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Abstract. Automatically understanding funny moments (i.e., the mo-
ments that make people laugh) when watching comedy is challenging, as
they relate to various features, such as facial expression, body language,
dialogues and culture. In this paper, we propose FunnyNet, a model
that relies on cross- and self-attention for both visual and audio data
to predict funny moments in videos. Unlike most methods that focus
on text with or without visual data to identify funny moments, in this
work in addition to visual cues, we exploit audio. Audio comes naturally
with videos, and moreover it contains higher-level cues associated with
funny moments, such as intonation, pitch and pauses. To acquire labels
for training, we propose an unsupervised approach that spots and labels
funny audio moments. We provide experiments on five datasets: the sit-
coms TBBT, MHD, MUStARD, Friends, and the TED talk UR-Funny.
Extensive experiments and analysis show that FunnyNet successfully ex-
ploits visual and auditory cues to identify funny moments, while our
findings corroborate our claim that audio is more suitable than text for
funny moment prediction. FunnyNet sets the new state of the art for
laughter detection with audiovisual or multimodal cues on all datasets.

1 Introduction

We understand the world by using our senses, especially in multimedia area.
All signals can stimulate one’s feelings and reactions. Funniness is universal and
timeless: in 1900 BC Sumerians wrote the first joke and it is still funny nowa-
days. However, whereas humans can easily understand funny moments, even
from different cultures and eras, machines do not. Even though the number of
interactions between humans and machines is growing fast, identifying funniness
is still a brake on making these interactions spontaneous. Actually, understand-
ing funny moments is a complex concept since they can be purely visual, purely
auditory, or they can mix both cues: there is no recipe for the perfect joke.
Recently, some works try to understand what is a joke, humor and funny
moments [1,2]. These rely solely on text and only a couple of them use also

" These authors contributed equally to this work.
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little baby tomato. Baby tomato starts lagging behind. Poppa tomato gets angry, goes over to
the baby tomato, and squishes him... and says, .... “Catch up.”

Fig.1: What is funny? Audio cue along with visual frame and facial data are a rich
source of information for identifying funny moments in videos. Video scene from Pulp
fiction, 1994, source video https://www.youtube.com/watch?v=4L5L]jYVsHQ

videos [3,4]; in such cases, video is always combined with text. However, these
works are limited as text (transcripts, subtitles) does not come naturally with
videos, but it depends on external pipelines, which depend themselves on other
factors such as accents, sound quality, simultaneous audios, language, annota-
tion. Thus, such works lack flexibility and can hardly be used in the wild.

In contrast, audio comes naturally with videos, and it contains crucial and
complementary cues, such as tones, pauses, pitch, pronunciation, background
noises [5,6]. Indeed, when people talk, not only what they say matters, but also
how they say it. In turn, the visual content is also very important. For instance,
depending on the context, the very same phrase said by the same person can be
funny or sad (Figure 1). Yet, facial expressions, body gestures and scene context
help better understand the sense of a phrase, thus impacting funniness.

Therefore, in this paper, we introduce FunnyNet, an audiovisual model for
funny moment prediction. It consists of three encoders: (a) visual that encom-
passes the global context information of a scene, (b) face for representing the
facial expressions of individuals, and (c) audio that captures voice and language
effects; and the Cross Attention Fusion (CAF) module, i.e., a new module that
learns cross-modality correlations hierarchically so that features from different
modalities can be combined to form a unified feature for prediction. Thus, Fun-
nyNet is trained to learn to embed all cross-attention features in the same space
via self-supervised contrastive learning [7], in addition to classifying clips as
funny or not-funny. To obtain labelled data, we exploit the laughter that nat-
urally exists in sitcom TV shows. We define as ‘funny-moment’ any n-second
clip followed by laughter; and ‘not-funny’ the clips not followed by laughter. To
extract laughter, we propose an unsupervised labelling approach that clusters
audio segments into laughter, music, voice and empty, based on their waveform
difference®. Moreover, we enrich the Friends dataset with laughter annotations.

Our extensive experimentation and analysis show that combining visual with
audio cues is suitable for funny-moment detection; specifically, our findings

3 Note that we use the laughter solely as indicator for data labelling, but the laughter
is not the included in the audio segments of FunnyNet. Once FunnyNet is trained,
it can detect funny moments in any video, with or without laughter.


https://www.youtube.com/watch?v=4L5LjjYVsHQ

FunnyNet 3

demonstrate that audio results in superior performances than language, hence
revealing its superiority for the task and supporting our intuition that audio cap-
tures higher-level cues than subtitles. Moreover, we compare FunnyNet to the
state of the art on five datasets including sitcoms (TBBT, MHD, MUStARD,
and Friends) and TED talks (UR-Funny), and show that it outperforms all other
methods for all metrics and input configurations. We also apply FunnyNet on
data from other domains, i.e., movies, stand-up comedies, and audiobooks. For
quantitative evaluation, we apply FunnyNet on a sitcom without canned laughter
manually annotated. It shows that FunnyNet predicts funny moments without
fine-tuning, revealing its flexibility for funny-moment detection in the wild.

Our contributions are: (1) We introduce FunnyNet, an audiovisual model for
funny moment detection. It combines features from various modalities using the
proposed CAF module relying on cross and self-attention; (2) Extensive exper-
iments and analysis highlight that FunnyNet successfully exploits audiovisual
cues, and show that audio is better suited than text for funny-moment detec-
tion; (3) FunnyNet achieves the new state of the art on five datasets, and we
also demonstrate its flexibility by applying it to in-the-wild videos.

2 Related Work

Sarcasm and Humor Detection. Sarcasm and humor share similar styles
(irony, exaggeration and twist) but also differ from each other in terms of rep-
resentation. Sarcasm usually relates to dialogues; hence, most methods detect
sarcasm by processing language using human efforts. For instance, [3] collect a
speech dataset from social media using the hashtag and manual labeling, while
others [9,10] study the acoustic patterns related to sarcasm, like slower speaking
rates or higher volumes of voice. In contrast, a humorous moment is defined as
the moment before laughter [6,11]. Hence, such methods [12,6,11,4,13] process
audios to extract laughter for labeling. Nevertheless, for prediction, most such
approaches focus solely on language models [1,2] or on multiple cues including
text [11,13]. For instance, LaughMachine [4] propose vision and language atten-
tion mechanisms, while MSAM [3] combine self-attention blocks and LSTMs to
encode vision and text. [14] use first an advanced BERT [15] model to process
long-term textual correlation and then vision for the prediction. Following this,
[16] propose a Multimodal Adaptation Gate to efficiently leverage textual cues to
explore better representation for sentiment analysis. Few methods also explore
audio. For instance, MUStARD [6] and URFUNNY [11] process text, audio and
frames using LSTM to explore long-term correlations, while HKT [13] classi-
fies language (context and punchline) and non-verbal cues (audio and frame) to
learn cross-attention correlations for humor prediction. They combine audio with
other information (video and texts) in a simple feature fusion process without
investigating the inter-correlations in depth. Specifically, they stack multimodal
features to learn the global weighting parameters without considering the biases
in different domains. In contrast, we believe that funny scenes can be triggered by
mutual signal from multimodalities; hence, we explore the cross-domain agree-
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ment of cues with contrastive training. Moreover, instead of text, FunnyNet relies
solely on audiovisual cues, as audio comes naturally with videos, and it contains
all essential cues for funny moment prediction.

Sound Event Detection detects which and when sound events happen in
audios. Most attempts either rely on annotated data [17] or use source separa-
tion [18]. The input plays a crucial role, and most methods use Mel spectro-
grams [19,20,21,22] instead of audio waveforms. Laughter detection focuses on
one specific event: laughter. For this, some methods rely on physiological sen-
sors [23,24], while others [25,26] follow the supervised paradigm to train detec-
tors. In contrast, our laughter detector is an unsupervised, robust and straight-
forward labelling method that exploits multichannel audio specificities.
Multimodal Signal is processed with models like LSTM [27], GRN [28], ViT [29]
and VQVAE [30] and is studied for various tasks. For instance, [31,32] recog-
nize the facial movements to separate the speaker’s voice in the audio. [33,34]
temporally align the audio and video using attention to locate the speaker.
Several methods extend this to other applications, including speech recogni-

tion [35], audio-image retrieval [36,37], audiovisual generation [38,39], video-text
retrieval [40], human replacement [41], visual question answering [42], and affect
analysis [13]. Recently, Video Transformers models [44,45] showed improved ac-
curacy on various video tasks, in particular for classification [14,16,45,47]. Their

self/cross- attention operation provides a natural mechanism to connect multi-
modal signals. Thus, some works exploit this to account for multiple modalities,
such as inter and intra cross-attention in [48], contrastive cross-attention in [419],
iterative cross-attention in [17,50] or bottlenecks in [51] for various tasks, such
as summarization [52], retrieval [53,54], audiovisual classification [51], predicting
goals [55]. [19,18] iteratively apply self and cross-attention to explore correlations
among modalities. Instead, FunnyNet both fuses all modalities and in parallel
learns the cross-correlation among different modalities; this avoids any biases
caused by one dominant modality.

3 Method

Here, we present FunnyNet, its training process and losses (Sections 3.1-3.2).
For training labels, we propose an unsupervised laughter detector (Section 3.3).
Overview. FunnyNet consists of (a) three encoders: visual with videos as input,
face with face tracks as input, and audio with audios as input, and (b) the
proposed Cross-Attention Fusion (CAF) module, which explores cross- and intra-
modality correlations by using cross- and self-attentions in the encoders outputs.
Then, the fused feature is fed to a binary classifier (Figure 2). For comparison,
FunnyNet can take text as extra input with a text encoder. It is trained to embed
all modalities in the same space via self-supervised contrastive loss and to classify
clips as funny or not. For training, we exploit laughter that naturally exists in
TV Shows: we define as ‘funny-moment’ any audiovisual snippet followed by
laughter; and ‘not-funny’ any audiovisual snippet not followed by laughter.
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Fig. 2: FunnyNet. Given audio-visual clips, it predicts funny moments in videos. It
consists of the audio (blue), visual (green), and face (red) encoders, whose outputs pass
through the Cross Attention Fusion (CAF'), which consists of cross-attention (CA) and
self-attention (SA) for feature fusion. It is trained to embed all modalities in the same
space via self-supervision (Lss) and to classify clips as funny or not-funny (Leis)

3.1 FunnyNet Architecture

Audio Encoder. FunnyNet takes as input audio snippets X, udio in the form of
Mel spectrogram®. It is fed into the audio encoder, i.e., BYOL-A [21] to obtain
a 1D feature vector. Finally, we use a Projection module to map it to a 512-D
vector for final prediction: F5 € R%12,

Visual Encoder. It processes video frames with TimeSformer [15]. Its inputs are
patches of size 16 x 16, partitioned from eight consecutive input frames Xyisyal-
Unlike TimeSformer where the representation is obtained by the ‘classification
token’, we obtain the representation by average pooling features from all patches,
thus forming a 768-D vector; then, we use a Projection module to map it to a
512-D vector: Fyy € R®2. Video context complements audio (or subtitles) to
have richer content [11]. If there is no sound, hence no subtitle, visual cues can
also provoke laughter.

Face Encoder. Face features capture local cues to enrich the visual represen-

tation. We use InceptionResNet [56,57] to extract up to eight faces per frame,
that we then process with a LSTM to form a 512-D vector FreR?'2. Note, in-
stead of more advanced models [58,59,60], we use InceptionResNet because of

its robustness and efficiency [61].

Text Encoder. For a fair comparison to the state of the art, we also experiment
with a text encoder that uses BERT [15] to extract key features and feeds them
to a LSTM to model temporal correlations (more details in supplementary).
Projection Module. It consists of a linear layer followed by batch normaliza-
tion, a tanH activation function and another linear layer. It takes input features
from each encoder and projects them in a common 512-D feature space.
Cross-Attention Fusion (CAF) learns the cross-domain correlations among
vision, audio and face (yellow box Figure 2). It consists of (a) three cross-
attention (CA) and (b) one self-attention (SA) modules, described below:

4 Mel spectrogram is a 2D acoustic time-frequency representation of sound.



6 Liu et al.

(a) Cross-attention is used in cross-domain knowledge transfer to learn across-
cue correlations by attending the features from one domain to another [62,48,63].
In CAF, it models the relationship among vision, audio, and face features. We
stack all features as Fy€R3*%12 and then feed Fy into three cross-attention
modules to attend to vision, face, and audio, respectively (Figure 2). Next, the

T
scaled attention per modality is computed as o (Q‘\J/Ig‘ ) Vi, where i={V, F, A}

for {vision, face, audio}, and o the softmax. The query comes from the stacked
features: Qu=WQuFy, while the key and value come from a single modality as
K;=WK:F;, and V;=WV:F;. Next, we obtain three cross-attentions and sum
them to a unified feature Fg as:

Fs= > a<Q‘\J/I§iT>Vi . (1)

ie{V,F,A}

(b) Self-attention computes the intra-correlation of the Fg features, which
are further summed with a residual Fg as:

QsK3
FCAF—Fs-HT( Nz )Vs ) (2)
where Qs=WQsFg, Ke=W¥XsFg, Vg=WVsFg. Finally, we average Fcar to-
kens and feed it to a classification layer.

Discussion. CAF differs to existing methods [62,18] in the computation of the
cross attention. Using stacked features Fy to attend to each modality Qv brings
three benefits: (a) it is order-agnostic: for any modality pair we compute cross-
attention once, instead of twice by interchanging queries and keys/values; this
results in reduced computation; (b) each modality serves as a query to search for
tokens in other modalities; this brings rich feature fusion; and (c¢) it generalizes
to any number of modalities, resulting in scalability.

3.2 Training Model and Loss Functions

Positive and Negative Samples. To create samples, we exploit the laughter
that naturally exists in episodes. We define as ‘funny’ any n-sec clip followed
by laughter; ‘not-funny’ any n-sec clip not followed by laughter. More formally,
given a laughter at timestep (ts,t.), we extract a n-sec clip at (ts—n,ts) and
we split it into audio and video. For each video, we sample n frames (1 FPS).
For the audio, we resample it at 16000 Hz and transform it to Mel spectrogram.
Thus, each sample corresponds to n sec and consists of a Mel spectrogram for
the audio and a n-frame long video. In practice, we use 8-sec clips as the average
time between two canned laughters, and it also leads to better performances
(ablations of n-sec clips and n-frames per clip in supplementary). Note that we
clip the audio based on the starting time of the laughter so the positive samples
do not include any laughter.

Self-Supervised Contrastive Loss. To capture ‘mutual’ audiovisual informa-
tion, we solve a self-supervised synchronization task [64,65,66]: we encourage
visual features to be correlated with true audios and uncorrelated with audios
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Fig. 3: Proposed laughter detector. It takes raw waveforms as input and consists of
(i) removing voices by subtracting channels (here, the audio is stereo with 2 channels),
(ii) detecting peaks, and (iii) clustering audios to music and laughter
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from other videos. Given the i-th pair of visual v* and true audio features a’ and
N other audios from the same batch: aq, ...,ay we minimize the loss [7,67,68]:

exp(S(v',a’)/7)
Sl exp(S(vi, ad) /7)
where S the cosine similarity and 7 the temperature factor. Equation 3 accounts
for audio and visual features. Here, we compute the contrastive loss between all
three modalities, i.e., visual-audio, face-audio, and visual-face. Thus, our self-

supervised loss is Ly = (LU . L:;;{S + Lcotrs)

®3)

Lcotrs - _log

cotrs
Final Loss. FunnyNet is tralned with a Softmax loss Y5 to predict if the input is

funny or not, and the Ly to learn ‘mutual’ information across modalities. Thus,
the final loss is: L=MAgsLss + AcisLicls, Where Ags, Acis the weighting parameters
that control the importance of each loss.

3.3 Unsupervised Laughter Detection

To detect funny moments automatically, we design an unsupervised laughter
detector consisting of three steps (Figure 3). (i) Remove Voices. Background
audios include sounds, music, laughter; instead, voice (speech) is part of the fore-
ground audio. We remove voices from audios by exploiting multichannel audio
specificities. Given raw waveform audios, when the audio is stereo (two chan-
nels), the voices are centered and are common in both channels [69]; hence, by
subtracting the channels, we remove the voice and keep the background audio.
In surround tracks (six channels), we remove the voice channel [69] and keep the
background ones. (ii) Background Audios. The waveforms from (i) are mostly
empty with sparse peaks that correspond to audio: laughter and music. To split
them into background and empty segments, we use an energy-based peak detec-
tor® that detects peaks based on the computed waveform energy. Then, we keep
background segments and convert them to log-scaled Mel spectrograms. (iii)
Cluster Audio Segments. For each laughter and music segment, we extract
features using a self-supervised pre-trained encoder. Then, we cluster all audio
segments using K-means to distinguish the laughter from the music ones.

® https://github.com/amsehili/auditok.
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4 Datasets and Metrics

Datasets. We use five datasets (more details in suppl.). The Big Bang The-
ory (TBBT) dataset [4] contains 228 episodes of TBBT TV show: (183,23,22)
for (train,valtest). All episodes come with video, audio and subtitles, labelled as
humor (or non) if followed (or not) by laughter. Multimodal Humor Dataset
(MHD) [3] contains episodes from TBBT, with 110 episodes split (84,6,20)
for (train,val,test) (disjoint splits to TBBT). It contains multiple modalities;
the subtitles are tagged as humor (or not). MUStARD [(] contains 690 seg-
ments from 4 TV shows with video-audio-transcript labelled as sarcastic or not.
UR-Funny [!1] contains 1866 TED-talk segments with video-audio-transcript
labelled as funny or not. Friends [70,71] contains 25 episodes from the third
season of Friends TV show, split as (1-15,16-20,21-25) for (train,val,test). Each
episode contains video, audio, and face tracks. Here, we enrich it with manually
annotated laughter time-codes, i.e., starting-ending time of laughter.

Metrics. To evaluate FunnyNet, we use classification accuracy (Acc) and F1
score (F1). For laughter detector, we use sample-scale at detection level and
frame-scale at temporal level to compute precision (Pre), recall (Rec) and F1.

5 Experiments

We provide experiments for FunnyNet. In supplementary, we include more results
on feature modalities, modules, impacts, time windows of inputs (n-sec inputs,
n frames), losses, automatic/manual laughter, datasets, effect of fine-tuning,
metrics, complexity, discussion of laughter detector, and videos.
Implementation Details. We train FunnyNet using Adam optimizer with a
learning rate of 10~%, batch size of 32 and Pytorch [72]. At training, we use data
augmentation: for frames, we randomly apply rotation and horizontal/vertical
flipping, and randomly set the sampling rate to 8 frames; for audios, we apply
random forward/backward time shifts and random Gaussian noises. Setting. In
our experiments, we train FunnyNet on Friends. For MUStARD /UR-Funny, we
fine-tune FunnyNet on their respective train sets. For TBBT/MHD, we fine-tune
it only with a subset of the training set from TBBT (32 random episodes).

5.1 Comparison to the State of the Art

Here, we evaluate FunnyNet on five datasets: TBBT, MHD, MUStARD, UR-
Funny and Friends and compare it to the state of the art: MUStARD [6],
MSAM [3], MISA [14], HKT [13] and LaughM [4]. Table 1 reports the results (in-
cluding random, positive and negative baselines) for both metrics. We indicate
the modalities each method uses as V: video, F: face, T: text and A: audio.
Overall, we observe that the proposed audiovisual FunnyNet (V4+F+A) out-
performs all methods for all metrics on all five datasets. Fsor TBBT it outper-
forms the LaughM by a notable margin of +5% for F1 and Acc, while for MHD
it outperforms MSAM by 3% in F1 and 7% in Acc and LaughM by 3% in Acc.
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Table 1: Comparison to the state of the art on five datasets. Modalities used per
method A: audio, V: visual frames, F: Face, T: text. TReproduced results: we use the

exact model as in [4], pre-train it on Friends and fine-tune it on the other datasets

. TBBT MHD MUStARD UR-Funny Friends
Method / Metrics F1 Acc F1 Acc F1 Acc F1 = Acc F1 Acc
Random 46.3 50.0 56.1 50.9 48.3 48.7 50.2  50.2 51.0 51.0
All positive 60.3 43.2 75.6 60.8 66.7 50.0 75.4  50.7 66.7 50.0
All negative 0.0 56.8 0.0 39.2 0.0 50.0 0.0 49.3 0.0 50.0
MUStARD 2019 (V+A+T) [)] - - - - TT T8 - - -
MSAM 2021 (V+T) [3] - - 813 724 - - - - - -
MISA 2020 (V+A+T) [14] - - - - 662 - 69.8 -
HKT 2021 (V+A+T) [13] - - - - 794 - T4 .
LaughM' 2021 (T) [4] 642 705  86.5 763 686 687  TL9 676 747 59.8
FunnyNet: V4+F+A 69.674.0  84.079.3 814 81.0 83.7 78.0  86.884.8
FunnyNet: V4+A+T 73.8 75.8 83.4 78.6 79.5 79.9 84.1 79.9 88.2 85.8
FunnyNet: V4+F+T 76.0 69.5 75.9 69.8 75.2 76.3 82.3 73.0 81.3 76.2
FunnyNet: V+F+A+T 75.978.3  85279.6 832 820 844 80.2 88.886.4

For MUStARD and UR-Funny, the results are more conclusive as we compare
against several methods that use different modalities; in all cases, FunnyNet out-
performs MUStARD, MISA, HKT, LaughM by 10-12% in F1 and 2-15% in Acc
for MUStARD and 20% in F1 and 1-10% in UF-Funny. For Friends, we observe
similar patterns, where we outperform LaughM by 11% in F1 and 25% in Acc.
These results confirm the effectiveness of FunnyNet compared to other methods.

Our remarks are: First, FunnyNet performs best among all methods that
leverage audio (MUStARD, MISA, HKT), even without using text. Second, the
performance in the out-of-domain UR-Funny is significantly high. Third, for
TBBT and MHD our results are much less optimized than the ones from LaughM
or MSAM, as we do not have access to the exact same test videos as either work,
so inevitably there are some time shifts or wrong labels® and we use much fewer
training data (32 vs 183 episodes in LaughM vs 84 episodes in MHD). These
highlight that FunnyNet is an effective model for funny moment detection.
FunnyNet Using Text. For fair comparison, we explore a FunnyNet version
that leverages subtitles in addition to audiovisual cues (FunnyNet: V+A+T). We
compare it against MUStARD, MISA, and HKT that use the same modalities
and observe that FunnyNet (V+A+T) outperforms them all by a large margin
(1-14% for all metrics and datasets). This shows that the performance boost
from FunnyNet stems from the superior architecture and the adequate modality
fusion, rather than the difference in input modalities.

5.2 Analysis of Unsupervised Laughter Detector

We compare our laughter detector to the state-of-the-art LD [25] used in [0]
and RLD [26]. Table 2 reports the results on Friends. We observe that overall,
our detector outperforms both supervised ones. We also examine the efficiency

% The label time shift is 0.3-1s on TBBT and 0.3-2s on v2.
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Table 2: Laughter detection evaluation on Friends. We compare ‘Ours’ to two audio
feature extractors

Temporal Det IoU = 0.3 Det IoU = 0.7
Acc  Pre Rec F1 Pre Rec F1 Pre Rec F1
LD [29] 43.64 35.70 98.95 52.28 25.69 22.09 23.35 4.02 3.73 3.82
RLD [26] 74.46 5891 61.98 59.69 66.15 53.71 59.10 18.45 15.04 16.52

Ours Wav2CLIP[73] 77.56 64.49 63.66 63.70 91.25 61.23 73.07 49.74 33.45 39.89
Ours BYOL-A[21] 85.97 76.94 79.38 77.81 94.57 82.25 87.83 54.07 47.11 50.27

Table 3: Ablation of modalities of FunnyNet Table 4: Ablation of CAF of Fun-
on the test set of all five datasets (A: audio, nyNet on Friends test set
V: visual frames, F: face) T ATV ATF  ATVAF

Modalities TBBT MHD MUStard URFunny Friends Self Cross F1 Acc F1 Acc Fl1 Acc
AV F F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc 84.51 80.65 82.62 78.99 85.97 84.02

v - - 689 63.2 64.9 67.5 65.2 63.8 68.2 64.7 73.7 66.7 v - 84.10 80.64 84.01 81.01 86.57 84.13
-V - 65.0 58.9 66.3 66.5 64.6 60.2 67.5 60.4 72.9 63.4 _ v 83.13 81.05 83.71 81.33 86.61 84.52
- - vV 648 59.4 66.8 67.7 64.7 61.1 67.2 61.2 72.9 62.1 v v 84.19 81.14 83.91 82.22 86.79 84.75
v v - 703 728 79.9 73.1 79.0 77.5 80.9 76.8 84.2 81.1

V-V 70.3 729 80.5 73.9 80.4 78.9 829 79.4 83.9 822 MMCA [45] 83.56 81.05 83.44 82.06 86.71 84.36
V'V v 69.6 74.0 84.0 79.3 81.4 81.0 83.7 78.086.8 84.8 CoMMA [10] 83.71 81.08 83.79 82.24 86.69 84.63

of BYOL-A [21] and Wav2CLIP [73] encoders, where we observe that using
BYOL-A outperforms Wav2CLIP, due to the richer audio representation ca-
pacity. From the laughters, we make three notes: (a) most false positives are
unfiltered sounds not well separable by K-means; (b) most false negatives are
intra-diegetic laughter, which is less loud, and hence, less detectable; (c) when
the music is superposed with the laughter (e.g. party) the peak detector fails.

5.3 Ablation of FunnyNet

Modalities. Table 3 reports the ablation of all modalities of FunnyNet on five
datasets. Using audio alone produces better results than any visual modality
alone, underlying that audio is more suitable than visual cues for our task,
as it encompasses the way of speaking (tone, pauses). Combining modalities
outperforms using single ones: combining audio and visual increases the F1 by 3-
12% and the Acc by 6-17%. This is expected as modalities bring complementarity
and their combination helps discriminate funny moments. Audio+face leads to
smaller boosts than audio+visual, as frames capture better than (low-level) faces
global information. Overall, using all modalities achieves the best performance.
Cross-Attention Fusion (CAF). Table 4 reports results with various cross-
and self-attention fusions in CAF. We observe that including either self- or cross-
attention (second, third rows) brings improvements over not having any (first
row), indicating that they enhance the feature representation. The fourth row
shows that using them both for feature fusion leads to the best performance. For
completeness, we also compare CAF against the state of the art MMCA [48] and
CoMMA [19]. All CAF, MMCA and CoMMA use self and cross-attentions jointly
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Fig.4: Audio vs Text for funny-moment detection on Friends. Relying solely on
voices (subtitles) fails when nobody is speaking; the audio, however, may succeed.
(a) humorous background music without voices, (b) abrupt background sound (plates
smashing) accompanied by a simple dialogue ‘I dropped a cup’

for feature extraction. Their main difference is that both MMCA and CoMMA
first use self-attention to individually process each modality, then concatenate
all modalities together and process them using cross-attention to output the fi-
nal feature representation. Instead, CAF uses cross-attention to gradually fuse
one modality with the rest of modalities to fully explore cross-modal correla-
tions. The results (fifth, last rows) show that CAF outperforms MMCA [18] and
CoMMA [19] by 0.1~ 0.4 in F1 score and 0.03~ 0.2 in accuracy. This reveals the
importance of the gradual modality fusion and hence the superiority of CAF.

6 Analysis of FunnyNet

6.1 Awudio vs Subtitles

Instead of subtitles [1], FunnyNet relies on audio, as it (1) encodes mutual infor-
mation to the text, (2) does not encode only words, but also the way of speaking
(pauses, pitch and so on), and (3) can succeed when a scene is funny, yet nobody
is speaking, by exploiting background sounds.

Quantitative Analysis. Table 1 reports FunnyNet results with the combina-
tion of text and audiovisual modalities. By comparing visual-textual to visual-
audio features (V4+F+T vs V4F+A) we observe that in most cases audiovisual
cues perform better than the visual-textual ones (4-8% in both metrics for all
datasets); this corroborates our claim that audio identifies better than text funny
moments in videos. The last row reports results when combining all modalities
(V+F+A+T). This further outperforms all other FunnyNet results, indicating
that FunnyNet can efficiently exploit all sources of signals for funny prediction.
Qualitative Analysis. Figure 4 shows some scene frames from Friends and their
audio, separated into background (middle) and vocal/voice (bottom) [74]. (a)
Joey is trying to use chopsticks to pick up the food but end up dropping it. There
is no voice, but vibrant and active music with a simpler rhythm to Joey’s action.
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Fig.5: Visualization of (a,b) funny, (¢) non-funny predictions on Friends. We show
the audio and visual (frame and faces) inputs, the learned average weights of cross-
attentions from CAF (pie chart), and the subtitles (for better understanding)
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Fig.6: t-SNE visualization of embeddings on Friends for (a) visual, (b) audio, (¢)
face, (d) all modalities. We show positive (blue) and negative samples (red)

FunnyNet correctly predicts the scene as funny by leveraging audio. (b) The
extreme loud sound of several smashing dishes is followed by Gunther appearing
and calmly saying “I drop A cup”. Unlike text, the audio correctly detects the
contradiction between the smashing sound and the calm words, hence predicting
the scene as funny. In both cases, using text results in incorrect predictions,
whereas audio successfully leverages no verbal cues and correctly predicts the
scenes as funny, showing that audio better than text addresses such cases.

6.2 FunnyNet Architecture

Modality Impact. To visualize the impact of modalities, we compute the aver-
age attention values on the three CA modules (CA boxes in Figure 2) and then,
show the average weights for each modality in the pie chart of Figure 5. For this,
we show two positive and one negative samples on Friends with frames, face (on
frames), and audio spectrogram (left) and pitch (right). Note, FunnyNet does
not use subtitles; we show dialogues only for a better understanding. We ob-
serve that the contribution of each modality varies; the commonality though is
that audio contributes more than half, followed by visual and finally face. When
characters smile (‘Chandler’ in b), the contribution of face increases, indicating
the importance of facial expressions, whereas the ‘over the shoulder’ shot of (c)
shows that face posture play a small role. Moreover, the dramatic peaks of the
audio pitch in (a,b) show that they are associated with funny punchline (‘That
is a bad duck’), whereas the smooth ones in (¢) imply a ‘normal scene’.
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Fig. 9: Failure cases on Friends Fig. 10: Funny moments in the wild

Feature Visualization. Figure 6 shows the t-SNE [75] visualization of features:
(a-c) visual, audio, face, (d) all with blue for funny and red for not-funny sam-
ples. All single features, and in particular the visual and facial ones, scattered
around the centre of the 2D space without clear boundaries between positives
and negatives. However, the joint embedding shows clear separation between
funny and not-funny, thus revealing the effectiveness of FunnyNet.

Impact of Face Encoder. To examine its effect, in Figure 7 we depict the
top-5 detected faces from positive (top) and negative (bottom) samples of two
characters from Friends. We observe that all positives have rich expressions (yell,
stare, smile, open mouth), while the negatives are either of bad quality (no useful
features) or show neutral expression, thus indicating scenes without funniness.
Impact of CAF Module. To examine the effect of CAF, we visualize in Fig-
ure 8 the learned attention maps: red indicates higher, and blue lower attention.
(a,b,c) display the cross-attention between fused Fy and (a) audio, (b) visual,
(c) face features. Since Fy is stacked from audio, vision, face, we observe that
each modality highly attends to itself. We also observe in (a), both the visual
and the face in Fy fire with the audio, thus indicating that FunnyNet captures
correlations between audio and visual expressions or movements (e.g. character
laughing). Then, in (¢), all modalities attend to the face features, thus revealing
their mutual information. Finally, (c¢) displays the self-attention map between
Fs, where we observe that Fg attends to all tokens with different weights.
Failure Analysis. We note two groups of failure cases. First, when charac-
ters laugh sarcastically is not always funny; but, all modalities incorrectly, yet
confidently tag them as funny. Figure 9-(a) shows this, where ‘Rachel’ laughs
sarcastically, which is not funny (subs ‘ha ha’). We wrongly predict it as positive.
Second, visual cues fail in dark scenes; thus, we rely on audio. Figure 9-(b) shows
a night scene with no clear faces and dark frames, where FunnyNet uses mostly
the non-discriminative audio; hence, we wrongly predict the scene as negative.
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6.3 Funny Scene Detection in the Wild

We show applications of FunnyNet in videos from other domains (more in suppl.).
1. Sitcoms without Canned Laughter. We collect 9 episodes of the first
season (~180 minutes) of Modern Family (Lloyd and Levitan, 2009)” without
canned laughter. We manually annotate as positive every punchline that could
lead to laughter, resulting in 453 positives (we will make them available). We ap-
ply FunnyNet on the 8-secs preceding funny moments, resulting in an accuracy
of 55.4% vs 50% for random. Our remarks are: (i) FunnyNet is not fine-tuned
on this data, and (ii), Modern Family differs from other sitcoms with live au-
dience as characters are not reacting to punchlines. Thus, our results indicate
that FunnyNet is capable of detecting funny-moments in out-of-domain cases.
Figure 10 (a) shows a correctly predicted funny moment between two characters
who vary their speech rhythm and tones. 2. Movies with Diverse Funny
Styles. Figure 10 (b) depicts such an example from the Dumb and Dumber
film (Farrelly, 1994). FunnyNet correctly detects funny moments followed by si-
lence or a speaker’s change of tone. 3. Stand-Up Comedies contain several
punchlines that make audiences laugh. We experiment on the Jerry Seinfeld
28 Hours to Kill stand-up comedy. Figure 10 (c) shows that FunnyNet detects
funny moments correctly and confidently as Jerry is highly expressive (expres-
sions, gestures). 4. Audio-Only. As audio is the most discriminative cue, we
examine its impact on out-of-domain audios: narrating jokes and reading books.
FunnyNet detects funny punchlines from jokes, mostly when they are accom-
panied by a change of pitch or pause; for the audiobook, it successfully detects
funny moments when the reader’s voice imitates a character.

7 Conclusions

We introduced FunnyNet, an audiovisual model for funny moment detection. In
contrast to works that rely on text, FunnyNet exploits audio that comes natu-
rally with videos and contains high-level cues (pauses, tones, etc). Our findings
show audio is the dominant cue for signaling funny situations, while video offers
complementary information. Extensive analysis and visualizations also support
our finding that audio is better than text (in the form of subtitles) when it
comes to scenes with no or simple dialogue but with hilarious acting or funny
background sounds. Our results show the effectiveness of each component of
FunnyNet, which outperforms the state of the art on the TBBT, MUStARD,
MHD, UR-~Funny and Friends. Future work includes analyzing the contribution
of audio cues (pitch, tone, etc).
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