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We propose a non-linear primal-dual algorithm for the
retrieval of phase shift and absorption from a single X-
ray in-line phase contrast, or Fresnel diffraction, image.
The algorithm permit to regularize phase and absorption
separately. We demonstrate that taking into account the
non-linearity in the reconstruction improves reconstruc-
tion compared to linear methods. We also demonstrate
that choosing different regularizers for absorption and
phase can improve the reconstructions. The use of the
Total Variation and its generalization in a primal-dual
approach allows to exploit the sparsity of the investi-
gated sample. On both simulated and real datasets, the
proposed NL-PDHG method yields reconstructions with
considerably less artifacts and improved the normalized
mean squared error compared to its linearized version.
© 2022 Optica Publishing Group
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Phase based X-ray imaging techniques have seen significant4

development recently due to the high sensitivity offered by5

phase contrast imaging [1], which has several applications in6

material science [2] and biomedical imaging [3, 4]. When us-7

ing sufficiently coherent X-ray beams, phase contrast can be8

achieved by letting the wave propagate in free space after in-9

teraction with the sample [5]. Using relatively short distance,10

the relationship between the absorption and phase shift induced11

by a sample and the diffraction pattern relies on the Fresnel12

diffraction theory. The phase information is lost and must be13

estimated from one or several of those diffraction patterns.Phase14

retrieval in this context is a non-linear ill-posed inverse problem.15

The single-distance problem, i.e. using a single image, is known16

to be more severely ill-posed than the classical problems with17

several diffraction patterns [6, 7].18

Solving this problem is non-trivial, therefore, several phase19

retrieval methods have been proposed to find suitable solu-20

tions. Direct inversion methods are based on the linearization21

of the forward model. These include the Transport of Intensity22

Equation (TIE) [8], Contrast Transfer Function (CTF) [9] and23

the Mixed approach [10]. Such analytical approaches are only24

valid under some assumptions on the imaging conditions, e.g.,25

a homogeneous object or relatively short propagation distance.26

Iterative methods are generally not limited by these constraints.27

Several iterative schemes have been proposed, either based on28

alternating projections on constraints imposed by the measured29

intensities and some prior knowledge in the object space [11] or30

variational methods which consist in minimizing a functional.31

Among these, we have the methods based on the Fréchet deriva-32

tive of the forward operator in conjunction with the Landweber33

algorithm.This kind of algorithm enables a flexible inclusion34

of priors, such as Tikhonov or sparsity regularization [12]. A35

regularized Newton method that can address any specific kind36

of phase retrieval problem has also been introduced [13]. In37

order to include prior such as the Total Variation (TV), primal-38

dual schemes like Alternating Direction Method of Multipliers39

(ADMM) have been studied for the phase retrieval problem but40

rely on linearization of the forward model, either using TIE [14]41

or CTF [15]. Few of the methods mentioned above propose to42

treat the single-distance problem without any assumption on43

the object composition or on the support of the object.44

More recently, data-driven methods based on neural net-45

works have been investigated. Several architectures have been46

proposed for the phase retrieval problem, the Mixed Scale Dense47

Networks [16] was trained in a supervised manner to retrieve48

absorption and phase from the diffraction patterns without any49

other information. The PhaseGAN [17] was trained in an unsu-50

pervised way, while taking into account the effect of the propa-51

gator. Both were able to retrieve the absorption and the phase52

from a single diffraction pattern. Although data-driven methods53

have yielded very good reconstructions, they often require a54

large database and the reconstruction quality is limited by the55

quality of the training data.56

In this work, we present a primal-dual approach based on57

the primal-dual hybrid gradient (PDHG) method [18] that can58

retrieve both the absorption and the phase with a single noisy59

diffraction pattern without homogeneity assumption or sup-60

port constraint. We first propose an iterative method for the61

linearized CTF problem and then generalize it to the nonlinear62

case. We exploit the possibility to use different priors for ab-63

sorption and phase to take into account the specificities of each64

quantity. Experiments performed on simulated and real data65

acquired show that working with Total Variation (TV) [19] and66

Total Generalized Variation of second order (TGV2) [20] visually67

improves the quality of the retrieved piecewise constant maps.68

For thin objects and straight-line propagation of the beam69
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along the propagation direction z, the interaction of coherent70

and parallel X-ray beam with matter can be described by a trans-71

mittance function [8]. Assuming plane wave illumination, the72

intensity measured at a distance D downstream of the object is73

given by the squared module of the convolution between the74

transmittance function and the Fresnel propagator. The forward75

model describing the nonlinear relationship between the absorp-76

tion B and phase shift φ induced by a sample and the diffraction77

pattern can thus be written as78

FD (B, φ) = |e−B+iφ ∗ PD|2 (1)

where PD(·) = 1
iλD exp

(
i π

λD | · |
2) is the Fresnel propagator. Es-79

timating the phase shift and the absorption from the intensity,80

or diffraction pattern, is called phase (and absorption) retrieval.81

The CTF [9] gives an approximation of the measured intensity at82

the detector, thus obtaining a linear relationship between inten-83

sity and phase, which is valid for weak absorption and slowly84

varying phase shift. For compactness, we can write the CTF as85

FCTF
D (B, φ) = 2

{
F−1 [− cos(αD), sin(αD)]F

}
(B, φ) (2)

with αD = πλD |f|2, where f denotes the coordinates in the86

Fourier domain. The CTF can retrieve a quantitative solution of87

B and φ, but several distances have to be used in order to cover88

as much of the Fourier domain as possible.89

Different approaches have been proposed to recover both the90

phase and absorption from a single distance [7, 12], but none91

of them proposed the use of prior such as the TV regulariza-92

tion while taking into account the nonlinearity. Previous works93

on phase retrieval showed that TV regularization improves the94

quality of the retrieved piecewise constant phase maps, but they95

only treated the linear case [14, 15]. To solve the non-linear96

problem with TV regularization, we propose an approach based97

on the PDHG method [18], which allows the use of TV regular-98

ization as well as its second order generalization (TGV2). The99

PDHG has been generalized to nonlinear settings in order to use100

nonlinear operators [21]. We then derive two algorithms, one101

based on CTF-linearization (PDHG-CTF) and a more general102

one, the nonlinear primal-dual hybrid gradient (NL-PDHG). Fol-103

lowing [22], we observe that instead of defining a regularization104

on the complex-valued function f = −B + iφ as in [7], since105

the contribution of attenuation and phase to the phase contrast106

image is different, it may be more interesting to use different107

regularization for B and φ respectively.108

Choosing the weighting parameters to be α, β, ν > 0, we then109

seek to solve the following minimization problem:110

min
B,φ

B>0,φ>0

{∥∥∥FCTF
D (B, φ)− Iobs

D

∥∥∥2

2
+ TGV2

(α,β)(B) + νTV(φ)

}
(3)

where Iobs
D is a noisy measured intensity at a distance D. The111

Total Variation is defined as TV(φ) = ||(∇φ)x||1 +
∣∣∣∣∣∣(∇φ)y

∣∣∣∣∣∣
1
,112

where ∇ is the discrete gradient operator, and the TGV2 can be113

formulated as follows [23]:114

TGV2
(α,β)(B) = min

v
{α ∥Dv∥1 + β ∥∇B− v∥1} (4)

where v = (v1, v2) is an auxiliary variable and D(v) = ∇v1+∇v2
2 .115

One can see how the α parameter forces v to have a sparse gra-116

dient and the β parameter penalizes the gradient ∇B to deviate117

only on a sparse set from v. The minimization problem Eq. (3)118

can be rewritten as:119

min
B,φ,v
{H [K (B, φ, v)] + G (B, φ, v)} (5)

Algorithm 1. PDHG-CTF

• σ0, τ0 such that σ0τ0|||K|||2 < 1, γ ∈ [0, 1] and Niter.
• initial guesses x0 = (B0, φ0, v0) and h0 =

(
h1

0, h2
0, h3

0, h4
0
)

for i = 0, . . . , Niter do:
hi+1 ← proxσiH∗ (hi + σiKxi)

xi+1 ← proxτiG (xi − τiK∗hi+1)

xi+1 ← xi+1 + γ (xi+1 − xi)
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Fig. 1. (a) Simulated intensity with Gaussian noise. (b) Experi-
mental intensity acquired at beamline NanoMAX.

with120

K (B, φ, v) =
[
FCTF

D (B, φ),D(v),∇B− v,∇φ
]

(6)
121

H
(

h1, h2, h3, h4
)
=

∥∥∥h1 − Iobs
D

∥∥∥2

2
+ α

∥∥∥h2
∥∥∥

1
+ β

∥∥∥h3
∥∥∥

1
+ ν

∥∥∥h4
∥∥∥

1
(7)

HereK is a linear operator, and G = χ>0 is an indicator function,122

it forces B and φ to be positive. Using this formulation, we define123

the PDHG-CTF algorithm (Alg. 1), which iterates over the triplet124

xi = (Bi, φi, vi), where Bi and φi represent the absorption and125

phase shift we are looking for, and vi is the variable from the126

formula for TGV (Eq. (4)), at the i-th iteration. Here, τi and σi127

are the step sizes of the primal and dual space, respectively, K∗128

denotes the adjoint operator of K, proxτiG the proximal operator129

of τiG and H∗ the conjugate of H. To ensure convergence [18]130

of algorithm 1, we can simply choose fixed step sizes σ, τ, e.g.,131

σi = σ and τi = τ for all i, as long as στ|||K|||2 < 1, where |||K|||132

is the operator norm. Originally designed for linear operator, the133

PDHG algorithm has been generalized to nonlinear cases [21].134

By replacing the linear operator FCTF
D (Eq. (2)) by the nonlinear135

operator FD (Eq. (1)) in the problem Eq. (3), we obtain a new136

minimization problem that we can solve with the NL-PDHG137

method. The only change from PDHG-CTF (Alg. 1) is that the138

operator K is now nonlinear, in this case K∗ has to be replaced139

by [K′(xi)]
∗ where K′(xi) is the Fréchet dérivative at the point140

xi, for which we have an explicit formula [12]. In order to ensure141

the convergence of the algorithm, the gradient of K has to be142

Lipschitz in a neighborhood of a solution, the initial iterate has143

to be close enough to a solution and the step sizes must satisfy144

the local inequalities [21]: σiτi sup k=0,1,...,i
{
|||K′(xk)|||2

}
< 1.145

In order to evaluate the algorihtms, a set of 3D object were146

generated by creating random combinations of one to ten ellip-147

soid or paraboloid shapes consisting of three different materials:148

gold (Au), palladium (Pd) and zinc (Zn). 2D projections of size149

512× 512 pixels were generated, yielding images of the phase150

and the absorption, which where subsequently used to gener-151

ate phase contrast images (Fig. 1) by using Eq. (1). The X-ray152

energy was set to 13 keV for a wavelength of λ = 0.095 nm,153

the propagation distance D = 10 mm and the pixel size to 24154

nm. As quantitative measures of reconstruction quality and to155

quantify the uncertainty of the reconstructions we generated a156

test dataset of 1 000 images to compare the methods. For com-157

parison, we used a projected gradient descent regularized with158
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Fig. 2. Evolution of average NMSE (%) of the different meth-
ods for 1 000 test images. The transparent areas correspond to
the standard deviation.

smooth total variation (TVϵ) [24], dubbed GD-TVϵ, where ϵ is159

a smoothing factor. The parameters for the different methods160

have been optimized by scanning in a wide interval to obtain161

a large decrease of the data term. For GD-TVϵ, the smooth-162

ing factor was set to 10−3, with different weighting parameters163

for B and φ, equal to 10−1 and 10−3, respectively. For both164

PDHG-CTF and NL-PDHG, we used the same set of parameters:165

α = 10−2, β = 5× 10−3, ν = 10−2 and the relaxation parameter166

γ = 1. A stopping criterion based on the pseudo-duality gap167

has been proposed, [21], but its calculation is expensive com-168

putationally. Therefore, we used a fixed number of iterations169

(Niter = 1 000) which was sufficient to achieve convergence (Fig.170

2). While theoretically, the initialization must be close enough171

to a solution to ensure convergence, in practice, the algorithm172

converged when initializing with (B0, φ0) = (0, 0). In the fol-173

lowing, the algorithm is always initialized at zero. For GD-TVϵ,174

convergence was not analyzed in detail, but a sufficiently small175

fixed step size of 0.01 was enough to obtain convergence ot the176

iterates in practice. For PDHG-CTF, setting the step sizes to177

σ = τ = 0.99|||K|||−1 ensured convergence in all cases. And for178

NL-PDHG, the step sizes were set to σi = τi = 0.99Li, where179

Li = supk=0,1,...,i
{
|||K′(xk)|||2

}
, and they were update every 50180

iterations, in order to satisfy the local inequalities. The methods181

was implemented in Python on a Intel(R) Core(TM) i7-10610U182

CPU at 1.80 GHz [25]. It took about 104 s for GD-TVϵ and 120 s183

for both PDHG-CTF and NL-PDHG methods.184

Reconstructed phase and absorption projections using a sim-185

ulated object are displayed in Fig. 3. The GD-TVϵ algorithm186

yielded the lowest quality reconstruction. Parts of the object are187

missing, possibly caused by the projection on positive values188

and the smooth approximation of TV. The PDHG-CTF method189

yielded somewhat better reconstructions, the main artefacts com-190

ing from the rather high attenuation induced by the object so that191

the weak attenuation and slowly varying phase assumptions192

of the CTF are not satisfied. As for NL-PDHG, the reconstruc-193

tions present a clear visual improvement at the contour level,194

in particular, the fringes on the edges of materials are no longer195

present for the absorption compared to the linearized method.196

For quantitative analysis, we computed the average normalized197

mean squared error (NMSE), the structural similarity (SSIM) and198

the peak SNR (PSNR) on the test dataset, the results are summa-199

rized in Tab. 1. The primal-dual approaches perform better than200

the gradient descent, and overall the NL-PDHG method has the201

best reconstructions on average. We can see that applying the202

same regularization to B and φ gives worse reconstructions, and203

that the absorption is better recovered with a TGV2 regulariza-204

tion while the phase has better results for the TV regularization.205

This can be explained by the fact that in our experiments, the206
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Fig. 3. Reconstructions from the simulated intensity.

retrieved absorption tends to have missing parts which, when re-207

constructed with TV leaves some staircasing effects. sing TGV2
208

regularization for B offers best performance, providing a good209

compromise between sharp boundaries and smoothness. While210

for φ, a better reconstruction cannot be expected by taking into211

account the second order. Moreover, if the considered objects has212

sufficiently weak attenuation and slowly varying phase, then213

the PDHG-CTF method converges faster. It needs a hundred214

iterations to obtain the same quality of reconstruction on average215

as the nonlinear version, which needs a thousand iterations. In216

contrast, if we consider the most absorbent object of the dataset,217

which has a maximum absorption equal to 0.882. Then the CTF218

approximation is less good and the linearized method gives a219

NMSE of 60.5 and 75.7 while NL-PDHG gives a NMSE of 47.9220

and 61.4 for the absorption and phase, respectively.221

To demonstrate the capability of this primal-dual framework,222

the methods were applied on experimental data acquired at223

beamline NanoMAX at the MAX IV synchrotron (Lund, Sweden)224

[26]. The diffraction pattern (2 048× 2 048 pixels) in Fig. 1 was225

obtained with an effective pixel size of 6 nm and a defocusing226

distance D = 20 mm. The X-ray energy was set to 13 keV for a227

wavelength of λ = 0.095 nm. The sample consists of a stack of228

Pd, Zn, Pd, Au metal layers with thicknesses of 21, 10, 11, 163 nm,229

respectively, deposited on a 1 mm-thick silicon nitride substrate,230

thus the expected values for absorption and phase are 0.0483 and231

0.217. The execution time was 37 min for GD-TVϵ and 50 min232

for the primal-dual methods, after 1 000 iterations. As shown233

in Fig. 4, the GD-TVϵ algorithm yields the same problems of234

missing parts of the object as on simulated data in the recovered235

phase and absorption. Both primal-dual approaches seem to236

retrieve well the absorption, while reducing spurious fringes in237

the background, and the recovered phases are close to artifact-238

free. Note that here the object is not very absorbing since it is239

quite thin. Therefore, the linearized method also yields a very240

good reconstruction. And since the object is piecewise constant,241

TV and TGV type regularizations are well suited.242

We presented two algorithms based on a primal-dual ap-243

proach for the reconstruction of both the absorption and phase244

from a single diffraction pattern. The algorithms permit the use245

of different regularizations for absorption and phase, which was246

shown to improve reconstructions by selecting regularizations247

that take into account the way the attenuation and phase con-248

tributes to the phase contrast image. In addition, we observed249

the significant contribution of the nonlinear information of the250

problem, this suggests that the NL-PDHG algorithm could be251

applied in a wide variety of cases where linear methods would252

fail. A drawback of the algorithms is that three regularization pa-253

rameters must be chosen. The choice of parameters was shown254

to be robust by application to a large set of images, however. The255

method could be used for samples that have higher phase over256
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Table 1. Average NMSE, SSIM, PSNR and standard deviation for 1 000 test images using different strategies for regularization.

Regularization NMSE (in %) SSIM (in %) PSNR

Absorption Phase Absorption Phase Absorption Phase Absorption Phase

GD-TVϵ TVϵ TVϵ 37.5 (17.4) 36.4 (18.2) 99.6 (0.440) 95.2 (6.95) 65.2 (9.43) 50.5 (11.1)
PDHG-CTF TGV2 TV 32.1 (12.9) 29.6 (20.9) 99.8 (0.337) 92.9 (7.87) 68.2 (9.10) 52.6 (8.19)
NL-PDHG TGV2 TV 29.2 (14.8) 23.6 (12.6) 99.8 (0.237) 97.2 (3.12) 68.7. (8.63) 53.0 (6.40)
NL-PDHG TV TV 41.3 (23.9) 25.6 (14.1) 99.7 (0.371) 94.8 (5.10) 65.0 (9.72) 52.8 (7.53)
NL-PDHG TGV2 TGV2 32.4 (19.6) 29.3 (14.8) 99.8 (0.249) 92.3 (6.58) 66.8 (8.00) 51.4 (6.51)
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Fig. 4. Reconstructions from the experimental intensity.

absorption ratio [27] or have more complex structures by ad-257

justing the parameters and increasing the number of iterations,258

but further investigation should be carried out for non-sparse259

objects, such as those encountered in biological soft-tissue imag-260

ing. The case of X-rays from a laboratory environment can be261

studied by considering the Kullback-Leibler divergence instead262

of l2 norm. A direct extension of this work would be to apply263

the proposed algorithms to phase contrast tomography [28], in264

particular when there is no assumption of multi-materials, con-265

sidering the 3D version of TV or generalized TV. Finally, the266

algorithms could be extended by using neural networks to learn267

the regularization parameters or the regularization itself.268
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