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Nonlinear primal-dual algorithm for phase and absorption retrieval from a single phase contrast image

We propose a non-linear primal-dual algorithm for the retrieval of phase shift and absorption from a single Xray in-line phase contrast, or Fresnel diffraction, image. The algorithm permit to regularize phase and absorption separately. We demonstrate that taking into account the non-linearity in the reconstruction improves reconstruction compared to linear methods. We also demonstrate that choosing different regularizers for absorption and phase can improve the reconstructions. The use of the Total Variation and its generalization in a primal-dual approach allows to exploit the sparsity of the investigated sample. On both simulated and real datasets, the proposed NL-PDHG method yields reconstructions with considerably less artifacts and improved the normalized mean squared error compared to its linearized version.

the relationship between the absorption and phase shift induced by a sample and the diffraction pattern relies on the Fresnel diffraction theory. The phase information is lost and must be estimated from one or several of those diffraction patterns.Phase retrieval in this context is a non-linear ill-posed inverse problem.

The single-distance problem, i.e. using a single image, is known to be more severely ill-posed than the classical problems with several diffraction patterns [6,7].

Solving this problem is non-trivial, therefore, several phase retrieval methods have been proposed to find suitable solutions. Direct inversion methods are based on the linearization of the forward model. These include the Transport of Intensity Equation (TIE) [8], Contrast Transfer Function (CTF) [9] and the Mixed approach [10]. Such analytical approaches are only valid under some assumptions on the imaging conditions, e.g., a homogeneous object or relatively short propagation distance.

Iterative methods are generally not limited by these constraints. intensities and some prior knowledge in the object space [11] or 30 variational methods which consist in minimizing a functional.
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Among these, we have the methods based on the Fréchet deriva-32 tive of the forward operator in conjunction with the Landweber 33 algorithm.This kind of algorithm enables a flexible inclusion 34 of priors, such as Tikhonov or sparsity regularization [12]. A 35 regularized Newton method that can address any specific kind 36 of phase retrieval problem has also been introduced [13]. In 37 order to include prior such as the Total Variation (TV), primal-38 dual schemes like Alternating Direction Method of Multipliers 39 (ADMM) have been studied for the phase retrieval problem but 40 rely on linearization of the forward model, either using TIE [14] 41 or CTF [15]. Few of the methods mentioned above propose to 
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In this work, we present a primal-dual approach based on 57 the primal-dual hybrid gradient (PDHG) method [18] that can 58 retrieve both the absorption and the phase with a single noisy 59 diffraction pattern without homogeneity assumption or sup-60 port constraint. We first propose an iterative method for the 61 linearized CTF problem and then generalize it to the nonlinear 62 case. We exploit the possibility to use different priors for ab-63 sorption and phase to take into account the specificities of each 64 quantity. Experiments performed on simulated and real data 65 acquired show that working with Total Variation (TV) [19] and 66 Total Generalized Variation of second order (TGV 2 ) [20] visually 67 improves the quality of the retrieved piecewise constant maps.
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For thin objects and straight-line propagation of the beam along the propagation direction z, the interaction of coherent and parallel X-ray beam with matter can be described by a transmittance function [8]. Assuming plane wave illumination, the intensity measured at a distance D downstream of the object is given by the squared module of the convolution between the transmittance function and the Fresnel propagator. The forward model describing the nonlinear relationship between the absorption B and phase shift φ induced by a sample and the diffraction pattern can thus be written as

F D (B, φ) = |e -B+iφ * P D | 2 (1) 
where

P D (•) = 1 iλD exp i π λD | • | 2
is the Fresnel propagator. Es- timating the phase shift and the absorption from the intensity, or diffraction pattern, is called phase (and absorption) retrieval.

The CTF [9] gives an approximation of the measured intensity at the detector, thus obtaining a linear relationship between intensity and phase, which is valid for weak absorption and slowly varying phase shift. For compactness, we can write the CTF as

F CTF D (B, φ) = 2 F -1 [-cos(α D ), sin(α D )] F (B, φ) (2)
with α D = πλD |f| 2 , where f denotes the coordinates in the Fourier domain. The CTF can retrieve a quantitative solution of B and φ, but several distances have to be used in order to cover as much of the Fourier domain as possible.

Different approaches have been proposed to recover both the phase and absorption from a single distance [7,12], but none of them proposed the use of prior such as the TV regularization while taking into account the nonlinearity. Previous works on phase retrieval showed that TV regularization improves the quality of the retrieved piecewise constant phase maps, but they only treated the linear case [14,15]. To solve the non-linear problem with TV regularization, we propose an approach based on the PDHG method [18], which allows the use of TV regularization as well as its second order generalization (TGV 2 ). The PDHG has been generalized to nonlinear settings in order to use nonlinear operators [21]. We then derive two algorithms, one based on CTF-linearization (PDHG-CTF) and a more general one, the nonlinear primal-dual hybrid gradient (NL-PDHG). Following [22], we observe that instead of defining a regularization on the complex-valued function f = -B + iφ as in [7], since the contribution of attenuation and phase to the phase contrast image is different, it may be more interesting to use different regularization for B and φ respectively.

Choosing the weighting parameters to be α, β, ν > 0, we then seek to solve the following minimization problem: min

B,φ B>0,φ>0 F CTF D (B, φ) -I obs D 2 2 + TGV 2 (α,β) (B) + νTV(φ) ( 3 
)
where I obs D is a noisy measured intensity at a distance D. The Total Variation is defined as TV(φ) = ||(∇φ

) x || 1 + (∇φ) y 1 ,
where ∇ is the discrete gradient operator, and the TGV 2 can be formulated as follows [23]:

TGV 2 (α,β) (B) = min v {α ∥Dv∥ 1 + β ∥∇B -v∥ 1 } (4) 
where v = (v 1 , v 2 ) is an auxiliary variable and

D(v) = ∇v 1 +∇v 2 2 .
One can see how the α parameter forces v to have a sparse gradient and the β parameter penalizes the gradient ∇B to deviate only on a sparse set from v. The minimization problem Eq. ( 3) can be rewritten as:

min B,φ,v {H [K (B, φ, v)] + G (B, φ, v)} (5) Algorithm 1. PDHG-CTF • σ 0 , τ 0 such that σ 0 τ 0 |||K||| 2 < 1, γ ∈ [0, 1] and N iter .
• initial guesses x 0 = (B 0 , φ 0 , v 0 ) and h 0 = h 1 0 , h 2 0 , h 3 0 , h 4 0 for i = 0, . . . , N iter do: with

h i+1 ← prox σ i H * (h i + σ i Kx i ) x i+1 ← prox τ i G (x i -τ i K * h i+1 ) x i+1 ← x i+1 + γ (x i+1 -x i ) 0.
120 K (B, φ, v) = F CTF D (B, φ), D(v), ∇B -v, ∇φ (6) 
121 x i , for which we have an explicit formula [12]. In order to ensure 141 the convergence of the algorithm, the gradient of K has to be 142 Lipschitz in a neighborhood of a solution, the initial iterate has 143 to be close enough to a solution and the step sizes must satisfy 144 the local inequalities [21]:

H h 1 , h 2 , h 3 , h 4 = h 1 -I obs D 2 2 + α h 2 1 + β h 3 1 + ν h 4 1 ( 7 
σ i τ i sup k=0,1,...,i |||K ′ (x k )||| 2 < 1.
145

In order to evaluate the algorihtms, a set of 3D object were has been proposed, [21], but its calculation is expensive com-168 putationally. Therefore, we used a fixed number of iterations 169

(N iter = 1 000) which was sufficient to achieve convergence (Fig. to be robust by application to a large set of images, however. The 255 method could be used for samples that have higher phase over absorption ratio [27] or have more complex structures by adjusting the parameters and increasing the number of iterations, but further investigation should be carried out for non-sparse objects, such as those encountered in biological soft-tissue imaging. The case of X-rays from a laboratory environment can be studied by considering the Kullback-Leibler divergence instead of l 2 norm. A direct extension of this work would be to apply the proposed algorithms to phase contrast tomography [28], in particular when there is no assumption of multi-materials, considering the 3D version of TV or generalized TV. Finally, the algorithms could be extended by using neural networks to learn the regularization parameters or the regularization itself.
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  Several iterative schemes have been proposed, either based on 28 alternating projections on constraints imposed by the measured 29
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  treat the single-distance problem without any assumption on 43 the object composition or on the support of the object. 44 More recently, data-driven methods based on neural net-45 works have been investigated. Several architectures have been 46 proposed for the phase retrieval problem, the Mixed Scale Dense 47 Networks [16] was trained in a supervised manner to retrieve 48 absorption and phase from the diffraction patterns without any 49 other information. The PhaseGAN [17] was trained in an unsu-50 pervised way, while taking into account the effect of the propa-51 gator. Both were able to retrieve the absorption and the phase 52 from a single diffraction pattern. Although data-driven methods 53 have yielded very good reconstructions, they often require a 54 large database and the reconstruction quality is limited by the 55 quality of the training data.

Fig. 1 .

 1 Fig. 1. (a) Simulated intensity with Gaussian noise. (b) Experimental intensity acquired at beamline NanoMAX.

  )Here K is a linear operator, and G = χ >0 is an indicator function, 122 it forces B and φ to be positive. Using this formulation, we define 123 the PDHG-CTF algorithm (Alg. 1), which iterates over the triplet124 x i = (B i , φ i , v i ), where B i and φ i represent the absorption and 125 phase shift we are looking for, and v i is the variable from the 126 formula for TGV (Eq. (4)), at the i-th iteration. Here, τ i and σ i 127 are the step sizes of the primal and dual space, respectively, K * 128 denotes the adjoint operator of K, prox τ i G the proximal operator 129 of τ i G and H * the conjugate of H. To ensure convergence[18] 130 of algorithm 1, we can simply choose fixed step sizes σ, τ, e.g., 131 σ i = σ and τ i = τ for all i, as long as στ|||K||| 2 < 1, where |||K||| 132 is the operator norm. Originally designed for linear operator, the 133 PDHG algorithm has been generalized to nonlinear cases[21]. 134 By replacing the linear operator F CTF D (Eq. (2)) by the nonlinear 135 operator F D (Eq. (1)) in the problem Eq. (3), we obtain a new 136 minimization problem that we can solve with the NL-PDHG 137 method. The only change from PDHG-CTF (Alg. 1) is that the 138 operator K is now nonlinear, in this case K * has to be replaced 139 by [K ′ (x i )] * where K ′ (x i ) is the Fréchet dérivative at the point 140
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 2 Fig. 2. Evolution of average NMSE (%) of the different methods for 1 000 test images. The transparent areas correspond to the standard deviation.
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2 ).Fig. 3 .

 23 Fig. 3. Reconstructions from the simulated intensity.
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Fig. 4 .

 4 Fig. 4. Reconstructions from the experimental intensity.

Table 1 . Average NMSE, SSIM, PSNR and standard deviation for 1 000 test images using different strategies for regularization. Regularization NMSE (in %) SSIM (in %) PSNR

 1 

		Absorption Phase	Absorption	Phase	Absorption	Phase	Absorption	Phase
	GD-TV ϵ	TV ϵ	TV ϵ	37.5 (17.4)	36.4 (18.2)	99.6 (0.440) 95.2 (6.95)	65.2 (9.43)	50.5 (11.1)
	PDHG-CTF	TGV 2	TV	32.1 (12.9)	29.6 (20.9)	99.8 (0.337) 92.9 (7.87)	68.2 (9.10)	52.6 (8.19)
	NL-PDHG	TGV 2	TV	29.2				

(14.8) 23.6 (12.6) 99.8 (0.237) 97.2 (3.12) 68.7. (8.63) 53.0 (6.40)

  

	NL-PDHG	TV	TV	41.3 (23.9)	25.6 (14.1)	99.7 (0.371) 94.8 (5.10)	65.0 (9.72)	52.8 (7.53)
	NL-PDHG	TGV 2	TGV 2	32.4 (19.6)	29.3 (14.8)	99.8 (0.249) 92.3 (6.58)	66.8 (8.00)	51.4 (6.51)
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