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Compared to other self-propelled particles, pedestrians are able to anticipate, which gives them
an edge in avoiding collisions and navigating in cluttered spaces. These capabilities are impaired
by digital distraction through smartphones, a growing safety concern. To capture these features,
we put forward a continuous agent-based model hinging on a transparent delineation of a decision-
making process and a mechanical layer that handles contacts and collisions. In the decisional layer,
each agent autonomously selects their desired velocity as the optimum of a perceived cost, notably
balancing the will to move forward (described by a floor field) with the bio-mechanical cost of
walking and the risk of collision, assessed by an anticipated time-to-collision. Altogether, the model
includes less than a dozen parameters, most of which are fit using independent experimental data.

Numerical simulations demonstrate the versatility of the approach, which succeeds in reproduc-
ing empirical observations in extremely diverse scenarios, often quantitatively, with a single set of
parameters. These scenarios range from collision avoidance involving one, two, or more agents to col-
lective flow properties in unidirectional and bidirectional settings and to the dynamics of evacuation
through a bottleneck, where contact forces are directly accessible. Remarkably, a straightforward
transcription of digital distraction into the model, by reducing the frequency of decisional updates,
suffices to replicate the enhanced chaoticity of the flow, with more frequent sudden turns, observed
experimentally when ‘smartphone-walking’ pedestrians are brought in.

Finally, the conceptual transparency of the model makes it easy to pinpoint the origin of some
deficiencies, notably its short-sighted account of anticipation (when agents have to cross a group of
people) and the disk-like pedestrian shape (when very dense crowds are considered). Our work thus
clarifies the singular position of pedestrian crowds in the midst of active-matter systems.

I. INTRODUCTION

Pedestrians routinely display remarkable navigation
and coordination abilities, which enable them to adapt
to new environments, make their way through dense
crowds [1, 2] and navigate in very constrained surround-
ings. But, like Marcus Aurelius’s infallible man [3], the
infallible pedestrian simply does not exist: Suboptimal
routing choices [4], collisions, or even in the most tragic
cases stampedes [5] are indeed also prominent features of
crowd dynamics. Uncoordinated behavior gets even more
visible in our overly connected societies, where the pedes-
trians’ attention to their surroundings are often diverted
by their smartphones [6, 7]. Crowds may thus display
both high abilities for self-organization and individual-
istic choices conducive to undesirable collective effects.
Models capable of capturing this somewhat contradictory
alliance would be highly beneficial for practical purposes,
of course, when it comes to designing new pedestrian fa-
cilities [8], but also more fundamentally, to disentangle
the specifics of pedestrian dynamics from the roots they
share with other physical assemblies, notably active mat-
ter. At present, these antagonistic features are, to say the
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least, only dimly reflected in the vast array of (continu-
ous) microscopic models for crowd dynamics. Schemat-
ically, one branch of models prohibits the selection of
all velocities potentially leading to a collision, whereas a
second branch handles collision avoidance as a repulsive
force.

The first branch (typically comprised of velocity-based
models) was largely inspired by the field of robotics [9–11]
in an endeavor to guarantee collision-free motion of mul-
tiple agents [12]. If it is implemented in a fully decentral-
ized way, this approach tends to be overly conservative
(‘prudent’) and too often the dynamics get frozen (dead-
locks) or look unnatural in the presence of conflicting
maneuvers [13]. To circumvent this issue, global coordi-
nation of individual moves may be enforced via a more or
less centralized process [12, 14]. This leads to reasonable
output for a variety of situations, but may arguably not
be scalable to large crowds (involving thousands of pedes-
trians). Furthermore, the predicted trajectories tend to
look too ‘robotic’ (with sharp turns, etc.) [13]. The
prediction of the other agents’ trajectories, mediated by
perception, can also be enforced in a context-dependent
way [15] and bring the agents’ behavior closer to human
response, but at the risk of requiring a different treat-
ment for every situation and making them less amenable
to theoretical understanding.

At the other extreme, in the wake of the celebrated
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Social Force Model [16], force-based models hypothesize
that the local rules of navigation can be represented by
ad hoc pseudo-forces encoding ‘intuitive’ social interac-
tions (such as keeping some distance from one another
via a repulsive or walking in a group via an attractive
interaction [17]) and inserted into an e.g. Newton-like
equation of motion, along with mechanical forces. This
particle-based approach has succeeded in replicating vari-
ous collective and/or self-organized phenomena in crowds
[18], but is also known to lead to spurious oscillations
[19] and to deadlocks or conflicts caused by an unrealis-
tic lack of anticipation by the agents. These issues are
partly remedied by supplementing the models with spe-
cific forces enforcing a following or an anticipatory behav-
ior [13, 20]. In a study of note, Karamouzas et al. showed
that the empirical collision avoidance behaviour depends
on the anticipated time to collision (TTC), rather than
on the absolute distance r between people and is thus
better described by an interaction depending on the
TTC than on r [21]. Other anticipatory behaviors and
follow-the-leader rules have also recently been put for-
ward [13, 20]. But this remedial process is essentially
ad hoc and adds patches to an existing model without
fundamentally questioning its overall structure.

In this paper, we propound a modeling framework that
mirrors the main processes involved in pedestrian mo-
tion, whereby each agent updates their desired velocity
via a decision-making process that optimizes a pseudo-
energy (or perceived cost) [22], notably comprising a
TTC term to render collision avoidance [21], whereas the
contacts and pushes that may ensue are handled by a
mechanical layer (Sec. II). Thanks to the transparent
coincidence between the building blocks and the pro-
cesses they describe, most model parameters can be cali-
brated independently. Inherently decentralized, the algo-
rithm reproduces realistic collision avoidance in crowds
and coordinated motion in crowded scenarios as well as
other collective effects, in quantitative agreement with
experimental data, using a single set of parameters for
the different regimes under study (Sec. III). The model
can further straightforwardly be extended to account for
‘smartphone-walking’, which has become a serious prac-
tical issue. The relative simplicity of the proposed frame-
work makes it suitable for physical insight into the simi-
larities and discrepancies with other types of active mat-
ter.

II. MODELING FRAMEWORK

A. Decision-making layer and mechanical layer

A pedestrian is both an autonomous agent that con-
trols his or her motion and a physical body that evolves
in a mechanical environment. In the parlance of control
theory, a pedestrian is thus both the ‘controller’ and the
‘system’ responding to the control signal. These two roles
are amalgamated in most microscopic models for pedes-

trian motion [19] and, more generally, active matter, in
which a single equation governs the evolution of the ac-
tual velocity of the agent. Here, to mimic the sequen-
tial process at play in human locomotion, we choose to
clearly disentangle the decision-making process, whereby
the agent selects a desired velocity, from the mechanical
block governing the response of the pedestrian’s body in
interaction with the environment.

In the rest of this section, we successively introduce
the decisional layer [10, 22, 23] and the mechanical one.

B. Decision-making layer

The move (consciously or unconsciously) chosen by a
pedestrian at each time step can be regarded as an op-
timum over a set of options from the viewpoint of this
agent. Optimality, in this sense, is typically defined in
rational choice theory as the maximization of a utility
function or equivalently the minimization of a perceived
cost function E . As a matter of fact, the choice need
not be wholly rational: the cost function may be purely
subjective and affected by the bounded rationality of the
agents or the limited information available to them. Such
an approach has previously been applied to select an op-
timal step [24], but here we apply it for the choice of a
desired velocity u? for the next time step, viz.

u? = argmin
u∈R2

E(u). (1)

From a broader perspective, this criterion can be inter-
preted as an optimal control problem over a very small
time horizon δt (where δt is the interval between deci-
sions, due to the reaction time), in which one would like
to extremize

E [u] =

∫ t+δt

t

e (t′, r(t′),u(t′)) dt′︸ ︷︷ ︸
running cost

+ ET (r(t+ δt))︸ ︷︷ ︸
terminal cost

E(u)
δt→0
≈ δt e (t, r(t),u) + ET (r(t) + δtu) (2)

The foregoing formula is reminiscent of the least action
principle for a physical system, whereby the trajectory
selected by nature minimizes a quantity called the ac-
tion (also see [25] for an application to dilute pedestrian
flows). But, crucially, the cost is here minimized by each
agent separately, knowing some information about the
others, and not globally by the whole assembly, as in
previous endeavors [14]. This reflects the autonomous
nature of the agents and drives a wedge between social
assemblies and physical systems.

Let us now detail the various terms contributing to the
perceived cost E(u).
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FIG. 1. Schematic representation of the algorithm. Every time step δt, the agent collects information about the environment
and the other agents in his or her field of view (left), considers various test velocities and selects the optimal one from the
perspective of his/her perceived cost. The self-propulsion force corresponding to this desired velocity is implemented in the
mechanical layer, which handles possible contacts or collisions and returns the agent’s updated position.

1. Static floor field

In Eq. 2, the driving term, which accounts for the de-
sire to move towards a target destination, is the terminal
cost ET, which is a function of the expected position r′ at
time t+ δt: The closer one gets to the target, the better.
This term is manifestly related to the pedestrian’s moti-
vation, and thus of psychological origin. We shall adopt
the simplest possible approach and assume that ET(r′)
is a static (i.e., time-independent) floor field that grows
linearly with the shortest-path distance D(r′) between
r′ and the agent’s target. These distances are defined
by the Eikonal equation |∇rD| = n(r) generally used
for ray tracing. Here, the ‘refractive index’ n(r) mea-
sures how uncomfortable the environment at r is. In
particular, while n = 1 in free space, proximity to a wall
is penalized by the function n(r) = tanh−1(dw(r)/dc),
where dw(r) denotes the distance to the closest wall and
the repulsive length dc (typically 20 cm in the following)
is a parameter of the model. Overall, the floor field thus
reads

ET(r′) =
KT

n
D(r′), (3)

where KT > 0 is a coefficient which, for reasons that
will soon transpire (Sec. II B 2), we have chosen to divide
by the ‘refractive index’ n = n(r). Note that n(r) in
Eq. 3 may vary with the agent’s current location r, but
on no account not with the test velocity u or the test

position r′ = r + δtu. Importantly, using a floor field
in this continuous model circumvents the practical issues
typically associated with the definition of standard road
maps (i.e., ‘central’ paths) that agents have to follow in-
discriminately or the nontrivial prescription of a field of
desired velocities in a complex geometry, which is here
handled straightforwardly (see Sec. III C).

Technically speaking, the shortest-path distances D
are computed on a hexagonal lattice (the dual of a honey-
comb lattice) before runtime and stored in memory. This
is done by means of Dijkstra’s algorithm, considering the
nearest two neighbors of each node and evaluating the
cost n(r) of traveling along an edge at the next (rather
than current) node. The use of a highly symmetric hexag-
onal lattice strongly curbs the spurious anisotropy that
is known to be generated by the Dijkstra algorithm (e.g.,
on square lattices); in practice, the variations of the free
walking speed with the direction of motion are reduced
to less than 10%.

2. Bio-mechanical cost associated with walking speed and
‘inertia’

The target cannot be reached instantly: The locomo-
tive abilities of pedestrians constrain the choice of a de-
sired velocity u?. The faster one moves, the more energy
is consumed by the body. The bio-mechanical depen-
dence of this energy espeed on speed u = ||u||, which
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is internalized in the decision-making process, has been
quantitatively assessed via measurements of oxygen con-
sumption (e.g., of participants walking on a treadmill)
[26]; the excess energy expenditure compared to rest com-
prises a constant (penalty for walking) plus a term which
grows as the square of u multiplied by a height-dependent
prefactor.

We choose to discard the base energy consumption at
rest and to connect the curve smoothly to 0 when u→ 0,
i.e., have espeed(u) vanish when an agent halts, arriving at
the following equation (refer to Appendix A for details),
which nicely fits the experimental data of [26], as shown
in Fig. 2,

espeed(u) =

{
7.6u− 35.4u2 for u < 0.1 m · s−1

0.4 + 0.6u2 for u > 0.1 m · s−1.
(4)
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FIG. 2. Bio-mechanical cost espeed associated with the walk-
ing speed v in the model, given by Eq. 4, and comparison to
the aggregated data of [26] (adult group).

Besides, abrupt changes in velocity should also
be barred because they are uncomfortable and bio-
mechanically costly, which suggests an ‘inertial’ contri-
bution

einertia(u) = µ
(
u− v(t)

)2
, (5)

where v(t) is the actual velocity at time t and u, the test
velocity for the next time step, t+ δt, and µ > 0.

Without any further contributions (from the envi-

ronment), the extremum of E(u) = δt
[
espeed(u) +

einertia(u)
]

+ ET (r + δtu) is reached when

0 =
1

δt
∇uE = 2µ

(
u− v(t)

)
+
despeed

du

u

u
−KT t, (6)

where t = −∇rD/n(r) is a unit vector pointing towards
the target, in free space. Hence, the free walking speed

in steady state is u∞ = KT /1.2, for u > 0.1 m · s−1 (de-
tails can be found in Appendix B). Provided that u∞

is empirically known (typically between 1.2 and 1.8 m/s
depending on the situation), the parameter KT can be
set straightforwardly.

Strikingly, since u is the desired velocity at t+δt, Eq. 6
is formally identical to the numerical resolution of New-
ton’s second law with a forward Euler scheme [14]. At
this stage, we should underscore the two key conceptual
shifts that have been made so far with respect to most
existing models. First, Newton’s equation is not obtained
by dint of some fundamental physical law, but because of
the simple form chosen for einertia in the decisional layer.
Second, the free walking speed u∞ explicitly results from
the balance between a bio-mechanical cost espeed, that
may vary with the pedestrian but not with the context,
and a will to move described by the terminal cost (or
floor field) ET ; all psychological and motivational effects
(heightened in the event of an emergency, for instance)
are deferred to ET . This makes sense, because ET also
governs the route choice.

3. Private space

Another intuitive contribution comes from the desire
not to stand excessively close to other pedestrians or ob-
stacles, i.e., to preserve one’s private space, the dimen-
sions of which vary between cultures [27]. Here, it is
modeled as a distance-dependent repulsive term entering
the terminal cost in Eq. 2,

Eprivate(r′) =
∑

j∈f.o.v.(i)

η

σi + σj
V rep

( ||r′ − rj(t+ δt)||
σi + σj

)
,

(7)
where rj(t+δt) = rj(t)+δtvj(t) is the expected position
of agent j at the next time step, σj is the radius of agent
j, and V rep is a short-ranged function. We cut if off at
1 + ε?, where ε? > 0, and set

V rep(r̃) =

{
1
r̃ −

1
1+ε? if r̃ < 1 + ε?

0 otherwise.
(8)

To account for perception, in Eq. 7, the sum does not
run over all neighboring agents j, but is limited to those
in the field of view (f.o.v.) of the agent (i), i.e., within a
cone which extends from −θ to +θ around the direction
of the agent’s last desired velocity u(t).

4. Time-to-collision (TTC) energy

All contributions so far are based on positions and dis-
tances, possibly anticipated at the next time step t+ δt.
This was argued to give an inadequate reflection of the
cognitive heuristics employed by humans for collision
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avoidance [22]. Indeed, as later shown by Karamouzas
et al. [21], the positional variables are not well suited to
describe the spacing distances between pedestrians (no-
tably resulting from their mutual avoidances) and had
better be substituted by an anticipated time to collision
(TTC), which is the earliest time τij ∈ (0,∞) at which
agents i and j are expected to collide. τij can readily
be calculated if agents j are handled as disks of radii σj
and agent i assumes that all neighbors j maintain their
current velocities. Then, the TTC reads [14]

τij(ui) =
−xij · vij −

√
∆

vij
(9)

if ∆ = (xij · vij)2 − v2ij [x
2
ij − (σi + σj)

2] > 0, or ∞
otherwise. Here, xij and vij are the relative positions
and desired velocities of i with respect to j.

In the light of empirical data on interpedestrian spac-
ings, Karamouzas et al. [21] established an interaction
potential

V TTC(τ) = KTTC exp(−τ/τc)
τp

, (10)

where p = 2; τc was set to 3.0 s.
In our case, unlike Karamouzas et al. [14, 21], only the

most imminent collision risk, i.e., the shortest TTC, will
be considered by each agent, viz.

eTTC = max
j∈f.o.v.(i)

V TTC
[
τij(ui)

]
︸ ︷︷ ︸

≡eTTC
j

. (11)

This focus on only the most imminent collision vaguely
echoes Primo Levi’s impression (in an admittedly wholly
unrelated context [28]) that one experiences fears and
pains one at a time, the most acute coming first, as
though the smaller ones remained hidden behind it while
it persists. Moreover, as previously, the agents fields of
view restrict the set of neighbors that they actually see;
the TTC of agents out of their f.o.v. is regarded as infi-
nite.

So far, the TTC energy penalizes desired velocities that
lead to physical contact. However, pedestrians are also
eager to avoid encroachments on their private spaces.
Suppose that the private space is a disk of radius (1+ε)σi,
where ε > 0 and σi is the body radius of the agent (i,
here). Equation 9 can then be applied to retrieve the
TTC of private spaces, τij(ε), provided that the sum of
body radii σi + σj is multiplied (‘inflated’) by 1 + ε.

Since the transition into the private space is actually
smooth, the TTC energy will read

eTTCj =

∫∞
0
V rep(1 + ε)V TTC [τij(ε)] dε∫∞

0
V rep(1 + ε) dε

. (12)

For simplicity, as well as computational efficiency, in
practice we will approximate the foregoing formula by

eTTCj =
1

ε?i

∫ ε?i

0

V TTC [τij(ε)] dε (13)

Here, ε?i = min
(
ε?, εi

)
may be lower than the maximal

extent of the private space, ε?, if this value leads to an
overlap of the private sphere at the present time; in that
case, ε?i is capped to εi, the largest inflation factor guar-
anteeing that agent i’s private space does not currently
overlap any other agent’s. A similar averaging procedure
was put forward in [29] to smooth the TTC energy (with
respect to positions), but it was then interpreted as the
result of an uncertainty on the evaluation of body sizes.

If no collision with agent j is ever expected, even with
maximally inflated radii, i.e., τij(ε

?
i ) = ∞, then eTTCj =

0. Otherwise, the minimal inflation leading to collision,
εcij ≥ 0, can easily be derived from Eq. 9. Equation 13 is
further approximated by

eTTCj ≈
ε?i − εcij
ε?i

V TTC
[
τij

(ε?i + εci
2

)]
. (14)

TTC-based anticipation is also operational with re-
spect to walls, but their linear shape modifies the tech-
nical calculation of the TTC. More specifically, the TTC
τiw is defined as the shortest time after which the disk
representing the agent would collide with a linear seg-
ment of a wall, if it moves at the test velocity u; no
private space is considered in this case (recall however
from Sec. II B 1 that the proximity to walls in penalized
in the floor field).

This concludes the summary of the pseudo-energies en-
tering the perceived cost function

E(u) = ET
[
r(t) + δtu

]
+ Eprivate

[
r(t) + δtu

]
+

δt
[
espeed(u) + einertia(u) + eTTC(u)

]
,

whose minimization, performed using a Nelder-Mead al-
gorithm [30], yields the desired velocity u?, for each
agent.

C. Mechanical contacts

Collisions between pedestrians are rare, but may occur
in very dense crowds. In that case, should the desired
velocity u?i lead to a collision within the decisional update
time δt, these collisions are handled within our model by
a mechanical ‘layer’ (see Fig. 1), which solves Newton’s
equations [31]

r̈i =
u?i − ṙi
τmech

+
1

m

∑
j

FHertz
j→i +

1

m

∑
w∈walls

FHertz
w→i , (15)
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Symbol Definition Value
Decision-making layer

δt Decision-making time 0.1 s
u∞ Preferential speed, or

free-walking speed
1.0-2.0 m/s

µ Inertial coefficient 0.01
η Repulsive coefficient

associated with private
space

0.8

ε Spatial extent of the private
space (relative to body

width)

0.2

dc Characteristic repulsion
length of walls

20 cm

θ Visual cone (half-angle) 70◦

Mechanical layer

τmech Relaxation time 0.2 s
κ/m Renormalized body stiffness 106

TABLE I. Definitions and values of the model parameters.
Note that δt is chosen somewhat shorter than the reaction
time to complex stimuli, because the human decision-making
process is more sophisticated than that modeled here.

wherein agents self-propel in the direction of their de-
sired velocity u?i , which they reach in a characteris-
tic time τmech ≈ 0.2 s in free space. Besides, they
are assumed to interact with each other via frictionless

Hertzian contact forces FHertz
j→i = κP

(
σi+σj

rij
−1
)

(ri−rj),
where P (x) = max(0, x), as though they were homoge-
neous elastic cylinders of radii σi and σj with parallel
axes. Similarly, contacts with a wall w result in a force

FHertz
w→i = κP

(
σi

riw
− 1
)

(ri − rw), where rw is the wall

point closest to i and riw is the distance to the wall.
Numerically, Eq. 15 is solved with a velocity Verlet algo-
rithm, using a typical time step dt = 2 · 10−4.

Of course, the present mechanical description ought to
be refined in the future, turning to more realistic shapes
and interactions for the agents. These improvements can
easily be integrated within the sturdy theoretical ground
outlined here, which already convincingly describes many
features of pedestrian dynamics, as exposed in the next
section.

III. RESULTS

This section evinces that, despite its simplicity, the
model introduced previously succeeds in quantitatively
reproducing empirically observed features. Most impor-
tantly, although these situations cover a wide range of
contexts and densities, no adjustment of the main pa-
rameter set (apart from very marginal ones required by
the context) is required. We will initially validate the
algorithm at the individual level and then move to col-
lective properties.

In the following simulations, we used the main model
parameters detailed in Table. I. Regarding the pedestrian
shapes, whenever crowds are simulated, their body radii
will be chosen in a normal distribution of mean 22.5 cm
and standard deviation 2 cm. The preferential speeds
will typically be normally distributed around u∞ = 1.4±
0.2 m · s−1, but bounded below by 1.0 m · s−1.

A. Collision avoidance by a single pedestrian

Since a distinctive feature of pedestrian dynamics is an-
ticipated collision avoidance, we begin by probing binary
avoidance maneuvers involving two pedestrians (body ra-
dius: rp = 25 cm, preferential speed: 1.4 m · s−1) in a 10
m length and 3 m width corridor, in the two simple se-
tups studied experimentally by Moussaid et al. [32]. In
the first setup (top of Fig. 3), one pedestrian stands still
in the center of the corridor, at (X,Y )(0, 0). Meanwhile,
the other one is asked to cross the corridor from an initial
position at X = −5 m, Y ∈ [−rp, rp] to a distant target
zone centered at (X = 5 m, Y = 0,m), avoiding this
‘obstacle’ (first part of Supplementary Video I). Mostly
by adjusting the inertial coefficient µ, we manage to ob-
tain a close-to-perfect agreement between the model out-
put and the average experimental behavior, apart from
the avoidance-side preference (which is overlooked in the
model and washed out of the experiments by plotting
the absolute transverse displacements |Y | instead of Y ).
The quality of the fit may even surpass that obtained
with a social force model specifically calibrated for these
experiments in the seminal original paper [32].

In the second setup (bottom of Fig. 3), the pedestri-
ans are initially at opposite ends of the corridor (X =
±5 m, Y ∈ [−rp, rp]) and walk in opposite directions.
They start deviating from the central line already 3 me-
ters ahead of the point of encounter (so typically 6 meters
away from their counterpart). The maximal transverse
displacement, at the point of encounter, appears to be
smaller than in the first setup with the static obstacle
(Y ≈ 50 cm), but one must bear in mind that, in this
second setting, the workload associated with the avoid-
ance maneuver is shared by two pedestrians, so that their
separation distance on the crossing line is comparable to
that observed when one of them stands still (second part
of Supplementary Video I); the deviation is however un-
dertaken earlier in the second setting, in line with the
expectations based on the TTC. It is noteworthy that
the (statically averaged) experimental trajectories are al-
most perfectly reproduced, without further adjustment
compared to the first case. Of course, this comparison is
oblivious to the avoidance-side bias observed experimen-
tally, for which we did not introduce any counterpart in
the model.

https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
https://drive.google.com/file/d/14E05ELmKC7JeJrQT0uKffifPfs57DSSf/view?usp=sharing
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FIG. 3. Avoidance maneuvers between in a corridor: (top)
Avoidance of a still-standing pedestrian ‘obstacle’ at the cen-
ter; (bottom) trajectories of two counter-walking pedestrians.
The computer simulations (coloured lines) are compared to
the experiments (grey lines); the dashed lines materialize an
envelope of width the standard deviation on each side of the
moving average (solid line). The experimental trajectories
were shifted along Y to start at Y = 0.

B. Many-body collision avoidances: Antipodal
experiment on a circle

Having validated the model for two-body interactions,
we move on to the interactions among a larger number
of people. Circle antipodal experiments are an archety-
pal way to probe many-body collision avoidances. In
this configuration, pedestrians are initially positioned
on a circle (of 5 or 10 m of radius for example [33])
with uniform spacing between them and instructed to
quickly reach the antipodal positions as soon as a sig-
nal is heard. Were they to walk straight to their targets
at equal speeds, they would meet at the centre of the
circle. Instead, experiments have shown that they de-
viate from the plain straight path soon after setting in
motion. By adopting various collision avoidance and de-
tour strategies, they manage to reach their target without
substantial near collisions, even when there are up to 64
participants walking simultaneously [33]. We replicated
the experimental setup numerically for a set of 8 agents
with normal preferential speeds. Without mutual inter-
actions, these agents would walk straight ahead at very
similar speeds, despite their different directions, thanks
to our use of a hexagonal lattice for the floor field (as we
explained in Sec. II B 1). Instead, we observe that they
deviate from the straight path and easily manage to reach
the antipodal position (see the video in the Supplemental
Material). The simulated trajectories are smooth and, as
in the experiments, they do not excessively concentrate
at the conflict-rife center of the circle; this is at odds
with the output of the social force model, either in its
traditional version or in a specifically designed variant,
which were both deemed to significantly differ from the
experimental results in [33]. Nevertheless, on account of

the high variability between individuals and realizations,
we have not sought a more quantitative comparison of
trajectories here and have settled with the foregoing ap-
preciation of the visual realism of the model output.

Another opportunity to study many-body collision
avoidance is afforded by interweaving pedestrian flows,
in which non-parallel streams of pedestrians are forced
to cross; however, the individual pedestrian behaviors
observed experimentally [34] are even more varied than
in the antipodal experiments. Nevertheless, Luan et al.
disclosed four major individual avoidance strategies [34];
let us briefly inquire into their compatibility with our
model. To evade a collision, pedestrians may accelerate
(strategy 1) or decelerate (strategy 2), come to a full
halt (strategy 3), or make a detour to avoid a collision
(strategy 4). Suppose that a simulated agent anticipates
a collision in the direction t if he or she walks at a speed
u = u∞; for this agent, the bio-mechanical cost espeed

or terminal cost ET of accelerating (u > u∞) or decel-
erating (u < u∞) with respect to the preferential speed
u∞ is most often compensated by the ensuing reduction
in TTC energy eTTC(ut), so the first two strategies are
clearly within the reach of the model. So is the third
one, namely coming to a full halt, which is but a spe-
cial case of strategy 2; indeed, standing still has a lower
bio-mechanical cost espeed than moving (Fig. 2). Mak-
ing a detour (strategy 4) is also widely observed within
the frame of our model, as already reported for the bi-
nary collision avoidance (Sec. III A) and the antipodal
scenario, especially when modifying one’s speed is not
enough to avoid a collision. (On the other hand, acceler-
ating during this detour, which was often observed exper-
imentally [34], will only be undertaken by the simulated
agents if the detour alone does not ward off the risk of
collision; otherwise, the less favorable walking direction
during the detour results in lower gains in the terminal
cost for moving forward, hence a lower propensity to walk
fast.)

C. Navigation in a complex geometry

Navigation in a complex environment adds another
layer of complexity to the foregoing multi-agent scenar-
ios, in that each agent must also interact with the built
environment. To characterize pedestrian flows in these
(practically relevant) situations, we designed a geometry
very loosely inspired from the ground floor of Montpar-
nasse train station in Paris, France, in which about 100
pedestrians (with a lower threshold on preferential speeds
set to u∞ = 1.2 m/s), classified in 7 groups with distinct
targets, were simulated. The simulation runs in a matter
of minutes on a single CPU core and produces the tra-
jectories shown in Fig. 4. Thanks to the use of a floor
field to attract each group to their specific target, the
agents make sensible route choices to their destination,
by going around walls and obstacles whenever needed,
without being constrained to strictly adhere to a prede-

https://drive.google.com/file/d/1xaIEGk0CyEQLULnV7q2sZsZtfDjs2Ibe/view?usp=sharing
https://drive.google.com/file/d/1xaIEGk0CyEQLULnV7q2sZsZtfDjs2Ibe/view?usp=sharing
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FIG. 4. Navigation of ∼ 100 agents, split into 7 groups with
distinct target zones, in a complex geometric layout inspired
by the ground floor of the Montparnasse train station in Paris,
France. The initial positions are marked with colored disks
and the solid lines that represent the trajectories evolve from
blue to yellow with time.

fined path. Furthermore, the simulated dynamics (shown
in the supplemental movie complex geometry) are qual-
itatively convincing at the local level, as far as one can
judge with the naked eye: the agents succeed in navi-
gating towards their targets in a realistic way, generally
avoid collisions with their counterparts and the walls.
Still, even closer inspection of the video reveals some
hesitancy in the central region when an agent endeavors
to cross a group of static pedestrians who have reached
their target; this particular situation will be discussed in
Sec. III G.

D. Unidirectional flow

Let us now turn to the model’s predictions of collec-
tive flow properties at higher densities. Specifically, we
will investigate the effect of density in unidirectional
flow by means of the speed-density relation, a broadly
used quantitative benchmark for models of pedestrian
dynamics. A corridor of length LX = 16 m and width
LY = 3 m is considered, with periodic boundary condi-
tions (PBC) in the horizontal direction. The number
of pedestrians inside the corridor is varied from 12 to
144, thus achieving densities ranging from 0.25 and
3 ped/m2. Each simulation takes 100 seconds to run, the

last 75 s of which are used to compute the speed-density
relation by averaging the speeds of all agents.

The numerical outcome in Fig. 5 follows the same
trends as the empirical data, with a monotonic decay
of speed with density that gets sharper around 1.5-
2 ped/m2. It even quantitatively matches with some em-
pirical data, but the dispersion in the latter precludes
any bolder statement. The situation at high density
ρ > 2.5 ped/m2 deserves additional comments. First,
the speed is still nonvanishing in this regime, consistently
with empirical observations even at (much) higher den-
sities, (far) above 6 ped/m2 in the pilgrim processions
during the Hajj [37] as well as in controlled experiments
[40]. Secondly, in the model, the speed seems to level
off, possibly excessively. However, it should be noted
that pedestrian shapes start to become overly important
in this regime. Clearly, the approximation of pedestri-
ans as disks used in this paper for simplicity (to avoid
the rotational degree of freedom associated with non-
axisymmetric shapes) then reaches its limits. Accord-
ingly, we expect the model predictions to be altered in
this regime, should more realistic shapes be simulated.

The spatio-temporal diagrams of speed shown in the
lower panels of Fig. 5 for different densities shed light on
finer details about the flow dynamics, notably the occur-
rence of stop-and-go waves in the higher-density regime.
This type of instability, wherein a slow or ‘jammed’,
dense phase emerges locally in the unidirectional crowd
and propagates upstream, is routinely observed in various
forms of traffic and in single-file pedestrian motion [41]
when the average spacing between agents is reduced. In
corridor flows, spontaneous stop-and-go waves are proba-
bly not as systematic, but they have nonetheless be wit-
nessed. For instance, in the controlled experiments of
Jin et al. [42] in a ring-like corridor, these waves were
observed only for narrow corridors (no wider than 1 me-
ter), allegedly because transverse motion in wider corri-
dors alleviates jamming. Nonetheless, empirical observa-
tions before the crowd disaster during the Hajj in 2006
also evidenced stop-and-go waves before turbulence set
in, although the packed crowd extended transversely over
more than 20 m [37].

In our simulations, no stop-and-go wave was ob-
served at the lowest considered density (label (1), ρ =
1 ped/m2); instead, clusters of fast-walking agents cre-
ate dark blue streaks, that move downstream at their
(high) walking speed. When the density in the corri-
dor increases (label (2), ρ = 2 ped/m2), the spatio- tem-
poral diagrams are qualitatively altered, with regions of
halted pedestrians propagating upstream, corresponding
to a stop-and-go motion. Interestingly, these backward-
travelling waves are conspicuous in our coarse-grained di-
agrams of speed, but are not apparent when we plot the
coarse-grained diagrams of density. Thus, the density
indicator used to experimentally detect stop-and-go mo-
tion in [42] appears to be less telling than the (longitudi-
nal) speed. At least two factors contribute to explaining

https://drive.google.com/file/d/1RjN2j_9xdCjgVoikqFt_RpEq9NZ_D97V/view?usp=sharing
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FIG. 5. Unidirectional flow along a corridor of (periodic) length LX = 16 m and width LY = 3 m. (Top) Variation of the
simulated mean pedestrian speed with the density, shown along with various experimental data sets (Older [35], Mori and
Tsukaguchi [36], Helbing et al. [37], Weidmann [38] and Zhang et al. [39]). (Bottom) Spatio-temporal diagrams of the coarse-
grained local speed, represented at different densities, as labeled in the top panel.

the poor sensitivity of the density indicator. First, den-
sity is averaged across the corridor width, whereas the
jammed phases do not necessarily span the whole corri-
dor width, as we confirmed by direct visualization of the
simulated flows (see supplementary movie UniDirFlow);
this issue becomes all the more problematic as the corri-
dor is wide. It also comforts the idea [42] that pedestrians
in a wide corridor can sometimes evade jammed regions
through transverse motion. Secondly, the difference be-
tween the density ρj in jammed phases and the density
ρf in flowing ones is fairly small, since the TTC term
gets people to brake ahead of a halted person. Because
in a strictly one-dimensional setting the conservation of
the number of agents imposes that ρf (vf + |w|) ' ρj |w|
in the steady state, where vf is the pedestrian speed in
the flowing phase and w is the stop-and-go wave speed,
the small difference between ρf and ρj entails a fairly
large wave speed |w| ' ρf vf

ρj−ρf . And, indeed, in Fig. 5(2),

we measure a wave speed |w| larger than the free walk-
ing speed; we should note that this value exceeds what
is typically found for stop-and-go waves in single pedes-
trian files, where |w| generally lies below 1 m/s [41]. At
even higher densities (label (3), ρ = 3 ped/m2), promis-

cuity slows the flow even more and the dynamics become
globally more hampered, but also less bursty.

E. Bidirectional flow

Bidirectional flow exhibits particular features, as com-
pared to the unidirectional case, but is also ubiquitous
in daily life, e.g., when two groups of people are found
moving in opposite directions in underground corridors,
at shopping streets, in commercial streets, etc. Regard-
less of the type of facility, the system will most proba-
bly evolve into a segregated state where people end up
forming lanes [43, 44]; such organization reduces collision
risks with counter-walking agents and allows people to
walk faster. While lane formation has historically been a
major benchmark test for any new model, it is notewor-
thy that this phenomenon is not specific to pedestrian
crowds, but is widely found in other active assemblies,
and even in simply driven particle systems, such as col-
loids [45]. Indeed, it is underlain by a generic mecha-
nism: in the non-organized flow, agents undergo small
transverse moves after each collision; upon aligning be-

https://drive.google.com/file/d/1DmDdrwSCbeJJD59sXnIqAZFBmtMMZk4S/view?usp=sharing
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FIG. 6. Lane-formation phenomena in bidirectional flows in a
corridor. (Top) Time evolution of the order parameter φ (de-
fined in Eq. 16). (Bottom) Snapshots of the crowd at different
times, rendered with the CHAOS software developed by IN-
RIA: (1) well-mixed crowd at the beginning of the simulation,
(2) crowd structured in counter-walking lanes. The numbers
(1) and (2) correspond to the arrows in the top panel. Refer
to the main text for the dimensions of the corridor.

hind someone walking in the same direction, these col-
lisions become much less frequent and the aligned state
is thus stabilized. Still, the lane-forming state cannot be
reached within some pedestrian models in crowded cor-
ridors, which leads to deadlocks [46].

To quantify lane formation in our model, we fill the cor-
ridor defined in the previous section with N agents, split
into an equal number of left and right-moving agents.
Following previous works [45, 47], we measure an order
parameter

φ =
1

N

N∑
i=1

φi ∈ [0, 1] with φi =

(
NSame
i −NDiff

i

NSame
i +NDiff

i

)2

.

(16)

where NSame
i and NDiff

i are the number of pedestrians
walking on the same line as pedestrian i, respectively in
the same direction and in the opposite one, viz.,

NSame
i = {j, |yj − yi| < 3σi/2 and v̂i · v̂j > 0}

NDiff
i = {j, |yj − yi| < 3σi/2 and v̂i · v̂j < 0}

(17)

where we used 3σi/2 as our characteristic length scale
(remember that σi is the particle radius) previously used
and tested in other works [46]. Thus, φ measures how
stratified the system is, being 0 for a fully mixed state
and 1 when lane formation has occurred.

FIG. 7. Variation of the average pedestrian speed with the
mean density in a bidirectional corridor flow.

In Fig. 6 we show the temporal evolution of φ, effec-
tively finding a transition of the system from a mixed
state in the early stages of the simulation (values of φ
close to 0) to a lane structure where pedestrians are prac-
tically segregated with φ ∼ 1.

Besides, in the example shown in Fig. 6 (ρ =
1 ped/m2), lanes take 10 to 15 seconds to form. Com-
pared to the experimental findings of [40], the simulated
lane formation time is somewhat longer than the ex-
perimental one for ρ = 1 ped/m2, but shorter than for
ρ = 2 ped/m2; the quantitative comparison should how-
ever be taken with a pinch of salt, because the experimen-
tal setup was a ring and the initial pedestrian positions
also differed.

Finally, the speed-density relation for the bidirectional
flow is comparable with the unidirectional flow one and
is also consistent with experimental measurements, as
shown in Fig. 7.

F. Bottleneck flow, evacuation

Let us now break the translational invariance of the
corridor by introducing a narrowing (a bottleneck).
Streamlines then converge at the narrowing, which gen-
erates clogging effects if the flow is dense and the bot-
tleneck is not much wider than a few ‘particles’. These
effects exist when the particles are grains or animals [48],
but are vested with special interest for pedestrians, for
they may be critical during egresses or evacuations under
emergency conditions. The topic has thus received much
attention and some paradoxical effects have been brought
to light: While more haste often makes the evacuation
quicker, in very competitive settings, higher individual
preferential speeds may be counterproductive, leading to
long-lived clogs observed empirically as well as experi-
mentally. This is the well-known ‘faster-is-slower’ effect
(FIS), first predicted numerically [49] and then demon-
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FIG. 8. Evacuation dynamics through a narrow doorway of width w = 60 cm, centered at (0, 0).(a) Dependence of the exit
capacity on the preferential speed u∞; (b) Survival function P (τ > ∆t) of time gaps between successive egresses; (c) Average
pressure field due to physical contacts between agents in the vicinity of the exit, for u∞ = 3 m/s and w = 60 cm.

strated experimentally in a variety of assemblies [48, 50].
Here, we simulate an evacuation from a rectangular

room initially filled with 150 randomly positioned agents
who strive to egress through a doorway of width w in
the middle of one wall. The agents’ eagerness to evacu-
ate affects the terminal cost ET and, as a consequence,
their preferential speed u∞; the latter will be varied and
used as a proxy for eagerness. To avoid deadlocks at
the bottleneck, every second the preferential speed of
each agent undergoes a small random fluctuation (drawn
from a normal distribution of standard deviation 0.2)
around its initial, agent-dependent value. Each simu-
lation is replicated around 100 times to collect sufficient
statistics to overcome the expected strong fluctuations,
and the first and last egresses in each realization are dis-
carded to focus on the quasi-stationary state. Gauging
the evacuation efficiency by the exit capacity, i.e., the
pedestrian throughput, we show in Fig. 8a that the FIS
is retrieved when the door is very narrow, w = 60 cm:
the capacity plummets as soon as u∞ exceeds 1.7 m/s. In
this competitive regime, the total evacuation time Tevac
exhibits strong fluctuations, rationalized by the (infre-
quent, but not sporadic) occurrence of very long clogs.
These clogs generate large time gaps τi between succes-
sive egresses, which impact Tevac =

∑
i τi. The survival

functions P (τ > T ) of the τi, represented in a logarithmic
plot in Fig. 8b, develop heavy tails, are suggestive of a
power-law-like behavior, with flatter and flatter slopes as
agents get more and more hurried (uinf > 2− 3 m · s−1),
in contrast with the fast decays observed for more placid
agents and/or wider doors (Fig. S1f). These features are
in perfect agreement with previous experimental findings
[50]. Beyond uinf ' 3 m/s, the flattening trend gets less
visible, as the stronger pushing forces counter the clog-
ging phenomenon [51]. In parallel, the typical time gaps
keep being reduced as the agents move faster; therefore,
the capacity starts increasing again with u∞ (Fig. 8a).

For a slightly larger door, of width w = 70 cm, the
FIS is still noticeable, but not as conspicuous: the non-
monotonicity of Js(u

∞ is only tentatively seen around
uinf = 4 m/s (Fig. S1a)). This is broadly in line with

the findings of [50], where the FIS was clearly present,
but fairly small for a 69cm-wide door (the flow rate in
the highly competitive settings was reduced by about
5% smaller compared to the milder settings). For wider
doors, w > 70− 80 cm, the FIS fades away from our sim-
ulations (Fig. S1b,c): Higher preferential speeds uinf lead
to higher throughputs.

Aiming for a quantitative comparison, we probe the
specific capacities Js = 1

w ·
N
TN

(where TN is the duration
it took to evacuate N agents in the pseudo-stationary
stage of the evacuation), i.e., mean flow rates per unit
width of the door. For a 1 m-wide door, our simulations
yield Js = 1.80 ped/m/s in normal conditions (uinf =
1.5 m/s), right between the estimate Js = 1.60 ped/m/s
reported in [52] and the experimental measurements Js =
1.85 ped/m/s and Js = 1.90 ped/m/s in [53] and in [54],
respectively. In these last two publications, the specific
capacity decreases slightly to around Js = 1.8 ped/m/s
and Js = 1.6− 1.7 ped/m/s, respectively, when the door
is narrowed to w = 80 cm; it drops somewhat more sig-
nificantly in the model, to Js = 1.54 ped/m/s, still for
uinf = 1.5 m/s, but the agreement remains acceptable.
For even narrower doors it must plainly be conceded that
a marked discrepancy arises in the absolute values of the
specific capacity, which is around Js ≈ 1.4 ped/m/s in the
simulations and around Js ≈ 3.6 ped/m/s in the experi-
ments. This can easily be explained: Our approximation
of pedestrians as frictionless disks is stretched beyond
any reasonable limit in a regime dominated by mechan-
ical obstructions and contacts, and in which the shape
of agents matters considerably [55]. A better physical
description would be attained by refining the mechanical
layer using more realistic agent shapes.

Still, the existence of a neatly delineated mechanical
layer is of great avail as it enables us to define con-
tact forces rigorously, by contrast with models mingling
pseudo-forces and real forces. More precisely, the contact
force Fj←i exerted by i on j reads Fj←i = −dU2

rij
, where

U2 is the Hertzian potential defined previously. If one
overlooks variations in the agent’s surface area A, the
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pressure can then be defined, from a continuum mechan-
ics standpoint, as the sum of contact forces exerted on
j times divided by A, viz.,

∑
i Fij/A. With this defini-

tion, Fig. 8c shows the average pressure field during the
evacuation, i.e., the mean pressure felt by agents at each
position in space. It is noteworthy that these pressure
fields look similar to the density maps measured exper-
imentally in evacuations under similar competitiveness
[56].

G. Intruder problem

While competitive evacuations displays many similar-
ities with granular flows through a bottleneck [48], prob-
ably owing to the prominence of mechanical contacts, re-
cent experiments have shown that, surprisingly, the gran-
ular analogy fares much worse when a group of static
people is crossed by an ‘intruder’ [2]: Anticipation and
self-propulsion by the pedestrians then play a major role
in opening a pedestrian-free tunnel ahead of the intruder
via transverse displacements, in stark contrast with the
granular case. This holds even in the dense regime, where
mechanical forces were believed to prevail.

The Social Force Model goes completely amiss in the
description of these features [57], which in principle could
be captured by our model: agents in the static crowd
(whose target position coincides with a circular region of
radius the size of the pedestrian and centered on his/her
initial position) can anticipate a risk of collision with the
intruder and move ‘out of harm’s way’ in advance, by
moving away from the expected (linear) intruder’s tra-
jectory. In practice, however, we managed to reproduce
the density field, with a ‘tunnel-like’ opening ahead the
intruder due to anticipation, but not the purely trans-
verse displacements observed experimentally, even with
slight variations of the model or its parameters. In a par-
allel paper dedicated to this scenario [58], we ascribed the
deficiency of most existing agent-based models (including
a variant of the present one, see Supplemental Material
of [58]) to capture this effect to the fact that in this situa-
tion the local navigation is mingled with the tactical plan-
ning and that the modeled agents are too short-sighted
to achieve this anticipation. For the present model, the
alleged origin of this deficiency can be pinpointed more
precisely thanks to its transparent derivation: Taking the
limit δt → 0 in the anticipated cost of motion in Eq. 2
sweeps away the possibility to plan a move that involves a
non-constant velocity. A natural way to recover it would
be to perform the optimization of the full time-integral
in Eq. 2, i.e. with respect to the planned velocity func-
tion u(t′), t′ > t, as in game theory, at the expense of an
unbearable computational cost. Mean-field game theory
can overcome this intractability, at the expense of losing
sight of the discrete nature of pedestrians [58].

Interestingly, this also explains the aforementioned
hesitancy of some pedestrians when crossing a group, in
the complex scenario studied in Sec. III C.

H. Effect of distracted pedestrians

So far we have shown that key pedestrian dynamics
features could be replicated in various settings with a sin-
gle set of model parameters. Now, we purport to show
that the sound physical basis of our model enables us to
extend it to an even wider range of situations by straight-
forwardly adapting its parameters.

To illustrate this, we consider the effect of digital dis-
traction [59–61]. In our increasingly connected societies,
with the advent of the Internet of things, more and more
pedestrians are indeed looking at their smartphones (or
other connected devices) while walking; even near road
crossings, more than one pedestrian out of six may be
involved in a such an activity (17% in a 2020 study in
Athens, Greece [60]). The ensuing distraction impacts
their navigation in that it impairs their situational aware-
ness [59, 62], especially when texting or web-browsing
[7, 60]. Their walking speed is then reduced [7, 60],
as is their eye scanning frequency (by upwards of 25%
in controlled outdoor experiments with college students
[7]). The whole topic has grown into one of very serious
practical relevance insofar as ‘smartphone-walking’ has
entailed a sharp rise in pedestrian injuries. Already in
2010, of the thousands of pedestrians killed in traffic ac-
cidents in the US, 3.7% were engaged in a mobile phone
activity, as compared to 0.6% in 2004 [59]; the numbers
have most probably considerably risen since then, further
heightening societal concerns, notably in Japan [63].

While empirical observations and controlled experi-
ments provide much-needed insight into the effect of dig-
ital distraction, they reach their limits when it comes
to exploring a broad range of situations, in particular
on streets; this need can be filled by resorting to mod-
els. In order to incorporate distraction effects into our
model, we notice that distraction through screens, al-
beit a complex psychological process, mainly entails that
agents less frequently refresh (update) their perception of
their surroundings and adapt their motion to it. This is
corroborated by the observation that, in a collision avoid-
ance, they tend to turn at the last moment, with a delay
of around 0.5 or 1 second in their response, compared
to the reference case [64]. This latency effect can read-
ily be transcribed into the model by simply increasing
the update time interval of distracted agents (δt = 0.8 s)
compared to standard agents (δt = 0.1 s); the walking
speed of distracted agents (empirically slower than their
counterparts [7]) is set to u∞ = 1.2 m/s. Of course, dis-
traction may have other secondary effects that would re-
quire further adapting the parameters of the perceived
cost, but these are overlooked here.

We now test to what extent this numerical account of
distraction is faithful to the experimental observations.
To that end, we make use of Murakami et al.’s recent ex-
periments on bidirectional flows in the presence of three
digitally distracted agents, i.e., three participants who
were instructed to use their smartphone while walking
[6]. The researchers observed that their presence ham-
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FIG. 9. Impact of distracted pedestrians on the chaoticity of the flow: (a) Suddenness of turn κ in the experiments of [6],
distinguished between a reference case without distracted agents (‘baseline’), the distracted agents, the non-distracted people
walking in the same direction and those walking in the opposite direction; (b) Suddenness of turn κ computed in our model, for
θ = 45◦; (c) Survival functions P (K > κ) in the reference experimental case and for different groups of agents in the simulations.
In panels (d) and (e), the half-angle of the visual field was restored to its original value, θ = 70◦, in the simulations.

pered lane formation and made the flow more chaotic,
especially when the three participants were positioned
at the front of the group of participants moving in one
direction. Quantitatively, they gauged this effect us-
ing a suddenness-of-turn observable, which we somewhat
amend here to make it invariant under global rotations
of the frame:

κ(t)=̂

∥∥∥∥e(t+ δt)− e(t)

δt

∥∥∥∥ , (18)

where e(t) is the tangential unit vector at time t; κ tends
to the geometric curvature in the limit of small δt. In
the experimental data (Fig. 9a), larger κ values, hence
a more chaotic flow organization insofar as pedestrians
prefer walking straight, are found for distracted pedes-
trians, but also for the participants walking behind them
in the same direction (referred to as ‘Same Directed’ in
Fig. 9) and those walking in the opposite direction (‘Op-
posite Directed’), as compared to the reference case with
no distracted agents (‘Baseline’).

Turning to the simulations, we first artificially adorn
the simulated trajectories with head sways, because these
gait-induced oscillations affect κ. This is done by sim-
ply superimposing sine oscillations onto the trajectories
z(t) = x(t) + jy(t), viz.

z′(t) = z(t) +Aejωte⊥(t). (19)

, where the period ω = 1.6m and amplitude A = 0.04m
were measured in the experimental data of [6]. Once
these head sways are taken into account, the average flow
chaoticity κ measured experimentally in the reference
bidirectional flow (without distracted pedestrians) is re-
covered in our simulations of an identical setup (Fig. 9d).
To go beyond the average value, we computed the full dis-
tribution of κ and noticed that a better match between
experiments and simulations was reached if the half-angle
of the visual field was reduced to θ = 45◦ [compare pan-
els (c) and (e) of Fig. 9]; the corresponding mean value
is even closer to the experiments. Accordingly, we will
set θ = 45◦ for all agents, but the trends that we find



14

are robust if the visual field is not narrowed to such an
extent (Fig. 9d).

Introducing smartphone-walking pedestrians in the
crowd (especially at the front) substantially increases the
chaoticity κ not only for the (few) distracted people, but
also for the others, particularly those walking in the same
direction. This evolution is surprisingly well captured by
our model, wherein digital distraction mostly boils down
to having a much longer time δt between updates of the
desired velocity (i.e., perception of, and reaction to, the
environment): Even though no quantitative coincidence
is attained strictly speaking, Fig. 9 shows that the trends
and the variations between the pedestrians are depending
on their status match the experimental findings. Further-
more, we find that the exacerbated chaoticity is mostly
due to the more frequent occurrence of very sudden turns
(associated with high κ values), as revealed by the sur-
vival functions P (K > κ) in Fig. 9c.

IV. CONCLUSION

To summarize, we have put forward a model for pedes-
trian dynamics that better distinguishes the psychologi-
cal processes at play from the mechanical ones. In par-
ticular, the selection of a desired velocity by each (au-
tonomous) agent is entrusted to a decision-making layer,
which optimizes a perceived cost, whereas physical con-
tacts are handled with Newton’s equation of motion.
Many model parameters can be adjusted based on ex-
isting empirical data. Despite the limited number of pa-
rameters left for adjustment, the model succeeds in re-
producing (often quantitatively) a variety of experimen-
tal features over an impressively broad range of situa-
tions and densities (without resorting to more specific
adjustments, compared to other approaches), overcom-
ing the need for a specific calibration in each regime.
These situations include the speed-density relations for
collision avoidance between several agents, unidirectional
and bidirectional flows, bottleneck flows, and navigation
in a complex geometry. It can even replicate more exotic
phenomena, which data-driven approaches would have
struggled to capture, due to the lack of data. Digital
distraction through smartphones, which has grown into
a major issue for pedestrian safety, is one of them.

Above all, the theoretical delineation highlights the ap-
proximations that were made and that would need to be
improved for a more faithful description of some scenar-
ios, such as the pedestrian shape, at high densities, and
the short-time approximation of the utility function, in
situations where the operational dynamics include rel-
atively far-sighted anticipation usually assigned to the
tactical level. More broadly speaking, this work opens
perspectives for the clarification of the effect of percep-
tive or decisional faculties on the collective dynamics of
self-propelled particles.
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Appendix A: Derivation of the speed energy

The literature in physiology relates the energy expendi-
ture of walking to the rate of oxygen consumption ( VO2

),
which has a “rest” component and a speed-dependent
component:

VO2 = V
(rest)
O2

+ V
(walking)
O2

(S1)

We are interested in the second contribution which, in
the experimental work of Ludlow et al. [26] is reasonably
well fitted by an equation of the form:

espeed[u] = Ks1 +Ks2u
2, foru ≥ uc (S2)

This quadratic relation is consistent with other empir-
ical studies where the energy expenditure of humans in
walking motion has been also studied [65]. For the par-
ticular case of this work, we discard the base energy con-
sumption (i.e. espeed[0 m · s−1] = 0), and subtract this
contribution from the experimental data. After this pro-
cess, we find that the coefficients of the previous equation
must be such that:

espeed[1.5m · s−1] ≈ 3 · espeed[0.5m · s−1] (S3)

Finally, we choose to smoothly connect the above
espeed expression to 0 so as to avoid discontinuities. This
is done with a second-order polynomial:

espeed[u] = Ks3u+Ks4u
2, foru < uc (S4)

with coefficients such that they match the higher-speed
curve at u = uc, for the single-point value and the deriva-
tive. Taking the value of uc = 0.1 and espeed[1m · s] = 1,
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we are able to calculate the value of the 4 parameters
associated with both equations, arriving at:


Ks1 = 0.4

Ks2 = 0.6

Ks3 = 7.6

Ks4 = −35.4

(S5)

so that

espeed(u) =

{
7.6u− 35.4u2 for u < 0.1 m · s−1

0.4 + 0.6u2 for u > 0.1 m · s−1.
(S6)

Appendix B: Derivation of the free walking speed

Isolated agents have no interactions with other agents
or the built environment, by definition. It follows that

their free walking u∞ is given by the extremum of E(u) =

δt
[
espeed(u) + einertia(u)

]
+ ET (r + δtu), viz.,

0 =
1

δt
∇uE

∣∣∣
u=u∞

(S1)

= 2µ
(
u∞ − v(t)

)
+
despeed

du

u∞

u∞
+∇rET (S2)

= 2µ
(
u∞ − v(t)

)
+ 1.2u∞ −KT t (S3)

where we have used the expression of espeed for u >
0.1 m/s from Eq. 4 and defined the unit vector t =
−∇rD/n(r) pointing towards the target.

Now, an isolated agent quickly reaches their desired
velocity u∞, so that the first term vanishes in steady

state. Therefore, we arrive at u∞ = KT

1.2 t, which can

be used to set the coefficient KT from the free-walking
speed u∞.
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context-aware probabilistic motion prediction for crowd
simulation, ACM Transactions on Graphics (TOG) 35,
1 (2016).

[16] D. Helbing and P. Molnar, Social force model for pedes-
trian dynamics, Physical review E 51, 4282 (1995).

[17] F. Zanlungo, T. Ikeda, and T. Kanda, Potential for the
dynamics of pedestrians in a socially interacting group,
Physical Review E 89, 012811 (2014).

[18] D. Helbing, L. Buzna, A. Johansson, and T. Werner, Self-
organized pedestrian crowd dynamics: Experiments, sim-
ulations, and design solutions, Transportation science 39,
1 (2005).

[19] B. Maury and S. Faure, Crowds in Equations: An Intro-
duction to the Microscopic Modeling of Crowds (World
Scientific, 2018).
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