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Abstract

Equivariance of neural networks to transformations helps to improve their performance and
reduce generalization error in computer vision tasks, as they apply to datasets presenting
symmetries (e.g. scalings, rotations, translations). The method of moving frames is clas-
sical for deriving operators invariant to the action of a Lie group in a manifold. Recently,
a rotation and translation equivariant neural network for image data was proposed based
on the moving frames approach. In this paper we significantly improve that approach by
reducing the computation of moving frames to only one, at the input stage, instead of re-
peated computations at each layer. The equivariance of the resulting architecture is proved
theoretically and we build a rotation and translation equivariant neural network to process
volumes, i.e. signals on the 3D space. Our trained model overperforms the benchmarks in
the medical volume classification of most of the tested datasets from MedMNIST3D.

Keywords: Lie groups, Group equivariance, 3D image classification, Moving frames

1. Introduction

There is currently a great interest in building machine learning methods that respect sym-
metries, such as translation, rotation and other physical gauge symmetries. Convolutional
neural networks (CNN) are translation equivariant neural networks that have shown great
success in a wide variety of tasks related to image processing and understanding. Recent
work has shown that designing group-equivariant CNNs that exploit additional symmetries
via group convolutions has even further increased their performance (Cohen and Welling,
2016; Worrall et al., 2017; Weiler et al., 2018; Cohen et al., 2019; Bogatskiy et al., 2020).

The method of moving frames (Cartan, 1935; Fels and Olver, 1999), initially proposed
by Élie Cartan to produce differential invariants, was recently applied to define SE(2)-
equivariant convolutional neural networks, i.e. CNNs equivariant to rotations and transla-
tions in 2D, by Sangalli et al. (2022). The network constructed with differential invariants
provides an alternative to group convolution when constructing group equivariant networks.
In this work, we build on the recent work of Sangalli et al. (2022) to develop a SE(3)-
equivariant neural network. We propose a new approach that uses differential invariants on
3D CNNs by computing a moving frame from the input of a neural network and applying it
to Gaussian n-jets in order to obtain equivariant architectures for SE(3). This technique is
leveraged to propose a novel CNN architecture that we call SE(3)-Moving Frame Network
(SE3MovFNet) 1. The new architecture can be applied to volumetric data. Empirically, we

1. its implementation can be found at https://github.com/mateussangalli/MovingFrameNetwork
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show that SE3MovFNet improves the performance of competitive CNNs on a collection of
datasets for 3D medical image classification problems.

The paper is organized as follows: We discuss related work in the literature in Section
2 and we introduce concepts of group equivariance, as well as some basics on the method
of moving frames, in Section 3. In Section 4 we derive a moving frame in SE(3) and show
how one can obtain an equivariant neural network architecture from a moving frame and
in Section 5 we introduce the SE3MovFNet based on the moving frames method In Section
6 we validate de SE3MovFNet in a task of medical volume classification and overperform
most of the benchmarks. We end the paper with concluding remarks in Section 7.

2. Related Work

In the literature of group-equivariant networks there exist many approaches to plane rotation-
equivariant networks, for example, Cohen and Welling (2016); Worrall et al. (2017); Weiler
et al. (2018). Also on 2D rotation-equivariant networks, some approaches are based on
differential operators (Shen et al., 2020; Jenner and Weiler, 2022; Sangalli et al., 2022).
In particular, the current approach is an extension of the moving frames-based SE(2)-
equivariant neural network in Sangalli et al. (2022). In the domain of 3D CNNs, two of the
possible data representations are point clouds and volumetric data. Many approaches that
seek equivariance to space rotations are for CNNs that process point cloud data (Thomas
et al., 2018; Chen et al., 2021; Melnyk et al., 2021; Thomas, 2020).

Our work focuses on defining SE(3)-equivariant networks for data based on voxels, i.e.,
volumetric data. Some other approaches that aim to achieve this result are: Worrall and
Brostow (2018) achieves equivariance to a discrete subgroup of SO(3); Weiler et al. (2018)
uses a steerable filter basis based on spherical harmonics to learn general SE(3)-equivariant
filters and Shen et al. (2022) does the same thing using filters based on partial differential
operators. Our approach uses differential operators like Shen et al. (2022) but instead of
using a steerable filter basis we apply a moving frame to invariantize the network, which
consists of evaluating each neighborhood with a rotation computed at the first layer.

3. Technical Background

In this section we introduce both the concepts of group action and equivariance and the
basic concepts behind the method of moving frames. The final goal of the paper is to
propose a class of group-equivariant networks based on the method of moving frames.

3.1. Group Actions and Equivariance

Given a group G and a set M, a group action2 of G on M is a map π : G ×M → M
such that ∀x ∈ M π(e,x) = x where e is the neutral element of G and ∀g, h ∈ G, ∀x ∈ M
π(g, π(h,x)) = π(g · h,x). We denote for all g ∈ G, x ∈ M, g · x := π(g,x). If G is a Lie
group, M a smooth manifold and π is a smooth map, then π is a Lie group action. See
Appendix A for properties of group actions. In this paper we have an implicit assumption
of locality of the group action. A local Lie group action is a smooth map π : U →M where

2. Here we deal only with left group actions but right group actions can have analogous results.
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U ⊆ G ×M is an open set such that {e} ×M ⊆ U , satisfying ∀x ∈ M, π(e,x) = x and
∀g, h ∈ G,x ∈M s.t. {(h,x), (g, π(h,x)), (g ·h,x)} ⊆ U , we have π(g, π(h,x)) = π(g ·h,x).
We use the same notation as group actions for local group actions.

Given sets M and N acted upon by G an operator φ : M → N is equivariant if
∀g ∈ G, x ∈ M, φ(g · x) = g · φ(x). We assume that the action on M is not the identity
to avoid trivial cases. Invariance is a special case of equivariance where the action on N is
the identity, i.e. φ(g · x) = φ(x).

Given manifolds X and Y , when G acts on X with actions we define the action on the
space of smooth functions C∞(X,Y ) as, for all f ∈ C∞(X,Y ), x ∈ X, g ∈ G

(g · f)(x) := f(g−1 · x). (1)

As this paper is focused on exploring equivariant networks on signals, this is the type of
action we seek equivariance to. Since we are interested in rotations in the input domain we
do not consider actions that change the output of the function f , but the general method
presented in this paper is capable of dealing with that.

3.2. The Method of Moving Frames

Moving Frames. LetM be an m-dimensional smooth manifold and G be an r-dimensional
Lie group that acts on M. A moving frame (Fels and Olver, 1999) is a G-equivariant map
ρ :M→ G which in particular satisfies, ∀z ∈M, g ∈ G

ρ(g · z) = ρ(z) · g−1. (2)

A moving frame ρ induces the function z 7→ ρ(z) · z which is constant over each orbit
Oz = {g · z, g ∈ G}. Namely, ∀z ∈M, g ∈ G, ρ(g · z) · g · z = ρ(z) · z.
Invariantization. The main interest of having a moving frame from the perspective of
equivariant deep learning is the invariantization it defines. Given an operator F :M→N ,
its invariantization is defined as ∀z ∈ M, ı[F ](z) := F (ρ(z) · z). The invariantization of
an operator is invariant with respect to the group action as ı[F ](g · z) = ı[F ](z) for every
z ∈ M, g ∈ G. Applying the invariantization to an invariant operator returns the same
operator, therefore the set of invariant operators is the set of invariantized operators.

In our case, objects of interest (volumes, images, etc) are functions f : X → Y where
X = Rp and Y = Rq, p, q ∈ N∗. They can be modeled as submanifolds of the manifold
M = X × Y by identifying them by their graph where each point has coordinates (x, u) =
(x, f(x)). In that case, if we can decompose the action of G into an action on X and an
action on Y , then we can associate each invariant operator on M to an equivariant one on
the space of functions f : X → Y (see appendix B). We use this framework in this paper.
Cross-Section. A cross-section to the group orbits is a submanifold K ⊆M of dimension
complementary to the group dimension i.e. dimK = m − r that intersects each orbit
transversally3. If the intersection happens at most once it is a regular cross-section. If G
acts freely and regularly on M and given a regular cross-section K to the group orbits,
then for each z ∈ M there is a unique element gz ∈ G such that gz · z ∈ K. The function
ρ :M→ G mapping each z to gz is a moving frame (Fels and Olver, 1999; Olver, 2007).

3. The tangent spaces of K and of the orbit Oz span the tangent space ofM at the intersection K ∩ Oz.
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Jet-Bundle. The n-th order jet bundle (Olver, 1993), or jet-space, Jn(M) is an extension of
a manifoldM given by equivalence classes of functions. For us the jet bundle is particularly
useful when the group action is not free on M, as prolonging the manifold to a sufficiently
high-order jet bundle and extending the group action to this space can result in a free
action, enabling the definition of a moving frame.

In this section we define the jet-space for spaces of the formM = X×Y where X = Rp,
Y = R. Given a multi-index I = (i1, · · · , ip) ∈ Np, we will note |I| =

∑p
k=1 ik its modulus,

and let us denote by Ipn = {I ∈ Np, |I| ≤ n} the set of multi-indices in Np of modulus at

most n ∈ N. For x ∈ X and n ∈ N, we introduce J (n)
x f the operator mapping C∞(X,Y )

to Y
(n)
p = R(n+pn ), and defined for any f ∈ C∞(X,Y ) by J (n)

x (f) =
(
∂If(x)

)
I∈Ipn

=(
∂i1∂i2 . . . ∂ipf(x)

)
(i1,...,ip)∈Ipn

. Then for any u(n) =
(
uI
)
I∈Ipn

∈ Y
(n)
p and any x ∈ X,

(J (n)
x )−1(u(n)) is an equivalence class for the equivalence relation f1 ∼ f2 ⇐⇒ J (n)

x (f1) =

J (n)
x (f2). This class is represented in particular by the polynomial function defined for any

t ∈ X by

u(t) =
∑

I=(i1,...,ip)∈Ipn

uI
I!

(t1 − x1)i1 . . . (tp − xp)ip , (3)

with I! = i1!i2! . . . ip!. It is the Taylor polynomial of order n at x of any function of the
class. The nth-order jet space of M, noted Jn(M), is the union of all such equivalence

classes, and can therefore be indentified to X × Y
(n)
p . According to the above, for an

element (x, u(n)) = (x, (uI)I∈Ipn), each uI is also a partial derivative of u evaluated in x,
namely uI = ∂Iu(x). For example, if p = 3 and x = (x, y, z), u(0,0,0) = u(x), u(1,0,0) =
∂u
∂x(x) = ux(x), u(1,1,0) = ∂2u

∂x∂y (x) = uxy(x) and so on. In practice we will often use these
partial derivative notations to identify elements of the jet space, and omit the variable as
it is explicit from the first component. For example in the case p = 3, n = 2, an element
z ∈ M = J0(M) is identified by z = (x, u) = (x, y, z, u) and an element z(2) ∈ J2(M) by
z(2) = (x, u(2)) = (x, y, z, u, ux, uy, uz, uxx, uxy, uyy, uxz, uyz, uzz).
Prolongation of the Group Action. Because smooth functions at a point x can be
associated to an element of the jet-space and vice-versa, it makes sense that the actions on
functions induces an action in the jet-space. This action is computed by associating an n-jet
to a function and computing its derivatives at the transformed point g · x. Formally, given

a point (x, u(n)) ∈ Jn(M), let u ∈ C∞(X,Y ) be a function such that u(n) = J (n)
x u, without

loss of generality we can choose u to be the polynomial (3). We define the prolongation of the
action of G onM to the jet-space Jn(M), given by, for g ∈ G and z(n) = (x, u(n)) ∈ Jn(M)

g · z(n) = g · (x, u(n)) := (g · x,J (n)
g·x (g · u)). (4)

The expression (4) is well defined as it can be verified that it does not depend on the choice
of u Olver (1993) and is a group action. The intuition behind evaluating the derivatives
at the point g · x, is that the value in u at x is the same as the value of g · u at g · x, i.e.
(g · u)(g · x) = u(g−1 · g · x) = u(x), however its n-jet is not the same (see Figure 1).

Fundamental invariants. Invariantizations of operators in the jet-space are referred
to as differential invariants and the invariants4 ı[xi] ı[uI ], 1 ≤ 1 ≤ p, 0 ≤ |I| ≤ n are called

4. Here we abuse notation and denote ı[xi] as the invariantization of the projection (x, u(n)) 7→ xi and we
denote ı[uI ] the invariantization of the projection (x, u(n)) 7→ uI .
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fundamental invariants because every differential invariant of order n can be expressed as
a functional combination F (ı[x1], . . . , ı[xp], (ı[uI ])0≤|I|≤n) (Olver, 2007). Conversely every
function of the fundamental invariants is a differential invariant.

4. Moving Frame and Differential Invariants for SE(3) on Volumes

The group SE(3) of rotations and translations in dimension three, is the semi-direct product
of Lie groups SO(3) (rotations) and R3 (translations) and since both are 3-dimensional, then
SE(3) is a 6-dimensional Lie group. Here a volume refers to a signal on a 3-dimensional
Euclidean domain, i.e. functions of the type f : R3 → Rq.

We derive SE(3)-equivariant operators on volumes using the method of moving frames.
Volumes are represented as submanifolds of M = R3 × R. We consider the case q = 1, but
keeping in mind that for higher dimensions it is just a matter of channel-wise application.
SE(3) acts on M by rotating and translating the spatial coordinates x, i.e.

∀(R,v) ∈ SE(3),∀(x, u) ∈M, πR,v(x, u) = (R · x + v, u), (5)

If we proceed to extend M to the first-order jet space we will find that SE(3) does not
act freely on J1(M). Indeed, the orbit of a point (x, u, ux, uy, uz) is the Cartesian product of

R3, {u} and a sphere with radius
√
u2
x + u2

y + u2
z, hence it has dimension 5 6= dim SE(3) = 6.

Therefore it is necessary to prolong the action to the second order jet-space in order to be
able to obtain a moving frame. In this section we use a matrix notation for compactness:
we denote ∇u = [ux, uy, uz]

T and

Hu =

uxx uxy uxz
uxy uyy uyz
uxz uyz uzz

 . (6)

In that way, the coordinates of the second order jet-space are identified by z(2) = (x, u(2)) =
(x, u,∇u,Hu).

We compute the prolonged action following (4). Choosing some u ∈ C∞(X,Y ) such

that u(n) = J (n)
x u the action becomes (R,v) · (x, u(n)) = (Rx + v,J (n)

Rx+v((R,v) · u)). In
order to compute the second order jet-space, we compute the gradient and Hessian matrix
of the function ũ(t) = ((R,v) · u)(t) at the point x̃ = Rx + v. From (1) we have ũ(t) =
u((R,v)−1·t) = u(RT (t−v)), thus applying the chain rule we have∇ũ(t) = R∇u(RT (t−v))
and substituting t by x̃ we have ∇ũ(x̃) = R∇u(x). An example illustrating this in the two-
dimensional case is shown in Figure 1. A similar argument can be applied to show that
Hũ(x̃) = RHu(x)RT .

πR,v(z(2)) = πR,v(x, u,∇u,Hu) = (Rx + v, u,R∇u,RHuRT ). (7)

A similar reasoning can be applied to describe the coordinates of the higher order jet-spaces
as symmetric tensors and obtain the prolongation of the group action of higher order using
tensor contraction. This action decomposes into an action on X and an action on Y (n).

Now we can find a cross-section that will give us a moving frame. Because the cross-
section has to have a dimension complementary to the group, we use six equations to

5
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Figure 1: Example of the first order prolonged action of SE(2). The gradient and trans-
formed gradients evaluated at x and x̃ = (R,v) · x are related by the rotation R,
thus the first order action is also a rotation by R. In the second order case, the
same effect is observed on the eigenvalues of the Hessian matrix.

construct it. We also add some inequalities to ensure regularity. We propose K = {x =
0, uxy = uxz = uyz = 0, uxx ≥ uyy ≥ uzz, ux > 0, uy > 0} i.e. x = 0 and Hu is diagonal with
its diagonal sorted in non-increasing order. Hu is symmetric so we can find a P ∈ SO(3)5

such that PHuP T is diagonal, resulting in the moving frame ρ : (x, u) ∈M 7→ (P,−Px) ∈
G.

4.1. Equivariant Network from a Fixed Moving Frame

From the prolonged group action (7) we can deduce that the non-trivial fundamental in-
variants of the jet-space of order two are u, vTi · ∇u and λi, i = 1, 2, 3, where the vis are
the eigenvectors of Hu (columns of P ) and the λis are the eigenvalues of Hu (diagonal
coefficients of PHuP T ).

Following the approach of Sangalli et al. (2022), a two-layer SE(3)-equivariant neural
network can be obtained using invariants of order two as follows:

1. Let the volume f ∈ C∞(X,Y ) = C∞(R3,R) be the input to the network. First

we compute for all x, J (2)
x f = (f(x),∇f(x), Hf(x)), followed by the computation

of the fundamental invariants of order 2, which we will denote ı[z0
x] = ρ(x,J (2)

x f) ·
(x,J (2)

x f) = ρ(z0
x) · z0

x where z0
x = (x,J (2)

x f). Let ψ1 : Jn(M)→ Y1, where Y1 = Rq,
be a smooth map. In a deep learning context we assume ψ1 to be a multilayer
perceptron (MLP). The first layer φ1 : C∞(R3, Y ) → C∞(R3, Y1), Y1 = Rq, is given
by

φ1[f ](x) = ψ1(ı[z0
x]) = ψ1(ρ(z0

x) · z0
x) = ı[ψ1](z0

x) (8)

and it is SE(3)-equivariant, because ı[ψ1] is an invariant applied as in Appendix B.

5. if detP = −1 we can multiply one of its rows by −1 so that the new matrix has determinant 1.
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2. We build the second layer analogously. The output of the first layer is a signal

f1 = (f1
1 , f

2
1 , . . . , f

q
1 ) = φ1(f) : X → Y1. We compute the derivatives J (2)

1,xf =

(J (2)
x (f1

1 ), . . . ,J (2)
x (f q1 )) and the fundamental invariants (ı[z1,1

x ], · · · , ı[z1,q
x ]) where z1,j

x =

(x,J (2)
x (f j1 )) and ı[z1,j

x ] = ρ(z1,j
x ) · z1,j

x . Let ψ2 : (Jn(M))q → Y2 be a function given
by an MLP. The second layer can be computed from the output of the first by

φ′2[f1](x) = ψ2

(
ρ(z1,1

x ) · z1,1
x , · · · , ρ(z1,q

x ) · z1,q
x

)
. (9)

Again this function is equivariant because it is a function of invariants. The second
layer φ2 = φ′2 ◦ φ1 is equivariant because it is a composition of equivariant operators.
This process can be repeated to obtain L equivariant layers φl = φ′l ◦ φl−1, 0 ≤ l ≤ L.

Using the cross-section K, the approach described above requires the computation of
the gradient of eigenvectors and eigenvalues with respect to the matrix entries, and even
when using a closed polynomial expression to write these values, it can be quite challenging
numerically. With both the numerical or closed form expression of the eigenvectors, the
training of the networks resulted in exploding gradients in our early experimentation. We
propose a new solution which limits the computations to only one moving frame.

The alternative we propose is the following. Instead of computing the differential invari-
ants at each layer, involving the computation of the moving frame based on the previous
layer’s feature maps, we compute the moving frame based only on the network input signal
and compute all subsequent layers based on this moving frame.

Computing a two-layer network as in the previous example, f1 is obtained exactly as

in step 1. Now from f1 we compute J (2)
1,xf for all x. Given some ψ2 : (Jn(M))q → Rq′

(which again should be regarded as an MLP) we can obtain the output of the second layer.

In contrast to (9), however, we transform ρ(z1,j
x ) according to ρ(z0

x) = ρ(x,J (2)
x f), not to

itself obtaining
φ′2(f1)(x) = ψ2(ρ(z0

x) · z1,1
x , . . . , ρ(z0

x) · z1,q
x ). (10)

The next result shows that repeated application of (10) defines a SE(3)-equivariant network.

Proposition 1 Let X = R3, Y = Rq0 = R and Yl = Rql for 1 ≤ l ≤ L, assume that
SE(3) acts on X × Yl like (5). Let ρ : X × Y (n) → SE(3) be a moving frame. Let smooth
maps ψl ∈ C∞(Jn(M)ql−1 , Yl) for 1 ≤ l ≤ L. The functions φl : C∞(X,Y ) → C∞(X,Yl),

1 ≤ l ≤ L defined by, for all f ∈ C∞(X,Y ), x ∈ X, denoting z0
x = (x,J (n)

x f) and

zlx = (x,J (n)
x φl(f)j)0≤j≤ql, 1 ≤ l ≤ L,

φ1[f ](x) = ψ1

(
ρ
(
z0
x

)
· z0

x

)
(11)

and, for 1 < l ≤ L either

φl[f ](x) = ψl

(
ρ
(
z0
x

)
· zl−1

x

)
(12)

or (assuming ql = ql−1)

φl[f ](x) = φl−1[f ](x) + ψl

(
ρ
(
z0
x

)
· zl−1

x

)
(13)

are SE(3)-equivariant for all 1 ≤ l ≤ L. Where the of G on Jn(M)ql, 1 ≤ l ≤ L, is the
action on Jn(M) applied coordinate-wise.

7
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Proof See Appendix C.

Because the moving frame is fixed we do not have to compute the gradients of an eigen
decomposition, as the moving frame can be seen as an input to the network we only have to
compute the gradients of an eigen decomposition once, and the moving frame can be seen

as an input to the network. Indeed the expressions ρ(z0
x) · J (n)

x φl[f ] are linear with respect
to the values of of the l-th layer φl[f ].

5. Moving Frame Nets for SE(3) Acting on Volumes

5.1. Gaussian Derivatives

In order to compute the differential invariants we use Gaussian derivatives. Gaussian deriva-
tives have already been used in neural networks to produce structured receptive fields (Ja-
cobsen et al., 2016; Penaud-Polge et al., 2022; Sangalli et al., 2022) in CNNs. Gaussian
derivatives are used to compute the derivatives of a Gaussian filtered volume f : Ω → R
defined on a grid Ω ⊆ R3:

∂i+j+k

∂xi∂yj∂zk
(f ∗Gσ) = f ∗ ∂i+j+k

∂xi∂yj∂zk
Gσ = f ∗Gi,j,kσ . (14)

We refer to the Gaussian n-jet of a volume as the Gaussian derivatives of order ≤ n

f
(n)
σ := (f ∗Gi,j,kσ )0≤i+j+k≤n. We can also identify the Gaussian n-jet by tensor coordinates.

In particular for n = 2 we write f
(n)
σ = (fσ,∇σf,Hσf) where fσ = f ∗ Gσ, ∇σ is the

Gaussian gradient i.e. Gaussian derivatives of order one and Hσf is the Gaussian Hessian,
i.e. Gaussian derivatives of order two. Given a orthogonal matrix for each point P : Ω →
SO(3) (e.g. the matrices defining a moving frame) we denote the local prolonged action

by (P · f (n)
σ )(x), e.g. for n = 2 (P · f (n)

σ )(x) = (fσ(x), P (x)∇σf(x), P (x)Hσf(x)P (x)T ). If
f : Ω→ Rq is a multi-channel volume we can apply these operations channel-wise.

Gaussian filters are already rotation-equivariant, so their composition with a differential
invariant yields a rotation-equivariant operator. Moreover, they avoid the issues inherent
with discrete signals and reduce the negative impact sampling signals. These properties
motivate the use of Gaussian n-jets to compute the invariants.

5.2. Architecture

Based on the exposition on Section 4.1, the general idea of our SE(3)-equivariant architec-
ture, given an input signal f : Ω→ R where Ω ⊆ R3 is a three-dimensional grid, is to first
compute the matrices P : Ω→ SO(3) of the moving frame diagonalizing Hσ′f(x) for every
x, i.e., find P (x) such that P (x)Hσ′f(x)P (x)T . Even if all eigenvalues are different there
are at least two choices of normalized eigenvectors (i.e. columns of P (x)) corresponding
to each eigenvalue, therefore to remove ambiguity an keep a consistent moving frame, we
choose the option that has smallest angle with the gradient, and if the gradient norm is too
small we multiply that column by zero.

After computing P we compute blocks as shown in Figure 2(b), which we call SE3MovF
blocks, using the moving frame and the current features maps as input. The scale of each
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layer does not need to be necessarily the same, here we consider that a scale σ′ is used to
compute the moving frames and a scale σ to compute the derivatives at each block.

A simple form of a global architecture, which we call SE3MovFNet, is in Figure 2(a).
The feature maps of each block are summed like in residual networks, which mimics a PDE
scheme (Ruthotto and Haber, 2020). The network in Figure 2 is specialized for a fixed
number of channels, but by applying an 1×1×1 convolution between blocks we can increase
the number of feature maps of the next layer. Pooling may also be performed by subsampling
after a block. The global max-pooling at the end renders the equivariant architecture
invariant (Bronstein et al., 2021), which is interesting for a classification problem.
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(a) Architecture of a SE3MovFNet

input feature maps
fl : Ω→ Rq

moving frame
P : Ω→ SO(3)

Gaussian n-jets

f
(n)
l,σ : Ω→ Rq

(
n+3
n

) invariants

P · f (n)l,σ : Ω→ Rq
(
n+3
n

) output features maps
fl+1 : Ω→ Rq

voxelwise MLP

prolonged SE(3) action

(b) SE3MovF block

Figure 2: An example of a SE3MovFNet architecture for classification, along with its funda-
mental build block the SE(3) MovF block. The block P denotes the computation
of the moving frame matrices P : Ω→ SO(3).

6. Experiments

MedMNIST. MedMNIST (Yang et al., 2021a,b) is a collection of datasets for benchmark-
ing algorithms in medical image processings classification tasks. It contains six datasets of
28× 28× 28 volumes: AdrenalMNIST3D, NoduleMNIST3D, VesselMNIST3D, SynapseM-
NIST3D, OrganMNIST3D, FractureMNIST3D. For more information see Yang et al. (2021b).

For each dataset we train a network with five SE3MovFr blocks with 16, 16, 32, 32, 64
filters, using a stride of two in the second block. Voxelwise MLPs are computed as two
subsequent 1× 1× 1 convolutions followed by batch normalization (both) and leaky ReLU
(only the first) and with the same number of neurons. We also train a CNN baseline with
the same number of filters where each block consists of two 3× 3× 3 convolutions followed
by batch normalization and leaky ReLU. Input volumes are resized to 29× 29× 29 so that
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Table 1: Accuracies on the MedMNIST dataset compared to the benchmarks.

OrganMNIST3D NoduleMNIST3D FractureMNIST3D AdrenalMNIST3D VesselMNIST3D SynapseMNIST3D

ResNet18 + 3D (Yang et al., 2021b) 0.907 0.844 0.508 0.721 0.877 0.745
ResNet18 + ACS (Yang et al., 2021b) 0.900 0.847 0.497 0.754 0.928 0.722
ResNet50 + 3D (Yang et al., 2021b) 0.883 0.847 0.484 0.745 0.918 0.795

ResNet50 + ACS (Yang et al., 2021b) 0.889 0.841 0.517 0.758 0.858 0.709
auto-sklearn (Yang et al., 2021a) 0.814 0.914 0.453 0.802 0.915 0.730

3DMedPT (Yu et al., 2021) - - - 0.791 - -

CNN baseline (ours) 0.927 0.871 0.528 0.824 0.949 0.775
SE3MovFrNet (ours) 0.745 0.871 0.615 0.815 0.953 0.896

CNN baseline, augmented (ours) 0.602 0.856 0.564 0.820 0.933 0.803
SE3MovFrNet, augmented (ours) 0.756 0.875 0.636 0.830 0.958 0.894

subsampling by a factor of two is equivariant by rotations of 90◦ around the coordinate-
axes. Overall results can be seen in Table 1. There we can see that the SE3MovFNet
surpassed most of the benchmarks. Results of testing the models on rotated test sets are
seen in Figure 3 and Appendix E. In those results we observe it has perfect invariance for
90◦ rotations, evidenced by the periodicity of results, and a generally better equivariance
than the CNN baseline with or without augmentation. It suffers, however, a significant loss
for orientations not multiple of 90◦.

CNN CNN augmented SE3MovFNet SE3MovFNet aug.
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Figure 3: Predictions on the FractureMNIST3D on the test set rotated by different angles
around each of the coordinate axis.

7. Conclusions

We have developed and successfully applied a SE(3)-equivariant architecture, SE3MovFNet,
for a classification task in medical image processing. The proposed SE3MovFNet is an
extension of a previous approach for SE(2)-equivariant networks (Sangalli et al., 2022) that
corrects some of its numerical issues. The performance of our network is overall positive, as
it attained the best results in 4 of the 6 evaluated datasets of MedMNIST and maintains a
reasonable accuracy when images are rotated. Future work will explore other symmetries
on other manifolds like for example scale and rotation symmetry simultaneously for images
or volumes.
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Appendix A. Properties of Group Actions

If G is a Lie group acting on a manifold M, we define the orbit passing through a point
z ∈M as Oz as the submanifold

Oz = {g · z|g ∈ G}. (15)
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We can classify the action of a Lie group as

• semi-regular if all the group orbits have the same dimension;

• regular if it is semi-regular and each point z ∈M as an arbitrarily small neighborhood
U containing z such that the intersection of U and each orbit is connected;

• free if for g ∈ G, z ∈M, g · z = z =⇒ g = e where e is the identity on G.

• locally free if there exists a neighborhood U ⊆ G containing e satisfying ∀g ∈ U ,
z ∈M g · z = z =⇒ g = e.

Appendix B. From Invariants to Equivariant Operators

We assume we are in the context where we compute the invariantization of operators F :
M1 → M2, with M1 = X × Y and M2 = Z, and the action G can be decomposed into
actions in X and Y , i.e.

g · (x, u) = (g · x, g · u), (16)

for all g ∈ G, (x, u) ∈ X×Y . An equivariant operator inM1 can be related to an equivariant
one in the space of functions Y X . Suppose ψ :M1 = X × Y → Z is G-invariant, then take
ψ̄ : Y X → ZX to be ψ̄[f ](x) = ψ(x, f(x)), for all x ∈ X, f ∈ Y X . Assuming that the
action on Y is the identity g · u = u for u ∈ Y and the same for Z we have

ψ̄(g · f)(x) = ψ(x, (g · f)(x)))
= ψ(x, f(g−1 · x)]
= ψ(g−1x, f(g−1 · x)
= ψ̄(f)(g−1 · x) = [g · ψ̄(f)](x),

(17)

therefore g · ψ̄(f) = ψ̄(g · f) for all g ∈ G, f ∈ Y X . In other words, an invariant operator in
the Cartesian product X × Y to Z induces an equivariant operator taking functions in Y X

to functions in ZX .
The same reasoning can be applied if ψ : Jn(M1) = X × Y (n) is an invariant on the

Jet-space and ψ̄ : C∞(X,Y ) → C∞(X,Z) is the operator ψ̄[f ](x) = ψ(x,J (n)
x f) to show

that ψ̄ is G-equivariant. We have

ψ̄(g · f)(x) = ψ(x,J (n)
x (g · f))

= ψ(g−1 · (x,J (n)
x (g · f))) by invariance of ψ

= ψ(g−1 · x,J (n)
g−1·x(g−1 · g · f)) by (4)

= ψ(g−1 · x,J (n)
g−1·xf)

= ψ̄(f)(g−1 · x) = [g · ψ̄(f)](x),

(18)

Appendix C. Proof of Proposition 1

Proof For l = 1 we have

φ1(g · f)(x) = ψ1

(
ρ(x,J (n)

x (g · f)) · (x,J (n)
x (g · f))

)
.

13
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Noting y = g−1 · x and recalling (7), g · (x,J (n)
x f) = (g · x,J (n)

(g·x)(g · f)), we can simplify

(x,J (n)
x (g · f)) = (g · y,J (n)

(g·y)(g · f)) = g · (y,J (n)
y f) = g · z0

y. (19)

Hence,

φ1(g · f)(x) = ψ1

(
ρ(g · z0

y) · (g · z0
y)
)

= ψ1

(
ρ(z0

y) · z0
y

)
by invariance of z 7→ ρ(z) · z

= φ1(f)(y) by (11)
= φ1(f)(g−1 · x)
= (g · φ1(f))(x) by definition of the action on functions.

(20)

Therefore, φ1(g · f) = g · φ1(f).

Now, for l > 1, we have for the case (12),

φl(g · f)(x) = ψl

(
ρ(x,J (n)

x (g · f)) · (x,J (n)
x φl−1(g · f)j)1≤j≤ql

)
. (21)

As shown earlier, (x,J (n)
x (g · f)) = g · z0

y with y = g−1 · x. Similarly, assuming that φl−1 is
equivariant,

(x,J (n)
x φl−1(g · f)j) = g · (y,J (n)

y φl−1(f)j)) = g · zl−1,j
y , (22)

so that

φl(g · f)(x) = ψl

(
ρ(g · z0

y) · (g · zl−1,j
y )1≤j≤ql

)
. (23)

Since furthermore ρ(g · z0
y) = ρ(z0

y) · g−1 by definition of a moving frame, we finally get

φl(g · f)(x) = ψl

(
ρ(z0

y) · g−1 · (g · zl−1,j
y )1≤j≤ql

)
= ψl

(
ρ(z0

y) · (zl−1,j
y )1≤j≤ql

)
= φl(f)(y) = φl(f)(g−1 · x)
= (g · φl(f))(x).

(24)

As for the case (13),

φl(g · f)(x) = φl−1(g · f)(x) + ψl

(
ρ(x,J (n)

x (g · f)) · J (n)
x φl−1(g · f)

)
= φl−1(f)(y) + ψl

(
ρ(z0

y) · zl−1
y

)
like above, with y = g−1 · x

= φl(f)(y)
= (g · φl(f))(x).

(25)

Therefore in all cases φl(g · f) = g · φl(f) provided this is true for φl−1, and the proposition
follows by induction.
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Appendix D. Complexity Analysis

Let us assume that the input is given as a signal f : Ω → R where Ω = {0, . . . ,W − 1} ×
{0, . . . ,H − 1} × {0, . . . , D − 1} is a grid of size W ×H ×D. Moreover, let us assume that
we compute the moving frame using Gaussian derivatives of scale σ′ and the derivatives at
other layers using σ, and that the discrete Gaussian derivative filters all have dimension
w′ × w′ × w′, for the moving frame and w × w × w for the other layers.

The computation of the moving frame is done as follows:

• compute all Gaussian derivatives of order one and two of f . Gaussian derivatives are
separable, thus each one can be obtained by three convolutions with a filter of size w,
which have cost a cost of O(WHDw′) floating point operations (flops);

• compute the eigenvectors of the Hessian. Since the matrices have constant size 3× 3
we consider this operation is done in constant time for each pixel and this step is done
in O(WHD) flops.

So the computation of the moving frame is done in O(WHDw′) flops.
From there on if we compute a layer with q′ input feature maps and q output feature

maps:

• this layer computes
(
n+3
n

)
Gaussian derivatives for each input feature map, where n

is the order of differentiation used, resulting in O
((
n+3
n

)
q′wWHD

)
flops;

• to compute the prolonged group action, it can be verified that the equivariant group
action can be expressed as polynomial in the partial derivatives, and thus it takes
O
((
n+3
n

)
q′WHD

)
flops;

• the previous step is followed by an L-layer multi-layer perceptron at each voxel. As-
suming that the output dimension at each layer of the MLP is at most q we have that
this step takes O(q′q + Lq2) flops.

The complexity of a layer of SE3MovF is the sum of the complexity of each step, i.e. it can
be done in O

((
n+3
n

)
q′wWHD + q′q + Lq2

)
flops. In our experiments here we used n = 2

and L = 2 for all models, so the impact of those terms is very limited.

Appendix E. Additional Results

Figures 4 and 5 show some more results on MedMNIST3D.
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(d) AdrenalMNIST3D
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(e) AdrenalMNIST3D
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(f ) AdrenalMNIST3D
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Figure 4: Additional results of evaluation on rotated volumes on the coordinate axes for
NoduleMNIST3D, AdrenalMNIST3D and SynapseMNIST3D. In the first column
volumes are rotated around the Z-axis, In the second Y-axis and in the third
column X-axis.

.
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CNN CNN augmented SE3MovFNet SE3MovFNet aug.
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(d) VesselMNIST3D
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(f ) VesselMNIST3D

Figure 5: Additional results of evaluation on rotated volumes on the coordinate axes for Or-
ganMNIST3D, VesselMNIST3D. In the first column volumes are rotated around
the Z-axis, In the second Y-axis and in the third column X-axis.
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