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Evidential Trustworthiness Estimation for
Cooperative Perception

Antoine Lima[0000−0001−8543−1528], Véronique Cherfaoui[0000−0003−2064−9838]
and Philippe Bonnifait[0000−0002−5842−1399]

Université de Technologie de Compiègne, CNRS UMR 7253, Heudiasyc, France

Abstract. Intelligent Vehicles can exchange their perception informa-
tion using wireless technology in a cooperative and decentralized manner.
This has the potential to extend the range of perception and thus im-
prove anticipation for complex driving maneuvers and decision making.
However, information received from other peers can be erroneous and
has to be used carefully. In this paper, we present a method that allows
each peer to assign a trust in the information received from other peers
based on comparisons with its current knowledge of the world. We de-
scribe how this process is managed using the Dempster-Shafer theory. We
also present how positive and negative evidence cues can be developed in
this problem, in particular by using detectability grids. An experimental
evaluation, carried out with real vehicles, is reported to show that this
formalism behaves correctly.

Keywords: Cooperative Perception· Trust· Multi-Robot System· Belief
Functions.

1 Introduction

In order to navigate safely, intelligent vehicles need to perceive their environment.
Their on-board sensors, such as cameras or LiDARs, are generally sufficient for
local navigation tasks but not for more complex maneuvers because of the limited
range of the sensors and because there are occlusions in their Field Of Views
(FOVs). For example, in Fig. 1, v1 cannot see if a vehicle is coming from behind
the building on its right and will thus have to either be cautious and engage
slowly or break strongly once the vehicle becomes visible. Cooperative Perception
(CP) aims at improving the navigation performance in such situations by taking
advantage of perceptual information captured by others. Indeed, using upcoming
wireless technologies, it is possible for vehicles and the infrastructure to exchange
perceptual information with each other. By integrating this information to its
own, one’s knowledge of its surroundings can be extended further and behind
obstructions. For example, in Fig. 1, v3 could warn v1 of its presence and v2 could
warn v1 that a vehicle is present in front of it. However, although the authenticity
of peers can be cryptographically guaranteed using public-private key pairs [5],
security vulnerabilities or perception malfunctions (e.g. sensors failures) can still
generate erroneous information that should not be incorporated to one’s own.



2 A. Lima et al.

Fig. 1: Three cooperative vehicles at an intersection. v1 cannot see v3 because it
is hidden by a building but v2 and v3 can see each other.

To prevent this, we propose an information processing and data fusion system
that confronts the information received and the information from the embedded
system to estimate the trustworthiness of the peers. This information can then
be used in a cooperative tracker to attenuate or ignore information from untrust-
worthy peers. This process is done locally by each peer, without communicating
its trust, by verifying that the received information matches with its knowledge
of the world. For example, detecting objects at the same location creates trust-
worthiness while mismatching or illogical information creates untrustworthiness.
In Fig. 1, because v1 partially shares objects and FOV with v2 and v3, it will
trust them and thus anticipate v3 earlier.
After a review of related works in Section 2, we will introduce the problem at
hand using a dense representation of the detectable or undetectable space from
the point of view of different peers in Section 3. In Section 4, trustworthiness
estimation will be formulated. Finally in Section 5, a simulation study and ex-
perimental results based on real data will be given and analyzed.

2 Related Works

The field of Cooperative Perception began with [7] demonstrating its poten-
tial for safety in intelligent transportation systems. Since then, the European
Telecommunications Standards Institute (ETSI) standardized the Cooperative
Perception Message (CPM) [6], composed of the sender position, sensor descrip-
tions and a list of objects. It is used in many cooperative approaches, as studied
in [4].
A part of the research effort is focused on preventing attacks as CP works on
a public network. The most common form of attack prevention is misbehavior
detection, as reviewed in [8]. In this paper, the authors list and classify numer-
ous approaches as being standalone or shared, distributed or centralized and
node or data centric. For example, in [12], errors are detected by comparing
received positions with detections from embedded sensors. In [3], four levels of
checks ranging from simple bound check to object comparison are used to emit
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Fig. 2: Decentralized cooperative perception with trustworthiness estimation.

reports on misbehaving peers. When enough reports are received about a faulty
peer, their certificate is revoked, excluding them from communication. In [2], a
probability of trustworthiness is estimated for each pair of peers, by checking
the consistency of their object lists and their respective detection probabilities
across space. More recently, [11] compared occupied or free space in the form of
grids and verified that detected objects matched with these grids. In [1], sensors
estimate a probability of existence for each object. When fusing object from
multiple sensors, they switch to an evidential representation and use a persis-
tence probability to model the field of view of fused sensors. A trust parameter
representing the sensor’s information reliability is fixed for each sensors.
Our method can be seen as an unification of [3,2,11] where fault detection gen-
erates untrustworthiness and confirmation creates trustworthiness.

3 Problem Statement With Object Detectability

Consider a driving situation composed of N vehicles v1, v2 . . . . Every cooperative
vehicle perceives surrounding objects o ∈ O and Free Space FS. Objects can be
any kind of road user (e.g: pedestrians, cooperative or non-cooperative vehicles)
or static features (e.g: traffic signs) whereas FS are areas explicitly characterized
as being free. Objects and FS are broadcast to peers in the communication
range, supposed to be further than the perception range. In addition, the Fields
Of View (FOV) of the sensors are shared as per the CPM such that all exchanged
information is vectorial in order to reduce the amount of data exchanged. Upon
reception, each peer assesses the trustworthiness of the sender, as illustrated in
Fig. 2.
As the problem at hand combines multiple point of views, a method to define
which area was seen by the cooperating peers is needed. For this, we extend
the detection probability of [2] with the capacity to state that there cannot
be objects in the measured FS by using an evidential representation. In this
representation, the ground plane is divided into cells of fixed size that contain
a mass function imDx,y defined on 2Ω

D
where ΩD = {Di,��D}. Di represents that

peer i can detect an object in the cell at position [x, y]T and ��D that an object
cannot be detected at that point. Conversely, the global grid is noted mD and
the detectability of an object is mDo = mDxo,yo .
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(a) (b)

Fig. 3: Illustration of a detectability grid from the point of view of v1. (a) Hid-
den area in grey, FS in red and detectable in green. (b) Resulting grid: non-
detectability in red, detectability in blue and unknown in grey.

This grid (called detectability grid) is built with the process illustrated in Fig. 3.
Outside the FOVs and behind buildings, the state is unknown. The FS char-
acterized by local sensors (e.g. LiDAR points that hit the ground) is used to
express the impossibility to detect objects within it. In space neither free nor
unknown, an object is likely to be detected.
Object detectability is used in two different ways when receiving information.
First, the sender’s detectability grid is reconstructed to assess its objects co-
herency (e.g. there is no object in the FS or out of the FOV). Then, the receiver’s
detectability grid is constructed to verify the coherency of received objects and
to only compare objects that are detectable by it and the sender.

4 Evidential Trustworthiness Estimation

Trustworthiness in the information sent by other peers is estimated by every
peer individually as a mass function noted mTj about peer j. It is designed to be
used in a subsequent cooperative fusion to ignore or discount objects originating
from untrustworthy peers. As such, it is defined on 2Ω

T
with ΩT = {T ,�T} to

express that information from j is trustworthy and can be integrated without
hesitation or conversely not integrated at all. In the rest of this paper, trust mass
functions are normalized and will be given in the following order: T ,�T , ΩT .
Mass functions are particularly adapted to the problem at hand for several rea-
sons. Firstly, similar to humans, trust evolves over time and can be forgotten
when peers are not interacting anymore, which can be managed with discount-
ing. Secondly, as new peers have an unknown degree of trustworthiness, choosing
a wrong prior could lead to ignoring good information or including misleading
one during transient phases. Finally, this provides more information for a sub-
sequent cooperative tracker to make more or less cautious decisions when peers
are only partly trustworthy (because their information contains both valid and
invalid values).
Trustworthiness is sequentially estimated using an evidential network. Similar
to state filtering, the current estimate at time t mTj (t|t) is derived as the com-
bination of the previous estimate mTj (t− 1|t− 1) and new evidence about "Co-
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Fig. 4: Evidential network for trustworthiness computation at time t. Red arrows
only convey untrustworthiness, green trustworthiness, and orange both.

herency", "Consistency" and "Confirmation" as illustrated in Fig. 4. They are
respectively denoted mcohe

j , mcons
j and mconf

j , defined on 2Ω
T
and group leaves of

the network as described later on. Those leaves express simple and non-dogmatic
constraints on either trustworthiness or non-trustworthiness based on different
aspects ‘of the received information.
In the combination process, every term is discounted by an associated factor that
is not be explicitly noted here for the sake of clarity. Therefore, leaves always
express some degree of belief on m(ΩT ). Dempster’s rule ©+ is well adapted in
this case and is used for combination:

mTj (t|t) = Λ∆t
mTj (t− 1|t− 1) ©+ mcohe

j ©+ mcons
j ©+ mconf

j (1)

where Λ∆t is a discounting factor that depends on the elapsed time ∆t, moving
an Λ∆t-proportion of every focal set to the unknown [9].

4.1 Coherency

mcohe models that the information contained in a message has to be coherent
within itself. Multiple constraints are combined using Dempster’s rule, three of
them are given here as an example:

mcohe
j = mobd

j ©+ matc
j ©+ mspc

j (2)

mobd
j expresses that objects cannot exist inside the FS or outside the perception

range of the peer. For this, the detectability measure jmD of the sending peer j
is used. For example, an object that is in the FS is by definition undetectable and
its detectability will be low. Similarly objects outside the FOV are unknown and
will have a low detectability. We use a constant Dmin threshold to assign a mass
on the untrustworthiness parametrized with a constant βpen for such objects:

mobd
j = ©+

o∈Oj
jmDo (D)<Dmin

[
0 βpen 1− βpen

]
(3)

matc
j expresses that object attributes have to be likely. For example, the speed

vo of the object o has to be coherent with a normal behaviour which is handled
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Fig. 5: Sigmoid function Φ(x) with parameters µ = 2, σ = 0.25 and δ = 2
producing an arbitrary mass function m.

by a scalar sigmoid function Φ illustrated in Fig. 5 with parameters µv, σv and
δv chosen to reflect speed limits:

matc
j = ©+

o∈Oj
Φ(vo,µ

v,σv, δv) (4)

with

Φ(x,µ,σ, δ) =
[
m1 =

1−CDF
(
x−µ−2σ

σ
√

2

)
2 m2 =

1+CDF
(
x−µ−2σ−δ

σ
√

2

)
2 1−m1 −m2

]
(5)

mspc
j expresses that objects have to be spatially coherent. For example, cars

should be close to the road network. Again a scalar metric is computed and
used as input to a sigmoid function Φ. For instance, let Cj be the subset of Oj
classified as cars and do the distance between a car o and the road. With adapted
parameters µd, σd and δd, the mass is:

mspc
j = ©+

o∈Cj
Φ(do,µ

d,σd, δd) (6)

Please note that other constraints can be added following the same formalism,
such as modeling that object sizes or covariances should be of reasonable values.

4.2 Consistency

mcons models that objects must follow coherent trajectories in time and not
change their dynamics in an unpredictable way (by making improbable position
jumps between two messages for instance). For this, previously received objects
are predicted Oj(t|t−1) and associated with newly received objects Oj using an
assignment function noted A. The similarity function described in [13] is used to
compare objects and is noted mSa,b. It compares different characteristics of the
objects and yields a mass function defined on ΩS = {S,�S} to express that a
and b can correspond to the same physical object or to two different ones:

mSOj = ©+
o(t−1),o∈A(Oj(t|t−1),Oj)

mSo(t−1),o

mcons
j =

[
0 mSOj({�S}) 1−mSOj({�S})

] (7)

Thus mcons
j expresses untrustworthiness when objects mismatch with their past

but is vacuous otherwise.
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As we have seen, the coherency and consistency constraints (mcohe
j and mcons

j )
can only express untrustworthiness. Therefore, other criteria have to be used to
allow trustworthiness to increase.

4.3 Confirmation through free space and objects

mconf models that received objects and FS should match with the current knowl-
edge of the world of the receiving peer. For this, the detectability mD of the
receiving and sending peers are used to represent that peers have different FOVs
and that comparisons cannot be made on non-overlapping areas.

mconf
j = mosi

j ©+ modi
j ©+ mofi

j ©+ mfsi
j (8)

mosi
j and mfsi

j model that trustworthy information should match with the local
one. The received FS is compared using the method of [11] in mfsi

j . Received
objects Oj are matched using an assignment function noted A and compared
using the similarity function mS defined in [13]. The local object detectability
grid mD is used as a discounting factor to only compare objects that are locally
detectable:

mosi
Oj = ©+

o,oj∈A(O,Oj)
(1−mDoj(D))

mSo,oj

mosi
j =

[
mosi
Oj(S) 0 1−mosi

Oj(S)
] (9)

Conversely, modi
j models that received objects must not mis-match local ones O.

For this, the j-detectability of objects not matched with the assignment function
A is used:

modi
Oj = ©+

o∈�A(O,Oj)
(1−mDo (D))

j
mDo

modi
j =

[
0 modi

Oj (D) 1−modi
Oj (D)

] (10)

Similarly mofi
j models that the received objects Oj must not be inconsistent with

the free space FS estimated locally:

mofi
j = ©+

oj∈Oj

[
0 mDoj(��D) 1−mDoj(��D)

]
(11)

5 Results

In order to illustrate and validate our approach, we implemented the equations
detailed in Section 4, first in a simple situation in Section 5.1 then on real data
in Section 5.2.

5.1 Simulation Study

In this section, trustworthiness estimates are obtained by running simulations
implementing Fig. 2 on the situation of Fig. 1 for 2 seconds with varying pa-
rameters. Curves of Fig. 6 correspond to the trustworthiness a vehicle attributed
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(a) (b) (c)

Fig. 6: Simulation results: Trustworthiness between two vehicles with different
levels of object detectability in (a), number of ghost objects in (b) and number
of objects with incoherent sizes in (c). Continuous lines are m(T ) and dashed
lines are m(T ) +m(�T ).

to another one under different conditions. Simulation results about a particular
parameter are plotted on top of each other to compare its impact, while others
remain unchanged and optimal.

One can see in Fig. 6a that the object detectability value plays a major role.
When it is low, trustworthiness converges more slowly, which is a desired behav-
ior. In Fig. 6b, the presence of objects that do not exist creates untrustworthiness
while matched objects creates trustworthiness. The same can be seen in Fig. 6c,
where erroneous sizes generate untrustworthiness.

5.2 Experimental Results

To validate our approach, it has been applied to real-world data using the same
dataset as in [10]. In it, three vehicles v1, v2 and v3 were driven in an busy
roundabout with v1 stopped at one of the roundabout entrance while v2 and
v3 followed each other inside of it. In post-processing, LiDAR point clouds and
RTK GNSS receivers have been processed to generate object lists and FSs. The
different parameters (e.g. discounting factors) have been tuned on some prelim-
inaries tests to get smooth trust variations. Fig. 7 shows the trust estimated by
the three vehicles in each other over the course of 22 seconds. At the beginning,
trustworthiness in the others is completely unknown. Exchanged information is
faithful up to time t = 12 s when v3 starts sending erroneous information (inco-
herent sizes, omitted and ghosts objects) then stops at time t = 16 s. In this case,
v3 is voluntary lying to v1 and v2 but its internal information remains correct.
Note that v2 and v3 always share perceived areas, but only do with v1 from t = 6
to t = 12 s. As a result, v1 is uncertain in the trustworthiness of v2 and v3 and
reciprocally when they do not share objects, while v2 and v3 trust each other
rapidly. A transient phase can be observed when v1 starts perceiving common
areas with v2 and v3. At first, only untrustworthiness is expressed because small
inconsistencies between objects at the boundary of their FOVs accumulate with-
out enough positive information to counteract. Once enough FS and objects are
shared, trustworthiness can increase.
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Fig. 7: Real data: Estimated trustworthiness of v1, v2 and v3 in each other,
where imTj denotes the trust of i in j. The green curve is m(T ) and the red
curve m(T ) +m(�T ).

When v3 sends erroneous information, one can see on 1
mT3 and 2

mT3 that it
is detected by v1 and v2, with untrustworthiness being rapidly estimated and
maintained. Once v3 stops sending erroneous information at t = 16 s, v1 and v2
increase their trustworthiness in it.
These results illustrate well that to have trustworthiness in another peer, over-
lapping and coherent objects and free space are necessary. In our opinion, the
laws of physics of the real world are the most reliable way to induce trust. Fi-
nally, by comparing 2

mT1 with 3
mT1 and 1

mT3 with 2
mT3 , one can see that the

trustworthiness estimated about a particular peer differs from the other due to
different points of view. This is another consequence of our choice to manage
trust in a decentralized way.
In terms of computation performance, the trustworthiness estimation can take
up to 500 ms per iteration with our current implementation in Python/C++. As
such, it cannot run in real time as communications are at 10 Hz. However, this
is not necessarily an issue as this process can be run asynchronously at lower
frequencies.

6 Conclusion

In this paper, we have proposed a method to estimate trustworthiness in other
peers in the context of decentralized cooperative perception. This formulation
combines misbehavior detection techniques and positive confirmation thanks to
mass functions to express trustworthiness, untrustworthiness or lack of informa-
tion about another peer. The trust information that peers create in others is
personal and never shared. Thus, two peers will have different trusts in a third
peer. The convergence of the method has been illustrated in a simple simulation,
then confirmed on a real-world situation. It has shown to react quickly to er-
roneous information to prevent its propagation. In future work, the interaction
trust and object estimation will be studied. In addition, a cooperative dataset
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with a ground truth on the existence of objects will be acquired to illustrate the
effectiveness of this formulation and the impact of trustworthiness estimation on
the non-propagation of erroneous information.
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