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Résumé. Les données en grande dimension contiennent souvent un mélange de
variables numériques et catégorielles. De plus, dans de nombreux cas, les variables
sont disponibles sous la forme de groupes définis a priori (mesures répétées, catégories
d’attributs, ...). En pratique, classifier ces données pose plusieurs problèmes : comment
utiliser les données mixtes pour construire des clusters pertinents? comment sélectionner
les variables ou les groupes de variables les plus pertinents pour le clustering? Avec
une approche k-means, il est possible d’utiliser une version pénalisée de la variance inter-
classes, et de trouver à la fois la meilleure partition des données, et les variables ou groupes
de variables les plus informatifs. Le présent manuscrit décrit les méthodes des sparse k-
means et des group-sparse k-means pour des données mixtes, en utilisant le package R

vimpclust. L’exemple d’un petit jeu de données réelles illustre comment la sélection de
variables peut être directement combinée avec le clustering, en fournissant à la fois une
classification pertinente et en préservant la qualité du clustering.

Mots-clés. clustering, k-means parcimonieux, pénalités L1 et L1-groupe, données
mixtes, packages R.

Abstract. High-dimensional data may often contain both numerical and categorical
features, and in some cases features may be available as natural groups (repeated mea-
surements, categories of features, ...). Clustering this kind of data raises several issues:
how to simultaneously deal with numerical and categorical features? how to build mean-
ingful clusters of the input entities? how to select the most informative features or groups
of features for the clustering? In the k-means framework, one may rely on a penalised ver-
sion of the between-cluster variance, and find both the best partitioning of the data, and
the most informative features or groups of features. The present manuscript illustrates
sparse k-means and group-sparse k-means for mixed data, using the vimpclust package.
The example provided on a small real-life dataset shows how feature selection may be
directly combined with clustering, and provide a meaningful selection while preserving
the quality of the clustering.

Keywords. clustering, sparse k-means, L1 and group-L1 penalties, mixed data, R

packages.
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1 Introduction

While feature selection received a great deal of attention in the supervised learning frame-
work during the past twenty years, it is only much later and relatively recently that it
effectively emerged in the unsupervised context. At the same time, with the dimensional-
ity of the collected data constantly increasing, feature selection for clustering becomes a
crucial issue, since the presence of many uninformative features could potentially damage
the clustering, introduce noise and favour unstable results. Furthermore, features may of-
ten be available as priorly known groups (repeated measurements, categories of attributes,
...), and imply that group-wise selection should be considered instead of feature-wise one.

Since model-based approaches are naturally suited for including L1 and related penal-
ties, several contributions were proposed in the literature, and are summarised, for in-
stance, in [1], which contains a detailed review on model-based clustering for high-
dimensional data. In the k-means context, one may cite the sparse k-means procedure,
introduced in [9] and based on a L1-penalised version of the between-class variance, or
more recent developments in [8], [2] or [6].

That being said, all methods cited above are essentially designed for numerical data,
while real data is often made of numerical and categorical features. Some of the authors
above touch upon the question of categorical features, by mentioning the possibility of
making them numerical using a transformation through dummy variables. However, this
processing step is not that immediate, since the Euclidean distance on zero-one vectors is
not particularly suited for being mixed with Euclidean distances on numerical variables.
Other authors implicitly suggest that the proposed algorithms may be written in terms
of distances or dissimilarities between input data only, and hence it suffices to use an
appropriate distance for categorical features. Nevertheless, the distance-based approaches
may rapidly translate into an increased complexity if the size of the data becomes large.

In a recent contribution [5], we introduced an explicit method for feature selection in
a mixed-data framework, by building on a penalized group-L1 criterion. An R package,
called vimpclust1 and available on CRAN, has been implemented and allows one to train
sparse k-means procedures on numerical or mixed features, or on groups of numerical
features. In the present manuscript, we extend the above to groups of mixed features and
add a new functionality to the package. In the rest of the paper, we briefly recall how to
train sparse k-means for groups of numerical features, for mixed features, and for groups
of mixed features, and illustrate these methods using the vimpclust package and a small
real-life dataset.

1https://cran.r-project.org/web/packages/vimpclust/index.html
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2 Sparse clustering for groups of numerical features

Group-sparse clustering may be of interest in many real-life situations, where a natural
structure of groups is available for the features. In other practical applications, groups of
features may be the output of a clustering applied to the features.

In the following, suppose that the p numerical features are divided into L priorly known
groups, such that X =

[
X1| . . . |XL

]
∈ Rn×p is the matrix of data, where ` = 1, . . . , L,

and X` ∈ Rn×p` represents the features in group `, and p1 + ...+ p` = p.
Group sparse k-means searches both a partitioning C1, ..., CK , and a set of weights

wT = (w1, . . . ,wL) ∈ Rp, maximising the between-class variance penalised by the L1-
group penalty:

max
C1,...,CK ,w∈Rp

wTb− λ
L∑

`=1

√
p`‖w`‖2, (1)

where ‖w‖2 ≤ 1 and w ≥ 0, and where λ > 0 is a tuning hyperparameter.
In the notation above, bT = (b1, ..., bp) is the vector containing the between-class

variance computed per each feature,

bj = bj(X, C1, ..., CK) =
K∑
k=1

nk

n
(Xj,k −Xj)

2, (2)

with Xj being the average of feature j over the entire data set, Xj,k the average of feature
j in cluster k, and nk the size of cluster Ck. One should also remark here that each
component w` or b` in w and, respectively, b, are actually vectors of size p`.

For a fixed number of clusters K and a fixed tuning parameter λ, the optimisation
problem above may be solved using an iterative algorithm, which alternates two steps:

1. For a fixed vector of weights w, find the partitioning C1, ..., CK maximising wTb.
This is actually equivalent to training an usual k-means algorithm on the features
scaled by the weights X̃j =

√
wjXj, j = 1, ..., p.

2. For a fixed partitioning C1, ..., CK , find the vector of weights w maximising the
penalised between-class variance, and such that ‖w‖2 ≤ 1. The solution may be
found analytically as a function of the group soft-thresholding operator, and is
described in detail in [5].

From a practical point of view, the group soft-thresholding operator will drop all
groups of features which between-class variance norm ‖b`‖2 is smaller than

√
p`λ, and

shrink by
√
p`λ the between-class variance norm of the remaining groups of variables.
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3 Sparse clustering for mixed data

In the context of mixed data, the group-sparse principle above may be used for building
a procedure for variable selection. Indeed, each categorical feature may be transformed
into a group of dummy ones, thus producing a natural structure of groups on the data. If
the input data X is described by d1 categorical features and d2 numerical ones, such that
each of the categorical features has pj possible values, j = 1, ..., d1, she may transform

each categorical feature Xj into pj dummy variables X̃j = (X̃1
j , ..., X̃

pj
j ) ∈ {0, 1}n×pj and

thus define a natural group structure on the transformed data Y = [Y1|...|Yd1+d2 ], where
Y` = X̃` for ` = 1, ..., d1, Y` = X` for ` = d1 + 1, ..., d1 + d2, with respective group sizes
pT = (p1, ..., pd1 , 1, ..., 1) ∈ Rd1+d2 .

When training group-sparse k-means on the group structure above, this amounts to
performing variable selection in a mixed-data context. Before applying the algorithm
described in the previous section, Y must be properly preprocessed. This prior step
is described for example in [4]: numerical variables are scaled to zero mean and unit

variance, while the dummy variables are centered and normalized by 1/
√

n
nj,s

, where

nj,s is the number of input data taking the s-th value of the jth categorical feature, or
equivalently the sum over X̃s

j . The scaling applied to the dummy variables actually leads
to using a χ2 distance on the categorical features, while the numerical features, after
scaling, are compared through the usual Euclidean distance.

4 Sparse clustering for groups of mixed features

Suppose now that the p = d1 + d2 categorical and numerical features are divided into L
priorly known groups. The sparse clustering procedures described above (for groups of
numerical features and for non grouped mixed data) may be combined to select groups of
mixed features. Indeed, the input data X may be transformed into a numerical matrix Y
with p1 + . . . + pd1 dummy variables replacing the d1 categorical features, this matrix Y
being pre-processed as described section (3). The pj dummy variables of each categorical
features Xj may then be assigned to the group ` of Xj, thus defining L groups of the
p1 + . . . + pd1 + d2 transformed features. The sparse clustering method for groups of
numerical variables described in Section 2 may then be applied to the pre-processed
numerical matrix Y and these new groups. Because the levels of a categorical feature
belong by construction to the same group, if this group is selected, the feature is selected.

5 An illustration of vimpclust

The vimpclust package has been implemented as a general tool for sparse k-means clus-
tering. It handles sparse k-means for numerical features as introduced in [9], but also
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group-sparse k-means for numerical features, sparse k-means for mixed features, and
group sparse k-means for mixed features. The package is available on CRAN, and con-
tains several detailed vignettes with use cases.

As an example, sparse k-means and group sparse k-means for mixed data are illustrated
on the wine dataset [7]. The wine data contains a description of 21 wine varieties, using
31 features, including soil type and wine label (categorical with respectively five and three
categories) and different sensory descriptors (numerical). The dimensionality of the data
is larger than the number of inputs, and feature selection through sparse clustering is
crucial for meaningful interpretation.

First, the data is clustered using the sparse k-means procedure for mixed data, using
the sparsewkm function in vimpclust. The number of clusters is fixed equal to four.

res <- sparsewkm(X = wine, centers = 4)

plot(res, what="weights.features")

plot(res, what="expl.var")

The regularisation paths for the weights of each feature, but also the regularisation
path of the ratio of explained variance are illustrated in Figure 1. The hyper-parameter λ
varies between 0 and 1, as the initial features were all scaled to unit variance. If one decides
to keep the last configuration before the ratio of explained variance drops significantly,
ten features out of thirty are eventually selected: Aroma.quality.before.shaking, Qual-
ity.of.odour, Balance, Intensity, Overall.quality, Surface.feeling, Aroma.quality, Smooth,
Harmony, Typical.

What about if one is interested in selecting groups of significant features for the clus-
tering? In order to do so, and since one has no prior knowledge on the groups of features
for the wine dataset, we decide to build groups of features using the ClustOfVar pro-
cedure as described in [3]. The resulting 7 groups of features are illustrated in Figure
2.

Clustering is achieved using the groupsparsewkm function in vimpclust, and by pro-
viding a supplementary argument index, which contains groups labels for the features.
Here again, four clusters for the input data were searched for.

res <- groupsparsewkm(X, centers = 4, index = groupes)

plot(res, what = "weights.features")

plot(res, what="expl.var")

The regularisation paths both in terms of features, and in terms of groups of features,
are illustrated in Figure 3.

After selecting λ such that the best trade-off between the ratio of explained variance
and the number of selected groups is achieved, only three groups of features are kept.
Their composition in detailed in Figure 4. As one may easily see, all features selected
by the sparse k-means procedure for mixed data also appear in the selected groups of
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Figure 1: Regularisation paths for different values of λ. Left: features paths. Right: ratio
of explained variance path.

Figure 2: Resulting groups of features after having trained vimpclust

features. The results of the two procedures are thus coherent. Furthermore, groups of
features are interesting to consider since they provide better insights on the available
information in the data.
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Figure 3: Regularisation paths for different values of λ. Left: features paths. Right:
groups of features paths.

Figure 4: Selected groups of features by the group-sparse k-means. Red: features selected
individually by the sparse k-means procedure.

6 Conclusion

Several k-means generalisations, allowing to train sparse clusterings on mixed data, and
to select important features or groups of important features were described in the above
sections. These variants of k-means are implemented in a recent package available on
CRAN, vimpclust. A detailed example on a small real-life data set allowed to illustrate
how the proposed methods produce both meaningful clusterings and feature selection, the
latter being a crucial issue for high-dimensional data.
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