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Abstract

Springs are commonly used in mechanisms and robotics for imparting stiffness into it or
balancing out the gravitational effects. Usually, some kind of design optimization would be
performed on the static model of such systems to arrive at a set of suitable spring parameters
and its mounting locations. However, in the static model, only the stiffness and free-length
parameters of the spring appear explicitly. Thus, only their values would be determined in
the design process. But, such a spring may not be practically realizable due to its operation
range exceeding the elastic deformation limits or its geometry not satisfying some necessary
conditions. Such issues can be avoided only by accounting for the spring design in its entirety
(material, geometry, etc.) while designing the mechanical system. This work presents a method
that accounts for the above features and derives the complete feasible design space for an
extension spring. A parametric representation of this feasible design space has been obtained
with two variables. This process has been illustrated for springs mounted on the two sides
of a remotely actuated antiparallelogram (X) joint. Finally, a scheme for design optimization
of the X-joint considering its geometry, spring, and cable forces, has been proposed using the
parametric representation for springs.

Nomenclature
k spring stiffness/spring rate
d spring wire diameter
D spring mean coil diameter
c spring index (D/d)
Na number of active coils in a spring
l0 free-length of a spring

Continued on the next page
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Continued from the previous page
F s

max maximum force applied on the spring
lmax maximum extension length of a spring
δmax maximum deflection in a spring
δcmax maximum deflection in a spring coil (δmax/Na)
τmax(d) critical shear stress in a spring coil as a function of d
Kw Wahl’s factor to account for the curvature of a spring
ν factor of safety (1.2)
Gk shear modulus of the spring material
ρk volumetric density of the spring material
p pitch of the spring (distance between corresponding points of two succes-

sive coils)
ζ helix angle/pitch angle of the spring
σk parameter ∈ [0, 1] that maps to the feasible space (d,D) for given k
X-joint antiparallelogram joint
l length of the long bars in X-joint
b length of the short bars in X-joint
Fmax maximum force applied by the actuating cables on X-joint
SWFW stable wrench-feasible workspace

1 Introduction

The schematic diagram of a helical extension spring in its unloaded state is shown in Fig. 1. It is
made by winding a steel wire of diameter d around a cylinder successively to form identical coils of
nominal diameter D. The coils at the two ends have been bent out as shown in the figure to form
hooks on either side of the spring for its attachment. The distance between the inner ends of hooks
is the free-length l0 of the spring. The coils which deform while the spring ends are subjected to
a tensile force are referred to as active coils. The number of such coils is denoted by Na. In the
following, details and assumptions on the spring model are stated with justifications.

For an extension spring, the number of active coils is usually assumed to be one less than the
total number of coils in the body (N), Na = N − 1 (see e.g., [1], p. 357). The hooks of the spring
are designed in several forms depending on the attachment requirements (see e.g., [2], p. 378). In
this report, the hooks will be assumed as loops with the same nominal diameter as that of the coil,
as depicted in Fig. 1.

These helical springs are found to be manufactured with various carbon steel wires [1]. One
of the commonly found materials in the catalog of spring manufacturers is EN 10720-1 (SH/DH)
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Figure 1: Schematic of a helical extension spring.

(or equivalently ASTM A228), which is also known as the music/piano wire. This material will be
assumed for the springs in this report. The mechanical properties of this material can be found
in the standard [3]. Notably, the value of shear modulus (Gk) is 81.5 GPa, volumetric density
is ρk = 7850 Kg/m3. The value of ultimate tensile strength (Rm) varies with the wire diameter (d),
as tabulated in [3]. The critical value of shear stress is calculated as τmax(d) = 0.45Rm as suggested
in [1], p. 348.

The wire diameter (d) is the most influential parameter in spring design, as evident from its ex-
ponent in the governing equations (see Eq. (2),(4) in Section 2). Hence, it is customary to use wires
of some standard diameters manufactured with a good accuracy. It is possible to find catalogs of
spring manufacturers such as Vanel1, Federnshop2, where some of these wire diameters are available.
Additionally, these manufacturers also permit the user to specify custom parameters (including wire
diameter) to fabricate springs with desired properties. For the purpose of this study, the wire diam-
eter (d) is assumed to be a discrete variable that takes the following values {0.2, 0.3, . . . , 6.0} mm.

The force-deflection relationship of an extension spring is modeled as (see [1], p. 355):

F = F0 + k(l − l0) (1)

where F is the tensile force applied on the spring, F0 its initial tension, k its stiffness, l its deformed
length, and l0 its free-length. In extension springs, initial tension exists a consequence of the twist
in the coils that holds them closely together. However, it is said that the initial tension can be

1https://www.vanel.com
2https://www.federnshop.com
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eliminated by using heat treatment methods after fabrication (see [4], p. 6.31). Hence, to simplify
this study, initial tension is assumed to be F0 = 0 N.

While an extension spring is loaded in tension, there is shearing load on the coils, torsional load
at the interface between hooks and coils, and bending load at the hook (see [1], p.355). However,
while designing such a spring, the strength calculations are usually carried out only for the coils
(see [1], p. 357), and not the hooks. A recent study [5] has shown that the spring stiffness near
its free-length is influenced by the deflection of the hooks. But, in this study, these effects are not
considered. They might be a possible extension of this work.

The rest of this report is organized as follows: in Section 2, the governing equations and inequal-
ities of a helical extension spring are presented. In Section 3, springs are designed for a remotely
actuated antiparallelogram (X) joint to demonstrate the utility of this work. Finally, the conclusions
are presented in Section 4.

2 Governing conditions for spring design

There are two equalities that must be satisfied by a spring. The first one depicts the dependence
of the spring stiffness on its geometry and material properties (see [1], p. 355):

k = Gkd
4

8NaD3 =⇒ Na = Gkd
4

8kD3 (2)

The second condition represents the geometric relation between the free-length and other spring
parameters, as can be derived from Fig. 1:

l0 = (Na + 1)d+ 2(D − d) (3)

Once the material is known a spring is completely defined by the parameters (d,D, k, l0, Na). Given
that the above two equalities must always be satisfied, it follows that three independent parameters
are sufficient to define a spring. A common choice found in the literature [6], [7] is (Na, d,D). In
this report, another set of parameters (k, d,D) will be used to denote a spring design. All the
remaining conditions for the feasibility of springs will be derived in terms of these parameters and
the feasible spring space will be visualized.

A physically feasible spring must respect the inequality conditions listed below:

• Strength condition: The shear stress induced in the spring coils during maximum elongation
must be within the elastic limit (τmax) of the material to ensure its safety. This is given
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by (see [1], p. 345):

χ1 := τmax(d)− νKw
8F s

maxD

πd3 ≥ 0, where (4)

ν = 1.2

Kw = 4c−1
4c−4 + 0.615

c
,with c = D

d

F s
max = kδmax

δmax = (lmax − l0)

(5)

where τmax(d) is the limiting shear stress of the material computed from [3] as explained
above. A factor of safety ν = 1.2 is considered to ensure safe operation of the spring near its
elongation limits. The factor Kw is a function of the spring index c(= D/d), which accounts
for the curvature of the spring [8]. The factor F s

max is the force induced in the spring at its
maximum deflection δmax. The maximum extension length and free-length of the springs are
denoted by lmax, l0, respectively. At this stage no information on l0 or lmax is known. Hence,
this condition can be further treated only based on its application and the data (if any) on
its attachment points.

• Number of active coils: For cold coiled extension springs, the standard [9] specifies the
following condition:

χ2 := Na − 3 ≥ 0 (6)

• Spring index: The standard [9] specifies the following conditions for the spring index c(D/d):

χ3 :=

c− 4 ≥ 0

20− c ≥ 0
(7)

• Helix angle: The helix angle of extension spring is defined as (see [10], p. 201):

ζ = arctan(p/πD) (8)

where p is the pitch of the spring. At the unstretched configuration (Fig. 1), the pitch p = d.
The formula presented in Eq. (4) holds exactly only when the helix angle is zero. But, in
reality ζ is never exactly zero. Wahl in [8], p.42, notes that Eq. (4) differs from the actual
behavior by only less than 2% while the spring index is greater than 3 and ζ is small. Parades
in [10], p. 58, presents a limit of 7.5◦ for ζ to use the above formulation.

The maximum value of ζ occurs while the spring is at its maximum elongation. This value
must be smaller than the specified limit:

χ4 := 7.5◦ − ζmax ≥ 0 (9)ζmax = arctan(d+δc
max

πD
), where

δcmax = δmax
Na

= (lmax−l0)
Na

(10)
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Using Eqs. (2),(3), Na and l0 can be written in terms of the independent spring parame-
ters (k, d,D). Thus, the conditions in Eqs. (6), (7) can be readily obtained in terms of (k, d,D).
If one obtains a value for lmax or formulates it in terms of the other geometric parameters, the
inequalities in Eq. (4), (9) can also be written in terms of (k, d,D). In addition to the inequali-
ties χ1, . . . , χ4, new conditions on spring installations arising from specific applications can also be
accommodated, if they could be expressed in terms of the independent spring parameters (k, d,D).

In the following, the above design process is applied to springs in the X-joint.

3 Example: X-joint

Figure 2: Schematic of X-joint.

The schematic of an antiparallelogram (X) joint is shown in Fig. 2. Among other applications,
it has been used to develop robot manipulators inspired from the neck of a bird [11], [12], [13]. It
is composed of a base and top bar each of length b and two crossed bars of length l, satisfying
the condition (l > b). The orientation of the top bar relative to the base is given by α. The joint
is equipped with identical springs on the two sides for imparting stiffness into the system. It is
actuated remotely with two cables arranged in parallel with the two springs.

The goal of this study is to find feasible springs for this joint satisfying all the conditions listed
in the previous section. In this exercise, the geometry of the joint (b, l) is assumed to be known.

The following constraint is imposed on the outer diameter of the spring to ensure that the joint
is compact:

• Compactness: The outer diameter (D + d) of the springs is set to be less than one-third of
the joint width (b):

χ5 := b

3 − (D + d) ≥ 0 (11)
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(a) Case A: (l − b) < l0 ≤
√
l2 − b2 (b) Case B: 0 < l0 ≤ (l − b)

Figure 3: Two cases based on the free-length l0 of the installed springs.

The next task is to determine the maximal elongation (lmax) required for the springs to be
installed in this joint. This information would be useful to evaluate the conditions in Eq. (4) and
Eq. (9). Owing to the symmetry of the joint (see Fig. 2), it is apparent that both springs would
have the same range of operation. Also, while one spring is at its minimum deployed length, the
other one would be at its maximum elongation.

From Fig. 2, it is inferred that the joint range of movement depends on the free-length l0 of the
springs installed. Broadly, this study can be classified into two cases: case A (l− b < l0 ≤

√
l2 − b2)

and case B (0 < l0 ≤ l−b). In the former, range of movement decreases as l0 increases and becomes
null when l0 =

√
l2 − b2. While in case B, the joint is allowed to execute α ∈] − π, π[, irrespective

of l0. These are depicted pictorially in Fig. 3. In each of these cases, different expressions for the
maximal elongation would be obtained as explained in the following sections.

3.1 Case A: (l − b) < l0 ≤
√
l2 − b2

Firstly, the inequalities associated with this case are listed:

• Case A: Conditions on l0:

χ6a :=

l0 − (l − b) ≥ 0
√
l2 − b2 − l0 ≥ 0

(12)

From the geometry of the X-joint (see Fig. 2), it has been shown that: l1l2 = l2 − b2, throughout
the entire range of movement (see e.g., [14], p. 186). Thus, at the limit of α shown in Fig. 3a, the
following relation must hold true:

l0lmax = l2 − b2 =⇒ lmax = l2 − b2

l0
(13)

Recall that l0 can be expressed in terms of the independent spring parameters (k, d,D) using
Eqs. (2), (3). Thus, from the above condition, lmax can also be obtained in terms of (k, d,D).
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3.2 Case B: 0 < l0 ≤ (l − b)

Considering that l0 > 0 would be satisfied by default (see Eq. (3)), the only inequality representing
this case is:

• Case B: Condition on l0:

χ6b := (l − b)− l0 ≥ 0 (14)

From Fig. 3b, it is apparent that the maximal spring elongation in this case is given by:

lmax = l + b (15)

In the following section, all the inequalities derived have been consolidated to construct the feasible
spring space.

3.3 Feasible spring space

The set of all the conditions derived for the spring feasibility in Sections 2, 3.1, and 3.2, can be
consolidated into two sets, χa and χb, based on the two cases A and B, respectively. These are:

χa(k, d,D) =



χ1
(
lmax = l2−b2

l0

)
χ2

χ3

χ4
(
lmax = l2−b2

l0

)
χ5

χ6a

χb(k, d,D) =



χ1 (lmax = l + b)

χ2

χ3

χ4 (lmax = l + b)

χ5

χ6b

(16)

All the feasible spring designs can be obtained by computing the union: χa ∪χb. Since all of these
conditions have been obtained in terms of (k, d,D), the set of feasible springs can be represented in
the design space (k, d,D).

Since the wire diameter d is considered to be a discrete variable (see Section 1), the feasible
design space would be a set of 2D (2-dimensional) surfaces in 3D space. However, it would be
difficult to represent the same in a figure. Hence, the value of k will be fixed, to visualize the
“feasible lines” of d in the (d,D) space. Then, various values of k will be considered to understand
the evolution of feasible lines in the (d,D) space.

There are several ways to obtain the feasible lines, the simplest of them being the scanning
technique. A more efficient approach would be to rewrite the conditions in Eq. (16) as polynomials
in D by suppressing the variable d in the coefficients, and solve the limiting equality conditions to
obtain the bounds ofD accurately [15]. This process is illustrated for the condition χ1

(
lmax = l2−b2

l0

)
in Appendix A. Other conditions are also treated in the same manner.
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(a) k = 100 N/m
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(b) k = 500 N/m
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(c) k = 1000 N/m
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(d) k = 5000 N/m
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(e) k = 10000 N/m
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(f) k = 15000 N/m

Figure 4: Feasible spring space (d,D) for different values of k. The designs satisfying conditions χa
(resp. χb) are shown in blue (resp. orange) lines.
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As a numerical illustration, consider the X-joint with geometry b = 0.05 m, l = 0.15 m. The
feasible spring space for different values of k are shown in Fig. 4. The designs satisfying χa (resp. χb)
are shown in blue (resp. orange) lines. Firstly, feasible designs could be found only when k ∈
[0.4, 16700] N/m, which is a useful information for the designer. In this range, the feasible lines
reduce in size and move towards larger d as k increases. It is interesting to note that for k ≥
1200 N/m, only designs satisfying χa can be found. This implies that with such strong springs the
X-joint cannot exhibit α ∈]− π, π[ range of movement.

3.4 Parametric representation and design scheme

1 2 3 4 5 6
0

5

10

15

(a) Feasible intervals ∆i of D in (d,D) space

10
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

0.7

(b) Mapping the feasible intervals ∆i to a frac-
tion σk ∈ [0, 1]

Figure 5: Parametrization of the feasible spring space with σk ∈ [0, 1] with k = 500 N/m for the
X-joint with b = 0.05 m, l = 0.15 m.

The goal of this section is to propose a parametric representation of the feasible spring space,
that can be used for design optimization of the spring in isolation or in combination with its
applied mechanical system. From the previous section, it is clear that once k is known, the feasible
spring space is formed by a set of line segments in (d,D) space. These segments represent feasible
intervals ∆i of D for the given value of d.

For instance, consider the case when k = 500 N/m in Fig. 4. There are 16 feasible intervals
of D, ∆1, . . . ,∆16, for different values of d, as shown in Fig. 5a. These intervals can be normalized
as (∆i

∆ ), where ∆ = ∑16
i=1 ∆i. This allows one to arrange them successively as shown in Fig. 5b,

thereby creating a map of the normalized intervals to a fraction σk ∈ [0, 1] and vice versa. For every
value of σk in its domain, there exists a point (d,D), which can be back tracked. An illustration
with σk = 0.7 as been presented in Fig. 5b. This way the feasible points in (d,D) space can be
accessed with a just single parameter σk.

It has to be noted that the map from σk to the intervals has several discontinuities as seen in
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Fig. 5b. In the algorithm, we have arbitrarily assigned the right hand limit for d(σk), at all such
values of σk. This leads to the loss of upper bounding point in all the intervals, except the last one,
as highlighted in Fig 5b. However, the loss of a few discrete points in an ∞1 space is an acceptable
compromise, considering that we have obtained a one-parameter representation of that space.

Figure 6: Design scheme for optimizing the geometry, spring, and force variables of X-joint to obtain
a maximum SWFW.

In summary, one can use just two parameters (k, σk) to access all the feasible spring designs
for any given application. This allows the designer to pose a design optimization of the spring,
e.g., minimizing its mass/size, as a two-variable problem, instead of a three-variable problem as
in [6], [7]. More interestingly, this parametrization allows the designer to integrate the spring
parameters (k, σk) in the design optimization of its deployed mechanical system, while ensuring
its physical feasibility. For instance, the X-joint shown in Fig. 2 can be designed to have a large
stable wrench-feasible workspace (SWFW), by considering its geometry, spring, and maximal cable
force (Fmax) as variables. The computational scheme of this process is depicted in Fig. 6.

4 Conclusion

This report has presented a method to compute the complete feasible design space of a helical
extension spring. It accounts for the constraints on allowable shear stress, recommended spring
index, standard wire diameters, minimum number of active coils, and safe helix angle, for the spring.
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Additionally, it also includes the constraints on free-length, maximum extension, and maximum
outer diameter of the spring, which are normally obtained from its application.

The spring design space has been visualized in terms of its stiffness (k), wire diameter (d), and
mean coil diameter (D). It has been shown that the feasible design space comprises a set of two-
dimensional surfaces in (k, d,D) space, which can be parametrized using only two variables (k, σk),
with σk ∈ [0, 1].

As an illustration, the feasible design space and its parametric representation have been pre-
sented for the springs mounted on the two sides of an antiparallelogram (X) joint. Finally, a scheme
for the optimal design of the X-joint considering its geometry, springs, and actuation forces, has
been presented using this parametric representation. In future, this method will be applied to the
design optimization of other mechanical systems that use springs.

Appendix A Derivation of polynomial from the condition χ1

For case A, substituting lmax = l2−b2

l0
, in χ1 in Eqs. (4),(5), results in the following limiting equation:

τmax(d)− νKw
8k(l2 − b2)D

πl0d3 = 0 (17)

Taking common denominator (6= 0) and clearing it:

8b2DkKwν + πd3l0τmax(d)− 8DkKwl
2ν + 8DkKwl

2
0ν = 0 (18)

Substituting for l0 from Eqs. (2),(3), and Kw from Eq. (5), and clearing the common denominator
results in the following polynomial:

γ0 + γ1D + γ2D
2 + γ3D

3 + γ4D
4 + γ5D

5 + γ6D
6 + γ7D

7 + γ8D
8 + γ9D

9 + γ10D
10 = 0 (19)

where 

γ0 = −123d12G2
kν

γ1 = 73d11G2
kν

γ2 = 200d10G2
kν

γ3 = 8d8Gk(246kν − 25πdτmax(d))

γ4 = 8d7Gk(25πdτmax(d)− 638kν)

γ5 = −864d6Gkkν

γ6 = −64d2k (123kν (b2 − l2)− 25d3(4Gkν + πτmax(d)) + 123d2kν)

γ7 = 64dk (73b2kν − 75πd3τmax(d) + 565d2kν − 73kl2ν)

γ8 = 128k (100b2kν + 25πd3τmax(d)− 292d2kν − 100kl2ν)

γ9 = −32512dk2ν

γ10 = 51200k2ν

(20)
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For a given value of d, all the coefficients will be known as numbers. The roots of the polynomial
in Eq. (19) would contain the limiting values of D associated with χ1 condition. There might be
spurious solutions as well, but they can be eliminated safely by inspecting the intervals on number
line of D (see [15]).

References

[1] P. R. N. Childs, Mechanical Design: Theory and Applications, 3rd Edition, Butterworth-
Heinemann, 2021. doi:10.1016/B978-0-12-821102-1.00015-9.

[2] D. A. Madsen, D. P. Madsen, Engineering Drawing and Design, 6th Edition, Cengage Learning,
2017.

[3] European Standard, EN 10270-1:2022 - Steel wire for mechanical springs - Part 1: Patented
cold drawn unalloyed spring steel wire (2022).

[4] J. E. Shigley, C. R. Mischke, T. H. Brown Jr., Standard handbook of machine design, 3rd
Edition, McGraw-Hill Education, 2004.

[5] M. Paredes, T. Stephan, H. Orcière, Enhanced formulae for determining the axial behavior of
cylindrical extension springs, Mechanics & Industry 20 (6) (2019) 625. doi:10.1051/meca/
2019067.

[6] L. Ciupitu, Optimum design of balancing systems with real springs, in: Modeling and Opti-
mization of the Aerospace, Robotics, Mechatronics, Machines-Tools, Mechanical Engineering
and Human Motricity Fields, Vol. 555 of Applied Mechanics and Materials, Trans Tech Pub-
lications Ltd, 2014, pp. 593–598.

[7] B. S. Yildiz, Optimal design of automotive suspension springs using differential evolution
algorithm, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 (3) (2018) 207–214. doi:
10.17482/uumfd.476611.

[8] A. M. Wahl, Mechanical Springs, 1st Edition, Penton Publishing Company, 1944.

[9] European Standard, EN 13906-2:2014 - Cylindrical helical springs made from round wire and
bar - Calculation and design - Part 2: Extension springs (2014).

[10] M. Paredes, Développement d’outils d’assistance à la conception optimale des liaisons élastiques
par ressorts, Ph.D. thesis, Indian Institute of Science (2001).

[11] B. Fasquelle, P. Khanna, C. Chevallereau, D. Chablat, D. Creusot, S. Jolivet, P. Lemoine,
P. Wenger, Identification and control of a 3-X cable-driven manipulator inspired from the bird’s
neck, Journal of Mechanisms and Robotics 14 (1) (2021) 011005. doi:10.1115/1.4051521.

13

http://dx.doi.org/10.1016/B978-0-12-821102-1.00015-9
http://dx.doi.org/10.1051/meca/2019067
http://dx.doi.org/10.1051/meca/2019067
http://dx.doi.org/10.17482/uumfd.476611
http://dx.doi.org/10.17482/uumfd.476611
http://dx.doi.org/10.1115/1.4051521


[12] M. Furet, P. Wenger, Kinetostatic analysis and actuation strategy of a planar tensegrity 2-X
manipulator, Journal of Mechanisms and Robotics 11 (6) (2019) 060904. doi:10.1115/1.
4044209.

[13] V. Muralidharan, P. Wenger, Optimal design and comparative study of two antagonistically
actuated tensegrity joints, Mechanism and Machine Theory 159 (2021) 104249. doi:10.1016/
j.mechmachtheory.2021.104249.

[14] R. S. Hartenberg, J. Denavit, Kinematic Synthesis of Linkages, McGraw-Hill Book Company,
1964.

[15] V. Muralidharan, P. Wenger, C. Chevallereau, Computation of stable wrench-feasible
workspace of cable driven n-x manipulator, in: Proceedings of the 25ème Congrès Français
de Mécanique, Nantes, France, 2022.

14

http://dx.doi.org/10.1115/1.4044209
http://dx.doi.org/10.1115/1.4044209
http://dx.doi.org/10.1016/j.mechmachtheory.2021.104249
http://dx.doi.org/10.1016/j.mechmachtheory.2021.104249

	Introduction
	Governing conditions for spring design
	Example: X-joint
	Case A: (l-b) < l_0 l^2-b^2
	Case B: 0 < l_0 (l-b)
	Feasible spring space
	Parametric representation and design scheme

	Conclusion
	Derivation of polynomial from the condition _1

