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Abstract—In Dynamic Time Division Duplex (DynTDD),
downlink/uplink (DL/UL) slot allocation is adaptive with
traffic load. DynTDD systems have received a lot of attention
for 5th generation (5G) mobile communication systems, as
the spectrum efficiency of wireless communication networks
is improved by the flexible and dynamic duplex operation.
However when using DynTDD, a different DL/UL slot config-
uration is likely to be selected by neighboring cells, leading
to Cross Link Interference (CLI) between the Base Stations
(BS), which is known as BS-to-BS or DL-to-UL interference,
and between User Equipment (UE) which is known as UE-
to-UE or UL-to-DL interference. Rank deficient channels are
frequently encountered in Multi-Input Multi-Output (MIMO)
networks, due to poor scattering and keyhole effects, or when
using Massive MIMO and moving to mmWave. While the
implications of rank deficient channels are well understood
for the single user (SU) point to point setting, less is known for
interference networks. In this paper, we extend a MIMO In-
terference Alignment (IA) feasibility investigation framework
to rank deficient channels and we investigate the IA feasibility
in DynTDD considering rank deficient MIMO interfering
channels, by establishing the simultaneously necessary and
sufficient conditions. These conditions allow us to evaluate
the Degrees-of-Freedom (DoF) of centralized designs more
precisely compared to the loose proper conditions. We then
compare the achievable DoF of centralized designs with those
of various distributed designs, allowing us to get a better idea
of the DoF price to pay for distributedness (but not accounting
for the gain in information exchange reduction that distributed
designs permit).

Index Terms—Dynamic TDD, MIMO, rank deficient, inter-
ference alignment, Degree of Freedom

I. INTRODUTION

Dynamic Time Division Duplexing (DynTDD) is one
promising way to improve the spectrum efficiency of
the wireless communication networks since flexible traffic
adaptation can be achieved by dynamically changing uplink
(UL) or downlink (DL) transmission direction. DynTDD
performance has been analyzed in the literature. [1] inves-
tigates the impact of synchronous DynTDD on the perfor-
mance of the DL/UL in dense small cell networks (SCNs).
The results show that DynTDD outperforms the static TDD
in terms of average total Time Resource Allocation (TRA),
and DL and UL Area Spectral Efficiency (ASE). However,
DynTDD also brings some new challenges because of
the introduction of cross-link interference (CLI), includ-
ing DL-to-UL interference (e.g., gNB-to-gNB interference)

and UL-to-DL interference (UE-to-UE interference). In
this scope many techniques have been proposed for the
cross-link interference mitigation. Some authors propose
solutions based on an optimization problem, such as Mean
Square Error (MSE) minimization with the constraint of
maximum transmit power for the DL BS and UL UE in [2],
and the minimization of the total transmit sum power while
satisfying a minimum signal-to-interference-plus-noise ratio
(SINR) threshold for every UE in [3].

The feasibility conditions of IA have been analyzed
in [4]–[10] . [11] also mathematically characterizes the
achievable Degrees-of-Freedom (DoF) of their proposed
DIA technique for a given number of antennas at BS/MS.
In [4] the authors show that for the MIMO Interfering
Broadcast Channel (IBC) where each user has one desired
data stream, a proper system is feasible. For the symmetric
(which we call here uniform) MIMO Interfering Broadcast
Channel (IBC), they provide a proper but infeasible region
of antenna configurations by analyzing the difference be-
tween the necessary conditions and the sufficient conditions
of linear IA feasibility. In [4] the authors analyze the
feasibility of linear IA for the MIMO IBC with constant
coefficients. They pose and prove the necessary conditions
of linear IA feasibility for general MIMO IBC. Except for
the proper condition, they find another necessary condition
to ensure a kind of irreducible interference to be eliminated.
Then they prove the necessary and sufficient conditions
for a special class of MIMO IBC, where the numbers of
antennas are divisible by the number of data streams per
user. [10] established a necessary and sufficient condition
on IA feasibility for the (full rank) MIMO Interfering
Broadcast Multiple Access Channel (IBMAC), which char-
acterizes the optimal sum DoF for various practical network
configurations. [12] addresses (centralized) attainable (only)
DoF for general interference networks with general channel
rank conditions. The multiple antennas give each node
a certain zero-forcing (ZF) budget that for a given DoF
distribution needs to be coordinated between all nodes to
handle all interference. [13] provides also an approach to
find the spatial filter matrices that offer the desired DoF
scheduling and reduce the unwanted interference signal
strength to close to zero (rather than absolute zero). In [14]



IA is explored in a cognitive radio interference channel
with only a single primary and a single secondary user, but
involving possibly rank deficient channels. In the two user
case, IA solutions can be derived analytically.
Contributions: The work reported in this paper goes beyond
our study in [15] considering the rank deficient MIMO
IBMAC Interference Channel (IC). We start in this paper
by reporting the proper conditions for IA feasibility con-
sidering a centralized design. We refer the reader to [15,
eq(6)] as well as the four points mentioned before this
equation, for a discussion on centralized design and various
distributed designs, some partitioned between transmitters
(Tx) and receivers (Rx), some based on one-sided zero-
forcing (ZF). In [15], we provide necessary and sufficient
conditions (i.e. tight feasibility conditions) for the dis-
tributed designs, but to evaluate their DoF loss, we only
compare to the proper conditions for centralized designs,
knowing that those conditions are optimistic. Hence in this
paper we analyze necessary and sufficient conditions for
centralized designs, in order to get a more precise idea of
the loss in DoF of distributed vs. centralized designs.

We extend the well known full rank Jacobian matrix con-
dition for the full MIMO channel rank Interference Channel
(IC) system [4]–[6], [10] to cover the more general scenario
of rank deficient MIMO IC system. The original necessary
and sufficient DoF feasibility conditions are based on a
novel simplified parameterization of rank deficient MIMO
channels (simplified for the purpose of IA feasibility anal-
ysis as in [4]–[6]). At the end we consider a numerical
scenario for which we provide a comparative table of
the achievable DoF considering the different conditions in
[15] and the necessary and sufficient condition given by
Theorem 4. We conclude that distributed methods can be
optimal for low rank scenarios, and that they are suboptimal
compared to (unrealistic?) centralized designs, but not by as
much as the proper conditions would have led us to believe
[10].

II. DYNAMIC TDD SYSTEM MODEL

We consider a MIMO system with two cells, one operat-
ing in DL and the other one in UL. Each cell has one BS of
M antennas, with Kul and Kdl interfering/interfered users
in the UL and DL cell respectively. The kth DL UE and
the lth UL UE have Ndl,k and Nul,l antennas respectively.
This scenario brings the two types of interference, the BS-
to-BS interference, and the UE-to-UE interference between
the UEs that are particularly on the edge of the two
cells as shown in Fig 1. The channel between the lth
user in the UL cell and the kth user in the DL cell is
denoted as Hk,l ∈ CNdl,k×Nul,l with k ∈ [1, ...,Kdl] and
l ∈ [1, ...,Kul]. Denote ddl,k and dul,l as the number of
data stream from the DL BS to the kth DL UE and from
the lth UL UE to the UL BS respectively.

We denote the rank of the UE-to-UE interference channel
(IC) as rk,l. We have rk,l distinguishable significant paths
contribute to Hk,l. Then we can factorize Hk,l as:

Hk,l = Bk,lA
H
k,l (1)

with a full rank matrices Bk,l ∈ CNdl,k×rk,l and Ak,l ∈
CNul,l×rk,l . We have rk,l distinguishable significant paths
contribute to Hk,l, where distinguishable means with lin-
early independent antenna array responses from other paths,
at both the Tx side and the Rx side.

Fig. 1: DynTDD system model.

To analyze the UE-to-UE interference, we have both the
DL and UL UEs will contribute to cancel each link of
interference between them. We consider Fk ∈ CNdl,k×ddl,k

and Gl ∈ CNul,l×dul,l as the Rx/Tx beamforming (BF)
matrices at the kth DL and the lth UL users respectively.
ZF from UL UE l to the DL UE k requires:

FH
k Hk,lGl = 0,∀k ∈ {1, ...,Kdl},∀l ∈ {1, ...,Kul} .

(2)
Our system of Fig.1 is also called IBMAC (Interfering

Broadcast–Multiple Access Channel) in [10] which corre-
sponds to a two cell system with one cell being in DL (BC)
and another in UL (MAC) and with interference between
the two cells.

In our study, we suppose that the number of base station
antennas is large enough so that all UL or DL UE streams
can be supported, and that the BS to BS interference can
be mitigated by exploiting a limited rank BS-to-BS channel
[11]. Hence the IBMAC problem is then limited to the
interference from UL users to DL users, which we may
call IBMAC-IC (IBMAC Interference Channel). Regarding
the number of data streams at Tx and Rx, we assume:

ddl,k ≥ 1 and dul,l ≥ 1. (3)

III. IA FEASIBILITY CONDITIONS FOR DYNTDD
UE-TO-UE REDUCED RANK MIMO IBMAC

In this section we analyze the overall UL UE to DL UE
interference, considering deficient rank MIMO channels.



A. Proper Conditions

In [15] we have established the proper conditions, where
the global proper conditions are given by [15, eq.(9)].
These necessary conditions themselves imply the following
necessary condition [15, eq.(6)] (the proper condition is
traditionally a single global condition requiring the number
of variables to be greater than or equal to the number of
constraints):

Theorem 1. Global Proper Condition for IA Feasibility
in rank deficient MIMO IBMAC-IC
For rank deficient MIMO channels, if the tuple of DoF
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) is achievable through

IA, then it must satisfy the global proper condition:
Kul∑
l=1

dul,l(Nul,l − dul,l) +

Kdl∑
k=1

ddl,k(Ndl,k − ddl,k)

≥
Kul∑
l=1

Kdl∑
k=1

min(rk,lddl,k, rk,ldul,l, dul,lddl,k) .

(4)

Note that this condition subsumes the SU MIMO con-
ditions dul,l ≤ Nul,l, ddl,k ≤ Ndl,k so that the number
of variables on the LHS is non-negative. Apart from this
proper condition for the overall system, we get an overall
set of proper conditions by considering all subsystems also.

Theorem 2. Overall Proper Conditions for IA Feasibility
in rank deficient MIMO IBMAC-IC
The conditions in (4) should be satisfied also by any
subsystem, i.e. the IBMAC-IC formed by any subset of the
UL users and any subset of the DL users.

For a MIMO IBMAC-IC with full rank chan-
nels, the proper conditions in (4) hold with rk,l =
min{Ndl,k, Nul,l} ≥ max{ddl,k, dul,l}. We have also con-
sidered sharing (distributing) IA between Rx and Tx for
which the DoF are given by [15, eq.(26)] and [15, eq.(27)],
or also one-sided ZF in [15, eq.(28)] and [15, eq.(29)].

B. Necessary and Sufficient Conditions for Regular Chan-
nels

In this sub-section we provide a detailed analysis of
the interference by shedding light on the channel matrices
and the Beamformers at Tx and Rx to find a solution for
equation (2). These details for full rank channels will be
useful for the understanding of the next sub-section where
we shall consider reduced rank channel matrices. We revisit
the feasibility analysis framework of [6], [5] and [4]. From
the analysis in [6], [5], we know that the linear IA will be
feasible for generic channels coefficients. An IA solution
for channels Hk,l in (2) will be feasible if and only if a
perturbed IA solution Fk + dFk and Gl + dGl exists for
perturbed channels Hkl + dHkl:

(FH
k + dFH

k )(Hk,l + dHk,l)(Gl + dGl) = 0 . (5)

The ”if” part follows from considering that (2) becomes a
special case of (5) when the perturbations disappear. The
”only if” part follows from the philosophy of homotopy
methods [16], [17] in which the solution of any instance
of the problem (here for the given channel matrices) can
be obtained by analytical continuation of the solution at
any particular instance (which will correspond here to a
particular choice of the channel matrices). The particular
instance is typically chosen in a way to allow analytical
problem solvability. The analytical continuation works as
long as a Jacobian appearing in the problem continues to
have full rank. This Jacobian will appear here also. For
arbitrarily small perturbations (as in the homotopy method),
expanding the products in (5) and considering only first
order perturbations, we get:

FH
k Hk,l dGl + dFH

k Hk,lGl = −FH
k dHk,l Gl (6)

which need to be considered jointly for all interference
links, and all Tx/Rx involved. (6) means that the feasibility
of the bilinear equations (2) is equivalent to the feasibility
of the linear equations (6), which can be rewritten jointly
in the form Jx = −b. To identify the Jacobian J ,
continue to consider link (k, l), for which we can obtain
Jklxkl = −bkl = −vec(FH

k dHk,l Gl) by taking vec(.) of
both sides of (6):

vec(FH
k Hk,l dGl) = (Idul,l

⊗ FH
k Hk,l) vec(dGl) (7a)

vec(dFH
k Hk,l Gl) = ((Hk,lGl)

T ⊗ Iddl,k
) vec(dFH

k ) (7b)

Then we get for link (k, l) the system Jklxkl = −bkl with

xkl =
[
vec(dGl)

T vec(dFH
k )T

]T
, (8)

Jkl =
[
Idul,l

⊗ FH
k Hk,l (Hk,lGl)

T ⊗ Iddl,k
.
]

(9)

Now, the ZF conditions in (2) are insensitive to pre or post
multiplication by non-singular square mixing matrices, or
in other words, only the column spaces of the Rx/Tx filters
Fk, Gl matter. The actual available Rx/Tx variables are
revealed by parameterizing the precoders and decoders as:

Fk =

[
Iddl,k

F k

]
,Gl =

[
Idul,l

Gl

]
(10)

where F k and Gl are matrices of size (Ndl,k−ddl,k)×ddl,k
and (Nul,l−dul,l)×dul,l respectively, and which represent
the only part of the Fk, Gl that need/can be perturbed. They
represent the variables appearing in the proper conditions.
For channels with a continuous pdf, this parameterization is
possible w.p. 1 and furthermore guarantees the Rx/Tx filters
to have a rank equal to their number of streams d. Now,
as in [6], [5], we can simplify the selected channels and
associated ZF Rx/Tx filters around which we consider the
perturbation. In particular we consider F k = 0 and Gl = 0.



Now, the partitioning in Fk, Gl leads to a corresponding
channel partitioning:

Hkl =

H
(1)
kl H

(2)
kl

H
(3)
kl H

(4)
kl

=
0ddl,k×dul,l

H
(2)
kl

H
(3)
kl 0(Ndl,k−ddl,k)×(Nul,l−dul,l)

 .

(11)
Indeed, with F k = 0, Gl = 0, the ZF condition (2)
becomes FH

k Hk,l Gl = H
(1)
kl = 0. On the other hand,

with these same Rx/Tx filters, the IA perturbation does not
involve H

(4)
kl which we can hence take to be zero. Though

the introduction of zeros in Hkl may lead to rank reduction,
this has no effect as long as the resulting rank(Hkl) ≥
max(ddl,k, dul,l). Now we get for the perturbed system
feasibility:[

Idul,l
⊗H

(2)
kl H

(3)T
kl ⊗Iddl,k

] [ vec(dGl)

vec(dFH
k )

]
= −vec(dH(1)

kl ).

(12)
By considering all links, we get the overall system Jx =
−b:

xT=
[
vecT(dG1)· · ·vecT(dGKul)vecT(dF

H
1 )· · · vecT(dF

H
Kdl

)
]
,

(13)

bT ==
[
vecT(dH11) · · · vecT(dH1,Kul) · · · vecT(dHKdl,Kul)

]
,

(14)
and J =

[
JG JF

]
=

Idul,1⊗H
(2)
11 0 H

(3)T
11 ⊗Iddl,1 0

...
...

...
...

0 Idul,Kul
⊗H(2)

1Kul
H

(3)T
1Kul
⊗Iddl,1 0

...
...

...
...

Idul,1⊗H
(2)
Kdl1

0 0 H
(3)T
Kdl1
⊗Iddl,Kdl

...
...

...
...

0 Idul,Kul
⊗H(2)

KdlKul
0 H

(3)T
KdlKul

⊗Iddl,Kdl


︸ ︷︷ ︸

JG

︸ ︷︷ ︸
JF

(15)
The block Idul,l

⊗H
(2)
kl in JG has dimensions dul,lddl,k×

dul,l(Nul,l − dul,l), the block H
(3)T
kl ⊗ Iddl,k

in JF has
dimensions dul,lddl,k × (Ndl,k − ddl,k)ddl,k.
The dimensions are for matrix JG:∑Kul

l=1

∑Kdl

k=1 dul,lddl,k ×
∑Kul

l=1 (Nul,l − dul,l)dul,l,
for matrix JF :∑Kul

l=1

∑Kdl

k=1 dul,lddl,k ×
∑Kdl

k=1(Ndl,k − ddl,k)ddl,k.

Theorem 3. Necessary and Sufficient Condition for IA
Feasibility in a Regular MIMO IBMAC-IC
For a full rank MIMO IBMAC-IC, the DoF tuple
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) is feasible almost

surely if and only if J has full row rank.

The proof appears in [10] and is also a special case of
the rank deficient case considered below. Note that this full
row rank requirement on J implies Theorem 2. [10] also
finds sufficiency in the limited scenario in which all DL
UEs and UL UEs have the same number of data streams
ddl,k = ddl, dul,l = dul and Ndl,k and Nul,l must satisfy
mod(Ndl,k − ddl, dul) = mod(Nul,l − dul, ddl) = 0.

C. Necessary and Sufficient Conditions for Reduced Rank
Channels

Existing work on IA feasibility assume only the full rank
channel model [6], [5] and [4], but in many practical prop-
agation environments such as the number of surrounding
scatterers which is finite and limited, the MIMO channel
matrix is likely to have reduced rank [18], [19], so thus
designs based on full rank channels become inefficient. In
this paper we consider the reduced rank channel model,
which is a general case and the full rank channel is a special
case of the reduced rank channel model. For the case of
rank deficient interfering channels, we consider the channel
factorization in (1), combined with the channel partitioning
in (11), leading to:

AH
kl =

[
A

(1)
kl A

(2)
kl

]
, BH

kl =
[
B

(1)
kl B

(2)
kl

]
. (16)

The matrix blocks A
(1)
kl and B

(1)
kl have dimensions rkl ×

dul,l and rkl × ddl,k respectively. So (11) becomes:

Hkl =

0ddl,k×dul,l
B

(1)H
kl A

(2)
kl

B
(2)H
kl A

(1)
kl B

(2)H
kl A

(2)
kl

 (17)

where again H
(4)
kl = B

(2)H
kl A

(2)
kl will not appear further in

the analysis. Nevertheless, the structure in (1), (17) assumes
that the following requirements are satisfied:

• To have H
(1)
kl = B

(1)H
kl A

(1)
kl = 0, we can take

A
(1)
kl with nkl rows equal to zero, and B

(1)
kl with the

complementary rkl − nkl rows equal to zero.
• The channel model in (1) assumes rank(Akl) =

rank(Bkl) = rkl.
• With rank(A(1)

kl ) = min(rkl − nkl, dul,l), A
(2)
kl should

have the complementary rank to have rank(Akl) = rkl.
Hence the number of columns of A(2)

kl needs to satisfy:
Nul,l − dul,l ≥ rkl −min(rkl − nkl, dul,l),

• Same discussion for Bkl, so we need to have Ndl,k −
ddl,k ≥ rkl −min(nkl, ddl,k).

In what follows, we shall assume that all these conditions
are met. On the other hand, in the rank deficient case, also
the channel perturbation exhibits structure:

vec(dH(1)
kl ) = vec(dB(1)H

kl A
(1)
kl ) + vec(B(1)H

kl dA
(1)
kl )

(18)



Now exploiting the channel structure in (17), JG and JF

in (15) can be written as:

JG =



Idul,1
⊗B

(1)H
11 A

(2)
11 0

. . .

0 Idul,Kul
⊗B

(1)H
1Kul

A
(2)
1Kul

...
...

Idul,1
⊗B

(1)H
Kdl1

A
(2)
Kdl1

0

. . .

0 Idul,Kul
⊗B

(1)H
KdlKul

A
(2)
KdlKul


(19)

JF =



(B
(2)H
11 A

(1)
11 )

T ⊗ Iddl,1
0

...
...

(B
(2)H
1Kul

A
(1)
1Kul

)T ⊗ Iddl,1
0

. . .

0 (B
(2)H
Kdl1

A
(1)
Kdl1

)T ⊗ Iddl,Kdl

...
...

0 (B
(2)H
KdlKul

A
(1)
KdlKul

)T ⊗ Iddl,Kdl


(20)

For b in J x = −b, we consider the following vectoriza-
tion:

vec(dH
(1)
kl ) = vec(B

(1)H
kl dA

(1)
kl ) + vec(dB

(1)H
kl A

(1)
kl ) =

(Idul,l
⊗B(1)H

kl ) vec(dA
(1)
kl ) + (A

(1)T
kl ⊗Iddl,k

) vec(dB
(1)H
kl )
(21)

Hence the vector b can be written as b = JHxH with:

JH =


(Idul,1

⊗B
(1)H
11 ) 0 (A

(1)T
11 ⊗Iddl,1 ) 0

...
...

...
...

0 (Idul,Kul
⊗B

(1)H
KdlKul

) 0 (A
(1)T
KdlKul

⊗Iddl,Kdl
)


(22)︸ ︷︷ ︸

JB

︸ ︷︷ ︸
JA

x
T
H =

[
vec(dA

(1)
11 )T . . .vec(dA

(1)
KdlKul

)T vec(dB
(1)
11 )T . . .vec(dB

(1)
KdlKul

)T!

]
(23)

For the purpose of further analysis, it may be of interest to
note that we can write J as J = JHT where T is given
by :

T =

TA 0

0 TB

 (24)

TA =



Idul,1
⊗A

(2)
11 0

...
...

0 Idul,Kul
⊗A

(2)
1Kul

...
...

Idul,1
⊗A

(2)
Kdl1

0

...
...

0 Idul,Kul
⊗A

(2)
KdlKul



(25)

TB =



B
(2)H
11 ⊗ Iddl,1

0

...
...

B
(2)H
1Kul

⊗ Iddl,1
0

...
...

0 B
(2)H
Kdl1

⊗ Iddl,Kdl

...
...

0 B
(2)H
KdlKul

⊗ Iddl,Kdl



(26)

Note the following dimensions:
• The blocks (Idul,l

⊗B(1)H
kl ) in JB has the dimension

dul,lddl,k × dul,lrkl,
• The blocks (A

(1)T
kl ⊗Iddl,k

) in JA has the dimension
dul,lddl,k × rklddl,k,

• The blocks Iul,l ⊗ A
(2)
kl in TA has the dimension

dul,lrkl × dul,l(Nul,l − dul,l),
• The blocks B

(2)H
kl ⊗Iddl,k

in TB has the dimension
rklddl,k × (Ndl,k − ddl,k)ddl,k.

Now we define the augmented matrix JJ as:

JJ = [J JH ] (27)

Now we are ready to formulate the following result.

Theorem 4. Necessary and Sufficient Condition for IA
Feasibility in Reduced Rank MIMO IBMAC-IC
For a deficient rank MIMO IBMAC-IC, the DoF
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) are feasible almost

surely if and only if

rank(J) = rank(JJ) = rank([J JH ]) (28)

i.e., the column space of JH in (22) should be contained
in the column space of J in (15).

Note that is result is valid for any interference network,
with appropriately defined matrices J , JH .



Proof : We have the following condition from [20, page
12]: a linear system Ax = b is consistent (i.e., the system
has at least one solution) if and only if rank([A b]) =
rank(A). So the existence of a solution for our system
Jx = b implies that rank([J b]) = rank(J). For the rank
deficient channel case, this becomes rank([J JHxH ]) =
rank(J) which should hold for any xH . Hence we require
rank([J JH ]) = rank(J).

IV. RESULTS AND DISCUSSION

In Table I we evaluate the DoF of a uniform system
(Nul,l = Nul, Ndl,k = Ndl, dul,l = dul, ddl,k = ddl, rkl =
r) with Ndl = 4, Nul = 6, Kdl = 4 and Kul = 2, for the
different conditions established in [15] and the proper and
sufficient conditions given by Theorem 2 and Theorem 4.
In the following we give the description of each element
in Table I, where a generic tuple (ddl, dul, dtot) denotes
the uniform DoF of a DL UE, an UL UE, and the overall
UL+DL sum DoF:

• (dp,dl, dp,ul, dp,tot) considering Theorem 2 in the cen-
tralized case, i.e. considering (only) the proper (neces-
sary) IA feasibility conditions for a centralized design,

• (dd,dl, dd,ul, dd,tot) considering the distributed
method, with DL UE DoF as in [15, eq. (31a)], UL
UE DoF as in [15, eq. (31b)] (with the corresponding
optimized nF , nG shown in Table I and denoted as
nFd

, nGd
), i.e. this is the distributed method in which

Tx/Rx filters only depend on the low rank channel
factors on their side (and are independent of the filter
values on the other side, their design is closed-form,
non-iterative), with an optimization of the distribution
of the ZF roles among Tx/Rx,

• (dc,dl, dc,ul, dc,tot) considering the combined method,
with DL UE DoF as in [15, eq. (26)], the UL UE as in
[15, eq. (27)] (with the corresponding optimized nF ,
nG shown in Table I and denoted as nFc , nGc ), i.e. this
concerns a feasible centralized approach in which there
is an optimized partitioning of the ZF roles among all
Tx/Rx: each interference link is either ZF’d by the Tx
or the Rx involved (but the resulting Tx depend on
the Rx and vice versa, the Tx/Rx design requires an
iterative algorithm),

• (dr,dl, dr,ul, dr,tot) considering Rx side ZF only as in
[15, eq. (26)] with nF = Kul, i.e. all ZF is done
by the Rx only (closed-form solutions, non-iterative,
hence can be considered a distributed approach),

• (dt,dl, dt,ul, dt,tot) considering Tx side ZF only as in
[15, eq. (27)] with nG = Kdl, i.e. all ZF is done
by the Tx only (closed-form solutions, non-iterative,
hence can be considered a distributed approach),

• (dT4,dl, dT4,ul, dT4,tot) considering Theorem 4, i.e.
the exactly maximally feasible DoF in a centralized
approach (requires an iterative Tx/Rx design).

For the application of Theorem 4, we perform an algorithm
that allows us to check the rank of the matrices J and JJ

depending on the variables Nul, Ndl, dul, ddl and rkl, when
given the IC matrix Hk,l with random coefficients that must
satisfy the conditions mentioned in subsection III-C. We test
all possible combinations regarding the values of nkl and
also the possible positions of the zero rows in A

(1)
kl and

B
(1)
kl .

r 0 1 2 3 4
(dp,dl,dp,ul,dp,tot) (4,6,28) (3,4,20) (2,4,16) (2,2,12) (2,2,12)
(dd,dl,dd,ul,dd,tot) (4,6,28) (3,4,20) (2,2,12) (0,3,6)* (0,2,4)*
(nF,d,nG,d) (1,2) (1,2) (1,2) (2,1) (2,1)
(dc,dl,dc,ul,dc,tot) (4,6,28) (3,4,20) (2,2,12) (2,2,12) (2,2,12)
(nF,c,nG,c) (1,2) (1,2) (1,2) (1,2) (1,2)
(dr,dl, dr,ul, dr,tot) (4,6,28) (2,6,20) (2,1,10)

(0,6,12)*
(2,1,10)
(0,6,12)*

(2,1,10)
(0,6,12)*

(dt,dl, dt,ul, dt,tot) (4,6,28) (4,2,20) (1,2,8)
(4,0,16)*

(1,2,8)
(4,0,16)*

(1,2,8)
(4,0,16)*

(dT4,dl, dT4,ul, dT4,tot) (4,6,28) (3,4,20) (2,3,14) (2,2,12) (2,2,12)

TABLE I: DoF per user as a function of the rank of any
cross link channel with Nul = 6, Ndl = 4, Kul = 2 and
Kdl = 4.

• (*): the given DoF does not satisfy the conditions in
(3), if a negatif DoF results from a formula, this DoF
will be set to zero logically.

From the Table I and all the conditions previously estab-
lished for IA Feasibility in [15], we observe the following
points:

• The first line of Table I gives the proper condition,
which represents an upper bound for the DoF, that is
not necessarily reachable regarding the IA feasibility,

• The DoF given by the distributed design in the second
line of Table I, is a feasible DoF for IA in such a
model. The distributed solution does not exhibit sub-
optimality w.r.t. the centralized optimal solution for
r ≤ d,

• The combined solution is given in the fourth line of
Table I, both UL and DL UEs contribute to the IA in
centralized design. This solution can reach the proper
condition for r > d,

• The unilateral solution in the sixth and seventh line of
Table I can penalize the UEs in charge of the ZF with
a zero DoF, when attempting DoF maximization,

• From the results given in this table, we notice that,
beyond a certain value of the IC rank, the DoF given by
our sufficient condition (Theorem 4) provides a DoF,
sometimes greater, but never smaller, than the other
zero-forcing methods, even the distributed method (for
which the DoF are feasible).

V. CONCLUSIONS

In this paper we address the rank deficient MIMO
IBMAC Interference Channel, and we analyze the necessary
and sufficient conditions for IA feasibility captured by the
rank of a Jacobian matrix. A new theorem (Theorem 4) on
the rank deficient MIMO IC DoF feasibility is provided,
which is applicable to any MIMO interference network.



The extension of the full rank MIMO case, Theorem 3,
to the rank deficient MIMO case, Theorem 4, is not as
trivial as it may appear, requiring an original judicious
simplified parameterization of rank deficient channels. We
evaluate the DoF for a number of dimensions and compare
the results between the proper conditions mentioned before
in our previous work [15] including the centralized and
two distributed designs, the zero-forcing in a Tx/Rx shared
fashion or only one-sided considering Tx or Rx, and our
necessary and sufficient condition given by Theorem 4.
The numerical evaluations show that Theorem 4, which
corresponds to a centralized design, gives greater DoF
values than the ones given by the distributed designs, for
which the conditions are also necessary and sufficient. In
our future work, we will be addressing tighter necessary
conditions than the proper conditions, and general sufficient
conditions regarding the number of antennas, the rank of the
channel matrix and the DoF, which may be loose compared
to Theorem 4, but which will simplify the feasible DoF
finding as they will not need the rank test of Theorem 4.
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[17] D. Malioutov, M. Çetin, and A. Willsky, “Homotopy Continuation
for Sparse Signal Representation,” in IEEE Int’l Conf. Acoust. Speech
Sig. Proc. (ICASSP), 2005.

[18] H. Ngo, E. Larsson, and T. Marzetta, “The Multicell Multiuser
MIMO Uplink with Very Large Antenna Arrays and a Finite-
Dimensional Channel,” IEEE Trans. on Communications, June 2013.

[19] A. Burr, “Capacity bounds and estimates for the finite scatterers
MIMO wireless channel,” IEEE Journal on Selected Areas in Com-
munications, June 2003.

[20] R. Horn and C. Johnson, Matrix Analysis, 2nd ed. Cambridge Univ.
Press, 2013.


