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The Simultaneous Multiple Surfaces (SMS) [1-3] is a direct construction method which allows finding surfaces without any or few initial guesses. By doing so we can find more radical freeform surfaces than a classical design method would. In this article, we will explain the SMS method and our implementation. Coupling the SMS method with optimization in optical design software can automatically scan the merit function (MF) to find various local minima [2]. This reduces the impact of the optical designer's experience on the quality of the final optical system and brings us closer to an "ex-nihilo" optical design method.

Introduction

The design of optical imaging systems has relied since its inception on spherical surfaces and later on rotationally symmetric surfaces such as a sphere, conic, asphere, etc. However, in the '70s, the first optical system with a surface without rotational symmetry was commercialized [START_REF] Plummer | Unusual optics of the Polaroid SX-70 Land camera[END_REF]. Surfaces without rotational symmetry are what we call freeform surfaces in this article [START_REF] Rolland | Freeform optics for imaging[END_REF].

An optical design always aims at finding an optimum between conflicting requirements. For example, in many fields of application (space, defense, automotive) optical performance and minimization of volume are both essential.

By bringing to the designer more degrees of freedom, freeform surfaces allow designing systems that can out-compete classical systems on all requirements.

For example, literature has shown that off-axis catoptric freeform systems bring a volume reduction of 66% to a similar optical performance point [START_REF] Rolland | Freeform optics for imaging[END_REF].

However, freeform surface brings new challenges in optical design. The choice of the representation basis of surfaces (Zernike polynomials, XY polynomials, etc.) will affect the result. Moreover, the utilization of freeform optics makes the optimization of the MF more complex due to the large number of degrees of freedom. In turn, this increases the impact of the designer's experience even more compared to the design of classical systems where it is common knowledge that the designer's experience affects already greatly the result.

To handle and simplify this problem, new design methods appeared in the last decade. We can sort them into two different categories, the direct construction methods, and the optimization methods. In direct construction methods of interest, we can single out: the SMS method, the point-bypoint method [START_REF] Yang | Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method[END_REF][START_REF] Yang | Design method of freeform off-axis reflective imaging systems with a direct construction process[END_REF], or the differential ray tracing method [START_REF] Volatier | Differential method for freeform optics applied to two-mirror off-axis telescope design[END_REF][START_REF] Volatier | Generalization of differential ray tracing by automatic differentiation of computational graphs[END_REF]. The advantage of direct construction methods is that they mostly avoid the optimization part, even if, it is sometimes necessary to optimize the result in an optical design software at the end. Using a direct construction method also allows choosing at a later stage the representation basis of surfaces.

In these new methods, the SMS method seems to be promising for different applications such as foveated vision systems, infrared systems with large aperture and fields.

Our implementation of the method is based on the different articles [START_REF] Benitez | Design in 3D geometry with the Simultaneous Multiple Surface design method of Nonimaging Optics[END_REF][START_REF] Mohedano | Notes on the design of freeform optics[END_REF], describing the principle of the method. This article will describe our understanding of the SMS method and our implementation using Python and Zemax. In this article, a ray is noted R and refers to a vector associated with a point. Moreover, all the systems presented here will be in the infrared with a reference working wavelength of 10 µm.

Method description

Principle :

The SMS method is based on the principle of the Cartesian oval. A Cartesian oval is a surface that couples an incident wavefront and an outcoming wavefront. Fig 1 shows an example of a Cartesian oval, in that case, the Cartesian oval is a parabola because the surface couples a parallel on-axis incident wavefront to a spherical one (perfect image).

The SMS method is a generalization of the principle of the Cartesian oval, where the method constructs a system of N surfaces with N aberrationfree fields (SMS-NS).
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SMS 2 surfaces 2D -3D (SMS-2S-2D or SMS-2S-3D) :

The SMS method applied to two surfaces allows designing systems with two aberration-free fields. SMS-2S-2D and SMS-2S-3D can be separated into two parts. The first part is the definition of the parameters and the second is the computation one where we extend the surfaces. This extension part is called the SMS extension of the surfaces.

Parameter definition for SMS-2S-2D :

To define the different parameters, we use the requirement specifications of the problem. We also have to estimate some parameters by trial-anderror.

-Fields: two fields and their vectors ⃗ and ⃗ .

-Focal: impose by the requirements.

-Refractive index: impose by the requirements or by the designer. 

SMS extension for SMS-2S-2D :

We illustrate the extension process by an example. In our example, we use the following values: The SMS extension consists of extending step by step the two surfaces using one after the other information about field 1 ( ) and field 2 ( ). It is possible to begin the SMS extension with either one or the other field. In our example, we start the extension with field 1. Here is the description step by step of the computation part: -Compute the normal vector * ) ⃗ at ) so that the refraction of ( % & at ) gives the refracted ray ( % & defined by ) + ⃗ .

After this first step, we obtain a new point on surface 2 ( ) ) and its normal vector (* ) ⃗ ). Now, we can use ) to compute this time a new point on surface 1, using the information of field 2. To extend surface 1 we compute this time, the ray from the image space to the object space but the steps are the same as before (see Fig. 2 (d-e-f)). Therefore, we obtain a new point on surface 1 ( ) and its normal vector (* ).

Those two steps formed one iteration of a SMS chain. To fully compute a SMS chain, we repeat those steps, as many times as possible, using , instead of (i refers to the iteration number) as the starting point of the next iteration. The first computed SMS chain sets the maximum dimension of the surfaces. Indeed, it stops when surfaces reach their maximum dimensions, fixed by the targeted F-number. The first SMS chain may finish prematurely for example if a total internal reflection occurs at a surface. When we face this problem, we have to modify the initial estimated parameters, namely optical path and image plane position.

To describe with accuracy the surfaces, we have to compute a large number of points. By doing so we greatly improve the optical quality of the SMS system. To achieve that, we use an interpolation. It allows us to compute new SMS chain starting points and by doing so, new SMS chains and then more points.

We compute the interpolation between the two edge points of surface 1 found by computing the first SMS chain. For example, if we achieve a first SMS chain ofiterations the two edge points of surface 1 are . and ./ . Therefore, we interpolate the curve defined by . , ./ , * . ⃗ and * ./ ⃗ (see Fig. 3). We can now compute new SMS chain starting points between . and ./ (red points in Fig. 3). The more we compute SMS chains the more surfaces' definitions will be accurate. By doing this, we can precisely compute the two surfaces with high optical quality for the two fields. Fig. 4 shows a result obtained by applying the described SMS algorithm. Due to the symmetrical fields, we obtain aspherical surfaces, as expected.

Parameter definition for SMS-2S-3D :

The parameter definition is the same as before except for the parameters "Surface definition" and "Fields". We face now a 3D problem so we cannot just define surface 1 with a single point. We have to describe it with multiple points and their normal vectors forming a curve in 3D. To simplify the Surface definition, we always define the curve on the XZ plane (Z = optical axis). By doing that we know that all the Y coordinates of the points and their normal vectors are equal to zero.

-Surface definition: define a curve 0 ) with m + 1 points, 0 ) 1 ),) , ), , … , ), 3 and their normal vectors 4* ),) ⃗ , * ), ⃗ , … , * ), ⃗ 5, where

), 6, 7, 8 0 and * ),+ ⃗ 6, 7, 8 0 ∀: ∈ <0, =>

We can already guess that the Surface definition will have a huge impact on the result. Modifying the initial curve can completely change the result of the SMS extension.

Field definition just changed due to the 3D nature of the problem, we have to define fields along the X and Y-axis. For simplicity, we only use fields )

)

on the Y-axis but there is no limitation of using other fields' definitions.

-Fields: 0°, #45° and 0°, 45° and their vector A+BCD ⃗ and A+BCD ⃗ .

SMS extension for SMS-2S-3D

The SMS extension of SMS-2S-3D follows the same steps as the SMS-2S-2D extension. Except that now we compute one new curve on surfaces 1 and 2 at each iteration and not just one new point on each surface. This is a brief description of each step required to compute the new curve on surface 2:

-Compute the m + 1 incident rays of field 1 that intersect surface 1 at the different points of 0 ) . -Compute the m + 1 refracted rays by surface 1. -Compute the m + 1 points on surface 2 that lead to the equalization of the optical path for the different rays. These points formed the new curve of surface 2, 0 ) . -Compute the m + 1 normal vectors of the curve 0 ) .

To compute the curve on surface 1, just apply the same steps in the reverse way.

As the SMS-2S-2D, we compute the SMS extension of one side. After that, we approximate the surface between the two edge curves. Finally, we compute the SMS extension to complete the surfaces on both sides. Fig. 5 shows a result obtained by applying the SMS-2S-3D algorithm.

Evaluation of the optical quality on Zemax

To evaluate the optical quality of the computed SMS-2S-2D system, we use the GridSag surface type of Zemax to model the surface as linear interpolation. In 2D, only the ray aberration diagrams along one axis are relevant to evaluate the optical quality of the system. The ray aberration shows the impact distance in the image plane between tangential and sagittal rays of a field and its chief ray. Values of the ray aberration need to be inferior to the Airy spot radius (~20 µm for our reference wavelength), for both fields, to be considered as a system with two aberration-free fields.

In Fig. 6 we show that the residual aberrations are below 10 µm.

We then analyze the SMS-2S-3D system with GridSag surfaces.

This time, we have a corrected ray aberration for the two-axis (Fig. 7 (a)). The ray aberration is not sufficient to state that a system is aberration-free for different fields. Indeed, ray aberration only traces the rays in the tangential (X = 0) and sagittal (Y = 0) plane. To ensure the aberration-free nature of the system, we must look at the spot diagram (Fig. 7 (b)). The black circle on the spot diagram refers to the Airy spot. We see that most of the rays are inside the Airy spot. Indeed, the RMS spot radius of the two fields are equals to This graphic represents the evolution of the RMS image spot radius with the field. As expected, only fields P20° are corrected (see Fig. 8). We also can observe that the degradation of the correction increase with the distance of a field to the corrected ones. This is quite logical, so the on-axis field is the less corrected field of the tangential fields (fields = (X = 0°, Y = °, ∈ < 20°, 20°>)).

We wanted to see the behavior of the SMS system throughout an optimization. The aim is to harmonize the correction over the entire field of view (FOV) [START_REF] Nikolić | SMS for imaging systems using freeforms[END_REF]. It is not possible to optimize a GridSag surface. Therefore, we have to fit data on a polynomial basis. We decided to fit the surfaces on the X-Y polynomial basis. We also passed from a linear field to a rectangular one where its diagonal is equal to 20°, which leads to a square field of 14.14°.

Before running the optimization, we looked for the spot diagram of the fitted system Fig. 9). This spot diagram shows a little degradation of the correction for the two fields. However, this degradation is acceptable because the two RMS image spot radius have the same size as the Airy spot (20.3 µm, here S/# V) W)

1.66). Now, we run the optimization, in this aim all the coefficients and thicknesses are variables. Fig. 10 shows the RMS field map of the optimized system. The system is corrected over the entire FOV. Indeed, over the entire FOV, the RMS spot radius is around 10 µm, and the maximum value is 14.34 µm while the Airy spot radius is equal to 20.3 µm.

Conclusion

We have shown that SMS-2S-2D/3D method is useful to design aspherical and freeform systems. This method can also be coupled to an optimization in Zemax, to further improve freeform systems. In the next section, we will focus on systems with more than two surfaces.

The SMS-2S method is relatively simple to implement because we only use points that are already known to extend the different surfaces. We will see that applying the SMS method to a system with more than two surfaces is a different problem with much more difficulties.

SMS 3-4 surfaces 2D

The SMS method implementations for 3-4 surfaces are very similar. Therefore, we will only describe the SMS-4S-2D method precisely in this article. SMS-4S-2D can be separated into two different phases of computation. The first phase of computation is new in regards to the SMS-2S method, and the second one is the SMS extension as seen previously.

Description of phase I: Initial system definition

Like in the SMS-2S method, we first need to define some parameters:

-Focal: 4.8 mm -Fields: 4 fields, #45°, #35°, W 35° and Z 45°.

-Refractive index : n = 3.4 -Compactness constraints: edge thicknesses, air spaces, the total length of the system, etc.

Contrary to SMS-2S, where the surface definition is quite simple because we just had to define a point or a curve, while now we need to define the parts closed to the optical axis of the 4 surfaces to obtain a specific configuration required to begin the SMS extension [START_REF] Miñano | Overview of the SMS design method applied to imaging optics[END_REF].

Description of the configuration required to begin the SMS extension (SMS configuration)

First, each field is associated with a surface's extension. For example, field 1 is associated with the extension of surface 1, field 2 with surface 2, etc. Then, we need to find for each surface the ray of the field associated, that passes through the edge of this surface and the central parts of the other surfaces [START_REF] Miñano | Overview of the SMS design method applied to imaging optics[END_REF]. Therefore, we have to find four rays, which will define the initial semi-diameters of the four surfaces. We call these four rays "the definition rays" (DR). The four surfaces have to be as smaller as possible otherwise, the SMS method loses its relevance.

For instance, if we take the ray of field 1 that passes through the edge of surface 1 then this ray cannot pass through any other edges of the surfaces except if it is the opposite edge. We illustrate this configuration by Fig. 11 which represents a system satisfying the SMS configuration. We can observe that the ray of field 1 (in blue, 45°) passes through the bottom edge of surface 1 and the central parts of other surfaces. It is not an issue that, this ray passes through the top edge of surface 4. Then the ray of fields 2 (in green, 35°) passes through the bottom edge of surface 2, the ray of field 3 (in red, W #35°) passes through the bottom edge of surface 3, finally, the ray of field 4 (in yellow, Z #45°) passes through the bottom edge of surface 4.

To resume we have in this example:

-Field extends surface 1. -Field extends surface 2. -Field W extends surface 3.

-Field Z extends surface 4.

Those associations are not mandatory. However, in our work we choose to always associate fields and surfaces in this way:

-Surface 1 is associated to field

F[\ -Surface 2 is associated to field ]^_BM BD [_B -Surface 3 is associated to field # ^_BM BD [_B -Surface 4 is associated to field # F[\
Now that we have explained the SMS configuration specifications, we will explain, how such a system can be found using Zemax.

Use of Zemax to find an initial system

There is no evident solution or calculus to find a system that respects the SMS configuration. To reach such a system we define a specific MF in Zemax. In this MF, we do not optimize the optical quality of the system. In our SMS method implementation, surface 1 is always the pupil of the system. In this article, we use the same notation as Zemax (`\ ,N = field coordinates and \,N = pupil coordinates). With these notations the association between surfaces and fields become:

-Surface 1 is associated with field `N 1

-Surface 2 is associated with field `N a We do not find a system following the SMS configuration each time. Therefore, to find the maximum number of systems following the SMS configuration we have automatized this step using the ZOS-API tool of Zemax. This tool is very interesting because it enables the communication between Zemax and different computer languages (Python, Matlab, and C++). Using the ZOS-API tool, we can control Zemax with a Python script. Then we implement a script that automatically computes the optimized system based on the MF described before, for all the different initial systems we gave. We make some checkpoints in our script to verify if the optimized system can be considered as a system following the SMS configuration.

We first check, if the system verifies Op.1, Op.2, Op.3 and Op.4, if it does not, we do not keep the system. After we check if Op.5 and Op.6 are inferior to 10 /d ==. If one of the two is not verified, we discard the system. Op.7 is less important so we do not verify it because it is always closed to its targeted value (the typical error is equal to 2.10 /V ==). Moreover, a small error doesn't influence the final optical quality of the SMS system because the starting system of the SMS extension has much smaller surfaces' diameters than the final SMS system. Now that we have multiple systems that follow the SMS configuration, we start the SMS extension for all the selected systems.

Description of Phase II: SMS extension

Principle

The principle is the same as the SMS-2S, we extend the surfaces one by one, using the equalization of the different optical paths. To extend one surface we compute rays that pass through three known surfaces and one unknown surface. For example, the extension of surface 1 consists of the computation of rays of field 1 that pass through surfaces 2, 3 and 4 in their known parts and pass through surface 1 outside its known part. Says like this, the process seems to be closed to the process described for the SMS-2S, although, is not as simple. Indeed, now rays that allow the extension of the surfaces do not pass anymore through points previously computed. This is the main difference between SMS-2S and SMS-NS, this modification involves a complexification of the algorithm. We need to approximate surfaces between the different computed points (see Fig. 12), this approximation has led to some issues throughout the implementation. In the implementation section, we will explain the approximation process.

Implementation

The implementation follows the flowchart of Fig. 13. The condition of the "while" loop refers to the targeted aperture size, we stop the SMS extension when it reaches the targeted aperture size. For the different surface extensions, we compute the maximum surface extension possible at this time. The extension of a surface is stopped when the complementary ray reaches the edge of another surface. Because we extend the surface reducing or increasing gradually the incident ray at the entrance surface of the system (see Fig. 14). We define the entrance surface as the first surface, where our incident ray will intersect. The entrance surface can be surface 1 or surface 4 depending on the surface we extend. Indeed, we can trace rays from the object space to the image space or the At each extension of a surface, we will extend the surface by adding a small parabolic section such that the ray aberration through this parabola is the smallest possible. Eq. 1 defines the parabola:

The extension of surfaces using parabolic approximation is only available if we extend surfaces by adding a small parabolic section at each iteration. In the end, we define each surface as a central curve (curve obtained in Phase I) and an addition of small parabolas where each parabola has different coefficients.

In the parabola equation, we only fix e. Indeed, we have to ensure that the added parabola begins at the latest point of the surface (0 ) continuity). We later optimize f and g coefficients to minimize the RMS spot radius. To achieve the optimization, we compute the RMS spot radius of multiple rays that passes through the parabolic section and we minimize the obtained RMS spot radius.

We will not describe all extension functions because their working flowcharts are relatively the same, we will use the extension of surface 4 as an example. To extend surface 4 we need the following data:

-Vector of field 4. - In the beginning, we had some interrogations about the derivative continuity of the surfaces. Indeed, we do not ensure any derivative continuity in the optimization process because we optimize on f and g coefficients. However, after the first computed SMS system, the result validates the parabolic approximation because we do not observe any discontinuity in the surface derivatives (see Fig. 16). The surface's extensions by adding a small parabolic section at each iteration ensure the continuity of the surface derivatives. However, extend surfaces with a too large parabolic section will create some discontinuities in the surface derivatives.

Applying this flowchart to the other surfaces allows the computation of a SMS-4S-2D system. We obtain a SMS system with a F-number equal to 1.0 (see Fig. 19) To verify the raw SMS system we use GridSag surfaces as the SMS-2S. We finally obtain an Y ray aberration inferior to 8 µ= for the four fields (see Fig. 17). This result validates our criteria of optimization, based on the RMS spot radius and no longer on the perfect equalization of the optical path.

To easily secure a 3D system from this 2D computation we fit the obtained surface profiles on an axial-symmetric aspherical surface.

As expected, the fitting process has degraded the optical quality of the ray aberration (see Fig. 18). Therefore, the system is far from the diffraction limit ( EFG ˆ‰PZV° 95.5 µ=, EFG ˆ‰PWV° 51.8 µ= fRŠ L MN 12.2 µ=). Nevertheless, the degradation is acceptable, and, we have now a correction along the X-axis. Moreover, this system is only bound to be a starting point of optimization, so this optical quality is sufficient. Like in SMS-2S-3D optimization, we pass from a linear FOV of P45° to a square one of 35.26°. Besides the SMS-2S-3D, we can see in Fig. 20 that the correction is uniform on the FOV even before the optimization. This comes from the fact that we have corrected more fields.

Fig. 21 shows the spot diagram after optimization. All the image spots are inferior to the Airy spot except for two fields (fields 5 and 9), although they are also closed to be inferior. The optimization MF was a classical one, only based on the size of the image spots. All these results show the potential of a method coupling the SMS method with optimization in optical design software even if at this time it is not a freeform system. To compute freeform systems we have to use the true SMS-4S-3D method under implementation at ONERA.

Conclusion

In this article, we have shown different implementations of the SMS methods. We tried to describe as clearly as possible our different algorithms. We have also presented results obtained with these methods. Through these results, we want to demonstrate that coupling the SMS method with optimization in classical optical design software is an alternative to the classical design method of freeform systems. Moreover, this new method is partly automatized reducing the impact of the designer's experience on the result. Following future development, this method paves the way to an "ex-nihilo" method design optical systems. To continue on the development of the method we are implementing the SMS-3S-3D method [START_REF] Nikolić | SMS for imaging systems using freeforms[END_REF] to truly obtain freeform systems. With this method we will find more radical freeform surfaces than a classical design method would.
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  Focal: 50 mm -Refractive index: n = 3.4 (index of Silicon) -Surface definition: $ % & = [0, 0] and its normal vector ' % & ⃗ = [-1, 0] (point onaxis)

-

  Let ( % & : the ray defined by ⃗ and ) (see Fig.2 (a)). -Compute ( % & the refracted ray at ) (see Fig.2 (b)). -Compute ) the point on surface 2 that allows the ray to be perfectly imaged (equalization of the optical path) (see Fig.2 (c)).

Figure 1 :

 1 Figure 1: (a) Spherical surface, (b) Cartesian oval (it is a parabola here) (a) (b)
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 43 Figure 4: Example of a SMS-2S-2D system on Python
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 2 Figure 2: Steps of the iteration of the SMS-2S-2D extension

  µ= and EFG / )° 4.920 µ= where the Airy spot radius is equal to L MN 23.4 µ=. Then, we can say that our SMS-2S-3D system is aberration-free for the fields P20°. Another relevant graphic to look for is the RMS spot radius field map.
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 675 Figure 6: Ray aberration of a SMS-2S-2D system defined with GridSag surfaces (maximum scale : P10 R=

Figure 8 :Figure 9 :

 89 Figure 8: RMS spot radius field map of the SMS-2S-3D system
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 111123 Figure 11: Required configuration system to begin the SMS extension
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 14 Figure 13: Flowchart of the Python algorithm
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 181516 Figure 18: Ray aberration (maximum scale : ±60 µm)
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 21 Figure 21: Spot diagram of the aspherical SMS-4S-2D system after optimization