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Compared to other self-propelled particles, pedestrians are able to anticipate, which gives them
an edge in avoiding collisions and navigating in cluttered spaces. These capabilities are impaired by
digital distraction through smartphones, a growing safety concern. To capture these features, we
put forward a continuous agent-based model (dubbed ANDA) hinging on a transparent delineation
of a decision-making process and a mechanical layer that handles contacts and collisions. In the
decisional layer, each agent autonomously selects their desired velocity as the optimum of a perceived
cost, notably balancing the will to move forward (described by a floor field) with the bio-mechanical
cost of walking and the risk of collision, assessed by an anticipated time-to-collision. Altogether, the
model includes less than a dozen parameters, many of which are fit using independent experimental
data.

Numerical simulations demonstrate the versatility of the approach, which succeeds in reproduc-
ing empirical observations in extremely diverse scenarios, often quantitatively, with a single set of
parameters. These scenarios range from collision avoidance involving one, two, or more agents to col-
lective flow properties in unidirectional and bidirectional settings and to the dynamics of evacuation
through a bottleneck, where contact forces are directly accessible. Remarkably, a straightforward
transcription of digital distraction into the model, by reducing the frequency of decisional updates,
suffices to replicate the enhanced chaoticity of the flow, with more frequent sudden turns, observed
experimentally when ‘smartphone-walking’ pedestrians are brought in.

Finally, the conceptual transparency of the model makes it easy to pinpoint the origin of some
deficiencies, notably its short-sighted account of anticipation (when agents have to cross a group of
people) and the disk-like pedestrian shape (when very dense crowds are considered). Our work thus
clarifies the singular position of pedestrian crowds in the midst of active-matter systems.

I. INTRODUCTION

Pedestrians routinely display remarkable navigation
and coordination abilities, which enable them to adapt
to new environments, make their way through dense
crowds [1, 2] and navigate in very constrained surround-
ings. But, like Marcus Aurelius’s infallible man [3], the
infallible pedestrian simply does not exist: Suboptimal
routing choices [4], collisions, or even in the most tragic
cases stampedes [5] are indeed also prominent features of
crowd dynamics. Uncoordinated behavior gets even more
visible in our overly connected societies, where the pedes-
trians’ attention to their surroundings is often diverted
by their smartphones [6, 7]. Crowds may thus display
both high abilities for self-organization and individual-
istic choices conducive to undesirable collective effects.
Models capable of capturing this somewhat contradictory
alliance would be highly beneficial for practical purposes,
of course, when it comes to designing new pedestrian fa-
cilities [8], but also more fundamentally, to disentangle
the specifics of pedestrian dynamics from the roots they
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share with other physical assemblies, notably active mat-
ter. At present, these antagonistic features are, to say the
least, only dimly reflected in the vast array of (continu-
ous) microscopic models for crowd dynamics. Schemat-
ically, one branch of models prohibits the selection of
all velocities potentially leading to a collision, whereas a
second branch handles collision avoidance as a repulsive
force.

The first branch (typically comprised of velocity-based
models) was largely inspired by the field of robotics [9–11]
in an endeavor to guarantee collision-free motion of mul-
tiple agents [12]. If it is implemented in a fully decentral-
ized way, this approach tends to be overly conservative
(‘prudent’) and too often the dynamics of these ‘infalli-
ble’ agents get frozen (deadlocks) or look unnatural in
the presence of conflicting maneuvers [13]. To circum-
vent this issue, global coordination of individual moves
may be enforced via a more or less centralized process
[12, 14]. This leads to reasonable output for a variety
of situations, but may arguably not be scalable to large
crowds (involving thousands of pedestrians). Further-
more, the predicted trajectories tend to look too ‘robotic’
(with sharp turns, etc.) [13]. The prediction of the other
agents’ trajectories, mediated by perception, can also be
enforced in a context-dependent way [15] and bring the
agents’ behavior closer to human response, but at the risk
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of requiring a different treatment for every situation and
making them less amenable to theoretical understanding.

At the other extreme, in the wake of the celebrated
Social Force Model [16], force-based models hypothesize
that the local rules of navigation can be represented by ad
hoc pseudo-forces encoding ‘intuitive’ social interactions
(such as keeping some distance from one another via a
repulsive or walking in a group via an attractive interac-
tion [17]) and inserted into an e.g. Newton-like equation
of motion, along with mechanical forces. This particle-
based approach has succeeded in replicating various col-
lective and/or self-organized phenomena in crowds [18],
but is also known to lead to spurious oscillations [19] and
to deadlocks or conflicts caused by an unrealistic lack of
anticipation by the agents. These issues are partly reme-
died by supplementing the models with specific forces en-
forcing a following or an anticipatory behavior [13, 20].
In a study of note, Karamouzas et al. contended that
collision avoidance is controlled by the anticipated time
to collision (TTC) with somebody else, rather than the
absolute distance r to this person and they showed that
the spacing between pedestrians in empirical datasets is
better described using an interaction depending on the
TTC, in lieu of r [21]. Other anticipatory behaviors and
follow-the-leader rules have also recently been put for-
ward [13, 20]. But this remedial process is essentially
ad hoc and adds patches to an existing model without
fundamentally questioning its overall structure.

In this paper, we propound a modeling framework that
mirrors the main processes involved in pedestrian motion,
whereby each agent updates their desired velocity via a
decision-making process that optimizes a pseudo-energy
(or perceived cost) [22], notably comprising a TTC term
to render collision avoidance [21], whereas the contacts
and pushes that may ensue are handled by a mechani-
cal layer (Sec. II). Thanks to the transparent coincidence
between the building blocks and the processes they de-
scribe, most model parameters can be calibrated inde-
pendently. Inherently decentralized, our ANticipatory
Dynamics Algorithm (ANDA) reproduces realistic col-
lision avoidance in crowds and coordinated motion in
crowded scenarios as well as other collective effects, in
quantitative agreement with experimental data, using a
single set of parameters for the different regimes under
study (Sec. III). The model can further straightforwardly
be extended to account for ‘smartphone-walking’, which
has become a serious practical issue. The relative simplic-
ity of the proposed framework makes it suitable for phys-
ical insight into the similarities and discrepancies with
other types of active matter.

II. MODELING FRAMEWORK

A. Decision-making layer and mechanical layer

A pedestrian is both an autonomous agent that con-
trols his or her motion and a physical body that evolves

in a mechanical environment. In the parlance of control
theory, a pedestrian is thus both the ‘controller’ and the
‘system’ responding to the control signal. These two roles
are amalgamated in most microscopic models for pedes-
trian motion [19] and, more generally, active matter, in
which a single equation governs the evolution of the ac-
tual velocity of the agent. Here, to mimic the sequen-
tial process at play in human locomotion, we choose to
clearly disentangle the decision-making process, whereby
the agent selects a desired velocity, from the mechanical
block governing the response of the pedestrian’s body in
interaction with the environment.

In the rest of this section, we successively introduce
the decisional layer [10, 22, 23] and the mechanical one.

B. Decision-making layer

The move (consciously or unconsciously) chosen by a
pedestrian at each time step can be regarded as an op-
timum over a set of options from the viewpoint of this
agent. Optimality, in this sense, is typically defined in ra-
tional choice theory as the maximization of a utility func-
tion or, equivalently, the minimization of a perceived cost
function E . Incidentally, the choice need not be wholly
rational: the cost function may be purely subjective and
affected by the bounded rationality of the agents or the
limited information available to them. Such an approach
has previously been applied for the selection of an op-
timal step [24], but here we apply it for the choice of a
desired velocity u? for the next time step, viz.

u? = argmin
u∈R2

E(u). (1)

From a broader perspective, this criterion can be inter-
preted as an optimal control problem over a very small
time horizon δt (where δt is the interval between deci-
sions, due to the reaction time), in which one would like
to extremize

E [u] =

∫ t+δt

t

e (t′, r(t′),u(t′)) dt′︸ ︷︷ ︸
running cost

+ ET (r(t+ δt))︸ ︷︷ ︸
terminal cost

E(u)
δt→0
≈ δt e (t, r(t),u) + ET (r(t) + δtu) (2)

The foregoing formula is reminiscent of the least action
principle for a physical system, whereby the trajectory
selected by nature minimizes a quantity called the ac-
tion (also see [25] for an application to dilute pedestrian
flows). But, crucially, the cost is here minimized by each
agent separately, knowing some information about the
others, and not globally by the whole assembly, as in
previous endeavors [14]. This reflects the autonomous
nature of the agents and drives a wedge between social
assemblies and physical systems.

Let us now detail the various terms contributing to the
perceived cost E(u).
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FIG. 1. Schematic representation of the algorithm. Every time step δt, the agent collects information about the environment
and the other agents in his or her field of view (left), considers various test velocities, and selects the optimal one from the
perspective of his/her perceived cost. The self-propulsion force corresponding to this desired velocity is implemented in the
mechanical layer, which handles possible contacts or collisions and returns the agent’s updated position.

1. Static floor field

In Eq. 2, the driving term, which accounts for the de-
sire to move towards a target destination, is the terminal
cost ET, which is a function of the expected position r′

at time t+ δt: The closer one gets to the target, the bet-
ter. This term is manifestly related to the pedestrian’s
motivation, and thus of psychological origin. We shall
adopt a simple possible approach and assume that ET(r′)
is a static (i.e., time-independent) floor field that grows
with the shortest-path distance D(r′) between r′ and
the agent’s target. These distances are defined by the
Eikonal equation |∇rD| = n(r) generally used for ray
tracing. Here, the ‘refractive index’ n(r) measures how
uncomfortable the environment at r is. In particular,
while n = 1 in free space, proximity to a wall is pe-
nalized by the function n(r) = 1/tanh(dw(r)/dc), where
dw(r) denotes the distance to the closest wall and the
repulsive length dc (typically 20 cm in the following) is
a parameter of the model. Overall, the floor field thus
reads

ET(r′) =
KT

n
D(r′), (3)

where KT > 0 is a coefficient which, for reasons that
will soon transpire (Sec. II B 2), we have chosen to di-
vide by the ‘refractive index’ n = n(r). Note that n(r)
in Eq. 3 may vary with the agent’s current location r,
but on no account with the test velocity u or the test

position r′ = r + δtu. Importantly, using a floor field in
ANDA circumvents the practical issues typically associ-
ated with the definition of standard road maps (i.e., ‘cen-
tral’ paths) that agents have to follow indiscriminately or
the nontrivial prescription of a field of desired velocities
in a complex geometry, which is here handled straight-
forwardly (see Sec. III C).

Technically speaking, the shortest-path distances D
are computed on a hexagonal lattice (the dual of a honey-
comb lattice) before runtime and stored in memory. This
is done by means of Dijkstra’s algorithm, considering the
nearest two neighbors of each node and evaluating the
cost n(r) of traveling along an edge at the next (rather
than current) node. The use of a highly symmetric hexag-
onal lattice strongly curbs the spurious anisotropy that
is known to be generated by the Dijkstra algorithm (e.g.,
on square lattices); in practice, the variations of the free
walking speed with the direction of motion are reduced
to less than 10%.

2. Bio-mechanical cost associated with walking speed and
‘inertia’

The target cannot be reached instantly: The locomo-
tive abilities of pedestrians constrain the choice of a de-
sired velocity u?. The faster one moves, the more energy
is consumed by the body. The bio-mechanical depen-
dence of this energy espeed on speed u = ||u||, which
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is internalized in the decision-making process, has been
quantitatively assessed via measurements of oxygen con-
sumption (e.g., of participants walking on a treadmill)
[26]; the excess energy expenditure compared to rest com-
prises a constant (penalty for walking) plus a term which
grows as the square of u multiplied by a height-dependent
prefactor.

We choose to discard the base energy consumption at
rest and to connect the curve smoothly to 0 when u→ 0,
i.e., have espeed(u) vanish when an agent halts, arriving at
the following equation (refer to Appendix A for details),
which nicely fits the experimental data of [26], as shown
in Fig. 2,

espeed(u) =

{
7.6u− 35.4u2 for u < 0.1 m/s

0.4 + 0.6u2 for u > 0.1 m/s.
(4)
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FIG. 2. Bio-mechanical cost espeed associated with the walk-
ing speed v in the ANDA model, given by Eq. 4, and com-
parison to the aggregated data of [26] (adult group).

Besides, abrupt changes in velocity should also
be barred because they are uncomfortable and bio-
mechanically costly, which suggests an ‘inertial’ contri-
bution

einertia(u) = µ
(
u− v(t)

)2
, (5)

where v(t) is the actual velocity at time t and u, the test
velocity for the next time step, t+ δt, and µ > 0.

Without any further contributions (from the envi-

ronment), the extremum of E(u) = δt
[
espeed(u) +

einertia(u)
]

+ ET (r + δtu) is reached when

0 =
1

δt
∇uE = 2µ

(
u− v(t)

)
+
despeed

du

u

u
−KT t, (6)

where t = −∇rD/n(r) is a unit vector pointing towards
the target, in free space. Hence, the free walking speed

in steady state is u∞ = KT /1.2, for u > 0.1 m/s (de-
tails can be found in Appendix B). Provided that u∞

is empirically known (typically between 1.2 and 1.8 m/s
depending on the situation), the parameter KT can be
set straightforwardly.

Strikingly, since u is the desired velocity at t + δt,
Eq. 6 is formally identical to the numerical resolution of
Newton’s second law with a forward Euler scheme [14].
At this stage, we should underscore the two key concep-
tual shifts that have been made so far with respect to
most existing models. First, Newton’s equation is not
obtained by dint of some fundamental physical law, but
because of the simple form chosen for einertia in the deci-
sional layer. Second, the free walking speed u∞ explicitly
results from the balance between a bio-mechanical cost
espeed, that may vary with the pedestrian but not with
the context, and a will to move described by the terminal
cost (or floor field) ET ; all psychological and motivational
effects (heightened in the event of an emergency, for in-
stance) are deferred to ET . This makes sense because ET
also governs route choice and it will prove instrumental
in dealing with complex obstacles (Appendix C) and ge-
ometries (Sec. III C), which stand out as pitfalls for other
models.

3. Private space

Another intuitive contribution comes from the reluc-
tance to stand excessively close to other pedestrians or
obstacles, i.e., to preserve one’s private space, the size of
which vary between cultures [27]. Here, it is modeled as a
distance-dependent repulsive term entering the terminal
cost in Eq. 2,

Eprivate(r′) =
∑

j∈f.o.v.(i)

η

σi + σj
V rep

( ||r′ − rj(t+ δt)||
σi + σj

)
,

(7)
where rj(t+δt) = rj(t)+δtvj(t) is the expected position
of agent j at the next time step, σj is the radius of agent
j, and V rep is a short-ranged function. We cut it off at
1 + ε?, where ε? > 0, and set

V rep(r̃) =

{
1
r̃ −

1
1+ε? if r̃ < 1 + ε?

0 otherwise.
(8)

To account for perception, in Eq. 7, the sum does not
run over all neighboring agents j, but is limited to those
in the field of view (f.o.v.) of the agent (i), i.e., within a
cone which extends from −θ to +θ around the direction
of the agent’s last desired velocity u(t).

4. Time-to-collision (TTC) energy

All contributions so far are based on positions and dis-
tances, possibly anticipated at the next time step t+ δt.
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This was argued to give an inadequate reflection of the
cognitive heuristics employed by humans for collision
avoidance [22]. Indeed, as later shown by Karamouzas
et al. [21], the positional variables are not well suited to
describe the spacing distances between pedestrians (no-
tably resulting from their mutual avoidances) and had
better be substituted by an anticipated time to collision
(TTC), which is the earliest time τij ∈ (0,∞) at which
agents i and j are expected to collide. τij can readily
be calculated if agents j are handled as disks of radii σj
and agent i assumes that all neighbors j maintain their
current velocities. Then, the TTC reads [14]

τij(ui) =
−xij · vij −

√
∆

vij
(9)

if ∆ = (xij · vij)2 − v2ij [x
2
ij − (σi + σj)

2] > 0, or ∞
otherwise. Here, xij and vij are the relative positions
and desired velocities of i with respect to j.

In the light of empirical data on inter-pedestrian spac-
ings, Karamouzas et al. [21] established an interaction
potential

V TTC(τ) = KTTC exp(−τ/τc)
τp

, (10)

where p = 2 and τc was set to 3.0 s.
In our case, unlike Karamouzas et al. [14, 21], only the

most imminent collision risk, i.e., the shortest TTC, will
be considered by each agent, viz.

eTTC = max
j∈f.o.v.(i)

V TTC
[
τij(ui)

]
︸ ︷︷ ︸

≡eTTC
j

. (11)

This focus on only the most imminent collision vaguely
echoes Primo Levi’s impression (in an admittedly wholly
unrelated context [28]) that one experiences fears and
pains one at a time, the most acute coming first, as
though the smaller ones remained hidden behind it while
it persists. Moreover, as previously, the agents’ fields
of view restrict the set of neighbors that they actually
see; the TTC of agents out of their f.o.v. is regarded as
infinite.

So far, the TTC energy penalizes desired velocities that
lead to physical contact. However, pedestrians are also
eager to avoid encroachments on their private spaces.
Suppose that the private space is a disk of radius (1+ε)σi,
where ε > 0 and σi is the body radius of the agent (i,
here). Equation 9 can then be applied to retrieve the
TTC of private spaces, τij(ε), provided that the sum of
body radii σi + σj is multiplied (‘inflated’) by 1 + ε.

Since the transition into the private space is actually
smooth, the TTC energy will read

eTTCj =

∫∞
0
V rep(1 + ε)V TTC [τij(ε)] dε∫∞

0
V rep(1 + ε) dε

. (12)

For simplicity, as well as computational efficiency, in
practice we will approximate the foregoing formula by

eTTCj =
1

ε?i

∫ ε?i

0

V TTC [τij(ε)] dε (13)

Here, ε?i = min
(
ε?, εi

)
may be lower than the maximal

extent of the private space, ε?, if this value leads to an
overlap of the private sphere at the present time; in that
case, ε?i is capped to εi, the largest inflation factor guar-
anteeing that agent i’s private space does not currently
overlap any other agent’s. A similar averaging procedure
was put forward in [29] to smooth the TTC energy (with
respect to positions), but it was then interpreted as the
result of uncertainty on the evaluation of body sizes.

If no collision with agent j is ever expected, even with
maximally inflated radii, i.e., τij(ε

?
i ) = ∞, then eTTCj =

0. Otherwise, the minimal inflation leading to collision,
εcij ≥ 0, can easily be derived from Eq. 9. Equation 13 is
further approximated by

eTTCj ≈
ε?i − εcij
ε?i

V TTC
[
τij

(ε?i + εci
2

)]
. (14)

TTC-based anticipation is also operational with re-
spect to walls, but their linear shape modifies the tech-
nical calculation of the TTC. More specifically, the TTC
τiw is defined as the shortest time after which the disk
representing the agent would collide with a linear seg-
ment of a wall, if it moves at the test velocity u; no
private space is considered in this case (recall however
from Sec. II B 1 that the proximity to walls is penalized
in the floor field).

This concludes the summary of the pseudo-energies en-
tering the perceived cost function

E(u) = ET
[
r(t) + δtu

]
+ Eprivate

[
r(t) + δtu

]
+

δt
[
espeed(u) + einertia(u) + eTTC(u)

]
,

whose minimization, performed using a Nelder-Mead al-
gorithm [30], yields the desired velocity u?, for each
agent.

C. Mechanical contacts

Collisions between pedestrians are rare, but may occur
in very dense crowds. In that case, should the desired
velocity u?i lead to a collision within the decisional update
time δt, these collisions are handled within ANDA by a
mechanical ‘layer’ (see Fig. 1), which solves Newton’s
equations

r̈i =
u?i − ṙi
τmech

+
1

m

∑
j

FHertz
j→i +

1

m

∑
w∈walls

FHertz
w→i , (15)
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Symbol Definition Value
Decision-making layer

δt Decision-making time 0.1 s
u∞ Preferential speed, or

free-walking speed
N (1.4 m/s, 0.2)

µ Inertial coefficient 0.01
η Repulsive coefficient

associated with private
space

0.8

ε Spatial extent of the private
space (relative to body

width)

0.2

dc Characteristic repulsion
length of walls

20 cm

θ Visual cone (half-angle) 70◦

Mechanical layer

τmech Relaxation time 0.2 s
κ/m Renormalized body stiffness 106

TABLE I. Definitions and values of the model parameters.
Note that δt is chosen somewhat shorter than the reaction
time to complex stimuli, because the human decision-making
process is more sophisticated than that modeled here.

wherein agents self-propel in the direction of their de-
sired velocity u?i , which they reach in a characteris-
tic time τmech ≈ 0.2 s in free space. Besides, they
are assumed to interact with each other via frictionless

Hertzian contact forces FHertz
j→i = κP

(
σi+σj

rij
−1
)

(ri−rj),
where P (x) = max(0, x), as though they were homoge-
neous elastic cylinders of radii σi and σj with parallel
axes. Similarly, contacts with a wall w result in a force

FHertz
w→i = κP

(
σi

riw
− 1
)

(ri − rw), where rw is the wall

point closest to i and riw is the distance to the wall.
Numerically, Eq. 15 is solved with a velocity Verlet algo-
rithm, using a typical time step dt = 2 · 10−4.

Of course, the present mechanical description ought to
be refined in the future, turning to more realistic shapes
and interactions for the agents. These improvements can
easily be integrated within the sturdy theoretical ground
outlined here, which already convincingly describes many
features of pedestrian dynamics, as exposed in the next
section.

Interestingly, the structure of the differential equations
thus obtained, namely, the combination of Eq. 15 with
the minimization performed in the decisional layer, con-
tains some (more or less subtle) differences with those
commonly used [16, 22, 31], associated with the delin-
eation of two distinct relaxation processes. These dif-
ferences are not always anecdotal, as we explain in Ap-
pendix D.

III. RESULTS

This section evinces that, despite its simplicity, the
ANDA model succeeds in quantitatively reproducing em-
pirically observed features. Most importantly, although

these situations cover a wide range of contexts and densi-
ties, no adjustment of the main parameter set (apart from
very marginal ones required by the context) is needed.
We will initially validate the algorithm at the individual
level and then move to collective properties.

In the following simulations, we used the main model
parameters detailed in Table. I. Regarding the pedestrian
shapes, whenever crowds are simulated, their body radii
will be chosen in a normal distribution of mean 22.5 cm
and standard deviation 2 cm. The preferential speeds
will typically be normally distributed around u∞ = 1.4±
0.2 m/s, but bounded below by 1.0 m/s.

A. Collision avoidance by a single pedestrian

Since a distinctive feature of pedestrian dynamics is
anticipated collision avoidance, we begin by probing bi-
nary avoidance maneuvers involving two male pedes-
trians (body radius: rp = 25 cm, preferential speed:
1.4 m/s) in a 10 m length and 3 m width corridor, in
two simple setups comparable to those studied exper-
imentally by Moussaid et al. [32]. In the first setup
(top of Fig. 3), one pedestrian stands still in the cen-
ter of the corridor, at (X,Y )(0, 0). Meanwhile, the other
one is asked to cross the corridor from an initial posi-
tion at X = −5 m, Y ∈ [−rp, rp] to a distant target zone
centered at (X = 5 m, Y = 0,m), avoiding this ‘obsta-
cle’ (first part of Supplementary Video I). Mostly by ad-
justing the inertial coefficient µ, we manage to obtain
a close-to-perfect agreement between the model output
and the average experimental behavior, apart from the
avoidance-side preference (which is overlooked in ANDA
and washed out of the experiments by plotting the ab-
solute transverse displacements |Y | instead of Y ). The
quality of the fit may even surpass that obtained with a
social force model specifically calibrated for these exper-
iments in the seminal original paper [32].

In the second setup (bottom of Fig. 3), the pedestri-
ans are initially at opposite ends of the corridor (X =
±5 m, Y ∈ [−rp, rp]) and walk in opposite directions.
They start deviating from the central line already 3 me-
ters ahead of the point of encounter (so typically 6 meters
away from their counterpart). The maximal transverse
displacement, at the point of encounter, appears to be
smaller than in the first setup with the static obstacle
(Y ≈ 50 cm), but one must bear in mind that, in this
second setting, the workload associated with the avoid-
ance maneuver is shared by two pedestrians, so that their
separation distance on the crossing line is comparable to
that observed when one of them stands still (second part
of Supplementary Video I); the deviation is however un-
dertaken earlier in the second setting, in line with the
expectations based on the TTC. It is noteworthy that
the (statically averaged) experimental trajectories are al-
most perfectly reproduced, without further adjustment
compared to the first case. Of course, this comparison is
oblivious to the avoidance-side bias observed experimen-

https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
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FIG. 3. Avoidance maneuvers in a corridor: (top) Avoidance
of a still-standing pedestrian ‘obstacle’ at the center; (bot-
tom) trajectories of two counter-walking pedestrians. The
computer simulations (coloured lines) are compared to the
experiments (grey lines); the dashed lines materialize an en-
velope of width the standard deviation on each side of the
moving average (solid line). The experimental trajectories
were shifted along Y to start at Y = 0.

tally, for which we did not introduce any counterpart in
ANDA.

B. Many-body collision avoidances: Antipodal
experiment on a circle

Having validated the model for two-body interactions,
we move on to the interactions among a larger number
of people. Circle antipodal experiments are an archety-
pal way to probe many-body collision avoidances. In
this configuration, pedestrians are initially positioned
on a circle (of 5 or 10 m of radius for example [33])
with uniform spacing between them and instructed to
quickly reach the antipodal positions as soon as a sig-
nal is heard. Were they to walk straight to their targets
at equal speeds, they would meet at the centre of the
circle. Instead, experiments have shown that they de-
viate from the plain straight path soon after setting in
motion. By adopting various collision avoidance and de-
tour strategies, they manage to reach their target without
substantial near collisions, even when there are up to 64
participants walking simultaneously [33]. We replicated
the experimental setup numerically for a set of 10 agents
with equal preferential speeds. Without mutual inter-
actions, these agents would walk straight ahead at very
similar speeds, despite their different directions, thanks
to our use of a hexagonal lattice for the floor field (as
we explained in Sec. II B 1). Instead, we observe that
they deviate from the straight path and easily manage to
reach the antipodal position (see the video in the Supple-
mental Material). The simulated trajectories are smooth
and, as in the experiments, they do not excessively con-
centrate at the conflict-rife center of the circle; this is at

odds with the output of the social force model, either in
its traditional version or in a specifically designed vari-
ant, which were both deemed to significantly differ from
the experimental results in [33].

Another opportunity to study many-body collision
avoidance is afforded by interweaving pedestrian flows,
in which non-parallel streams of pedestrians are forced
to cross; however, the individual pedestrian behaviors ob-
served experimentally [34] are even more varied than in
the antipodal experiments. Nevertheless, Luan et al. dis-
closed four major individual avoidance strategies [34]; let
us briefly inquire into their compatibility with our model.
To evade a collision, pedestrians may accelerate (strategy
1) or decelerate (strategy 2), come to a full halt (strat-
egy 3), or make a detour to avoid a collision (strategy 4).
Suppose that a simulated agent anticipates a collision in
the direction t if he or she walks at a speed u = u∞; for
this agent, the bio-mechanical cost espeed or terminal cost
ET of accelerating (u > u∞) or decelerating (u < u∞)
with respect to the preferential speed u∞ is most often
compensated by the ensuing reduction in TTC energy
eTTC(ut), so the first two strategies are clearly within the
reach of ANDA. So is the third one, namely coming to a
full halt, which is but a special case of strategy 2; indeed,
standing still has a lower bio-mechanical cost espeed than
moving (Fig. 2). Making a detour (strategy 4) is also
widely observed within the frame of ANDA, as already
reported for the binary collision avoidance (Sec. III A)
and the antipodal scenario, especially when modifying
one’s speed is not enough to avoid a collision. On the
other hand, accelerating during this detour, which was
often observed experimentally [34], will only be under-
taken by the simulated agents if the detour alone does
not ward off the risk of collision; otherwise, the less favor-
able walking direction during the detour results in lower
gains in the terminal cost for moving forward, hence a
lower propensity to walk fast.

C. Navigation in a complex geometry

Navigation in a complex environment adds another
layer of complexity to the foregoing multi-agent scenar-
ios, in that each agent must also interact with the built
environment. To characterize pedestrian flows in these
(practically relevant) situations, we designed a geome-
try inspired by the ground floor of Montparnasse train
station in Paris, France, in which about 100 pedestri-
ans (with a lower threshold on preferential speeds set to
u∞ = 1.2 m/s), classified in 7 groups with distinct tar-
gets, were simulated. The simulation runs in a matter of
minutes on a single CPU core and produces the trajec-
tories shown in Fig. 4. Thanks to the use of a floor field
to attract each group to their specific target, the agents
make sensible route choices to their destination, by go-
ing around walls and obstacles whenever needed, with-
out being constrained to strictly adhere to a predefined
path. Furthermore, the simulated dynamics (shown in

https://drive.google.com/file/d/15mAJJECrv91D1kPdSSgMZtBLqTZVNdjX/view?usp=sharing
https://drive.google.com/file/d/15mAJJECrv91D1kPdSSgMZtBLqTZVNdjX/view?usp=sharing
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FIG. 4. Navigation of ∼ 100 agents, split into 7 groups with
distinct target zones, in a complex geometric layout inspired
by the ground floor of the Montparnasse train station in Paris,
France. The initial positions are marked with colored disks
and the solid lines that represent the trajectories evolve from
blue to yellow with time.

the supplemental movie complex geometry) are qualita-
tively convincing at the local level, as far as one can judge
with the naked eye: the agents succeed in navigating to-
wards their targets in a realistic way, generally avoiding
collisions with their counterparts and the walls. Still,
even closer inspection of the video reveals some hesitancy
in the central region when an agent endeavors to cross a
group of static pedestrians who have reached their target;
this particular situation will be discussed in Sec. III G.

D. Unidirectional flow

Let us now turn to the model’s predictions of collec-
tive flow properties at higher densities. Specifically, we
will investigate the effect of density on unidirectional
flow by means of the speed-density relation, a broadly
used quantitative benchmark for models of pedestrian
dynamics. A corridor of length LX = 16 m and width
LY = 3 m is considered (similar to the experimental
scenario in [39]), with periodic boundary conditions
(PBC) in the horizontal direction. The number of
pedestrians inside the corridor is varied from 12 to 144,
thus achieving densities ranging from 0.25 to 3 ped/m2.
Each simulation runs for 100 seconds, the last 75 s of
which are used to compute the speed-density relation by

averaging the speeds of all agents.

The numerical outcome in Fig. 5 follows the same
trends as the empirical data, with a monotonic decay
of speed with density that gets sharper around 1.5-
2 ped/m2. The situation at high density ρ > 2.5 ped/m2

deserves additional comments. First, the speed is still
nonvanishing in this regime, consistently with empirical
observations even at (much) higher densities, (far) above
6 ped/m2 in the pilgrim processions during the Hajj [37]
as well as in controlled experiments [40]. Secondly, in the
model, the speed seems to level off, possibly excessively.
However, it should be noted that pedestrian shapes start
to become overly important in this regime. Clearly, the
approximation of pedestrians as disks used in this paper
for simplicity (to avoid the rotational degree of freedom
associated with non-axisymmetric shapes) then reaches
its limits. Accordingly, we expect the model predictions
to be altered in this regime, should more realistic shapes
be simulated.

The spatio-temporal diagrams of speed shown in the
lower panels of Fig. 5 for different densities shed light on
finer details about the flow dynamics, notably the occur-
rence of stop-and-go waves in the higher-density regime.
This type of instability, wherein a slow or ‘jammed’,
dense phase emerges locally in the unidirectional crowd
and propagates upstream, is routinely observed in various
forms of traffic and in single-file pedestrian motion [41]
when the average spacing between agents is reduced. In
corridor flows, spontaneous stop-and-go waves are prob-
ably not as systematic, but they have nonetheless been
witnessed. For instance, in the controlled experiments
of Jin et al. [42] in a ring-like corridor, these waves
were observed only for narrow corridors (no wider than
1 meter), allegedly because transverse motion in wider
corridors alleviates jamming. Nonetheless, empirical ob-
servations before the crowd disaster during the Hajj in
2006 also evidenced stop-and-go waves before turbulence
set in, although the packed crowd extended transversely
over more than 20 m [37].

In our simulations, no stop-and-go wave was ob-
served at the lowest considered density (label (1), ρ =
1 ped/m2); instead, clusters of fast-walking agents cre-
ate dark blue streaks, that move downstream at their
(high) walking speed. When the density in the corridor
increases (label (2), ρ = 2 ped/m2), the spatio-temporal
diagrams are qualitatively altered, with regions of halted
pedestrians propagating upstream, corresponding to a
stop-and-go motion.

Interestingly, these backward-travelling waves are con-
spicuous in our coarse-grained diagrams of speed, but are
not apparent when we plot the coarse-grained diagrams
of density (Fig. S2). Thus, the density indicator used
to experimentally detect stop-and-go motion in [42] ap-
pears to be less telling than the (longitudinal) speed. At
least two factors contribute to explaining the poor sensi-
tivity of the density indicator. First, density is averaged
across the corridor width, whereas the jammed phases do

https://drive.google.com/file/d/1RjN2j_9xdCjgVoikqFt_RpEq9NZ_D97V/view?usp=sharing
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FIG. 5. Unidirectional flow along a corridor of (periodic) length LX = 16 m and width LY = 3 m. (Top) Variation of the
simulated mean pedestrian speed with the density, shown along with various experimental data sets (Older [35], Mori and
Tsukaguchi [36], Helbing et al. [37], Weidmann [38] and Zhang et al. [39]). (Bottom) Spatio-temporal diagrams of the coarse-
grained local speed, represented at different densities, as labeled in the top panel.

not necessarily span the whole corridor width, as we con-
firmed by direct visualization of the simulated flows (see
supplementary movie UniDirFlow); this issue becomes all
the more problematic as the corridor is wide. It also com-
forts the idea [42] that pedestrians in a wide corridor can
sometimes evade jammed regions through transverse mo-
tion. Secondly, the difference between the density ρj in
jammed phases and the density ρf in flowing ones is fairly
small, since the TTC term gets people to brake ahead of
a halted person. Because in a strictly one-dimensional
setting the conservation of the number of agents imposes
that ρf (vf + |w|) ' ρj |w| in the steady state, where vf
is the pedestrian speed in the flowing phase and w is the
stop-and-go wave speed, the small difference between ρf
and ρj entails a fairly large wave speed |w| ' ρf vf

ρj−ρf . And,

indeed, in Fig. 5(2), we measure a wave speed |w| ≈ 2 m/s
larger than the free walking speed; we should note that
this value exceeds what is typically found for stop-and-
go waves in single pedestrian files, where |w| generally
lies below 1 m/s [41]. At even higher densities (label (3),
ρ = 3 ped/m2), promiscuity slows the flow even more and
the dynamics become globally more hampered, but also
less bursty.

E. Bidirectional flow

Bidirectional flow exhibits particular features, as com-
pared to the unidirectional case, but is also ubiquitous
in daily life, e.g., when two groups of people are found
moving in opposite directions in underground corridors,
shopping streets, commercial streets, etc. Regardless
of the type of facility, the system will most probably
evolve into a segregated state where people end up form-
ing lanes [43, 44]. Such organization reduces collision
risks with counter-walking agents and allows people to
walk faster. While lane formation has historically been a
major benchmark test for any new model, it is notewor-
thy that this phenomenon is not specific to pedestrian
crowds, but is widely found in other active assemblies,
and even in simply driven particle systems, such as col-
loids [45]. Indeed, it is underlain by a generic mecha-
nism: in the non-organized flow, agents undergo small
transverse moves after each collision; upon aligning be-
hind someone walking in the same direction, these col-
lisions become much less frequent and the aligned state
is thus stabilized. Still, the lane-forming state cannot be

https://drive.google.com/file/d/1DmDdrwSCbeJJD59sXnIqAZFBmtMMZk4S/view?usp=sharing
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FIG. 6. Lane-formation phenomena in bidirectional flows in a
corridor. (Top) Time evolution of the order parameter φ (de-
fined in Eq. 16). (Bottom) Snapshots of the crowd at different
times, rendered with the CHAOS software developed by IN-
RIA: (1) well-mixed crowd at the beginning of the simulation,
(2) crowd structured in counter-walking lanes. The numbers
(1) and (2) correspond to the arrows in the top panel. Refer
to the main text for the dimensions of the corridor.

reached within some pedestrian models in crowded cor-
ridors, when the density gets close to 2 ped/m2; this de-
ficiency, leading to deadlocks, was underlined in [46] and
remedied by an ad hoc anticipation mechanism. Here, we
show that such additions are not required by ANDA and
that it can natively describe bidirectional flows.

To quantify lane formation in ANDA, we fill the corri-
dor defined in the previous section with N agents, split
into an equal number of left and right-moving agents.
Following previous works [45, 47], we define the order
parameter φ as:

φ =
1

N

N∑
i=1

φi ∈ [0, 1] with φi =

(
NSame
i −NDiff

i

NSame
i +NDiff

i

)2

,

(16)

where NSame
i and NDiff

i are the number of pedestrians
walking on the same line as pedestrian i, respectively in
the same direction and in the opposite one, viz.,

NSame
i = {j, |yj − yi| < 3σi/2 and v̂i · v̂j > 0}

NDiff
i = {j, |yj − yi| < 3σi/2 and v̂i · v̂j < 0}

(17)

where we used 3σi/2 as our characteristic length scale
(remember that σi is the particle radius), as supported
by previous works [46]. Thus, φ measures how stratified

FIG. 7. Variation of the average pedestrian speed with the
mean density in a bidirectional corridor flow.

the system is, ranging from 0 (fully mixed) to 1 (perfect
lanes).

In Fig. 6 we show the temporal evolution of φ, effec-
tively finding a transition of the system from a mixed
state in the early stages of the simulation (values of φ
close to 0) to a lane structure where pedestrians are prac-
tically segregated with φ ' 1.

Besides, in the example shown in Fig. 6 (ρ =
1 ped/m2), lanes take 10 to 15 seconds to form. This
simulated lane formation time lies just in-between the
values measured experimentally for ρ = 1 ped/m2 and
ρ = 2 ped/m2 [40]; the quantitative comparison should,
however, be taken with a pinch of salt, because the ex-
perimental setup was a ring and the initial pedestrian
positions also differed.

Finally, the speed-density relation for the bidirectional
flow is comparable with the unidirectional flow one and
is also consistent with experimental measurements, as
shown in Fig. 7.

F. Bottleneck flow and evacuations

Let us now break the translational invariance of the
corridor by introducing a narrowing (a bottleneck).
Streamlines then converge at the narrowing, which gen-
erates clogging effects if the flow is dense and the bot-
tleneck is not much wider than a few ‘particles’. These
effects exist when the particles are grains or animals [48],
but are vested with special interest for pedestrians, for
they may be critical during egresses or evacuations under
emergency conditions. The topic has thus received much
attention and some paradoxical effects have been brought
to light: While more haste often makes the evacuation
quicker, in very competitive settings, higher individual
preferential speeds may be counterproductive, leading to
long-lived clogs, observed empirically as well as experi-
mentally. This is the well-known ‘faster-is-slower’ effect
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FIG. 8. Evacuation dynamics through a narrow doorway of width w = 60 cm, centered at (0, 0). (a) Dependence of the exit
capacity on the preferential speed u∞. (b) Survival function P (τ > ∆t) of time gaps between successive egresses. (c) Average
pressure field due to physical contacts between agents in the vicinity of the exit, for u∞ = 3 m/s.

(FIS), first predicted numerically [49] and then demon-
strated experimentally in a variety of assemblies [48, 50].

Here, we simulate an evacuation from a rectangular
room initially filled with 150 randomly positioned agents
who strive to egress through a doorway of width w in
the middle of one wall. The agents’ eagerness to evacu-
ate affects the terminal cost ET and, as a consequence,
their preferential speed u∞; the latter will be varied and
used as a proxy for eagerness. To avoid deadlocks at the
bottleneck, every second the preferential speed of each
agent undergoes a small random fluctuation (drawn from
a normal distribution of standard deviation 0.2) around
its initial, agent-dependent value. Each simulation is
replicated around 100 times to collect sufficient statistics
to overcome the expected strong fluctuations; for scien-
tific rigor, but with virtually no impact on our results,
the first and last egresses in each realization were dis-
carded, to focus on the quasi-stationary state. Gauging
the evacuation efficiency by the exit capacity, i.e., the
pedestrian throughput, we show in Fig. 8a that the FIS
is retrieved when the door is very narrow, w = 60 cm:
the capacity plummets as soon as u∞ exceeds 1.7 m/s. In
this competitive regime, the total evacuation time Tevac
exhibits strong fluctuations, rationalized by the (infre-
quent, but not sporadic) occurrence of very long clogs.
These clogs generate large time gaps τi between succes-
sive egresses, which impact Tevac =

∑
i τi. The survival

functions P (τ > T ) of the τi, represented in a logarithmic
plot in Fig. 8b, are suggestive of a power-law-like behav-
ior with heavy tails, whose slopes get flatter and flatter
as agents get more and more hurried (u∞ > 2 − 3 m/s),
in contrast with the fast decays observed for more placid
agents and/or wider doors (Fig. S3f). These features are
in perfect agreement with previous experimental findings
[50]. Beyond u∞ ' 3 m/s, the flattening trend gets less
visible, as the stronger pushing forces counter the clog-
ging phenomenon [51]. In parallel, the typical time gaps
keep being reduced as the agents move faster; therefore,
the capacity starts increasing again with u∞ (Fig. 8a).

For a slightly larger door, of width w = 70 cm, the
FIS is still noticeable, but not as conspicuous: the non-

monotonicity of Js(u
∞ is only tentatively seen around

u∞ = 4 m/s (Fig. S3a)). This is broadly in line with
the findings of [50], where the FIS was clearly present,
but fairly small for a 69cm-wide door (the flow rate in
the highly competitive settings was reduced by about
5% smaller compared to the milder settings). For wider
doors, w > 70− 80 cm, the FIS fades away from our sim-
ulations (Fig. S3b,c): Higher preferential speeds u∞ lead
to higher throughputs.

Aiming for a quantitative comparison, we probe the
specific capacities Js = 1

w ·
N
TN

(where TN is the duration
it took to evacuate N agents in the pseudo-stationary
stage of the evacuation), i.e., mean flow rates per unit
width of the door. For a 1 m-wide door, our simulations
yield Js = 1.80 ped/m/s in normal conditions (u∞ =
1.5 m/s), right between the estimate Js = 1.60 ped/m/s
reported in [52] and the experimental measurements Js =
1.85 ped/m/s and Js = 1.90 ped/m/s in [53] and in [54],
respectively. In these last two publications, the specific
capacity decreases slightly to around Js = 1.8 ped/m/s
and Js = 1.6− 1.7 ped/m/s, respectively, when the door
is narrowed to w = 80 cm; it drops somewhat more
significantly in ANDA, to Js = 1.54 ped/m/s, still for
u∞ = 1.5 m/s, but the agreement remains acceptable.
For even narrower doors (w = 70 cm) under competitive
settings (u∞ ' 3.0 m/s) it must plainly be conceded that
a marked discrepancy arises in the absolute values of the
specific capacity, which is around Js ≈ 1.4 ped/m/s in the
simulations and around Js ≈ 3.6 ped/m/s in the experi-
ments. This can easily be explained: Our approximation
of pedestrians as frictionless disks is stretched beyond
any reasonable limit in a regime dominated by mechan-
ical obstructions and contacts, and in which the shape
of agents matters considerably [55]. A better physical
description would be attained by refining the mechanical
layer using more realistic agent shapes.

Still, the existence of a neatly delineated mechanical
layer is of great avail as it enables us to define con-
tact forces rigorously, by contrast with models mingling
pseudo-forces and real forces. More precisely, the con-
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tact force Fj←i exerted by i on j reads Fj←i = −dU2

rij
,

where U2 is the Hertzian potential defined previously. If
one overlooks variations in the agent’s surface area A,
the pressure can then be defined, from a continuum me-
chanics standpoint, as the sum of contact forces exerted
on j divided by A, viz.,

∑
i Fij/A. With this defini-

tion, Fig. 8c shows the average pressure field during the
evacuation, i.e., the mean pressure felt by agents at each
position in space. It is noteworthy that these pressure
fields look similar to the density fields measured exper-
imentally in evacuations under similar competitiveness
[56].

G. Intruder problem

While competitive evacuations display many similari-
ties with granular flows through a bottleneck [48], prob-
ably owing to the prominence of mechanical contacts, re-
cent experiments have shown that, surprisingly, the gran-
ular analogy fares much worse when a group of static
people is crossed by an ‘intruder’ [2]: Anticipation and
self-propulsion by the pedestrians then play a major role
in opening a pedestrian-free tunnel ahead of the intruder
via transverse displacements, in stark contrast with the
granular case. This holds even in the dense regime, where
mechanical forces were believed to prevail.

The Social Force Model goes completely amiss in the
description of these features [57], which in principle could
be captured by our model: agents in the static crowd can
anticipate a risk of collision with the intruder and move
‘out of harm’s way’ in advance, by walking away from
the expected (linear) intruder’s trajectory. In practice,
however, we managed to reproduce the density field, with
a ‘tunnel-like’ opening ahead the intruder due to antici-
pation, but not the purely transverse displacements ob-
served experimentally, even with slight variations of the
model or its parameters. In a parallel paper dedicated
to this scenario [58], we ascribed the deficiency of most
existing agent-based models (including a variant of the
present one, see Supplemental Material of [58]) regard-
ing this effect to the fact that in this situation the lo-
cal navigation is mingled with tactical planning and that
the modeled agents are too short-sighted to achieve this
anticipation. For ANDA, the alleged origin of this de-
ficiency can be pinpointed more precisely thanks to its
transparent derivation: Taking the limit δt → 0 in the
anticipated cost of motion in Eq. 2 sweeps away the pos-
sibility to plan a move that involves a non-constant veloc-
ity. A natural way to recover it would be to perform the
optimization of the full time-integral in Eq. 2, i.e. with
respect to the planned velocity function u(t′), t′ > t, as
in game theory, at the expense of an unbearable com-
putational cost. Mean-field game theory can overcome
this intractability, at the expense of losing sight of the
discrete nature of pedestrians [58].

Interestingly, this also explains the aforementioned
hesitancy of some pedestrians when crossing a group, in

the complex scenario studied in Sec. III C.

H. Effect of distracted pedestrians

So far we have shown that key pedestrian dynamics fea-
tures could be replicated in various settings with a single
set of model parameters. Now, we purport to show that
the sound physical basis of ANDA enables us to extend it
to an even wider range of situations by straightforwardly
adapting its parameters.

To illustrate this, we consider the effect of digital dis-
traction [59–61]. In our increasingly connected societies,
with the advent of the Internet of things, more and more
pedestrians are indeed looking at their smartphones (or
other connected devices) while walking; even near road
crossings, more than one pedestrian out of six may be
involved in a such an activity (17% in a 2020 study in
Athens, Greece [60]). The ensuing distraction impacts
their navigation in that it impairs their situational aware-
ness [59, 62], especially when texting or web-browsing
[7, 60]. Their walking speed is then reduced [7, 60],
as is their eye scanning frequency (by upwards of 25%
in controlled outdoor experiments with college students
[7]). The whole topic has gained serious practical rele-
vance as ‘smartphone-walking’ has entailed a sharp rise
in pedestrian injuries. Already in 2010, of the thousands
of pedestrians killed in traffic accidents in the US, 3.7%
were engaged in a mobile phone activity, as compared to
0.6% in 2004 [59]; the numbers have most probably con-
siderably risen since then, further heightening societal
concerns, notably in Japan [63].

While empirical observations and controlled experi-
ments provide much-needed insight into the effect of dig-
ital distraction, they reach their limits when it comes to
exploring a broad range of situations, in particular on
streets; this need can be filled by resorting to models. In
order to incorporate distraction effects into our model,
we notice that distraction through screens, albeit a com-
plex psychological process, mainly entails that agents less
frequently refresh (update) their perception of their sur-
roundings and adapt their motion to it. This is corrob-
orated by the observation that, in a collision avoidance,
they tend to turn at the last moment, with a delay of
around 0.5 or 1 second in their response, compared to
the reference case [64]. This latency effect can readily be
transcribed into ANDA by simply increasing the update
time interval of distracted agents (δt = 0.8 s) compared
to standard agents (δt = 0.1 s); the walking speed of
distracted agents (empirically slower than their counter-
parts [7]) is set to u∞ = 1.2 m/s. Of course, distraction
may have other secondary effects that would require fur-
ther adapting the parameters of the perceived cost, but
these are overlooked here.

We now test to what extent this numerical account of
distraction is faithful to the experimental observations.
To that end, we make use of Murakami et al.’s recent ex-
periments on bidirectional flows in the presence of three
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FIG. 9. Impact of distracted pedestrians on the chaoticity of the flow: (a) Suddenness of turn κ in the experiments of [6],
distinguished between a reference case without distracted agents (‘baseline’), the distracted agents, the non-distracted people
walking in the same direction and those walking in the opposite direction; (b) Suddenness of turn κ computed in our model, for
θ = 45◦; (c) Survival functions P (K > κ) in the reference experimental case and for different groups of agents in the simulations.
In panels (d) and (e), the half-angle of the visual field was restored to its original value, θ = 70◦, in the simulations.

digitally distracted agents, i.e., three participants who
were instructed to use their smartphones while walking
[6]. The researchers observed that their presence ham-
pered lane formation and made the flow more chaotic,
especially when the three participants were positioned
at the front of the group of participants moving in one
direction. Quantitatively, they gauged this effect us-
ing a suddenness-of-turn observable, which we somewhat
amend here to make it invariant under global rotations
of the frame:

κ(t)=̂

∥∥∥∥e(t+ ∆t)− e(t)

∆t

∥∥∥∥ , (18)

where e(t) is the direction of motion at time t; κ tends
to the geometric curvature in the limit of small ∆t. In
the experimental data (Fig. 9a), larger κ values, hence
a more chaotic flow organization insofar as pedestrians
prefer walking straight, are found for distracted pedes-
trians, but also for the participants walking behind them
in the same direction (referred to as ‘Same Directed’ in

Fig. 9a) and those walking in the opposite direction (‘Op-
posite Directed’), as compared to the reference case with
no distracted agents (‘Baseline’).

Turning to the simulations, we first artificially adorn
the simulated trajectories with head sways, because these
gait-induced oscillations affect κ. This is done by sim-
ply superimposing sine oscillations onto the trajectories
z(t) = x(t) + jy(t), viz.

z′(t) = z(t) +Aejωte⊥(t), (19)

where the period ω = 1.6 s−1 and amplitude A = 0.04 m
were measured in the experimental data of [6]. Once
these head sways are taken into account, the average flow
chaoticity κ measured experimentally in the reference
bidirectional flow (without distracted pedestrians) is re-
covered in our simulations of an identical setup (Fig. 9d).
To go beyond the average value, we computed the full dis-
tribution of κ and noticed that a better match between
experiments and simulations was reached if the half-angle
of the visual field was reduced to θ = 45◦ [compare pan-
els (c) and (e) of Fig. 9]; the corresponding mean value
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is even closer to the experiments. Accordingly, we will
set θ = 45◦ for all agents, but the trends that we find
are robust if the visual field is not narrowed to such an
extent (Fig. 9d).

Introducing smartphone-walking pedestrians in the
crowd (especially at the front) substantially increases the
chaoticity κ not only for the (few) distracted people, but
also for the others, particularly those walking in the same
direction. This evolution is surprisingly well captured
by our model, wherein digital distraction mostly boils
down to having a much longer time δt between updates
of the desired velocity (i.e., perception of, and reaction
to, the environment): Even though no quantitative coin-
cidence is attained strictly speaking, Fig. 9 testifies that
the trends and the variations between the pedestrians de-
pending on their status match the experimental findings.
Furthermore, we find that the exacerbated chaoticity is
mostly due to the more frequent occurrence of very sud-
den turns (associated with high κ values), as revealed by
the survival functions P (K > κ) in Fig. 9c.

IV. CONCLUSION

To summarize, we have put forward a model for pedes-
trian dynamics that better distinguishes the psychologi-
cal processes at play from the mechanical ones. In par-
ticular, the selection of a desired velocity by each (au-
tonomous) agent is entrusted to a decision-making layer,
which optimizes a perceived cost, whereas physical con-
tacts are handled with Newton’s equation of motion.
Many model parameters can be adjusted based on ex-
isting empirical data. Despite the limited number of pa-
rameters left for adjustment, the model succeeds in repro-
ducing a variety of experimental features over an impres-
sively broad range of situations and densities (without re-
sorting to more specific adjustments, compared to other
approaches), overcoming the need for a specific calibra-
tion in each regime. These situations include the speed-
density relations for collision avoidance between several
agents, unidirectional and bidirectional flows, bottleneck
flows, and navigation in a complex geometry. It can even
replicate more exotic phenomena, which data-driven ap-
proaches would have struggled to capture, due to the lack
of data. Digital distraction through smartphones, which
has grown into a major issue for pedestrian safety, is one
of them.

Above all, the theoretical delineation highlights the ap-
proximations that were made and that would need to be
improved for a more faithful description of some scenar-
ios, such as the pedestrian shape, at high densities, and
the short-time approximation of the utility function, in
situations where the operational dynamics include rel-
atively far-sighted anticipation usually assigned to the
tactical level. More broadly speaking, this work opens
perspectives for the clarification of the effect of percep-
tive or decisional faculties on the collective dynamics of
self-propelled particles.
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Appendix A: Derivation of the speed energy

The literature in physiology relates the energy expendi-
ture of walking to the rate of oxygen consumption ( VO2

),
which has a “rest” component and a speed-dependent
component:

VO2 = V
(rest)
O2

+ V
(walking)
O2

(S1)

We are interested in the second contribution which, in
the experimental work of Ludlow et al. [26] is reasonably
well fitted by an equation of the form:

espeed[u] = Ks1 +Ks2u
2, foru ≥ uc (S2)

This quadratic relation is consistent with other em-
pirical studies where the energy expenditure of humans
in walking motion has been also studied [65]. For the
particular case of this work, we discard the base energy
consumption (i.e. espeed[0 m/s), and subtract this contri-
bution from the experimental data. After this process,
we find that the coefficients of the previous equation must
be such that:

espeed[1.5 m/s] ≈ 3 · espeed[0.5 m/s] (S3)

Finally, we choose to smoothly connect the above
espeed expression to 0 so as to avoid discontinuities. This
is done with a second-order polynomial:

espeed[u] = Ks3u+Ks4u
2, foru < uc (S4)

with coefficients such that they match the higher-speed
curve at u = uc, for the single-point value and the deriva-
tive. Taking the value of uc ' 0.1 and espeed[1 m/s] = 1,
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we are able to calculate the value of the 4 parameters
associated with both equations, arriving at:


Ks1 = 0.4

Ks2 = 0.6

Ks3 = 7.6

Ks4 = −35.4

(S5)

so that

espeed(u) =

{
7.6u− 35.4u2 for u < 0.1 m/s

0.4 + 0.6u2 for u > 0.1 m/s.
(S6)

Appendix B: Derivation of the free walking speed

Isolated agents have no interactions with other agents
or the built environment, by definition; the perceived cost

for motion is thus E(u) = δt
[
espeed(u) + einertia(u)

]
+

ET (r + δtu). Interestingly, this function (with its ex-
plicit dependences given by Eq. 3 and Eq. 4) has the
same qualitative dependence on the (longitudinal) speed
u as the potential empirically estimated by Corbetta
and co-workers from their tracking of dilute (i.e., non-
interacting) pedestrians walking on a staircase landing
(Fig. 5 of [66]), with a local minimum at u = 0 and a
global minimum at the free walking speed u∞ ≈ 1 m/s.
Here, the free walking velocity u∞ is obtained by extrem-
izing E(u), viz.,

0 =
1

δt
∇uE

∣∣∣
u=u∞

(S1)

= 2µ
(
u∞ − v(t)

)
+
despeed

du

u∞

u∞
+∇rET (S2)

= 2µ
(
u∞ − v(t)

)
+ 1.2u∞ −KT t (S3)

where we have used the expression of espeed for u >
0.1 m/s from Eq. 4 and defined the unit vector t =
−∇rD/n(r) pointing towards the target.

Now, an isolated agent quickly reaches his/her desired
velocity u∞, so that the first term vanishes in the steady

state. Therefore, we arrive at u∞ = KT

1.2 t, which can

be used to set the coefficient KT from the free-walking
speed u∞.

Appendix C: Avoidance of obstacle of non-convex
shape

The pedestrian’s will to move is accounted for by a
floor field in ANDA. This provides a convenient handle
on the agents’ motivation or haste, their reluctance to
walk on uncomfortable ground or to stand too close to a

wall (via the ‘refractive index’ introduced in our Eikonal
equation, in Sec. II B 1) and more generally their route
choice. While one might argue that these elements belong
to the tactical level, and not to the operational one, we
contend that the floor field also contributes to improving
the local navigation of the agents, notably around obsta-
cles of arbitrary shape. To this end, we consider a non-
convex obstacle lying on an agent’s path and compare in
Fig. S1 the output of ANDA and several very popular
agent-based models, simulated with the UMANS soft-
ware developed at INRIA [31]. Manifestly, for this test,
only ANDA yields a reasonable result.

0 2 4 6 8 10 12
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FIG. S1. Local navigation of one agent around a non-convex
obstacle towards a predefined target, simulated with ANDA
(‘this model’) and with alternative agent-based models: RVO
[67], ORCA [68], social force model [16], Karamouzas et al.’s
TTC-based model [21], Moussaid et al.’s heuristic model [22].
These other models were simulated using their implementa-
tion in the UMANS software with their native parameters in
this software.

Appendix D: Consistency of the theoretical
framework and differences with previous structures

In the main text, we emphasized the importance of the
sound delineation between the decision-making layer and
the mechanical layer in ANDA. This delineation entails
differences in the structure of the equations as compared
to that of the Social Force Model [16] or Moussaid et al.’s
heuristic model [22]; their implications are underscored
here.

Schematically, instead of our Eq. 15 the former posits
that

mr̈j = m
u∞j − uj

τ
+ Fmech

→j + F soc
→j , (S1)

where Fmech
→j and F soc

→j refer to the mechanical and so-
cial forces exerted on j, respectively. Moussaid et al.’s
model differs from our ANDA framework in a more sub-
tle way, insofar as in both models the social environment
(F soc
→j in Eq. S1) affects the choice of the desired veloc-

ity u∞j , instead of entering Eq. S1. Still, the meaning
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of the characteristic time τ remains ambiguous, because
it mingles a mechanical relaxation process with a deci-
sional one (the heuristically determined desired velocity
can change abruptly in that model). By contrast, ANDA
penalizes sudden changes in the desired velocity (via the
term controlled by µ in the perceived cost and via the
sequential update of u∞j every δt) and then includes a

mechanical relaxation time governed by τmech.
To illustrate this point with clear-cut examples, sup-

pose that someone is walking on a moving walkway or a
treadmill; any variation of the speed of the apparatus will
be transmitted to the pedestrian within a typical time
τmech, irrespective of the decisional layer (i.e., irrespec-
tive of δt or µ). Along the same vein, should one wish
to describe a swimmer, the lower friction of the swim-
mer’s body with the water (compared to the ground) will

translate into a longer mechanical relaxation time τmech.
Conversely, the slower responses of distracted pedestrians
(Sec. III H) or older people can readily be transcribed
into the decisional layer of ANDA but have no impact
on τmech. Our framework therefore clarifies the distinct
relaxational processes that were amalgamated in other
models and misled some practitioners into ill-founded
calibrations of some model parameters (whether it be
relaxation times or the mass m in Eq. S1).

Note that ANDA remains compatible with the frame-
work developed by van Toll et al. [31], who recast a
variety of microscopic models by defining a generalized
velocity cost, provided that the generalized cost function
can include an ‘inertial’ term penalizing sudden changes
in velocity (which was not the case for the models imple-
mented so far in this framework).
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FIG. S2. Spatio-temporal diagrams of the coarse-grained local density, represented at different global densities following the
same label-code as in the top panel of Fig. 5.

FIG. S3. Evacuation dynamics through bottleneck of different widths, (a,d) w = 70 cm, (b,e) w = 80 cm, (c,f) w = 100 cm.
The top row shows the exit capacity as a function of the preferential speed u∞; the bottom row exposes the survival functions
P (τ > ∆t) of time gaps between successive egresses.
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