to enable the correct 
reconstruction of the image. 
 
Theorem (2K-RIP): [1,2] 
Let 𝛷 follow the 2𝑘- Restricted Isometry Property if 
for 𝑘 < 𝑁, ∃𝛿2𝑘 ∈, such that : 
 
 (1 − 𝛿2𝑘)‖𝑋‖

2 ≤ ‖𝛷2𝑘𝑋‖² ≤ (1 + 𝛿2𝑘)‖𝑋‖
2 (1) 

 
For all 𝛷2𝑘 composed of 2𝑘 columns extracted from 
𝛷.
 
Thus, from the 2K-RIP (Eq. 1), we have two 
resulting restrictions: the signal must be sparse in a 
basis 𝛹 which may be unknown, and the 
measurement matrix 𝛷 must be sufficiently 
inconsistent with the basis 𝛹.  
 
Theorem (Noisy recovery with bounded noise): [3] 

If 𝛿2𝑘 ≤ √2 − 1, then 
 

 ‖𝑥0 − 𝑥⋆‖ ≤
𝐶0

√𝑘
‖𝑥0 − 𝑥𝑘‖1 + 𝐶1휀 (2) 

 
where 𝑥𝑘 is the best  𝑘–term approximation of 𝑥0, 𝑥

⋆ 
is the reconstructed signal and 𝐶0, 𝐶1 are related to 
𝛿2𝑘 and are rather small. 
 
According to Eq. 2, this property is sufficient to 
guarantee a limited error on the reconstruction.  
 
In our case, we choose the two most commonly 
used bases in LiDAR application (especially in 
single pixel imaging), which are the random basis 
composed of multiple Bernoulli, and the Hadamard 
basis, which is determinist. The Random basis or 
Hadamard basis (Fig. 2), which are respectively 
incoherent with all basis with high probability and 
with basis like Haar or Daubechies in which the 
natural scene is generally sparse. [5] 
 
 

 
Figure 2 - Bases examples 

 
 
2.2.   3D LiDAR Application 
We use DMD (Digital Micro-mirror Device) to 
compress backscattered signal in 3D LiDAR 
application as illustrated in Fig. 3. 
 

 
Figure 3 - Optical scheme 

 
A DMD is an array of mirrors which are orientable 
(Fig. 4 and Fig. 5), so we can structure the detection 
by directing the light to the sensor or not. Then we 
can easily compress the signal with basis 
composed of zero and one, like the example in 
Fig. 2.  
 

   
Figure 4 – Left: two mirrors from a Texas 

Instrument DMD. Right: DMD with ant-leg for scale 
 
Thus, we compress our signal with a DMD. One 
need to make additional assumptions to process a 
suitable signal for CS. Each pixel is supposed to be 
spatially and temporally independent of its 
neighbors. This assumption is needed to 
reconstruct independently three-dimensional 
objects in each temporal bin of each pixel. We also 
assume that the signal is time-dependent but not 
pattern-dependent, which is not the case, in section 
3.2 we developed a way to solve this issue. 
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Then, we acquire the 3D-LiDAR data with 
measurement basis according to CS theory, adjust 
the data and finally reconstruct the image by solving 
the CS optimization problem with classical algorithm 
like Orthogonal Matching Pursuit (OMP) [6]. 
 
3. PRECOMPUTATION STAGE 
 
When we deal with CS in LiDAR GmAPD imaging, 
we encounter at least two major problems as 
already mentioned in sections 1 and 2:  

- Low dynamics 
- Time-dependency 

 
In this section we will briefly aboard a way to deal 
with them. 

 
3.1.  Low dynamics 
The first problem is the lack of dynamics of the 
sensor. Because of high dead-time and the high 
sensitivity of the sensor, the output from the sensor 
is limited to the information that an event 
(backscattered photon or noise) is detected at a 
time, only for the first trigger (for each pixel) and 
without information about the number of photons.  
 
Therefore, a classical way to deal with this problem 
is to use a histogram of return time to infer the 
quantity of photon which could be counted at each 
bin of each pixel. 
 
The error can be bounded by using the Hoeffding 
inequality [7], as follow (Eq. 3):  
 

 |𝐻 − 𝑌| ≤ √
𝑙𝑛(

2

𝛼
)

2𝑁
 (3) 

  
Where 𝐻 is the normalized histogram, 𝑌 is the 
measure expected, 1 − 𝛼 is the level of trust and 𝑁 
is the number of acquisition. 
 
Once this method is applied, we get an error-bound 
approximation of the signal waveform for each pixel. 

 

3.2.  Time-dependency 
The time-dependency is a more involved problem. 
It is linked with the pattern-dependency. Of course 
the signal depends on time since it decreases 
quadratically with time, but it’s also pattern 
dependent which is the real problem. This effect is 
illustrated in fig. 6. 

 
Figure 6 - Illustration of time-dependency error 

For a given pattern the more of an object is exposed 
the more signal we should have. It’s not always the 
case because it depends on the quantity of object 
seen before the bin of interest. This error will lead to 
a mismatch between the weight applied on the 
pattern and the quantity of the shape exposed. 
Thus, when an object is detected in a bin, all the 
following bins could have wrong weight which could 
be a problem when solving the CS optimization 
problem.  
 
To overcome this problem, we just reweighed each 
bin with a coefficient, which depends of the previous 
bins. This coefficient is obtained by making some 
assumption about the probability of return in each 
point. This observation is experimentally validated 
by [8], on the same kind of sensor. 
 
Another problem which comes with this method is 
the presence of noise. When we apply the weigh to 
reweigh all bins, noise is highly amplified. In order 
to avoid a too noisy reconstruction, we must use a 
denoiser.  
 
 
4. SIMULATED RESULTS 

 
In order to test our algorithm, we have used 
simulated 3D LiDAR acquisitions by MATLIS 
software [9].  
 
4.1.   Input parameters for MATLIS software 
The simulation parameters used are chosen to be 
as realistic as possible. The laser energy is around 
10−5Jand the total noise (solar + dark count rate) 

around 106Hz as in daylight conditions. The sensor 
is placed at a range of 10km of the scene with a field 
of view around 10−4 rad which is equivalent at a 5m 
by 5m square at 10km. The Geiger focal plane is 
composed by 32 × 32 pixels and the DMD by 256 ×
256 mirrors. The frame rate and DMD pattern 
update-rate correspond to realistic parameters. 
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4.2.   Results 
The 3D scene was designed to illustrate the 
improvement brought by the method (Fig. 7a). 
In Fig. 7b and Fig. 7c, colors represent the 
normalized intensities, after the histogram of time 
return (Fig. 7b) and reconstruction with CS (Fig. 7c). 
Considering the biggest and less detailed objects, 
the improvement for recognition is not high 
(‘ONERA’ letters), even though borders are slightly 
better defined. The French motto is unreadable in 
Fig. 7b but it’s pretty clear in Fig. 7c. The bust of the 
French Marianne is also better defined. 
 
 

 
(a) 

 
(b)   (c) 

Figure 7 - (a) Original scene, (b) 3D point cloud of a 

LiDAR (noise removed) and, (c) reconstruction 

including CS post-processing 

 
 
CONCLUSION 
In this paper we describe a new theoretical 3D 
LiDAR process based on compressive sensing. We 
use simultaneously a focal plane array in Geiger 
mode and a CS approach based on DMD. We have 
highlighted the fact that this application is not trivial. 
We also developed an algorithm using signal 
processing and then CS with OMP to achieve a 3D 
reconstruction. The resolution of the final image is 
increased at long range (<10 km) under realistic 
daylight conditions.  
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