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Abstract—The design of cyber-physical systems remains chal-
lenging because of their highly heterogeneous nature that makes
modeling, design and analysis hard. Despite extensive work in
model-based approaches, few unified simulation tools are avail-
able today for such systems. This paper proposes a simulation
strategy that benefits from the characteristics of recent FPGA
platforms and advances in the high-level synthesis tools. Our
proposal consists in using these tools to build a cyber-physical
system simulator running at high-speed on a FPGA; in this view,
high-level synthesis is used not only in the traditional prototyping
phase of the embedded systems, but also to synthesize its physical
environment, which is jointly simulated on the FPGA. Our paper
proposes a case study illustrating this approach: the simulation of
the automatic identification system required in maritime commu-
nications. The simulation executed on the latest FPGA generation
is accelerated by a factor x654 compared to software alternatives
demonstrating that FPGAs exhibit appealing characteristics for
such simulations.

Index Terms—HLS, FPGA, CPS simulation

I. INTRODUCTION

As defined in [1], a cyber-physical system (CPS) is a
tight integration of computation with physical processes. This
definition applies at different scales: either at small scale,
where such a CPS can be seen as a single embedded system
with a physical environment, or at large scale where several
embedded systems come into play in a distributed manner.
In either cases, simulating such CPSs allows to design more
robust embedded systems, by getting a realistic insight of
their expected behaviors in a complex environment. However,
CPS simulation remains difficult [2] because of their intrinsic
heterogeneity [3]: the involved models of computation (MoCs)
are varied in nature, mixing discrete and continuous phenom-
ena and several temporal and synchronization characteristics.
Moreover, such modeling activity requires multi-domain skills
dealing with software and hardware components and multiple
disciplines (mechanical, electrical and software engineering).

Ptolemy framework [4], Simulink , Simscape or Modelica
are famous tools (and languages) developed to compose, in
an hierarchical way, and simulate various models of com-
putation. Pure cosimulation is another technique that allows
linking standalone MoC simulators through functional mockup
interface buses [5] [6] to simulate the behavior of the whole
system. Unfortunately, these model-based design approaches
make composition complex, model verification difficult [7]
and to the best of our knowledge, do not provide immediate
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solution to distribute simulation workloads efficiently and
reduce simulation time. In addition, physical timing artifacts
such as delays, skews, etc., as well as subtle logical causality
errors, are produced because of the simulators connections and
the execution models (interrupts, memory access and threads
[8]), which deteriorates the overall simulation confidence [9].

We propose to explore an alternative CPS simulation ap-
proach. This approach relies on a single model expressed
in C++ and resorts too high-level synthesis (HLS) to gen-
erate the full CPS simulator executable on a FPGA. Our
experiment is inspired by the seminal work of Miller, Vahid,
and Givargis on the use of FPGA for digital mockups [10].
They compiled various physiological models, based on partial
differential equations, on an overlay-like structure on FPGA
to simulate some human organs behavior (lungs, heart, etc).
Such simulations allow to test the reaction of real devices (e.g
ventilators, pacemakers) in various conditions. At that time
(2011-2014), the capacities of FPGAs in terms of integration
were much weaker than today’s FPGAs; we demonstrate that
we can now simulate both cyber and physical parts on the
same FPGA. In this paper, we demonstrate that FPGAs offer
a viable platform for full multi-scale CPS prototyping. This
method can be considered ”agile” because it bypasses a certain
number of steps of a classic model-based ”waterfall” approach,
which is in line with [11]. A similar method is proposed in
literature [12], but it does not rely on the combination of FPGA
and HLS, and only simulates small scale CPSs.

In the next section, we present our CPS design method.
Then we experiment our design method on a case study
concerning a maritime communication protocol. We conclude
by a discussion and delineate some future work.

II. CPS SIMULATION APPROACH BASED ON FPGA PLUS
HLS

Our method comes from three practical observations: the
first is the quasi-systematic availability of highly domain-
specific C/C++ codes able to simulate behavior parts of almost
every CPS (physical, mechanical, chemical phenomena, etc.).
These codes are rarely available in model-based specialized
languages. The second observation is the growing robustness
of HLS tools [13] able to synthesize hardware code from C++
code. The third is the interesting characteristics of reconfig-
urable architectures such as recent FPGAs [14]: they offer
a high computational power, large amount of resources [15],



Fig. 1. Overview of the approach for CPS simulator design

parallelism concepts easy to implement, and a native synchro-
nization of computations. Considering these observations, we
created a new CPS design method (displayed in Fig. 1) which,
from a model expressed in C++, uses HLS to generate the full
CPS simulator executable on FPGAs. Note that the functioning
of the simulator can be tested thanks to the HLS tool, both at
the C level and RTL level.

The method divides the CPS into components: one of them
simulates the environment (physical part) and the others emu-
late the embedded systems (cyber part). The term ”emulation”
is used when the model under study reproduces a sequence of
operations close or even identical to that of the system [16].
The description of the components behavior is done in C++
and the description of the interactions between components
is done using HLS directives. Components are composed by
applying the dataflow directive, which implements FIFO or
Ping-Pong buffers between components. Computation can be
expressed using float, fixed-point and integer with arbitrary
precision data types. This method can be only applied to archi-
tecture limited to acyclic directed graph. At the macroscopic
point of view (component point of view), the Kahn process
networks (KPN) MoC is applied [1], while, at a microscopic
point of view (FPGA logic point of view), the Synchronous
Reactive MoC is applied.

Fig. 2 illustrates the generic architecture of the resulting
synthesized simulators. Note the presence of embedded Pi-
loting, allowing a classical interaction, from the host PC,
with such a simulator: start, stop, step-by-step advancement
commands. The embedded Piloting allows also to adjust the
embedded systems and the simulated environment parameters.
The user can, in addition, observe the dynamics of selected
signals from the HLS, collected and read back to the host
PC (Monitoring). These commands and observations come
from interface registers described in a file (in s-expression
format) and automatically generated with our Reggae tool [17].
The tool allows to generate a very simple combinatorial glue
allowing to interface to the axi stream interface protocol used
by the hls tool.
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Fig. 2. Our proposal: FPGAs as cyber-physical system Simulation platforms.

III. MOTIVATING CASE STUDY

A. AIS Maritime communication system

Our CPS case study consists in a set of vessels that
move and exchange radio messages relying on a dedicated
maritime protocol named automatic identifying system (AIS).
AIS operates on two frequencies at 161.975 MHz and 162.025
MHz on the very high frequency (VHF) band. The sent mes-
sages comply with the national marine electronics association
(NMEA) 0183 standard. The data rates are 9600 baud. Since
2002, the safety of life at sea agreement of the international
maritime organization requires the installation of a class A
AIS transponder for international ships over 300 gross tonnage
and for passenger ships regardless of their size. This system
improves the safety of maritime traffic by allowing the auto-
matic exchange of navigational information (position, identity,
port of departure, etc.) between ships. However, this system is
vulnerable: the information sent by transponders can be easily
falsified or spoofed (for piracy, illegal transport, etc.). This is
why spoofing and falsification detection algorithms must be
developed and integrated into new generation AIS transpon-
ders. The algorithms will be applied to both AIS messages
and AIS signals, to detect, for instance, inconsistency in data
(AIS messages) or to characterize the transponders radiometric
signature (AIS signals).

B. Verification challenges

To develop a reliable system, simulations are required to
test a wide range of scenarios reproducing use conditions of
the product. However, getting comprehensive test streams from
real field measures remains tedious. In our work, to solve this
issue, a simulation framework was created to generate a wide
variety of synthetic scenarios containing AIS messages and
signals. The generated messages can be falsified and spoofed.
The simulation framework emulates a variable number of
AIS transponders, which communicate with each other in an
simulated maritime environment. The simulation runs entirely
on hardware, and is synthesized using HLS. An example of
the simulation architecture is presented in Fig. 2, where three
transponders are communicating.
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Fig. 3. Model of the CPS simulated on FPGA.

C. Model of the CPS simulated

Fig. 3 illustrates the general architecture of our CPS sim-
ulator in the same configuration as in Fig. 2. Three types of
component are displayed and were modeled. An Emitter that
acts as an AIS transponder which, from an NMEA frame (AIS
message), sends a modulated AIS signal. A Receiver that acts
as a AIS transponder, which only receives AIS signals and
demodulates them to extract NMEA frame. Finally, a Channel
model simulates the environment to apply some physical laws
to the AIS signals. All components are discussed later. The
Emitter and the Receiver were the CPS’ embedded system
and Channel was the CPS’ environment. We also represent
in Fig. 3 a specific block of piloting and monitoring of the
simulation explained above in part II. Every component is
modeled by a chain of blocks executed sequentially to the
received signal. Note that the architecture is modeled by an
directed acyclic graph: the Emitters send AIS signals to the
Channel, and the Channel sends the signals to the Receiver.

The simulated signals were not modulated at the carriers
frequencies (161.975MHz and 162.025MHz) because the fre-
quencies are to high: FPGA should have huge memory and
computation capacities. Thus, we simulated the signal only
on baseband at a sample rate equal to 192kHz.

The Emitter component contains eight blocks. First block
reads the NMEA frame. The following four blocks trans-
form this frame according to the high-level data link control
(HDLC) protocol. HDLC is a level 2 protocol (link layer)
of the Open Systems Interconnection model. Each byte is
inverted, a checksum is calculated and added at the end of
the frame, then a stuffing of bits at 0 is applied to avoid the
presence of 6 bits at ’1’. Finally a start and end flag is inserted
at the beginning and end of the frame. After, a conditioning
sequence is added to the frame. Finally, a Non Return to
Zero Inverted (NRZI) Coding and Gaussian minimum-shift
keying (GMSK) modulation are applied. The signal is not
modulated at the carriers frequencies because we only consider
the baseband signal.

The Channel component contains four blocks and allows
to apply varied environmental effects on the signals sent
between the Emitter and Receiver. A first block adds a carrier
frequency offset to the signal to characterize Emitter carrier
frequency error caused by hardware imperfections. Another

block reproduces path loss attenuating the energy of the signal
considering the Friis model and the distance between the
Emitter and the Receiver. A third block adds a white Gaussian
noise to the signal to characterize the propagation noise. The
amplitude of the noise is fixed according to the signal-to-noise
ratio (SNR) that we want to impose. Finally, a last block sums
the signals from every Emitter.

Friis model stipulates that the ratio of received signal power
and emitted signal power is given by:

Pr

Pt
= GrGt

(
λ

4πR

)2

(1)

where Pr and Pt are respectively the received and transmitted
powers. Gt and Gr are respectively the antenna gains in
transmission and reception. λ the wavelength of the working
frequency and R the distance separating the emitter from the
receiver. We fix antennas gain to Gt = Gr = 2dBi, as
suggested by [18], and the power of transmitter is Pr = 12.5W
as defined by AIS standard. Reference [18] shows that this
model is reliable and reproduces the evolution of the energy
of the signal up to thirty kilometers.

The Receiver component starts with the computation of the
signal energy to detect the effective arrival of an AIS message
characterized by a peak of energy. After, it demodulates the
AIS signals to extract their NMEA frame. The demodulation is
done symmetrically to Emitter. Thus, this component allows
to extract AIS information from the signals to applied the
algorithms. This receiver prototype is efficient because it
extracts AIS message from true baseband signals recorded in
the bay of Brest.

D. Hardware synthesis

We experimented our design method presented in Fig. 1.
The whole CPS model represented about 5000 lines of C++
code using fixed point and integer with arbitrary precision.
Note that some parts of the system are dedicated to pure sim-
ulation, while some elements (like our Receiver) can be seen
as a viable prototype of a future embedded device. The results
of the three components synthesis are presented in Table I. The
synthesis target was one of the biggest FPGA proposed in the
industry, the Xilinx Ultrascale+ HBM FPGA on a VCU128
board (about 106 System logic cells, 3K DSP slices, etc.). The
HLS tool was Vitis HLS 2020.2. The occupancy percentage
for a simulator with the three components is low (less than 7%
for BRAM, DSP, FF, and LUT elements). However, the FPGA
platform is not over-sized for such application. Indeed, the test-
benches need to simulate synthetic environments with several
Emitters moving physically and exchanging AIS messages at
the same time. In addition, the simulated environment was too
simple to replicate every spoofing and falsification scenario:
special geographical maps (presence of islands, etc.) can be
used by hackers to spoof AIS. These special geographical
maps need high computation capabilities to be simulated. Note
that the amounts of resources used by the components Piloting
and Monitoring are not displayed in the table I because they
are very small and can therefore be ignored.



TABLE I
RESOURCES USED BY EACH COMPONENT.

BRAM DSP FF LUT
Simulator 293(7%) 66(0%) 30508(1%) 41665(3%)
Emitter 97 1 8718 16357
Channel 97 13 1478 4312
Receiver 99 52 19904 20754

IV. HIGH-LEVEL SYNTHETIC SCENARIOS

A. Objectives

To illustrate the ability of our simulator to generate ship
trajectories that can contain falsified or spoofed messages (but
also to prove the functioning of our channel model based on
the Friis model), five scenarios were created and observed, and
are displayed on Fig. 4.
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Fig. 4. Simulated trajectories on the FPGA.

Among these scenarios, three reproduce a ship trajectory
without falsification or spoofing of AIS messages, and two
with falsification and spoofing. The ship 4 on Fig. 4 reproduces
the type of spoofed reported in [19]. The ship 5 on Fig. 4
has a falsified trajectory reproducing the type of falsification
reported in [20]. In this reference, a fishing vessel falsifies its
position to fish in a restricted area. For all these trajectories,
Channel added white Gaussian noise to the signal to reach a
SNR equal to 10dB. To simulate these five scenarios at the
same time, five Emitter components were implemented on a
single FPGA, in addition to one Channel and one Receiver
component.

B. Simulation results and analysis

We compare, in Table II, software’s simulation time to
hardware’s simulation time for the five scenarios presented
above. The software was a standard Intel Core I5 processor
at 1.7GHz with 16Gb RAM, and the hardware, the FPGA
presented above. During every simulation, 1000 messages are
received by the Receiver successively from every Emitter.
Other simulations, which simulated different trajectories, were
done; one required only one Emitter and another ten. The

TABLE II
SIMULATION TIMES OBTAINED ON FPGA AND PROCESSOR.

Nb. Emitters Soft. Hard. Gain FPGA usage
1 576s 3.14s 183 7%
5 856s 3.14s 272 24%
10 1210s 3.14s 386 46%

22 (pred.) 2050s 3.14s 654 98%

simulation times are displayed in Table II. To run these
simulations, Emitter components were added or removed from
the FPGA platform, this is why the FPGA usage rate is
changing. Considering the results from these three simulations,
we predict that the maximum number of Emitters that can be
emulated at the same time in the FPGA is 22 because in this
case the occupancy percentage of BRAM reaches 98%.

Performance gain is already x183 compared to software
simulation for only one Emitter. The speed-up gain was ob-
tained without applying optimization directives to the code of
the blocks such as loop unrolling or pipeline, which still leaves
a speed-up margin for the FPGA simulation. Only dataflow
directive is applied to the code as mentioned in methodology
part II. These directives pipeline the components execution.
The FPGA acceleration reduces the simulation times from tens
of minutes to only 3.14s. Moreover, although the number of
components Emitter was increased, the hardware simulation
time remained the same: the Emitter components were exe-
cuted in parallel. This is why for 22 Emitter the performance
gain is predicted to be 654. This fact shows the interest of the
scalable aspect of FPGAs.

V. DISCUSSION

Our CPS design method is restricted to CPS whose architec-
ture is an directed acyclic graph. Outside this type of architec-
ture, Vitis HLS cannot synthesize systems. For instance, in our
application case, the AIS transponders communicate with each
other according to the TDMA (Time-division multiple access)
method whose architecture is a complete undirected graph
with as many nodes as boats. This TDMA method cannot be
directly synthesized by Vitis HLS to be simulated on FPGA.
Thus, other high-level synthesis tools, allowing actor-based
modeling without limit in the complexity of the architecture,
using, among others pure dataflow semantics [21], are to be
experimented.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of FPGA as a simulation
platform for complex cyber-physical systems. Our case study
focuses on a set of AIS transponders operating in a maritime
environment simulated. The progress of HLS tools and the
increasing capabilities of FPGAs make such an approach
possible. Compared to a pure software simulation, we have
shown remarkable performance gains (up to a x654 accelera-
tion factor). The user can interact with the simulator changing
the environmental parameters, monitoring the simulation (start,
stop, step-by-step) and observing the signals exchanged by
the components. We point out some limitations of classical



HLS tools, that call for alternatives HLS approaches to be
able to simulate a wide range of CPS architectures. Our paper
demonstrates that FPGA can be seen as a platform of choice
for the integration of multi-domain systems.
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as reconfigurable hardware enabling cyber-physical systems,” in 2015
IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), pp. 1–8, IEEE, 2015.

[15] “Xilinx Announces General Availability of VU19P, World’s Largest
FPGA.”

[16] I. McGregor, “The relationship between simulation and emulation,” in
Proceedings of the Winter Simulation Conference, vol. 2, pp. 1683–1688,
IEEE, 2002.

[17] J.-C. L. Lann, “Reggae : FPGA register map VHDL generation,” Jan.
2022. original-date: 2022-01-27T14:54:25Z.

[18] F. Mazzarella, M. Vespe, A. Alessandrini, D. Tarchi, G. Aulicino, and
A. Vollero, “A novel anomaly detection approach to identify inten-
tional ais on-off switching,” Expert Systems with Applications, vol. 78,
pp. 110–123, 2017.

[19] M. Balduzzi, A. Pasta, and K. Wilhoit, “A security evaluation of ais
automated identification system,” in Proc. of the 30th annual computer
security applications Conf., pp. 436–445, 2014.

[20] F. Katsilieris, P. Braca, and S. Coraluppi, “Detection of malicious ais
position spoofing by exploiting radar information,” in Proc. of the 16th
Int. Conf. on information fusion, pp. 1196–1203, IEEE, 2013.

[21] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,
“Synthesizing hardware from dataflow programs,” Journal of Signal
Processing Systems, vol. 63, no. 2, pp. 241–249, 2011.


