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We propose a non-linear primal-dual algorithm for the
retrieval of phase shift and absorption from a single X-
ray in-line phase contrast, or Fresnel diffraction, image.
The algorithm permit to regularize phase and absorption
separately. We demonstrate that taking into account the
non-linearity in the reconstruction improves reconstruc-
tion compared to linear methods. We also demonstrate
that choosing different regularizers for absorption and
phase can improve the reconstructions. The use of the
Total Variation and its generalization in a primal-dual
approach allows to exploit the sparsity of the investi-
gated sample. On both simulated and real datasets, the
proposed NL-PDHG method yields reconstructions with
considerably less artifacts and improved the normalized
mean squared error compared to its linearized version.
© 2022 Optica Publishing Group
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Phase based X-ray imaging techniques have seen significant
development recently due to the high sensitivity offered by
phase contrast imaging [1], which has several applications in
material science [2] and biomedical imaging [3, 4]. When us-
ing sufficiently coherent X-ray beams, phase contrast can be
achieved by letting the wave propagate in free space after in-
teraction with the sample [5]. Using relatively short distance,
the relationship between the absorption and phase shift induced
by a sample and the diffraction pattern relies on the Fresnel
diffraction theory. The phase information is lost and must be
estimated from one or several of those diffraction patterns.Phase
retrieval in this context is a non-linear ill-posed inverse problem.
The single-distance problem, i.e. using a single image, is known
to be more severely ill-posed than the classical problems with
several diffraction patterns [6, 7].

Solving this problem is non-trivial, therefore, several phase
retrieval methods have been proposed to find suitable solu-
tions. Direct inversion methods are based on the linearization
of the forward model. These include the Transport of Intensity
Equation (TIE) [8], Contrast Transfer Function (CTF) [9] and
the Mixed approach [10]. Such analytical approaches are only
valid under some assumptions on the imaging conditions, e.g.,
a homogeneous object or relatively short propagation distance.
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Iterative methods are generally not limited by these constraints.
Several iterative schemes have been proposed, either based on
alternating projections on constraints imposed by the measured
intensities and some prior knowledge in the object space [11] or
variational methods which consist in minimizing a functional.
Among these, we have the methods based on the Fréchet deriva-
tive of the forward operator in conjunction with the Landweber
algorithm.This kind of algorithm enables a flexible inclusion
of priors, such as Tikhonov or sparsity regularization [12]. A
regularized Newton method that can address any specific kind
of phase retrieval problem has also been introduced [13]. In
order to include prior such as the Total Variation (TV), primal-
dual schemes like Alternating Direction Method of Multipliers
(ADMM) have been studied for the phase retrieval problem but
rely on linearization of the forward model, either using TIE [14]
or CTF [15]. Few of the methods mentioned above propose to
treat the single-distance problem without any assumption on
the object composition or on the support of the object.

More recently, data-driven methods based on neural net-
works have been investigated. Several architectures have been
proposed for the phase retrieval problem, the Mixed Scale Dense
Networks [16] was trained in a supervised manner to retrieve
absorption and phase from the diffraction patterns without any
other information. The PhaseGAN [17] was trained in an unsu-
pervised way, while taking into account the effect of the propa-
gator. Both were able to retrieve the absorption and the phase
from a single diffraction pattern. Although data-driven methods
have yielded very good reconstructions, they often require a
large database and the reconstruction quality is limited by the
quality of the training data.

In this work, we present a primal-dual approach based on
the primal-dual hybrid gradient (PDHG) method [18] that can
retrieve both the absorption and the phase with a single noisy
diffraction pattern without homogeneity assumption or sup-
port constraint. We first propose an iterative method for the
linearized CTF problem and then generalize it to the nonlinear
case. We exploit the possibility to use different priors for ab-
sorption and phase to take into account the specificities of each
quantity. Experiments performed on simulated and real data
acquired show that working with Total Variation (TV) [19] and
Total Generalized Variation of second order (TGV?) [20] visually
improves the quality of the retrieved piecewise constant maps.

For thin objects and straight-line propagation of the beam
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along the propagation direction z, the interaction of coherent
and parallel X-ray beam with matter can be described by a trans-
mittance function [8]. Assuming plane wave illumination, the
intensity measured at a distance D downstream of the object is
given by the squared module of the convolution between the
transmittance function and the Fresnel propagator. The forward
model describing the nonlinear relationship between the absorp-
tion B and phase shift ¢ induced by a sample and the diffraction
pattern can thus be written as

FD (B, (p) = Ie_B-H(P *k PD|2 (1)

where Pp(-) = -5 exp (i7%5| - |?) is the Fresnel propagator. Es-
timating the phase shift and the absorption from the intensity,
or diffraction pattern, is called phase (and absorption) retrieval.
The CTF [9] gives an approximation of the measured intensity at
the detector, thus obtaining a linear relationship between inten-
sity and phase, which is valid for weak absorption and slowly
varying phase shift. For compactness, we can write the CTF as

F5™ (B, @) = 2{F ! [~ cos(ap) sin(ap)| F} (B,¢) (2
with ap = 7AD [f|?, where f denotes the coordinates in the
Fourier domain. The CTF can retrieve a quantitative solution of
B and ¢, but several distances have to be used in order to cover
as much of the Fourier domain as possible.

Different approaches have been proposed to recover both the
phase and absorption from a single distance [7, 12], but none
of them proposed the use of prior such as the TV regulariza-
tion while taking into account the nonlinearity. Previous works
on phase retrieval showed that TV regularization improves the
quality of the retrieved piecewise constant phase maps, but they
only treated the linear case [14, 15]. To solve the non-linear
problem with TV regularization, we propose an approach based
on the PDHG method [18], which allows the use of TV regular-
ization as well as its second order generalization (TGV?). The
PDHG has been generalized to nonlinear settings in order to use
nonlinear operators [21]. We then derive two algorithms, one
based on CTF-linearization (PDHG-CTF) and a more general
one, the nonlinear primal-dual hybrid gradient (NL-PDHG). Fol-
lowing [22], we observe that instead of defining a regularization
on the complex-valued function f = —B + i@ as in [7], since
the contribution of attenuation and phase to the phase contrast
image is different, it may be more interesting to use different
regularization for B and ¢ respectively.

Choosing the weighting parameters to be «, B, v > 0, we then
seek to solve the following minimization problem:

myin {[F57(5,¢) - 13

B,
B>0,¢>0

2
7t TGV{, 5 (B) + UTV((p)} 3)

where Ic,gas is a noisy measured intensity at a distance D. The
Total Variation is defined as TV(¢) = [[(V¢),||; + H(V(p)y‘ v

where V is the discrete gradient operator, and the TGV? can be
formulated as follows [23]:

TGV, 5 (B) = min {a||Dv[l; + B | VB —v];}

@
_ Vui+Vo,
= T2

(wB)

where v = (v1,v;) is an auxiliary variable and D (v)
One can see how the a parameter forces v to have a sparse gra-
dient and the § parameter penalizes the gradient V B to deviate
only on a sparse set from v. The minimization problem Eq. (3)
can be rewritten as:

min {# K (B,¢,v)] + G (B,9,v)} (5)

120

Algorithm 1. PDHG-CTF
e 09, Ty such that oy 7y ||| K| ||> < 1,7 € [0,1] and Niger-
e initial guesses xo = (By, ¢o, vo) and ho = (h}, h3, 3, h})
fori =0,..., Njtr do:
hit1 < PIOXg 9.+ (h; + 0;K%;)
Xit1 = prox,g (x; — K hitq)
Xip1 ¢ Xip1 + v (X1 — x;)

Fig. 1. (a) Simulated intensity with Gaussian noise. (b) Experi-
mental intensity acquired at beamline NanoMAX.

with

K (B,g,v) = [FS"(B,9),2(v),VB-v,V¢|

H (hl,hz,h3,h4) - th _pebs

el s ol o),
@

Here K is a linear operator, and G = X~ is an indicator function,
it forces B and ¢ to be positive. Using this formulation, we define
the PDHG-CTF algorithm (Alg. 1), which iterates over the triplet
x; = (Bi, ¢;,v;), where B; and ¢; represent the absorption and
phase shift we are looking for, and v; is the variable from the
formula for TGV (Eq. (4)), at the i-th iteration. Here, 7; and o;
are the step sizes of the primal and dual space, respectively, *
denotes the adjoint operator of K, prox_ ; the proximal operator
of 7;G and H* the conjugate of H. To ensure convergence [18]
of algorithm 1, we can simply choose fixed step sizes o, T, e.g.,
0; = cand 7; = tforalli,aslongas o7|||K|||? < 1, where ||| ]|
is the operator norm. Originally designed for linear operator, the
PDHG algorithm has been generalized to nonlinear cases [21].
By replacing the linear operator FgTF (Eq. (2)) by the nonlinear
operator Fp (Eq. (1)) in the problem Eq. (3), we obtain a new
minimization problem that we can solve with the NL-PDHG
method. The only change from PDHG-CTF (Alg. 1) is that the
operator K is now nonlinear, in this case X* has to be replaced
by [K'(x;)]" where K'(x;) is the Fréchet dérivative at the point
x;, for which we have an explicit formula [12]. In order to ensure
the convergence of the algorithm, the gradient of /C has to be
Lipschitz in a neighborhood of a solution, the initial iterate has
to be close enough to a solution and the step sizes must satisfy
the local inequalities [21]: 0;T; sup x—o,1..; {|||K'(x¢)|[*} < 1.
In order to evaluate the algorihtms, a set of 3D object were
generated by creating random combinations of one to ten ellip-
soid or paraboloid shapes consisting of three different materials:
gold (Au), palladium (Pd) and zinc (Zn). 2D projections of size
512 x 512 pixels were generated, yielding images of the phase
and the absorption, which where subsequently used to gener-
ate phase contrast images (Fig. 1) by using Eq. (1). The X-ray
energy was set to 13 keV for a wavelength of A = 0.095 nm,
the propagation distance D = 10 mm and the pixel size to 24
nm. As quantitative measures of reconstruction quality and to
quantify the uncertainty of the reconstructions we generated a
test dataset of 1000 images to compare the methods. For com-
parison, we used a projected gradient descent regularized with
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Fig. 2. Evolution of average NMSE (%) of the different meth-
ods for 1000 test images. The transparent areas correspond to
the standard deviation.

smooth total variation (TV¢) [24], dubbed GD-TV¢, where € is
a smoothing factor. The parameters for the different methods
have been optimized by scanning in a wide interval to obtain
a large decrease of the data term. For GD-TV¢, the smooth-
ing factor was set to 10~3, with different weighting parameters
for B and ¢, equal to 10~! and 1073, respectively. For both
PDHG-CTF and NL-PDHG, we used the same set of parameters:
N = 10*2,,8 =5x1073,v = 1072 and the relaxation parameter
7 = 1. A stopping criterion based on the pseudo-duality gap
has been proposed, [21], but its calculation is expensive com-
putationally. Therefore, we used a fixed number of iterations
(Niter = 1000) which was sufficient to achieve convergence (Fig.
2). While theoretically, the initialization must be close enough
to a solution to ensure convergence, in practice, the algorithm
converged when initializing with (Bg, ¢g) = (0,0). In the fol-
lowing, the algorithm is always initialized at zero. For GD-TV¥,
convergence was not analyzed in detail, but a sufficiently small
fixed step size of 0.01 was enough to obtain convergence ot the
iterates in practice. For PDHG-CTF, setting the step sizes to
o =1 =099|||K||| ! ensured convergence in all cases. And for
NL-PDHG, the step sizes were set to 0; = 7; = 0.99L;, where
Li = sup;_o; _; {I|IK'(x)[|[*}, and they were update every 50
iterations, in order to satisfy the local inequalities. The methods
was implemented in Python on a Intel(R) Core(TM) i7-10610U
CPU at 1.80 GHz [25]. It took about 104 s for GD-TV€ and 120 s
for both PDHG-CTF and NL-PDHG methods.

Reconstructed phase and absorption projections using a sim-
ulated object are displayed in Fig. 3. The GD-TV¢ algorithm
yielded the lowest quality reconstruction. Parts of the object are
missing, possibly caused by the projection on positive values
and the smooth approximation of TV. The PDHG-CTF method
yielded somewhat better reconstructions, the main artefacts com-
ing from the rather high attenuation induced by the object so that
the weak attenuation and slowly varying phase assumptions
of the CTF are not satisfied. As for NL-PDHG, the reconstruc-
tions present a clear visual improvement at the contour level,
in particular, the fringes on the edges of materials are no longer
present for the absorption compared to the linearized method.
For quantitative analysis, we computed the average normalized
mean squared error (NMSE), the structural similarity (SSIM) and
the peak SNR (PSNR) on the test dataset, the results are summa-
rized in Tab. 1. The primal-dual approaches perform better than
the gradient descent, and overall the NL-PDHG method has the
best reconstructions on average. We can see that applying the
same regularization to B and ¢ gives worse reconstructions, and
that the absorption is better recovered with a TGV? regulariza-
tion while the phase has better results for the TV regularization.
This can be explained by the fact that in our experiments, the
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Fig. 3. Reconstructions from the simulated intensity.

retrieved absorption tends to have missing parts which, when re-
constructed with TV leaves some staircasing effects. sing TGV?
regularization for B offers best performance, providing a good
compromise between sharp boundaries and smoothness. While
for ¢, a better reconstruction cannot be expected by taking into
account the second order. Moreover, if the considered objects has
sufficiently weak attenuation and slowly varying phase, then
the PDHG-CTF method converges faster. It needs a hundred
iterations to obtain the same quality of reconstruction on average
as the nonlinear version, which needs a thousand iterations. In
contrast, if we consider the most absorbent object of the dataset,
which has a maximum absorption equal to 0.882. Then the CTF
approximation is less good and the linearized method gives a
NMSE of 60.5 and 75.7 while NL-PDHG gives a NMSE of 47.9
and 61.4 for the absorption and phase, respectively.

To demonstrate the capability of this primal-dual framework,
the methods were applied on experimental data acquired at
beamline NanoMAX at the MAX1V synchrotron (Lund, Sweden)
[26]. The diffraction pattern (2048 x 2 048 pixels) in Fig. 1 was
obtained with an effective pixel size of 6 nm and a defocusing
distance D = 20 mm. The X-ray energy was set to 13 keV for a
wavelength of A = 0.095 nm. The sample consists of a stack of
Pd, Zn, Pd, Au metal layers with thicknesses of 21, 10, 11, 163 nm,
respectively, deposited on a 1 mm-thick silicon nitride substrate,
thus the expected values for absorption and phase are 0.0483 and
0.217. The execution time was 37 min for GD-TV¢ and 50 min
for the primal-dual methods, after 1000 iterations. As shown
in Fig. 4, the GD-TV¢ algorithm yields the same problems of
missing parts of the object as on simulated data in the recovered
phase and absorption. Both primal-dual approaches seem to
retrieve well the absorption, while reducing spurious fringes in
the background, and the recovered phases are close to artifact-
free. Note that here the object is not very absorbing since it is
quite thin. Therefore, the linearized method also yields a very
good reconstruction. And since the object is piecewise constant,
TV and TGV type regularizations are well suited.

We presented two algorithms based on a primal-dual ap-
proach for the reconstruction of both the absorption and phase
from a single diffraction pattern. The algorithms permit the use
of different regularizations for absorption and phase, which was
shown to improve reconstructions by selecting regularizations
that take into account the way the attenuation and phase con-
tributes to the phase contrast image. In addition, we observed
the significant contribution of the nonlinear information of the
problem, this suggests that the NL-PDHG algorithm could be
applied in a wide variety of cases where linear methods would
fail. A drawback of the algorithms is that three regularization pa-
rameters must be chosen. The choice of parameters was shown
to be robust by application to a large set of images, however. The
method could be used for samples that have higher phase over
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Table 1. Average NMSE, SSIM, PSNR and standard deviation for 1000 test images using different strategies for regularization.

Regularization NMSE (in %) SSIM (in %) PSNR
Absorption  Phase Absorption Phase Absorption Phase Absorption Phase
GD-TV¢ TVE TV® 375(17.4) 36.4(18.2) 99.6 (0.440) 95.2 (6.95) 65.2(9.43) 50.5(11.1)
PDHG-CTF TGV? TV 32.1(129) 29.6 (20.9) 99.8 (0.337) 929 (7.87) 68.2(9.10) 52.6(8.19)
NL-PDHG TGV? TV 29.2 (14.8)  23.6 (12.6) 99.8 (0.237) 97.2 (3.12) 68.7. (8.63)  53.0 (6.40)
NL-PDHG vV TV 41.3(239) 25.6(14.1) 99.7 (0.371) 94.8 (5.10) 65.0 (9.72)  52.8(7.53)
NL-PDHG TGV?2 TGV?2 324(19.6) 29.3(14.8) 99.8 (0.249) 92.3 (6.58) 66.8 (8.00) 51.4(6.51)
GD-Tv* PDHG-CTF NL-PDHG ~0.00 22 9. P Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P.
c “ate l* I 7. N\ /. aes \ L& 293 Guigay, and M. Schlenker, Appl. Phys. Lett. 75, 2912 (1999).
S H Iy / N Le 7‘ y -—0.02 204 10. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, Opt. Lett. 32, 1617
8 AT RN K45 : i, 205 (2007).
P\ \1/ A A2 --0.04 25 11. R.W.Gerchbergand W. O. Saxton, Optik 35, 237 (1972).
<L 57 ,";"'- 7 /L “» /l\ /\ 4 l, » 27 12. B. Sixou, V. Davidoiu, M. Langer, and F. Peyrin, Inverse Probl. Imaging
:5%-06 268 7, 267 (2013).
RV ;\j 2. \1 s\ N\ \‘ AN N\ ' 20 13. S.Maretzke, M. Bartels, M. Krenkel, T. Salditt, and T. Hohage, Opt.
v N ~7IN / \ / N / \ __01 300 Express 24, 6490 (2016).
je : : » . Y so1 14. E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. A.
£ AL \V 2L K, Unser, IEEE ICIP 2014, 3939 (2014).
> AN ‘\ /‘\ l\ /‘\ ss 15. P Villanueva-Perez, F. Arcadu, P. Cloetens, and M. Stampanoni, Opt.
304 Lett. 42, 1133 (2017).
i . . . . 35 16. K. Mom, B. Sixou, and M. Langer, Appl. Opt. 61, 2497 (2022).
Fig. 4. Reconstructions from the experlmental intensity. 36 17. Y. Zhang, M. A. Noack, P. Vagovic, K. Fezzaa, F. Garcia-Moreno,
307 T. Ritschel, and P. Villanueva-Perez, Opt. Express 29, 19593 (2021).
. . sos 18. A. Chambolle and T. Pock, J. Math. Imaging Vis. 40, 120 (2011).
absorption ratio [27] or have more complex structures by ad- 45 19. L. 1. Rudin, S. Osher, and E. Fatemi, Phys. D 60, 259 (1992).
justing the parameters and increasing the number of iterations, s10 20. K. Bredies, K. Kunisch, and T. Pock, SIAM J. Imag. Sci. 3, 492 (2010).
but further investigation should be carried out for non-sparse s 21. T. Valkonen, Inverse Probl. 30, 055012 (2014).
objects, such as those encountered in biological soft-tissue imag- sz 22. T. Valkonen, K. Bredies, and F. Knoll, SIAM J. Imag. Sci. 6, 487 (2013).
ing. The case of X-rays from a laboratory environment can be 3 23. A.Chambolle and T. Pock, Acta Numer. 25, 161-319 (2016).
studied by considering the Kullback-Leibler divergence instead 4 24 E.M.Kalmoun, J. Imaging 4 (2018).
of 12 norm. A direct extension of this work would be to apply a5 25, M. Langer., https://doi.org/10.5281/zen0d0.4623696 (2021). .
h dal ithms to ph. trast t hy [28], i sie  26. S. Kalbfleisch, Y. Zhang, M. Kahnt, K. Buakor, M. Langer, T. Dreier,
the proposed algorithms to phase contrast tomography ,in i
. . . . . 317 H. Dierks, P. Stjarneblad, E. Larsson, K. Gordeyeva, L. Chayanun,
particular when there is no assumption of multi-materials, con- 318 D. Sdéderberg, J. Wallentin, M. Bech, and P. Villanueva-Perez, J. Syn-
sidering the 3D version of TV or generalized TV. Finally, the chrotron Radiat. 29, 224 (2022).
algorithms could be extended by using neural networks to learn ., 27. 5. J. Allco, D. M. Paganin, K. S. Morgan, T. E. Gureyev, S. C.
the regularization parameters or the regularization itself. a1 Mayo, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli, F. Zanconati,
. 322 G. Tromba, and K. M. Pavlov, Opt. Lett. 47, 1945 (2022).
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