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Introduction

Let G be the real points of a semi-simple real-algebraic group of the non-compact type. The (Riemannian) globally symmetric space X associated to G is nonpositively curved, its visual boundary ∂ ∞ X is a union of compact G-orbits, parametrized by directions in a (fixed beforehand) closed Weyl chamber a + of g. The G-orbit associated to a direction u ∈ P(a + ) is G-equivariantly identified with the flag space F ϑu of G, where ϑ u is the subset of simple roots that do not vanish on u.

Let now Γ be a finitely generated group and ρ : Γ → G a representation with discrete image. A fundamental object of study is the limit set L ρ of ρ(Γ ) on the visual boundary ∂ ∞ X, defined as the set of accumulation points of a (any) orbit ρ(Γ ) • o on the natural compactification X ∪ ∂ ∞ X.

When ρ(Γ ) is Zariski-dense, this object has the following topological description by Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF]: the action of ρ(Γ ) on each flag space F ϑ has a smallest closed invariant set, called the limit set on F ϑ and denoted by L ϑ ρ ; on the other hand one has the limit cone L ρ ⊂ a + of ρ(Γ ), defined as the subset of a + of accumulation points of sequences of the form t n a ρ(γ n ) , where t n ∈ R + converges to 0, γ n ∈ Γ goes to infinity and a : G → a + is the Cartan projection. It is a convex cone with non-empty interior and the limit set L ρ(Γ ) on ∂ ∞ X is the "fibration" over P(L ρ ), whose fiber over a given direction u ∈ P(L ρ ) is the limit set L ϑu ρ of ρ(Γ ) on F ϑu . Inspired by the rank 1 case, as in Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF], one may seek to distinguish the subset of conical points of L ρ , i.e. points on the limit set that are approached in a uniform manner by elements of the orbit ρ(Γ ) • o. However, the definition of uniform depends on:

-the type of G-orbit the point lies in: a point x ∈ L ϑ ρ is conical if there exists a (to be called conical ) sequence {γ n } ⊂ Γ converging to x such that for every y ∈ L i ϑ ρ in general position1 with x the sequence γ -1 n (y, x) has compact closure on the space of pairs of flags in general position F [START_REF] Akerkar | Nonlinear functional analysis[END_REF] ϑ , -the specific direction u ∈ P(L ρ ), associated to the given point: fix a norm on a and define the tube of size r > 0 as the r-tubular neighborhood T r (u) = {v ∈ a : B(v, r) ∩ u = ∅}, then x ∈ L ϑu ρ is u-conical if there exists r > 0 and a conical sequence γ n → x such that for all n one has a ρ(γ n ) ∈ T r (u).

A measurable description has been recently established by Burger-Landesberg-Lee-Oh [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF] for u-conical points of Zariski-dense subgroups: under some extra assumptions, the Patterson-Sullivan measure associated to the direction u charges totally the subset of u-conical points iff G has rank ≤ 3, if rank G ≥ 4 then the subset of u-conical points has zero mass.

In this paper we will also study a measurable description of u-conical limit points, but for general Anosov representations, a class introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] for fundamental groups of closed negatively-curved manifolds and generalized by for arbitrary (finitely generated) word-hyperbolic groups. Thanks to the recent work by Kapovich-Leeb-Porti [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF] (see also Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] and Guéritaud-Guichard-Kassel-Wienhard [START_REF] Guéritaud | Anosov representations and proper actions[END_REF]) we can define them as follows, see § 5.2. Definition 1.0.1. Let ϑ ⊂ ∆ be a non-empty subset of simple roots and denote by | | the word length on Γ for some (fixed) symmetric generating set. A representation ρ : Γ → G is ϑ-Anosov if there exist positive constants c, µ such that for all γ ∈ Γ and σ ∈ ϑ one has σ a ρ(γ) ≥ µ|γ| -c.

A key feature of a ϑ-Anosov representation ρ is that Γ is necessarily wordhyperbolic and there exist continuous ρ-equivariant limit maps (Proposition 5.2.3) defined on its Gromov-boundary,

ξ ϑ : ∂Γ → F ϑ ξ i ϑ : ∂Γ → F i ϑ ,
such that the flags ξ i ϑ (x) and ξ ϑ (y) are in general position whenever x = y.

We begin by studying the Patterson-Sullivan theory for these groups. Fix then ϑ ⊂ ∆, let a ϑ = σ∈∆-ϑ ker σ be the center of the associated Levi group and let p ϑ : a → a ϑ be the projection invariant under the subgroup of the Weyl group point-wise fixing a ϑ (see § 4.2). The dual space (a ϑ ) * sits naturally as the subspace of a * of p ϑ -invariant linear forms.

It is spanned by the fundamental weights of the elements in ϑ:

(a ϑ ) * = σ |a ϑ : σ ∈ ϑ .
Let us write a ϑ for the composition a ϑ = p ϑ • a : G → a ϑ . Let β : G × F ∆ → a be the Buseman-Iwasawa cocycle of G introduced by Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF] (see § 4.6). The map β ϑ = p ϑ • β factors as a cocycle β ϑ : G × F ϑ → a ϑ . Definition 1.0.2. A Patterson-Sullivan measure for ρ on F ϑ is a probability measure ν on F ϑ such that there exists ϕ ∈ a * ϑ with, for every γ ∈ Γ , dρ(γ) * ν dν (•) = q -ϕ β ϑ (ρ(γ) -1 ,•) .

For ϕ ∈ (a ϑ ) * denote by

δ ϕ = lim t→∞ 1 t log # γ ∈ Γ : ϕ a ρ(γ) ≤ t ∈ [0, ∞]
and, inspired by Quint's growth indicator [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF], consider the ϑ-critical hypersurface

Q ϑ,ρ = ϕ ∈ (a ϑ ) * : δ ϕ = 1 .
Let us define the ϑ-limit cone of ρ, denoted by L ϑ,ρ , as the asymptotic cone of the projections a ϑ ρ(γ) : γ ∈ Γ },

i.e. all limits of sequences of the form t n a ϑ ρ(γ n ) , where γ n → ∞ in Γ and t n → 0 in R + .

In the real case, if ρ(Γ ) is Zariski-dense, then Benoist's aforementioned result implies that L ϑ,ρ has non-empty interior. However, for arbitrary local fields this is no longer the case 1 . We aim to work on this more general context, so let us assume now that G is (the K-points of) a semi-simple algebraic group over a local field K, we refer the reader to § 4 for the analogous definitions, where a ϑ is replaced by the real vector space E ϑ , etc.

Let Ann(L ϑ,ρ ) be the annihilator of the ϑ-limit cone and denote by π ϑ ρ : (E ϑ ) * → (E ϑ ) * /Ann(L ϑ,ρ ) the quotient projection.

Theorem A. Let ρ : Γ → G be ϑ-Anosov. Then, Q ϑ,ρ is a closed co-dimension-one analytic sub-manifold of (E ϑ ) * that bounds a convex set; moreover the projection π ϑ ρ Q ϑ,ρ is also a closed co-dimension-one analytic sub-manifold, boundary of a strictly convex set. For each ϕ ∈ Q ϑ,ρ there exists a unique Patterson-Sullivan measure ν ϕ with support on ξ ϑ (∂Γ ). The map ϕ → ν ϕ is an analytic homeomorphism between the projection π ϑ ρ Q ϑ,ρ and the space of Patterson-Sullivan measures on F ϑ whose support is contained in ξ ϑ (∂Γ ). Such Patterson-Sullivan measures are ergodic and pairwise mutually singular.

We refer the reader to Corollary 5.5.3 and Proposition 5.9.2 for the proofs of the above statements.

The fact that both Q ϑ,ρ and π ϑ ρ Q ϑ,ρ are closed analytic hypersurfaces can be found in Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Proposition 4.11] for K = R with essentially the same arguments. The parametrization of Patterson-Sullivan measures by π ϑ ρ Q ϑ,ρ was previously stablished by Lee-Oh [START_REF] Lee | Invariant measures for horospherical actions and Anosov groups[END_REF]Theorem 1.3] for K = R, ϑ = ∆ and assuming Zariski-density of ρ(Γ ). Existence and ergodicity was previously stablished, for K = R by Dey-Kapovich [START_REF] Dey | Patterson-Sullivan theory for Anosov groups[END_REF]Main Theorem] for i-invariant functionals ϕ ∈ (a + ) * ∩ (a ϑ ) * and i-invariant subsets ϑ; and S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF]Corollary 4.22] for arbitrary functionals but Zariski-dense representations of fundamental groups of negatively 1 (even assuming Zariski-density and Anosov) curved manifolds. Existence of Patterson-Sullivan measures has also been stablished by Canary-Zhang-Zimmer [START_REF] Canary | On preparation[END_REF] in the real case for relative Anosov representations.

We keep the discussion for K = R since this is essential in the following result. Consider ϕ ∈ Q ϑ,ρ with associated Patterson-Sullivan measure µ ϕ . Via the duality Gr dim a ϑ -1 (a ϑ ) * → P(a ϑ ), the tangent space T ϕ Q ϑ,ρ gives a direction u ϕ of P(a ϑ ) contained in the relative interior of the limit cone L ϑ,ρ (Corollary 5.9.1). We then further investigate the µ ϕ -mass of u ϕ -conical points on ξ ϑ (∂Γ ).

Since we are dealing with the limit cone on a ϑ (and not on a as before) u ϕ -conical are points are yet to be defined. It is standard that every point ξ ϑ (x) ∈ ξ ϑ (∂Γ ) is conical 1 , let us say it is further u ϕ -conical if there exists a conical sequence (for x) as above and r > 0 such that a ϑ (ρ(γ n )) ∈ T r (u ϕ ). Denote by ∂ ϕ Γ ⊂ ∂Γ the subset

∂ ϕ Γ = x ∈ ∂Γ : ξ ϑ (x) is u ϕ -conical . Theorem B (Theorem 5.13.3). Let K = R and assume ρ is ϑ-Anosov and Zariski- dense. If |ϑ| ≤ 2 then µ ϕ ξ ϑ (∂ ϕ Γ ) = 1, if |ϑ| ≥ 4 then µ ϕ ξ ϑ (∂ ϕ Γ ) = 0.
The case |ϑ| = 3 is sadly presently untreated, the missing fact that would make our technique directly apply is an ergodicity result for translation skew-products over metric-Anosov flows where the abelian group is isomorphic to R 2 = R |ϑ|-1 , more precisely, we need equivalence between ergodicity and dim V ≤ 2 in Corollary 2.5.5.

When ϑ = ∆, a stronger version of Theorem B dealing also with the case |∆| = 3 was previously established by Burger-Landesberg-Lee-Oh [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF]Theorem 1.6]. It is likely that the combination of their techniques and ours settles the missing |ϑ| = 3 case.

1.1. General strategy for Theorem B. Let us briefly explain the proof of Theorem B, which we believe is the main contribution of this work. The main ingredient is a precise description of the ϑ-parallel sets dynamics of G. If (x, y) ∈ F i ϑ × F ϑ are in general position, the associated parallel set is a subset of X consisting on the union of totally geodesic maximal flats p of X whose associated complete flags in the Furstenberg boundary p(-a + ) and p(a + ) contain, respectively, x and y as a partial flag. This parallel set is a reductive symmetric space, and the associated dynamical system consists on moving along its center.

More concisely, if one considers the space F

(2)

ϑ ⊂ F i ϑ × F ϑ of transverse flags, then the space F (2)
ϑ × a ϑ carries a G-action (on the left) given by g(x, y, v) = gx, gy, v -β ϑ (g, y) , and an a ϑ -action (on the right) by translation on the last coordinate.

Observe however that the left-action of ρ(Γ ) on F

ϑ × a ϑ need not be proper. For ϑ-Anosov groups though one finds an a ϑ -invariant subset which is also ρ(Γ )invariant and on which this latter action is proper ( § 3.5.2 and § 5.3.2). Its quotient by ρ(Γ ) will be denoted, throughout this introduction, by O ϑ,ρ .

1 (This follows from the fact that every point x ∈ ∂Γ is conical and the existence of the equivariant limit maps for ρ.)

For each ϕ ∈ Q ϑ,ρ the space O ϑ,ρ will carry a ϕ-Bowen-Margulis measure Ω ϕ invariant under the directional flow ω ϕ : O ϑ,ρ → O ϑ,ρ along u ϕ ∈ u ϕ , defined by (the induced on the quotient by ρ(Γ ) of)

(x, y, v) → (x, y, v -tu ϕ ).
The idea generalizing S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF] is that ω ϕ is conjugated to a skew-product over a metric-Anosov flow φ ϕ = φ ϕ t : χ ϕ → χ ϕ t∈R on a compact metric space χ ϕ . This is stablished in § 5.12 and previously stablished by Carvajales [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF]Appendix] when ϑ = ∆.

Remark 1.1.1. The flow φ ϕ plays a central role in this work. We propose to name it the ϕ-refraction flow of ρ, because one may think as if the projection on the base χ ϕ refracts the orbits of ω ϕ (almost all of them wondering 1 when |ϑ| ≥ 4) in order to bind them in a compact space χ ϕ and obtain non-trivial dynamical behavior. On the other hand, the term geodesic flow has too many meanings on this setting (the geodesic flow of Γ , the geodesic flow of the locally symmetric space ρ(Γ )\X, the geodesic flow of a projective-Anosov representation associated to ρ by Plucker embedings...).

An ergodicity result for skew-products over metric-Anosov flows (see § 2.5) gives an ergodic vs totally dissipative dichotomy for ω ϕ according to |ϑ| ≤ 2 or |ϑ| ≥ 4, here the base field K = R and Zariski-density of ρ are essential, since Benoist's [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires II[END_REF] density of Jordan projections does not hold for non-Archimedean K. This dichotomy is reminiscent of Sullivan's [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF] conservative vs totally dissipative dichotomy in rank 1. Observe again the untreated case |ϑ| = 3.

These dynamical properties of ω ϕ imply the following. The set K(ω ϕ ) of points in O ϑ,ρ whose future orbit returns unboundedly to some open bounded set, has either zero Ω ϕ -mass if |ϑ| ≥ 4 or its complement has zero Ω ϕ -mass if |ϑ| ≤ 2.

The key feature now is to relate u ϕ -conical points with the set K(ω ϕ ), this is attained in Lemma 5.13.3 where it is shown that a triple (x, y, v) ∈ F [START_REF] Akerkar | Nonlinear functional analysis[END_REF] ϑ ×a ϑ projects to K(ω ϕ ) if and only if y is u ϕ -conical. The previous dynamical dichotomy gives then the dichotomy on the µ ϕ -measure on conical points:

|ϑ| ≤ 2 ⇒ µ ϕ (∂ ϕ Γ ) = 1, |ϑ| ≥ 4 ⇒ µ ϕ (∂ ϕ Γ ) = 0. (1) 
The global strategy of our proof is different from the analog result in Burger-Landesberg-Lee-Oh [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF]. While, inspired by them, we also use a mixing result, the use of Dirichlet-Poincaré series along tubes does not play any role in the proof of Theorem B, nor on the ergodicity dichotomy for directional flows.

Let us end this Introduction be observing that both Burger-Landesberg-Lee-Oh [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF] and Chow-Sarkar [START_REF] Chow | Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces[END_REF] prove dynamical statements on ρ(Γ )\G (as opposed to ρ(Γ )\G/M). 1.2. Plan of the paper. In § 2 we recall some basic facts about the Ergodic Theory of metric-Anosov flows, and then study translation cocycles over them. Section 3 deals with a Ledrappier correspondence for word-hyperbolic groups whose Gromov-Mineyev geodesic flow is metric-Anosov. We will mainly apply these results to the Buseman-Iwasawa cocycle of G, for applications to other cocycles the reader may check Carvajales [START_REF] Carvajales | Counting problems for special-orthogonal Anosov representations[END_REF][START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF].

1 in spite of being topologically mixing, these flows are wondering in a measureable sense i.e. almost every point belongs to a subset of positive measure with bounded return times,

We then recall in § 4 necessary definitions on semi-simple algebraic groups over a local field and deal with Anosov representations on § 5. We explain in this section how the Ledrappier correspondence applies in this setting to give, mainly:

-uniqueness results on the Patterson-Sullivan measures, -precise dynamical information on the directional flows ω ϕ .

The proof of Theorem B can be found in § 5.13. 1.3. Acknowledgements. This paper grew from a question asked to the author by Hee Oh on the ergodicity of directional flows for Anosov representations (now Theorem 5.12.1). He would like to thank her for asking the question. He would also like to thank Marc Burger for encouraging him to pursue the ideas sketched on a very early version of this work, together with the remaining authors O. Landesberg, M. Lee and H. Oh of the paper [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF], whose results inspired Theorem B.

Skew-products over metric-Anosov flows

Throughout this section we let X be a compact metric space and V a finite dimension real vector space.

2.1. Thermodynamic Formalism and reparametrizations. Let φ = (φ t : X → X) t∈R be a continuous flow without fixed points. The space of φ-invariant probability measures on X is denoted by M φ . It is a convex, weakly-compact subset of C * (X), the dual space to the space of continuous functions equipped with the uniform topology. The metric entropy of m ∈ M φ will be denoted by h(φ, m), its definition can be found in Aaronson [START_REF] Aaronson | An introduction to Ergodic Theory in infinite measure[END_REF]. Via the variational principle, we will define the topological pressure (or just pressure) of a function f : X → R as the quantity

P (φ, f ) = sup m∈M φ h(φ, m) + X f dm . (2) 
A probability measure m realizing the least upper bound is called an equilibrium state of f. An equilibrium state for f ≡ 0 is called a measure of maximal entropy, and its entropy is called the topological entropy of φ, denoted by h(φ). Let f : X → R >0 be continuous. For every x ∈ X the function

k f : X × R → R, defined by k f (x, t) = t 0 f (φ s x)ds, is an increasing homeomorphism of R. There is thus a continuous function α f : X × R → R such that for all (x, t) ∈ X × R, α f x, k f (x, t) = k f x, α f (x, t) = t. The reparametrization of φ by f : X → R >0 is the flow φ f = (φ f t : X → X) t∈R defined, for all (x, t) ∈ X × R by φ f t (x) = φ α f (x,t) (x).
The Abramov transform of m ∈ M φ is the probability measure m # ∈ M φ f defined by

m # = f • m f dm . (3) 
One has the following: Lemma 2.1.1 (S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 2.4]). Let f : X → R >0 be a continuous function. Assume the equation

P (φ, -sf ) = 0 s ∈ R
has a finite positive solution h, then h is the topological entropy of φ f . Conversely if h(φ f ) is finite then it is a solution to the last equation. In this situation, the Abramov transform induces a bijection between the set of equilibrium states of -hf and the set of probability measures maximizing entropy for φ f .

Two continuous maps f, g : X → V are Livšic-cohomologous if there exists a U : X → V, of class C 1 in the direction of the flow 1 , such that for all x ∈ X one has

f (x) -g(x) = ∂ ∂t t=0 U (φ t x).
Remark [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF], who transferred to this more general setting the classical theory carried out for the latter. We recall here their definition and some well known facts on their Ergodic Theory needed in the sequel. Throughout this subsection we will further assume that φ is Hölder-continuous with an exponent independent of t, that it is transitive, i.e. it has a dense orbit, and that it is metric-Anosov.

For ε > 0 the local stable/unstable set of x are (respectively)

W s ε (x) = {y ∈ X : d(φ t x, φ t y) ≤ ε ∀t > 0 and d(φ t x, φ t y) → 0 as t → ∞} W u ε (x) = {y ∈ X : d(φ -t x, φ -t y) ≤ ε ∀t > 0 and d(φ -t x, φ -t y) → 0 as t → ∞}.

Definition 2.2.1 (Metric-Anosov). The flow φ is metric-Anosov if the following holds:

-(Exponential decay) There exist positive constants C, λ and ε such that for every x ∈ X, every y ∈ W s ε (x) and every t > 0 one has d(φ t x, φ t y) ≤ Ce -λt , and such that for every y ∈ W u ε (x) one has d(φ -t x, φ -t y) ≤ Ce -λt . -(Local product structure) There exist δ, ε > 0 and a Hölder-continuous map

ν : {(x, y) ∈ X × X : d(x, y) < δ} → R such that ν(x, y) is the unique value ν such that W u ε (φ ν x) ∩ W s ε ( 
y) is nonempty, and consists of exactly one point, called x, y ; and for every x ∈ X the map

W s ε (x) × W u ε (x) × (-δ, δ) → X,
given by (y, z, t) → φ t ( y, z ), is a Hölder-homeomorphism onto an open neighborhood of x.

1 i.e. such that if for every x ∈ X, the map t → U (φtx) is of class C 1 , and the map x → ∂ ∂t t=0

U (φtx) is continuous

A translation cocycle over φ is a map k : X × R → V such that for every x ∈ X and t, s ∈ R, one has k(x, t + s) = k(φ s x, t) + k(x, s), and such that the map k(•, t) is Hölder-continuous with exponent independent of t, and with bounded multiplicative constant when t remains on a bounded set. Two translation cocycles k 1 and k 2 are Livšic-cohomologous, if there exists a continuous map U : X → V, such that for all x ∈ X and t ∈ R one has

k 1 (x, t) -k 2 (x, t) = U (φ t x) -U (x). ( 4 
)
If k is a translation cocycle then the period for k of a periodic orbit τ is τ (k) = k x, p(τ ) , for any x ∈ τ. The marked spectrum τ → k (τ ) is a cohomological invariant that uniquely determines its class: Theorem 2.2.2 (Livšic [START_REF] Livšic | Cohomology of dynamical systems[END_REF]). Let k : X × R → V be a translation cocycle. If k (τ ) = 0 for every periodic orbit τ, then k is Livšic-cohomologous to 0.

Observe that if f : X → V is Hölder-continuous then the map

k f (x, t) = t 0 f (φ s x)ds
is a translation cocycle. Two such functions are Livšic-cohomologous if and only if the associated cocycles are, and the period of f on τ is, for any x ∈ τ,

τ (f ) = τ f = k f x, p(τ ) .
It turns out that every cocycle is Livšic-cohomologous to a cocycle of the form k f :

Corollary 2.2.3 (S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF]Lemma 2.6]). If k : X × R → V is a translation cocycle then there exists a Hölder-continuous f : X → V such that k and k f are Livšiccohomologous.

Proof. For any κ > 0, the function j(x, t) = 1 2κ κ -κ k(x, t + s)ds is differentiable on the second variable, let f (x) = ∂/∂s | s=0 j(x, s). Then

k f (x, t) = t 0 f (φ u x)du = t 0 ∂ ∂s s=0 j(φ u x, s)du = t 0 ∂ ∂s s=0 j(x, s + u)du = j(x, t) -j(x, 0), so the period k f (x, p(τ )) = j(x, p(τ )) -j(x, 0) = k(x, p(τ ))
. By Theorem 2.2.2 the cocycles k and k f are thus Livšic-cohomologous.

We record also the following immediate consequence of Livšic's Theorem: In this context much more information can be stated about the pressure function. Recall that the space Holder α (X) of real valued α-Hölder functions is naturally a Banach space when equipped with the norm

f α = f ∞ + sup x =y |f (x) -f (y)| d(x, y) α .
Proposition 2.2.5 (Bowen-Ruelle [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF] and Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Prop. 4.10]). The function P (φ, •) is analytic on Holder α (X). If f, g ∈ Holder α (X), then

∂ ∂t t=0 P (φ, f + tg) = gdm f ,
where m f is the equilibrium state of f, and the funcion t → P (φ, f + tg) is strictly convex unless g is Livšic-cohomologous to a constant. Finally, one also has

P (φ, f ) = lim sup t→∞ 1 t log τ :p(τ )≤t e τ (f ) . (5) 
Let f ∈ Holder α (X) have non-negative (and not all vanishing) periods and define its entropy by

h f = lim sup s→∞ 1 s log # τ periodic : τ f ≤ s ∈ (0, ∞].
Remark 2.2.6. Observe that h f is necessarily > 0 since f must have a positive maximum and h(φ) > 0.

One has the following lemma.

Lemma 2.2.7 (Ledrappier [44, Lemma 1]+S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 3.8]). Consider a Höldercontinuous function f : X → R with non-negative periods. Then the following statements are equivalent:

-the function f is Livšic-cohomologous to a positive Hölder-continuous function, -there exists κ > 0 such that τ f > κp(τ ) for every periodic orbit τ, -the entropy h f is finite, -the function t → P (φ, -tf ) has a positive zero, in which case is h f . Let us fix an exponent α and consider the cone Holder α + (X, R) of Hölder-continuous functions that are Livšic-cohomologous to a strictly positive function. The implicit function theorem for Banach spaces (see Akerkar [START_REF] Akerkar | Nonlinear functional analysis[END_REF]) and the explicit formula for the derivative of pressure (Proposition 2.2.5) give the following corollary. Lemma 2.2.8. The entropy map h : Holder α + (X, R) → R + is analytic. Proof. Indeed Lemma 2.2.7 gives the equation P (φ, -h f f ) = 0 and equation (2.2.5) gives that the non-vanishing derivative

d -h f f P (φ, f ) = f dm -h f f > 0,
so the implicit function completes de result.

Metric-Anosov flows II: Ergodic Theory.

A fundamental tool for studying the Ergodic Theory of metric-Anosov systems is the existence of a Markov coding.

Let Σ be an irreducible sub-shift of finite type equipped with its shift transformation σ : Σ → Σ, and r : Σ → R >0 be Hölder-continuous. Let r : Σ × R → Σ × R be defined as r(x, s) = (σx, s -r(x)), and consider the quotient space Σ r = Σ × R/ r . It is equipped with the flow σ r = σ r t : Σ r → Σ r t∈R induced on the quotient by the translation flow.

Definition 2.3.1 (Markov coding). A triplet (Σ, π, r) is a Markov coding for φ if Σ and r are as above, π : Σ → X is Hölder-continuous and the function π r : Σ×R → X defined as π r (x, t) = φ t π(x) verifies the following conditions: i) π r is Hölder-continuous, surjective and r-invariant; it passes then to the quotient Σ r , ii) π r : Σ r → X is bounded-to-one and injective on a residual set which is of full measure for every ergodic σ r -invariant measure of total support, iii) for every t ∈ R one has π r σ r t = φ t π r . The following result has a long history, see for example Bowen [START_REF] Bowen | Periodic orbits of hyperbolic flows[END_REF][START_REF] Bowen | Symbolic dynamics for hyperbolic flows[END_REF], Ratner [START_REF] Ratner | Markov partitions for Anosov flows on n-dimensional manifolds[END_REF], Pollicott [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF] and more recently Constantine-Lafont-Thompson [START_REF] Constantine | Strong symbolic dynamics for geodesic flows on CAT(-1) spaces and other metric Anosov flows[END_REF].

Theorem 2.3.2 (Existence of coding). A transitive metric-Anosov flow admits a Markov coding.

The above is a fundamental tool to obtain the following, see for example Bowen-Ruelle [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF], Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF] and more recently Giulietti-Kloeckner-Lopes-Marcon [START_REF] Giulietti | The calculus of thermodynamical formalism[END_REF], recall from § 2.1 the definition of equilibrium state.

Theorem 2.3.3 (Uniqueness of equilibrium states). Let f : X → R be Höldercontinuous, then there exists a unique equilibrium state for f, denoted by m f ; it is an ergodic measure. If g : X → R is also Hölder, then m g m f if and only if f -g is Livšic-cohomologous to a constant function, in which case m g = m f . The function f → m f , defined on the space of Hölder-continuous functions with fixed exponent, is analytic. 1 A final fact we will require on this setting (introduced by Margulis [48]) is the decomposition of the measure of maximal entropy along the stable/ central-unstable sets of φ.

The stable/unstable leaf of x is

W s (x) = t∈R+ φ -t W s ε (φ t x) W u (x) = t∈R+ φ t W u ε (φ -t x) ,
and the central stable/unstable leaf is (respectively) the φ-orbit of W s (x) (resp. W u (x)). These sets are independent of (any small enough) ε (i.e. smaller than the ε given by Definition 2.2.1). One has the following, see for example Margulis [START_REF] Margulis | Certain measures associated with U-flows on compact manifolds[END_REF], Pollicott [START_REF] Pollicott | Margulis distribution for Anosov flows[END_REF] for a construction via Markov codings or Katok-Hasselblatt's book [41, § 5 of Chapter 20] for the discrete-time case. Theorem 2.3.4 (Margulis description). For each x ∈ X there exists a measure µ s x on the stable leaf W s (x) and a measure µ cu

x on the central unstable leaf such that -for all t > 0 and all measurable U ⊂ W s (x) one has

µ s φtx (φ t U ) = e -h(φ)t µ s x (U ), (6) 
1 We emphasize that the space of measures is endowed with the differentiable structure induced by being the dual space of continuous functions.

-the local product structure on Definition 2.2 induces a local isomorphism between the measure µ s x ⊗ µ cu x and the measure of maximal entropy of φ. The family of measures is unique in the following sense. If ν s

x and ν cu x are also a family of measures along the stable and central-unstable leafs of x such that the product ν s

x ⊗ ν cu x is locally isomorphic to a φ-invariant measure and ν s x verifies equation ( 6) with some arbitrary fixed δ > 0 (instead of h(φ)) then δ = h(φ), ν s x = µ s x and µ cu x = ν cu x . 2.4. Skew-products over sub-shifts. Consider now the two-sided subshift Σ and let K : Σ → V be Hölder-continuous. Definition 2.4.1. We say that K is non-arithmetic if the group spanned by the periods of K is dense in V.

The skew-product system is defined by

f = f K : Σ × V → Σ × V f (p, v) = σ(p), v -K(p) . ( 7 
)
If ν is a σ-invariant probability measure on Σ then the measure

Ω = Ω ν = ν ⊗ Leb is f -invariant.
The following proposition seems to be well known but we haven't been able to find a specific reference in the literature, for completeness we added a short proof Appendix A.

Proposition 2.4.2. Let Σ be a two-sided sub-shift, ν be an equilibrium state of some Hölder potential, and K : Σ → R a non-arithmetic Hölder-continuous function with Kdν = 0. Then the skew-product

f K : Σ × R → Σ × R is ergodic w.r.t. Ω ν .
We record also the following classical lemma. Let us say that a subset of Σ × V is bounded if it has compact closure, and that it has total mass (w.r.t. Ω) if its complement has measure zero. As the space Σ × V is non-compact, it is natural to study the subset of points of Σ × V whose future orbit returns infinitely many times to a fixed open bounded set:

K(f ) = p ∈ Σ × V : ∃B open bounded set and n k → ∞ with f n k (p) ∈ B . One can be more specific. If B 1 , B 2 ⊂ Σ × W we want to understand the measure of K(B 1 , B 2 ) = p ∈ B 1 : ∃n k → ∞ with f n k (p) ∈ B 2 ,
to this end one considers the sum

∞ 0 Ω 1 B1 • 1 B2 • f n : Lemma 2.4.3. If ∞ n=0 Ω 1 B1 • 1 B2 • f n < ∞ then Ω K(B 1 , B 2 ) = 0.
On the other hand if ν has no atoms and f is ergodic w.r.t. Ω then K(f ) has total mass and for every pair

B 1 , B 2 one has K(B 1 , B 2 ) has total mass on B 1 .
Proof. This is a standard argument valid for any measure preserving transformation. The first assertion follows by looking at the tail of the series in question

∞ n=k Ω 1 B1 • 1 B2 • f n ≥ Ω(E k ), where, for each k ∈ N, E k = {p ∈ B 1 : ∃N ≥ k with f N (p) ∈ B 2 .
The second assertion can be found in, for example, Aaronson's book [1, page 22].

2.5. An ergodic dichotomy. As in § 2.3, let σ r be the suspension of the shift on Σ by the function r. If ν is a σ-invariant probability measure, then ν ⊗ dt/ rdν is invariant under the translation flow Σ×R and induces thus a σ r -invariant probability measure on Σ r , denoted by ν.

Remark 2.5.1. It is a classical fact, to be found for example in Bowen-Ruelle [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF], that if ν is the equilibrium state of -h(σ r )r then ν realizes the topological entropy of σ r .

Let K : Σ × R → V be a r -invariant Hölder-continuous function and consider the flow

ψ = ψ t : Σ r × V → Σ r × V ) t∈R ψ t p, v = σ r t (p), v - t 0 K(σ r s p)ds .
Consider the measure on Σ r × V defined by Ων = ν ⊗ Leb .

Theorem 2.5.2 (S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF]Theorem 3.8]). Assume the group generated by the periods of (r, K) is dense in R × V and that Kdν = 0 for the equilibrium state ν of -h(σ r )r. Then there exists κ > 0 such that given two compactly supported continuous functions g 1 , g 2 : Σ r × V → R, one has

t dim V /2 Ων g 1 • g 2 • ψ t → κ Ων (g 1 ) Ων(g 2 ),
as t → ∞.

We include the main outline of its proof in Appendix B. As it is classical, the above result holds for characteristic functions of open bounded sets whose boundary has measure zero.

Corollary 2.5.3. Under the same assumptions of Theorem 2.5.

2, if dim V = 1 then ψ is ergodic w.r.t. Ων . If dim V ≥ 3 then Ων K(ψ) = 0.
Proof. The skew-product system f K : Σ × V → Σ × V of equation [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF], where K : Σ → V is defined by

K(x) = r(x) 0 K(x, s)ds, (8) 
is the first-return map of ψ to its global section Σ × {0} / ∼ × V. Consequently, following the flow-lines until reaching the section, one finds a natural (measurable) bijection between ψ-invariant subsets and f -invariant subsets. If µ is a σ-invariant probability measure on Σ, then this bijection preserves the class of invariant-zerosets between the measures μ ⊗ Leb on Σ r × V and µ ⊗ Leb on Σ × V. Thus we can translate ergodicity results from f to the flow ψ and vice-versa. The case dim V = 1 is hence settled by Proposition 2.4. gives a positive C such that for large t one has

t dim V /2 Ω 1B • 1B • ψ t ≤ C. Thus, for a fixed t 0 > 0 one has that ∞ t0 Ω 1B • 1B • ψ t dt ≤ C ∞ t0 1 t dim V /2 . If dim V ≥ 3 then ∞ t0 Ω 1B • 1B • ψ t dt < ∞ and Lemma 2.4.3 gives Ω K(ψ) = 0,
in particular the system is not ergodic. Remark 2.5.4. An ergodicity dichotomy for f K has been previously established by Guivarc'h [36, Corollaire 3 on page 443] under the stronger assumption that K is aperiodic.

By means of Markov partitions (Theorem 2.3.2), the above corollary immediately translates in the following. As in the previous section, let X be a compact metric space equipped with a topologically transitive, Hölder-continuous, metric-Anosov flow φ. Let F : X → V be Hölder-continuous and consider the flow Φ = Φ t :

X × V → X × V t∈R Φ t (p, v) = φ t p, v - s 0 F (φ s p)ds .
It is convenient to call the flow Φ by the skew product of φ by F . Corollary 2.5.5 (Dichotomy). Assume the group spanned by the periods of (1, F ) is dense in R × V and that F dm = 0 for the measure of maximal entropy m of φ. Then Φ is mixing as in Theorem 2.5.2, moreover

dim V ≤ 1 ⇒ Φ is ergodic w.r.t. m ⊗ Leb ⇒ dim V ≤ 2. If dim V ≥ 3 then K(Φ) has zero measure.
Proof. Follows from the corresponding results for subshifts and Remark 2.5.1 describing the measure of maximal entropy of φ.

2.6. The critical hypersurface. We recall here two results from Babillot-Ledrappier [START_REF] Babillot | Lalley's theorem on periodic orbits of hyperbolic flows[END_REF]. Their paper concerns differentiable Anosov flows but, as one checks the proofs, only the existence of a Markov coding is required for both their results below. We take the liberty to state them in our broader generality and refer the reader to loc. cit. whose proofs work verbatim.

As before, let F : X → V be Hölder-continuous.

Assumption A. We will assume throughout the remainder of § 2 that the closed group ∆ spanned by the periods of F has rank dim V, (i.e. ∆ R k × Z dim V -k for some k ∈ 0, dim V ) and that moreover the group spanned by

p(τ ), τ F : τ periodic is isomorphic to R × ∆. The compact convex subset of V M φ (F ) = X F dµ : µ ∈ M φ
has hence non-empty interior. On the other hand, for each ϕ ∈ V * one can consider the pressure of the function ϕ(F ) : X → R:

P(ϕ) = P (φ, -ϕ • F ).
By Assumption A the function P : V * → R is analytic and strictly convex (Proposition 2.2.5). Using the formula for the derivative of pressure (Proposition 2.2.5), and the natural identification Gr dim V -1 (V * ) → P(V ), one has, for ϕ ∈ V * that

d ϕ P = F dm -ϕ(F ) , (9) 
where m -ϕ(F ) is the equilibrium state of -ϕ(F ). One has the following.

Proposition 2.6.1 (Babillot-Ledrappier [5, Prop. 1.1]). The map ℘ : V * → V defined by ϕ → d ϕ P is a diffeomorphism between V * and the interior of M φ (F ).

Let us denote by L F = R + • M ϕ (F ) the closed cone generated by the periods of F. If 0 does not belong to M φ (F ) then L F is a sharp cone (i.e. does not contain a hyperplane of V ) and its interior is

int L F = R + • int M φ (F ) .
One has moreover the following.

Proposition 2.6.2 (Babillot-Ledrappier [5, Prop. 3.1]). Assume 0 / ∈ M φ (F ), then the set ℘ {ϕ ∈ V * : P(ϕ) = 0} generates the cone int L F . Remark 2.6.3. Observe that if ϕ ∈ V * is such that τ periodic e -τ (ϕ•F ) < ∞ then necessarily ϕ is strictly positive on the cone L F , i.e. ϕ ∈ int L * F . Indeed, if τ e -τ (ϕ•F
) is convergent then the formula for pressure on Proposition 2.2.5 gives that P(ϕ) ≤ 0. Since P(0) > 0, there exists s ∈ (0, 1] such that P(sϕ) = 0. The variational principle (equation ( 2)) implies that τ ϕ(F ) ≥ 0 for every periodic orbit τ, and thus Lemma 2.2.7 applies to give that ϕ(F ) is Livšiccohomologous to a strictly positive function and h ϕ(F ) ∈ (0, 1].

We are thus interested in the convergence domain of F

D F = ϕ ∈ int L * F : h ϕ(F ) ∈ (0, 1) ⊂ ϕ ∈ V * : τ periodic e -τ (ϕ•F ) < ∞ ,
and the critical hypersurface1 (whose name is justified by the next corollary)

Q F = ϕ ∈ int L * F : h ϕ(F ) = 1 . Corollary 2.6.4. Assume 0 / ∈ M φ (F ), then D F = P -1 (-∞, 0) and Q F = P -1 (0) Consequently D F is a strictly convex set whose boundary coincides with Q F . The latter is a closed analytic co-dimension-one submanifold of V * . The map ϕ ∈ Q F → T ϕ Q F induces a diffeomorphism between Q F and
directions in the interior of the cone L F .

Proof. We have already shown the inclusions P -1 (-∞, 0) ⊂ D F and P -1 (0) ⊂ Q F , the other ones follow at once from Lemmas 2.2.7 and 2.1.1. Since 0 / ∈ M ϕ (F ) Proposition 2.6.1 implies that P has no critical points, thus P -1 (0) = Q F is an analytic sub-manifold of V * . Strict convexity follows from that of P, and the last assertion follows by observing that the tangent space T ϕ Q F equals ker d ϕ P.

We now focus on the variation of the critical hypersurface when F varies. To this end consider the Banach space Holder α (X, V ) of V -valued Hölder continuous functions with exponent α. The pressure can be considered as an analytic map P : Holder α (X, V ) × V * → R defined as P(G, ψ) := P (φ, -ψ(G)). Its differential at the point (F, ϕ) on the vector (G, ψ) is

d (F,ϕ) P(G, ψ) = - ψ(F ) + ϕ(G) dm -ϕ(F ) ,
and vanishes identically only if (F, ϕ) = (0, 0). The pre-image

P -1 (0) is thus a Banach-manifold. If F ∈ Holder α (X, V ) is such that 0 / ∈ M φ (F ), then its critical hypersurface Q F = ϕ ∈ V * : (F, ϕ) ∈ P -1 (0)
is the intersection of {F } × V * with the level set P -1 (0). This intersection will vary analytically on compact sets with F as long as the tangent space ker d (F,ϕ) P (for fixed (F, ϕ) with P(F, ϕ) = 0) is transverse to the vector space {0} × V * . Since ker d (F,ϕ) P has co-dimension 1, transversality is implied by ker d (F,ϕ) P ∩ {0} × V * being co-dimension 1 on V * . However by Corollary 2.6.4, this latter intersection is, as long as F verifies assumption A and 0 / ∈ M φ (F ), the tangnet space T ϕ Q F , which has co-dimension 1. We have thus established the following.

Corollary 2.6.5. The critical hypersurface Q F varies analytically on compact sets when varying the function F among Hölder functions verifying the hypothesis of Corollary 2.6.4.

2.7.

Dynamical Intersection and the critical hypersurface. We recall here the concept of dynamical intersection from Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], similar concepts have been previously studied by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], Burger [START_REF] Burger | Intersection, the Manhattan curve, and Patterson-Sullivan Theory in rank 2[END_REF], Croke-Fathi [START_REF] Croke | An inequality between energy and intersection[END_REF] and Knieper [START_REF] Knieper | Volume gowth, entropy and the geodesic stretch[END_REF], among others.

Let f : X → R + be a positive Hölder-continuous function and, for t > 0, consider the finite set R t (f ) = τ periodic : τ (f ) ≤ t . Let g : X → R be Hölder-continuous (but not necessarily positive), then the dynamical intersection between f and g is defined by

I(f, g) = lim t→∞ 1 #R t (f ) τ ∈Rt(f ) τ (g) τ (f )
.

Then one has the following. 

I(f, g) = gdm -h f f f dm -h f f ,
in particular I is well defined and varies analytically with f and g among Höldercontinuous functions with fixed Hölder exponent. If g is moreover positive then one has I(f, g) ≥ h f /h g .

We now place ourselves in the context of the previous subsection, i.e. we consider a Hölder-continuous F : X → V and we assume moreover that 0 / ∈ M φ (F ). For ϕ ∈ Q F we consider the map I ϕ : V * → R defined by

I ϕ (ψ) := I(ϕ(F ), ψ(F )) = ψ(F )dm -ϕ(F ) ϕ(F )dm -ϕ(F ) , (10) 
where the last equality comes from Proposition 2.7.1 and the fact that h ϕ(F ) = 1.

Observe that it is a linear map. We then have the following explicit interpretation of the tangent space to the critical hypersurface purely in terms of periods.

Corollary 2.7.2. Let F : X → V be as in § 2.6 and such that 0

/ ∈ M φ (F ). Then for ϕ ∈ Q F one has T ϕ Q F = ker I ϕ .
Proof. Since by Corollary 2.6.4 one has Q F = P -1 (0), the tangent space T ϕ Q F = ker d ϕ P = ker I ϕ , where the last equality comes from the combination of Equations ( 9) and (10).

A Ledrappier correspondence

In [START_REF] Ledrappier | Structure au bord des variétés à courbure négative[END_REF] Ledrappier establishes, for a closed negatively-curved manifold M, bijections between Livšic-cohomology classes of pressure zero functions on T 1 M, normalized Hölder cocycles for the action of π 1 M on the visual boundary ∂ ∞ M of the universal cover of M, quasi-invariant measures on ∂ ∞ M , among other objects. The purpose of this section is to establish, in the context of word-hyperbolic groups with metric-Anosov geodesic flow, some of these correspondences. We also extend results from S. [START_REF] Sambarino | Hyperconvex representations and exponential growth[END_REF][START_REF] Sambarino | Quantitative properties of convex representations[END_REF][START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF] to this setting. Some ideas from Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF][START_REF] Bridgeman | Simple roots flows for Hitchin representations[END_REF] and Carvajales [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF]Appendix] are used. The reader can also check Paulin-Pollicott-Schapira [START_REF] Paulin | Equilibrium states in negative curvature[END_REF] for similar results in situations allowing cusps.

Let Γ be a finitely generated, non-elementary, word-hyperbolic group (see Ghysde la Harpe [START_REF]Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF] for a definition). Denote by g = g t : UΓ → UΓ t∈R the Gromov-Mineyev geodesic flow of Γ (see Gromov [START_REF] Gromov | Hyperbolic groups[END_REF] and Mineyev [START_REF] Mineyev | Flows and joins of metric spaces[END_REF]). The total space UΓ is the quotient of ∂ 2 Γ × R by a properly discontinuous co-compact Γ -action (defined in loc. cit.). This action restricted to ∂ 2 Γ coincides with the induced Γ -action on its Gromov boundary, and commutes with the R-action by translations, giving on the quotient the desired flow g. We will save the notation UΓ for the pair consisting on the space ∂ 2 Γ × R equipped with the above Γ -action.

Assumption B. We will assume throughout § 3 that g is metric-Anosov (recall that in general g is transitive (see Remark 3.0.1)) and that the lamination induced on the quotient by

W cu = {(x, •, •) ∈ UΓ } is the central-unstable lamination of g.
Let us emphasize that, in what follows, the Gromov-Mineyev geodesic flow is merely an auxiliary object. The whole discussion works verbatim replacing g by the following flows known to satisfy Assumption B:

-the non-wandering set of the geodesic flow of a convex co-compact action of Γ on a CAT(-1) space (if this is known to exist), see Constantine-Lafont-Thompson [START_REF] Constantine | Strong symbolic dynamics for geodesic flows on CAT(-1) spaces and other metric Anosov flows[END_REF], -the geodesic flow of a projective-Anosov representation of ρ (again if this is known to exist) as introduced in Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], see also § 5.1. Recall that every hyperbolic element 1 γ ∈ Γ has two fixed points on ∂Γ , the attracting γ + and the repelling γ

-. If x ∈ ∂Γ -{γ -} then γ n x → γ + as n → ∞.
The axis (γ -, γ + ) × R projects then to a periodic orbit of g, denoted by [γ]. If l(γ) denotes the translation length of γ along this axis, then l(γ) is an integer multiple of the period of the periodic orbit [γ]. Observe we allow [γ] to tour several times along the orbits it surjects to, so at least formally, we let [γ n ] be the orbit [γ] toured n-times. Remark 3.0.1. We briefly justify why g is transitive. It suffices to show that given two open sets U, V there exists t ∈ R s.t. g t (U ) ∩ V = ∅, so the question is reduced to the same question for the action of Γ on ∂ 2 Γ ; the open sets to be considered can be reduced to be of the form

U 1 × U 2 and V 1 × V 2 , where U i , V i ⊂ ∂Γ are open and U 1 ∩ U 2 = V 1 ∩ V 2 = ∅; an element γ ∈ Γ with γ -∈ U 2 and γ + ∈ V 1 has a positive power such that γ n (U 1 × U 2 ) ∩ V 1 × V 2 = ∅.
3.1. The Ledrappier potential of a Hölder cocycle. Let V be a finite dimensional real vector space. A Hölder cocycle is a function c :

Γ × ∂ 2 Γ → V such that:
-for all γ, h ∈ Γ one has c γh, (x, y) = c h, (x, y) + c γ, h(x, y) , -there exists α ∈ (0, 1] such that for every γ ∈ Γ the map c(γ, •) is α-Hölder continuous. The period of a Hölder cocycle for a hyperbolic γ ∈ Γ is c (γ) := c γ, (γ -, γ + ) . Two cocycles c, c are cohomologous if there exists a Hölder-continuous function 

U : ∂ 2 Γ → V such that for all γ ∈ Γ and (x, y) ∈ ∂ 2 Γ one has c(γ, (x, y)) -c (γ, (x, y)) = U (γ(x, y)) -U (x, y).
It is a translation cocycle over g, indeed since F p is one dimensional the choice of v does not matter, and since ĝ is a flow one has

log |ĝ t+s (v)| |v| = log |ĝ t (ĝ s v)| |v| |ĝ s (v)| |ĝ s (v)| = log |ĝ t (ĝ s v)| |ĝ s (v)| + log |ĝ s (v)| |v| .
By Corollary 2.2.3, there exists a Hölder-continuous function J c : UΓ → R such that T and k Jc are Livšic-cohomologous. We end the proof by a period computation. For every hyperbolic γ ∈ Γ one has, for all s ∈ R, that γ(γ -, γ + , s) = (γ -, γ + , e -c (γ) s), or equivalently, for any

x ∈ [γ] ⊂ UΓ and v ∈ F x , c (γ) = log |ĝ p(γ) v| |v| = [γ] (T) = [γ] J c ,
where p(γ) is the period of [γ] for g. Since cohomologous cocycles have the same marked spectrum, the associated functions have the same periods and are thus Livšic-cohomolgous by Theorem 2.2.2.

Definition 3.1.2. We say that J c is a Ledrappier potential of c over g.

3.2.

Real cocycles and reparametrizations. Assume now V = R and consider a cocycle c with non-negative (and not all vanishing) periods. Define its entropy by For such a cocycle consider the action of Γ on

h c = lim sup t→∞ 1 t log # [γ] ∈ [Γ ] hyperbolic : c (γ) ≤ t .
∂ 2 Γ × R via c: γ • (x, y, t) = γx, γy, t -c γ, (x, y) . (12) 
Let us denote by χ c the quotient space

χ c = Γ \ ∂ 2 Γ × R .
The following can be found in S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF] for fundamental groups of closed negatively-curved manifolds and in Carvajales [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF] for the refraction cocycle of a ∆-Anosov representation (see Definition 5.3.1).

Theorem 3.2.2. If c is a Hölder cocycle with non-negative periods and finite entropy, then its Ledrappier potential is Livšic-cohomologous to a strictly positive function. Moreover, the above action of Γ on ∂ 2 Γ × R is properly-discontinuous and co-compact and the flow φ c = φ c t : χ c → χ c t∈R induced on the quotient by the R-translation flow is Hölder-conjugated to the reparametrization of g by J c .

The topological entropy of φ c is thus 1 h c .

Proof. The first assertion follows at once from Lemma 2.2.7. For the remaining statements, we continue as in the proof of the proposition but for the cocycle -c. Observe first that -J c = J -c . Since T and k J-c are Livšic-cohomologous, there exists U : UΓ → R such that for all t ∈ R, p ∈ UΓ and v ∈ F p one has (recall equation [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF])

log |ĝ t v| |v| - t 0 J -c = U (g t p) -U (x).
Since J -c = -J c is Livšic-cohomologous to a strictly negative function, the above equation implies that the flow ĝ is contracting on F, i.e. there exist positive C and µ such that for all v ∈ F and t ∈ R one has

|ĝ t v| ≤ Ce -µt |v|.
1 When Γ has torsion elements this fact requires some work, see Carvajales-Dai-Pozzetti-Wienhard [24, Section 5] for details.

A standard procedure (see for example Katok-Hasselblat [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] or Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Lemma 4.3]) provides a Euclidean metric on F such that the constant C equals 1. We denote also by the lift of this metric to UΓ × R, it is a Γ -invariant family.

Given then (x, y, t) ∈ UΓ we let v (x,y,t) ∈ (R -{0})/± be such that v (x,y,t) = 1. As in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Proposition 4.2] the map

UΓ → ∂ 2 Γ × (R -{0}/±) → ∂ 2 Γ × R ξ : (x, y, t) → x, y, v (x,y,t) → x, y, log v (x,y,t) , (13) 
is Γ -equivariant and an orbit equivalence between de R-actions. 1 the action being via c, γ(x, y, t) = (γx, γy, t -c(γ, y))

The measure e -δt dµdt is Γ -invariant 1 on ∂Γ × R and the family m (y,t) = e δt e -δ[•,y] dμ is Γ -equivariant. This decomposition induces then a local decomposition of m as a product of measures on the laminations induced on the quotient by W cu = (x, •, •) :

x ∈ ∂Γ } and V = (•, y, t) : y ∈ ∂Γ , t ∈ R . The local product structure induced by ∂Γ × ∂Γ × R permits to transport the measures m (y,t) , parallel to the central stable leaf W cu [(x, y, t)], to the stable leaf of [(x, y, t)] for φ c to obtain a family of measures at each strong stable leaf ν s p such that

d φ c -t * ν s p dν s φ c t p = e -δt . (16) 
Margulis's description of the measure maximizing entropy ( § 2.3.4) then gives that δ = h c and that m maximizes entropy for φ c . Thus, subject to the existence of the Patterson-Sullivan measures and the Gromov product, we summarize the above discussion in the following. Let us consider again the measure m on ∂ 2 Γ × R from ( 15) but let us instead study the Γ -action on the R-coordinate by the Gromov-Mineyev cocycle, so that Γ \ ∂ 2 Γ ×R = UΓ and the induced flow is g. The quotient measure, a, is g-invariant and the orbit equivalence ξ from equation [START_REF] Bowditch | Convergence groups and configuration spaces[END_REF] preserves, by the way it is defined, zero flow-invariant sets between a and m. Since ξ is a conjugation between g Jc and φ c , and m maximizes entropy for φ c , the measure ξ * m is g Jc -invariant, maximizes entropy for g Jc and has the same zero sets as a.

One concludes that the Abramov transform (3) a # (w.r.t. J c ) is a measure of maximal entropy of the flow g Jc . Lemma 2.1.1 implies then that a/|a| is the equilibrium state of -h c J c . Let us summarize in the following remark: respectively, together with a Gromov product for the pair. If ν has the same zero sets as µ then the (scaled) Ledrappier potentials h c J c and h κ J κ are Livšic-cohomologous and ν = µ.

Proof. A final argument is required, indeed from § 2.3.3 there exists a constant K such that h c J c and h κ J κ + K are Livšic-cohomologous. However, since h c is the topological entropy of g Jc , Lemma 2.1.1 gives

0 = P (g, -h c J c ) = P (g, -h κ J κ + K) = K,
where the second equality holds by Remark 2.1.2, and the third equality by the definition of P (equation ( 2)).

The above corollary can be found in Ledrappier [START_REF] Ledrappier | Structure au bord des variétés à courbure négative[END_REF] when Γ is the fundamental group of a negatively curved closed manifold. The proof uses also a disintegration argument. One may also check Kaimanovich [START_REF] Kaimanovich | Bowen-Margulis and Patterson measures on negatively curved compact manifolds[END_REF] and Babillot's survey [START_REF] Babillot | Points entiers et groupes discrets: de l'analyse aux systèmes dynamiques[END_REF] specifically for the Buseman cocycle (Γ as in Ledrappier's aforementioned situation), and Carvajales [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF]Appendix] for the refraction cocycle β ϕ (see § 5.3 for the definition) of a ∆-Anosov representation of an arbitrary word-hyperbolic group.

3.4.

Vector-valued cocycles I: the critical hypersurface. Let now c : Γ ×∂Γ → V be a Hölder cocycle and consider the compact convex set M g (J c ) ⊂ V. Since this set depends on the base flow g it is natural to consider the limit cone of c

L c = γ∈Γ R + • c (γ) = R + • M g (J c ).
Remark 3.4.1. Up to Livšic -cohomology we can assume that J c has values in the vector space V = M g (J c ) . We can moreover choose a reparametrization g f of g so that if J g f c : UΓ → V is the Ledrappier potential for c over g f then the flow g f together with the potential J g f c verify Assumption A from § 2.6.

Proof. By Remark 2.2.7 the space of Livšic-cohomology classes over g is infinite dimensional, so the remark follows.

We will work from now on with flow g f given by the remark and the Ledrappier potential J g f c , we will rename these by g and J c though as to not overcharge the paper with notation and keep in mind that, when we restrict the image of J c to V , Assumption A is verified.

Let L c * = {ψ ∈ V * : ψ|L c ≥ 0} be the dual cone of c. For ψ ∈ V * denote by

c ψ = ψ • c : Γ × ∂Γ → R and h ψ = h c ψ .
Assumption C. There exists ψ ∈ L c * such that c ψ has finite entropy.

Lemma 3.4.2. In this case 0 / ∈ M g (J c ), L c * has non-empty interior and int

L c * = ϕ ∈ L c * : h ϕ < ∞ .
Proof. The Lemma follows essentially from § 3.1 and Lemma 2.2.7, indeed since h ψ = h ψ(Jc) < ∞ there exists κ > 0 such that for all hyperbolic γ ∈ Γ it holds ψ c (γ)/p(γ) > κ; by density of periodic orbits on M g one has inf ψ M g (J c ) > κ > 0. The remaining statements follows similarly.

Since 0 / ∈ M φ c ψ (J c ) we can apply Corollary 2.6. Denote by

Q c = ϕ ∈ int L c * : h ϕ = 1 D c = ϕ ∈ int L c * : h ϕ ∈ (0, 1) ⊂ ϕ ∈ V * : [γ]∈[Γ ]
e -cϕ (γ) < ∞ respectively the critical hypersurface and the convergence domain of c. Since we haven't required the cone L c to have non-empty interior, consider its annihilation space Ann(L c ) = {ψ ∈ V * : L c ⊂ ker ψ}.

If ϕ ∈ int L c * and ψ ∈ Ann(L c ) then the potentials ϕ(J c ) and (ϕ + ψ)(J c ) are Livšic-cohomologous. Let π c : V * → V * /Ann(L c ) be the quotient projection.

We also import the concept of dynamical intersection of § 2.7 to this setting using the Ledrappier potential of c. For ϕ ∈ Q c define the dynamical intersection map associated to c by I ϕ = I c ϕ : V * → R be defined by

I ϕ (ψ) = I ϕ(J c ), ψ(J c ) .
By definition I ϕ(J c ), ψ(J c ) only depends on the Livšic-cohomology classes of ϕ(J c ) and ψ(J c ), so we may freely consider I as defined on

Q c × V * or on π c (Q c ) × V * /Ann(L c
). One has the following: 

J c = c (γ) ∈ V.
Let p be the probability measure of maximal entropy of φ cϕ . The growth direction of ϕ is the line of V

u ϕ = T ϕ Q c = R • χ cϕ J c dp (17) 
(the last equality follows from equation ( 9) and Corollary 2.6.4). Consider also the projection π ϕ : V → ker ϕ parallel to u ϕ and denote by J ϕ c : χ cϕ → ker ϕ the composition J ϕ c = π ϕ • J c . Observe that

χ cϕ J ϕ c dp = 0. ( 18 
)
Fix u ϕ ∈ u ϕ with ϕ(u ϕ ) = 1 and define the directional flow

ω ϕ t : Γ \ ∂ 2 Γ × V → Γ \ ∂ 2 Γ × V t∈R by the induced on the quotient of t • (x, y, v) = (x, y, v -tu ϕ ).
Proposition 3.5.2 (S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF]). There exist a (bi)-Hölder-continuous homeomorphism

E : Γ \ ∂ 2 Γ × V → χ cϕ × ker ϕ,
commuting with the ker ϕ action, that conjugates the flow ω ϕ with Φ ϕ = Φ ϕ t :

χ cϕ × ker ϕ → χ cϕ × ker ϕ t∈R Φ ϕ t (p, v) := φ cϕ t (p), v - t 0 J ϕ c (φ cϕ s p)ds .
Proof. This is the first item of S. [66, Proposition 3.5] when Γ is the fundamental group of a closed negatively curved manifold. The proof adapts mutatis mutandis once § 3.2 is stablished.

Let us moreover place ourselves in the existence assumptions of subsection 3.3 for the cocycle c ϕ , i.e. assume there exists:

-a dual cocycle cϕ together with a Gromov product [•, •] for the pair (c ϕ , c ϕ ), -a Patterson-Sullivan measure for each c ϕ and cϕ , denoted by µ and μ respectively. Recall from Proposition 3.3.2 that necessarily the exponent of both µ and μ is h cϕ , the topological entropy of φ cϕ .

By Proposition 3.3.2 the measure m maximizes entropy for φ cϕ , one has then p = m/|m|. Consider the ϕ-Bowen-Margulis measure Ω ϕ on Γ \ ∂ 2 Γ × V defined as the induced on the quotient by

e -hc ϕ [•,•] μ ⊗ µ ⊗ Leb V ,
for a Lebesgue measure on V. One has the following result. Proposition 3.5.3 (S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF]). The (bi)-Hölder-continuous homeomorphism from Proposition 3.5.2 is a measurable isomorphism between Ω ϕ and m ⊗ Leb ker ϕ .

Proof. This follows again as in S. [66, Proposition 3.5] once Proposition 3.3.2 is established.

3.6.

Vector-valued cocycles III: Dynamical consequences. We remain in the situation of § 3.4. Let us say that c is non-arithmetic if the periods of c span a dense subgroup in V.

One concludes at once the following consequences:

Corollary 3.6.1 (Ergodicity dichotomy). Assume c is non-arithmetic, then ω ϕ is mixing as in Theorem 2.5.2, consequently if dim V ≥ 4 then K(ω ϕ ) has zero Ω ϕ -measure. If dim V ≤ 2 then the directional flow ω ϕ is Ω ϕ -ergodic.

Proof. By Proposition 3.5.2 the flow ω ϕ is Hölder-conjugated to the skew-product of φ cϕ with the Ledrappier potential J ϕ c , the fiber being ker ϕ and thus dim V -1-dimensional. Proposition 3.5.3 describes the desired measures in terms of the skew-product structure; non-arithmeticity of c and equation ( 18) allow us to apply Corollary 2.5.5.

Algebraic semi-simple groups over a local field

This section is a collection of necessary language and basic results needed for the sequel. Most of the material covered here can be found in, for example, Borel's book [START_REF] Borel | Linear algebraic groups[END_REF] and/or in the book by Benoist-Quint [START_REF] Benoist | Random walks on reductive groups[END_REF].

Let K be a local field. If K is non-Archimedean let us denote by q the cardinality of its residue field, u ∈ K a uniformizing element, and choose the norm | | on K so that |u| = q -1 . In this case log denotes the logarithm on base q, so that log q = 1. If K = R or C then | | is the standard modulus, q := e and log is the usual logarithm.

Let G be the K-points of a connected semi-simple K-group, A the K-points of a maximal K-split torus and X(A) the group of its K * -characters. Consider the real vector space E * = X(A) ⊗ Z R and E its dual. For every χ ∈ X(A), we denote by χ ω the corresponding linear form on E.

Let Φ be the set of restricted roots of A in g, the set Φ ω is a root system of E * . Let (Φ ω ) + be a system of positive roots, E + the associated Weyl chamber and Φ + and ∆ ⊂ Φ the corresponding system of positive roots and simple roots respectively.

Let ν : A → E be defined, for z ∈ A, as the unique vector in E such that for every χ ∈ X(A) one has χ ω (ν(z)) = log |χ(z)|.

Denote by

A + = ν -1 (E + ).
Let W be the Weyl group of Φ, it is isomorphic to the quotient of the normalizer N G (A) of A in G by its centralizer Z G (A). Let i : E → E be the opposition involution: if u : E → E is the unique element in the Weyl group with u(E + ) = -E + then i = -u.

4.1.

Restricted roots and parabolic groups. Consider ϑ ⊂ ∆ and let P ϑ , resp. Pϑ , be the normalizers in G of, respectively, the Lie algebras

α∈ ∆-ϑ g -α ⊕ α∈Φ + g α , α∈ ∆-ϑ g α ⊕ α∈Φ + g -α . The ϑ-flag space is F ϑ = G/P ϑ . The orbit G • [ Pϑ ], [P ϑ ] ⊂ F i ϑ × F ϑ is
the unique open orbit on this product space, we will denote it by F 

4.2.

The center of the Levi group. We now consider the vector subspace

E ϑ = α∈∆-ϑ ker α ω
together with the unique projection p ϑ : E → E ϑ invariant under the subgroup of the Weyl group W ϑ = {w ∈ W : w|E ϑ = id}. The dual space (E ϑ ) * sits naturally as the subspace of E * of p ϑ -invariant linear forms

(E ϑ ) * = ϕ ∈ E * : ϕ • p ϑ = ϕ .
It is spanned by the fundamental weights σ |E ϑ : σ ∈ ϑ .

Cartan decomposition.

Let K ⊂ G be a compact group that contains a representative for every element of the Weyl group W. This is to say, such that the normalizer

N G (A) verifies N G (A) = (N G (A) ∩ K)A. One has G = KA + K and if z, w ∈ A + are such that z ∈ KwK then ν(z) = ν(w).
There exists thus a function

a : G → E +
such that for every g 1 , g 2 ∈ G one has g 1 ∈ Kg 2 K if and only if a(g 1 ) = a(g 2 ). It is called the Cartan projection of G.

Jordan decomposition.

Recall that the Jordan decomposition states that every g ∈ G has a power 1 g k that can be written as a commuting product g = g e g h g n , where g e is elliptic, g h is semi-simple over K and g n is unipotent. The component g h is conjugate to an element z g ∈ A + and we let

λ(g) = (1/k)ν(z g ) ∈ E + .
The map λ : G → E + is the Jordan projection of G. We will also denote by λ ϑ : G → E ϑ the composition p ϑ • λ. For G = PGL d (K) we will denote by λ 1 (g) the logarithm of the spectral radius if g.

4.5.

Representations of G. Let V be a finite-dimensional K-vector space and φ : G → PGL(V) be an algebraic irreducible representation. Then the weight space associated to χ ∈ X(A) is the vector space

V χ = {v ∈ V : φ(a)v = χ(a)v ∀a ∈ A}
and if V χ = 0 then we say that χ ω ∈ E * is a restricted weight of φ. Theorem 7.2 of Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF] states that the set of weights has a unique maximal element with respect to the order χ ≥ ψ if χ -ψ is a sum of simple roots with non-negative coefficients. This is called the highest weight of φ and denoted by χ φ .

We denote by φ a norm on V invariant under φK and such that φA consists on semi-homotheties 2 . If K is Archimedean the existence of such a norm is classical (see for example Benoist-Quint [9, Lemma 6.33]), if K is non-Archimedean then this is the content of Quint [START_REF] Quint | Cônes limites de sous-groupes discrets des groupes réductifs sur un corps local[END_REF]Théorème 6.1].

For every g ∈ G one has then Denote by W χ φ the φA-invariant complement of V χ φ . The stabilizer in G of W χ φ is Pϑ,K , and thus one has a map of flag spaces

log φg φ = χ ω φ a(g) , log λ 1 (φg) = χ ω φ λ(g) . ( 19 
)
1 (k = 1 if K is Archimedean) 2 i.e. diagonal
(Ξ φ , Ξ * φ ) : F (2) ϑ φ (G) → Gr (2) dim Vχ φ (V), ( 20 
)
where ϑ φ = {σ ∈ ∆ : χ φ -σ is a weight of φ}. This is a proper embedding which is an homeomorphism onto its image. Here G

(2) dim Vχ φ (V) is the open PGL(V)-orbit in the product of the Grassmannians of (dim V χ φ )-dimensional and (dim V-dim V χ φ )- dimensional subspaces.
One has the following proposition from Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF] that guarantees existence of certain representations of G. We say that φ is proximal if dim V χ φ = 1. Proposition 4.5.1 (Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF]). For every σ ∈ ∆ there exists an irreducible proximal representation of G whose highest restricted weight is l σ σ for some l σ ∈ Z ≥1 . Definition 4.5.2. We will fix and denote by φ σ : G → GL(V σ ) such a set of representations.

4.6. Buseman-Iwasawa cocycle. The Iwasawa decomposition of G states that every g ∈ G can be written as a product lzu with l ∈ K, z ∈ A and u ∈ U ∆ , where U ∆ is the unipotent radical of P ∆ . When K is non-Archimedean the Iwasawa decomposition is not unique, however if

z 1 , z 2 ∈ A are such that z 1 ∈ Kz 2 U ∆ then ν(z 1 ) = ν(z 2 ).
The Buseman-Iwasawa cocycle of G, β : G×F → E, is defined by, for all g ∈ G and

k[P ∆ ] ∈ F, if gk = lzu is an Iwasawa decomposition of gk then β(g, k[P ∆ ]) = ν(z).
Quint proved the following. The Buseman-Iwasawa cocycle can also be read from the representations of G. Indeed, Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemme 6.4] states that for every g ∈ G and x ∈ F ϑ one has

l σ σ (β(g, x)) = log φ σ (g)v φ v φ , (21) 
where v ∈ Ξ φσ (x) ∈ P(V σ ) is non-zero. 4.7. Gromov product. As in S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF], the Gromov product G ϑ :

F (2) ϑ → E ϑ is defined such that, for every (x, y) ∈ F (2)
ϑ and σ ∈ ϑ, one has

l σ σ G ϑ (x, y) = log |ϕ(v)| ϕ φσ v φσ ,
where ϕ ∈ Ξ * φσ (x) and v ∈ Ξ φσ (y) are the equivariant maps from equation [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF].

Remark 4.7.1. Observe that the limiting situation l σ σ G ϑ (x, y) = -∞ occurs when v ∈ ker ϕ, i.e. when x and y are no longer transverse flags, so a statement of the form σ G ϑ (x, y) ≥ -κ for all σ ∈ ϑ is a quantitative version (that depends on K) of the transversality between x and y.

A straightforward computation (S. [66, Lemma 4.12]) gives, for all g ∈ G and (x, y) ∈ F

(2) ϑ , G ϑ (gx, gy) -G ϑ (x, y) = -i β i ϑ (g, x) + β ϑ (g, y) . (22) 
4.8. Proximality. Recall that g ∈ PGL d (V) is proximal if it has a unique eigenvalue with maximal modulus and that the multiplicity of this eigenvalue in the characteristic polynomial of g is 1. The associated eigenline is denoted by g + ∈ P(V) and g -is its g-invariant complementary subspace. We say then that g ∈ G is ϑ-proximal if for every σ ∈ ϑ one has φ σ (g) is proximal. In this situation, there exists a pair (g - ϑ , g + ϑ ) ∈ F

ϑ , defined by, for every σ ∈ ϑ, Ξ φσ g + ϑ = φ σ (g) + , and every flag x ∈ F ϑ in general position with g - ϑ verifies g n x → g + ϑ . It is also useful to consider a quantified version of proximality. Given r, ε positive we say that g is (r, ε)-proximal if it is proximal,

σ G ϑ (g - ϑ , g + ϑ ) ≥ -r
for all σ ∈ ϑ and for every x ∈ F ϑ with min σ∈ϑ σ G ϑ (g - ϑ , x) ≥ -ε -1 one has d F ϑ (gx, g + ϑ ) ≤ ε. More details on the following can be found in S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 5.6].

Proposition 4.8.1 (Benoist [6, Corollaire 6.3]). For every δ > 0 there exist r, ε > 0

such that if g ∈ G is (r, ε)-proximal then a ϑ (g) -λ ϑ (g) -G ϑ (g - ϑ , g + ϑ ) ≤ δ.
4.9. Cartan attractors. Consider g ∈ G and let g = k g z g l g be a Cartan decomposition. We say that g ∈ G has a gap at ϑ if for all σ ∈ ϑ one has σ a(g) > 0.

In that case the Cartan attractor of g in

F ϑ U ϑ (g) = k g [P ϑ ]
is well defined: uniquely defined if K is Archimedian; defined up to a ball of radius q -min σ∈ϑ σ(g) if K is non-Archimedean (see Pozzetti-S.-Wienhard [59, Remark 2.4]).

Remark 4.9.1. For every σ ∈ ϑ one has Ξ φσ U ϑ (g) = U 1 φ σ (g) .

Lemma 4.9.2 (Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF]Lemma A.5]). Consider g, h ∈ G such that h and gh have gaps at every σ ∈ ϑ, then one has

d U ϑ (gh), gU ϑ (h) ≤ q -min σ∈ϑ σ(h) • max σ∈ϑ φ σ (g) φ σ (g -1 )
.

The Cartan basin of g is defined, for α > 0, by (recall Remark 4.7.1)

B ϑ,α (g) = x ∈ F ϑ : σ G ϑ U i ϑ (g -1 ) , x > -α ∀σ ∈ ϑ .
It is clear from the definition that given α > 0 there exists a constant K α such that if y ∈ F ϑ belongs to B ϑ,α (g) then one has

a ϑ (g) -β ϑ (g, y) ≤ K α . ( 23 
)
Lemma 4.9.3 (Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemme 6.6]). For every g ∈ G one has a ϑ (gh) -a ϑ (h)β ϑ g, U ϑ (h) → 0 as min σ∈ϑ σ a(h) → ∞.

4.10. General facts on discrete subgroups. We record here some facts related to the title that we will need in the sequel.

Lemma 4.10.1. Let ∆ ⊂ G be a discrete subgroup, then for every ϕ ∈ E * strictly positive on E + the exponential rate

δ ϕ ∆ = lim sup t→∞ 1 t log # g ∈ ∆ : ϕ a(g) ≤ t is finite.
Proof. Follows from a computation of the Haar measure of G, to be found in Helgason [START_REF] Helgason | Differential geometry, Lie groups and symmetric spaces[END_REF] for the Archimedean case and in Matsumoto [50, § 3.2.7] for the non-Archimedean case, see Quint [61, § 4] for details.

We record also the following theorem from Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires II[END_REF].

Theorem 4.10.2 (Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires II[END_REF]). Assume K = R and let ∆ ⊂ G be a Zariski-dense subgroup, then the group spanned by the Jordan projections {λ(g) : g ∈ ∆} is dense in E.

Anosov representations

Anosov representations where introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] for fundamental groups of negatively curved manifolds and extended to arbitrary finitely generated hyperbolic groups by . They originated as a tool to study higher rank Teichmüller Theory, and are nowadays consider as the higher-rank analog of what is known in pinched negative curvature as convex co-compact groups.

Notation. If ρ : Γ → G is a representation we will simplify notation and denote, for γ ∈ Γ , by γ ρ = ρ(γ).

5.1.

Real projective-Anosov representations. We begin by recalling Labourie's original approach. Let Γ be a finitely generated word-hyperbolic group. If ρ : Γ → PGL d (R) is a representation then we can consider the natural flat bundle automorphism defined as follows. Consider the flat bundle R d → E ρ → UΓ defined by UΓ × R d / ∼ where (p, v) ∼ γp, γ ρ v , and define ĝ = ĝt : E ρ → E ρ t∈R as the induced on the quotient by t • (p, v) = ( g t p, v). Definition 5.1.1. The representation ρ is projective-Anosov if there exists a pair of continuous ρ-equivariant maps

ξ 1 : ∂Γ → P(R d ) ξ d-1 : ∂Γ → P (R d ) * such that: -for every (x, y) ∈ ∂ 2 Γ one has ker ξ d-1 (x) ⊕ ξ 1 (y) = R d ; this induces a ĝ-invariant decomposition Ξ ⊕ Θ = E ρ -the decomposition E ρ = Ξ ⊕ Θ
is a dominated splitting for ĝ, i.e. there exist c, α positive such that for every v ∈ Ξ p and w ∈ Θ p one has ĝt v ĝt w ≤ ce -αt v w .

One has the following standard consequences, see for example Guichard-Wienhard [35, Lemma 3.1] or Bridgeman-Canary-Labourie-S. [17, Lemma 2.5+Proposition 2.6]. Recall from § 4.8 that g ∈ PGL d (R) is proximal if the Jordan block associated to the eigenvalues with maximal modulus is 1-dimensional. Lemma 5.1.2. If ρ is projective-Anosov then for every hyperbolic γ one has γ ρ is proximal with attracting line ξ 1 (γ + ). In particular the entropy

lim t→∞ 1 t log # [γ] ∈ [Γ ] hyperbolic : λ 1 γ ρ ≤ t ∈ [0, ∞).
The equivariant maps ξ 1 and ξ d-1 are Hölder-continuous.

Proof. Let us add a word on finiteness of entropy. Recall from Bowditch [START_REF] Bowditch | Convergence groups and configuration spaces[END_REF] that, since Γ is hyperbolic its action on the space of pairwise distinct triples ∂ (3) Γ is properly discontinuous and co-cocompact. If γ ∈ Γ is hyperbolic one can choose then η ∈ [γ] (the conjugacy class of γ) whose fixed points are far appart by a constant independent of γ. Since the image γ ρ is proximal and the equivariant maps are continuous, one has that η ρ is (r, ε)-proximal, for constants r, ε independent of [γ]. By Proposition 4.8.1 one has then log η ρ -λ 1 (η ρ ) < K for some K independent of η. If follows then that for every

t ∈ R + # [γ] ∈ [Γ ] hyperbolic : λ 1 (γ ρ ) ≤ t ≤ # γ ∈ Γ : log γ ρ ≤ t + K .
Finiteness of entropy then follows from Lemma 4.10.1.

We use the equivariant maps to construct a bundle R → F → ∂ 2 Γ whose fiber at (x, y) ∈ ∂ 2 Γ is

F (x,y) = (ϕ, v) ∈ ξ d-1 (x) × ξ 1 (y) : ϕ(v) = 1 / ∼, where (ϕ, v) ∼ (-ϕ, -v). This bundle is equipped with a Γ -action γ(ϕ, v) = ϕ • γ -1
ρ , γ ρ v and an R-action g ρ t : F → F t∈R defined by g ρ t • (ϕ, v) = (e t ϕ, e -t v). Let F = Γ \ F and denote by g ρ = g ρ t : F → F t∈R the induced flow on the quotient, it is usually called the geodesic flow of ρ.

Theorem 5.1.3 (Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]). The above Γ -action is properly discontinuous and co-compact. The flow g ρ is Hölder-continuous and metric-Anosov with stable/unstable laminations the (induced on the quotient by)

W s (x, y, (ϕ, v) = x, •, (ϕ, •) ∈ F W u (x, y, (ϕ, v) = •, y, (•, v) ∈ F .
It is moreover Hölder-conjugated to the Gromov-Mineyev geodesic flow g of Γ , consequently this latter flow is also metric-Anosov.

Consequently, hyperbolic groups admitting a real projective-Anosov representation verify Assumption B and are thus subject of a Ledrappier correspondence ( § 3). It is stablished in Carvajales [START_REF] Carvajales | Counting problems for special-orthogonal Anosov representations[END_REF]Appendix] that g ρ is topologically mixing (regardless the Zariski closure of ρ) and thus mixing for any equilibrium state. 5.2. Arbitrary G, coarse geometry viewpoint. Let G be as in § 4, we use freely the notation introduced there and fix from now on a subset ϑ ⊂ ∆ of simple roots.

Let Γ be a finitely generated group and denote, for γ ∈ Γ , by |γ| the word length w.r.t. a fixed finite symmetric generating set of Γ . Definition 5.2.1. A representation ρ : Γ → G is ϑ-Anosov if there exist c, µ positive such that for all γ ∈ Γ and σ ∈ ϑ one has

σ a(γ ρ ) ≥ µ|γ| -c. (24) 
The constants c and µ will be referred to as the domination constants of ρ.

The Theorem below follows from the main result by Kapovich-Leeb-Porti [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF] and the standard facts from representation theory stated in § 4.5, a proof can also be found in Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF].

Theorem 5.2.2. If ρ : Γ → G is ϑ-Anosov then Γ is word-hyperbolic. If moreover K = R then for every σ ∈ ϑ the representation φ σ • ρ : Γ → PGL(V σ ) is projective- Anosov (as in § 5.1).
The following lemma is essentially a consequence of Bochi-Potrie-S. [10, Lemma 4.9]. See Pozzetti-S.-Wienhard [59, Proposition 3.5] for details concerning the non-Archimedean case. The last assertion is classical. Proposition 5.2.3 (Bochi-Potrie-S. [10, Proposition 4.9 ]). If ρ : Γ → G is ϑ-Anosov, then for any geodesic ray {α n } ∞ 0 with endpoint x, the limits

ξ ϑ ρ (x) := lim n→∞ U ϑ ρ(α n ) ξ i ϑ ρ (x) := lim n→∞ U i ϑ ρ(α n )
exist and do not depend on the ray; they define continuous ρ-equivariant transverse maps ξ ϑ : ∂Γ → F ϑ , ξ i ϑ : ∂Γ → F i ϑ . If γ ∈ Γ is hyerbolic, then γ ρ is ϑ-proximal with attracting point ξ ϑ (γ + ) = (γ ρ ) + ϑ . The above Proposition readily implies the following Lemma (recall Remark 4.7.1). Lemma 5.2.4. Let ρ : Γ → G be ϑ-Anosov, {γ n } ⊂ Γ a divergent sequence and x ∈ ∂Γ . Then, as n → ∞, one has:

γ n → x ⇔ U ϑ ρ(γ n ) → ξ ϑ (x) ⇔ ∃σ ∈ ϑ s.t. σ G ϑ U i ϑ ρ(γ n ) , ξ ϑ (x) → -∞.
We finally record the following useful Lemma. Lemma 5.2.5 (Pozzetti-S.-Wienhard [59, Lemma 3.6]). Let ρ : Γ → G be ϑ-Anosov, then for every ε > 0 there exists L such that

γ:|γ|>L U ϑ γ ρ ⊂ N ε ξ ϑ (∂Γ ) ,
where N ε denotes the ε-tubular-neighborhood. Remark 5.2.6 (Non-Archimedean case). The existence of continuous ρ-equivariant maps implies, when K is non-Archimedean, that the boundary of Γ is necessarily a Cantor set and thus Γ is virtually free. The Gromov-Mineyev of Γ is thus a suspension of a sub-shift of finite type and is, hence, metric-Anosov.

Setting. A ϑ-Anosov representation ρ : Γ → G is fixed from now on. By § 5.1 for K = R or C, and the preceding paragraph for non-Archimedean K, the Gromov-Mineyev flow g of Γ satisfies Assumption B.

The refraction cocycle verifies Assumption C.

Via the equivariant boundary maps of ρ one can pullback the Buseman-Iwasawa cocycle of G to obtain a Hölder-cocycle on the boundary of Γ :

Definition 5.3.1. The refraction cocycle of ρ is β : Γ × ∂Γ → E ϑ β(γ, x) = β ρ (γ, x) = β ϑ γ ρ , ξ ϑ ρ (x)
. The limit cone of β will be denoted by L ϑ,ρ and referred to as the ϑ-limit cone of ρ. The period computation below implies it is the smallest closed cone of E ϑ that contains the projections λ ϑ γ ρ : γ ∈ Γ . We prove moreover that β verifies Assumption C from § 3.4.

Lemma 5.3.2. The periods of β are β(γ, γ + ) = λ ϑ γ ρ , consequently Assumption C holds for β, in particular int L ϑ,ρ * = ϕ ∈ L ϑ,ρ * : h ϕ < ∞ .
Proof. The first assertion follows from Proposition 5.2.3. To prove assumption C holds one considers any σ ∈ ϑ and the representation φ σ . By Theorem 5.2.2 the composition φ σ ρ : Γ → GL(V σ ) is projective-Anosov and thus, by [START_REF] Burger | Intersection, the Manhattan curve, and Patterson-Sullivan Theory in rank 2[END_REF] and Lemma 5.1.2, the form σ ∈ (E ϑ ) * has finite entropy. The last assertion follows from Lemma 3.4.2.

Lemma 3.4.2 and Theorem 3.2.2 give then the following.

Corollary 5.3.3. There exists a Hölder-continuous function J ϑ,ρ : UΓ → E ϑ such that for every hyperbolic γ ∈ Γ one has

[γ] J ϑ,ρ = λ ϑ γ ρ . For every ϕ ∈ int L ϑ,ρ * the Γ -action on ∂ 2 Γ × R defined by γ • (x, y, t) = γx, γy, t -β ϕ (γ, y) (25) 
is properly discontinuous and co-compact. The R-translation flow induces on the quotient a flow φ ϕ = φ ϕ t : χ ϕ → χ ϕ ) t∈R (bi)-Hölder-conjugated to the reparametrization of g by ϕ • J ϑ,ρ . Definition 5.3.4. The function J ϑ,ρ will be referred to as the Ledrappier potential of ρ. The flow φ ϕ will be called the ϕ-refraction flow of ρ.

5.4. The ϑ-limit cone. We mimick some celebrated results by Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF] for Zariski dense subgroups and ϑ = ∆. Lemma 5.4.1 (Benoist [6, Proposition 5.1]). For every compact set L ⊂ G there exists a compact set H ⊂ E such that for every g ∈ G one has a(LgL) ⊂ a(g) + H.

Let us also denote by a

ϑ = p ϑ • a. Proposition 5.4.2. Let ρ : Γ → G be a ϑ-Anosov representation, then there exists a compact set D ⊂ E ϑ such that a ϑ ρ(Γ ) ⊂ λ ϑ ρ(Γ ) + D.
Proof. As Γ is finitely generated and word-hyperbolic, there exist κ > 0 and two elements u, v ⊂ Γ such that for every non-torsion γ ∈ Γ there exists f ∈ {u, v} such that f γ verifies d ∂Γ (f γ) + , (f γ) -> κ. As ρ is ϑ-Anosov, the above equation implies the element ρ(f γ) is (r, ε)-proximal on ϑ for some r only depending on κ. By Proposition 4.8.1 one has

a ϑ ρ(f γ) -λ ϑ ρ(f γ) ≤ K,
for some K only depending on κ and ρ. We consider the compact set H from the Lemma above applied to L = ρ({u -1 , v -1 }) and we let D := p ϑ (H) + B(0, K).

We will mainly use the following direct consequence:

Corollary 5.4.3. If ϕ ∈ int L ϑ,ρ
* then the exponential rate

δ ϕ := lim sup t→∞ 1 t log # γ ∈ Γ : ϕ a(γ ρ ) ≤ t < ∞.
Proof. If σ ∈ ϑ then, since both intersections ker σ ∩ L ϑ,ρ and ker ϕ ∩ L ϑ,ρ vanish (the first one always does, the second one by the assumption on ϕ) the function ϕ/ σ is bounded below away from zero on L ϑ,ρ . By Proposition 5.4.2 there exist positive c and C such that for all hyperbolic γ ∈ Γ one has We begin by considering the Dirichlet series

ϕ a(γ ρ ) ≥ c σ a(γ ρ ) -C.
P ϕ (s) = γ∈Γ q -sϕ a(γρ) .
It is convergent for every s > δ ϕ and divergent for every s < δ ϕ . As it is customary when constructing Patterson-Sullivan measures, we can assume throughout this subsection that P ϕ (δ ϕ ) = ∞, otherwise one would consider the series s → γ∈Γ h ϕ a(γ ρ ) q -sϕ a(γρ)

for some real function h defined, for example, as in Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemma 8.5].

For s > δ ϕ consider the probability measure on F ϑ defined by

ν s = 1 P ϕ (s) γ∈Γ q -sϕ a(γρ) δ U ϑ γρ . Lemma 5.5.1. For every η ∈ Γ the signed measure ε(η, s) = (η ρ ) * ν s - 1 P ϕ (s) γ∈Γ q -sϕ a(γρ) δ U ϑ ηργρ weakly converges to 0 as s δ ϕ .
This is a standard argument that can be found, for example, in Pozzetti-S.-Wienhard [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Lemma 5.11]. 1 The ϑ-Anosov property is not really used until the uniqueness corollary, the existence presented here works for any discrete group whose limit cone on E does not intersect any wall associated to ϑ and replacing ξ ϑ (∂Γ ) by n∈N {U ϑ (g) : g ∈ ∆ with min σ∈ϑ σ(a(g)) ≥ n}.

Proof. It is sufficient to check the convergence for continuous functions. If f :

F ϑ → R is continuous then |ε(η, s)(f )| ≤ 1 P ϕ (s) γ∈Γ q -sϕ a(γρ) f η ρ U ϑ (γ ρ ) -f U ϑ (η ρ γ ρ ) .
By Lemma 4.9.2 and uniform continuity of f the convergence follows.

Lemma 5.5.2. Let ν ϕ be any weak-star limit of ν s when s δ ϕ . Then the support of ν ϕ is contained in ξ ϑ (∂Γ ). Moreover, for every η ∈ Γ one has

dρ(η) * ν ϕ dν ϕ (x) = q -ϕ β ϑ η -1 ρ ,x
.

Proof. The first statement follows at once from Lemma 5.2.5 since we assumed P ϕ (δ ϕ ) = ∞. For the second statement, consider a sequence s k δ ϕ such that ν s k → ν ϕ . One then has

ρ(η) * ν s k = ε(η, s k ) + 1 P ϕ (s k ) γ∈Γ q -s k ϕ a(γρ) δ U ϑ (ηργρ) = ε(η, s k ) + 1 P ϕ (s k ) γ∈Γ q -s k ϕ a(η -1 ρ γρ) δ U ϑ (γρ) = ε(η, s k ) + 1 P ϕ (s k ) γ∈Γ q -s k ϕ a(η -1 ρ γρ)-a(γρ) q -s k ϕ a(γρ) δ U ϑ (γρ) = ε(η, s k ) + 1 P ϕ (s k ) γ∈Γ q -s k ϕ β ϑ η -1 ρ ,U ϑ (γρ) +ε (η,γ) q -s k ϕ a(γρ) δ U ϑ (γρ)
where, by Quint's Lemma 4.9.3 and the fact that ϕ • p ϑ = ϕ, one has ε (η, γ) → 0 as min σ∈ϑ σ a γ ρ → ∞. Taking limit as s k δ ϕ one has, since we assumed P ϕ (δ ϕ ) = ∞, that only elements γ ∈ Γ with arbitrary big |γ| count in the sum. Since ρ is ϑ-Anosov, this is equivalent to considering elements γ ∈ Γ such that min σ∈ϑ σ a(γ ρ ) is arbitrary big. The result then follows as ε(η, s k ) → 0 by the Lemma above and ε (η, γ) is arbitrary small. Since Assumption C holds for β (Lemma 5.3.2), § 3.3 applies to give: Corollary 5.5.3. For every ϕ ∈ int L ϑ,ρ * there exists a β ϕ -Patterson-Sullivan measure µ ϕ := (ξ ϑ ) * ν ϕ of exponent δ ϕ . Such a measure is ergodic and moreover one has

δ ϕ = h ϕ . If ψ ∈ int L ϑ,ρ * is such that µ ψ µ ϕ then for every hyperbolic γ ∈ Γ one has h ϕ ϕ λ ϑ (γ ρ ) = h ψ ψ λ ϑ (γ ρ )
and, in particular, µ ψ = µ ϕ .

The above corollary was previously stablished by Dey-Kapovich [29, Main Theorem] for real algebraic groups, i-invariant functionals ϕ ∈ int(a + ) * and i-invariant subsets ϑ. The equality δ ϕ = h ϕ , together with more information, can also be found in Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit set for projective Anosov groups[END_REF]Theorem 2.31 (2)] for real groups. 

β(γ, x) = i β i ϑ γ ρ , ξ i ϑ (x)
is dual to β and moreover, from equation ( 22), the function [

•, •] ϕ : ∂ 2 Γ → R [x, y] ϕ = ϕ G ϑ ξ i ϑ (x), ξ ϑ (y) (26) 
is a Gromov product for the pair ( βϕ , β ϕ ). Finally, exchanging ϑ with i ϑ, Proposition 5.5.3 provides a Patterson-Sullivan measure for βϕ . We can thus apply the results from § 3.4 and § 3.5. Let c 0 , c 1 be positive and I ⊂ Z an interval, then a (c 0 , c 1 )-quasigeodesic is a sequence {α i } i∈I ∈ Γ such that for every pair j, l in the interval I one has

1 c 0 |j -l| -c 1 ≤ d Γ (α j , α l ) ≤ c 0 |j -l| + c 1 .
The coarse cone type at infinity of γ ∈ Γ consists of endpoints on ∂Γ of quasi geodesic rays based at γ -1 passing through the identity (see Figure 1): ). For a given α > 0 there exist c 0 , c 1 , depending on α and the domination constants of ρ, such that for every hyperbolic γ ∈ Γ one has

C c0,c1 ∞ (γ) = [{α j } ∞ 0 ] ∈ ∂Γ : {α i } ∞ 0 is a (c 0 , c 1 )-quasi-geodesic with α 0 = γ -1 , e ∈ {α j } . B c1 (e) γ -1 Γ C c0,c1 ∞ (γ)
(ξ ϑ ) -1 B θ,α (γ ρ ) ⊂ C c0,c1 ∞ (γ).
Reciprocally, there exists α ; only depending on c 0 , c 1 and the domination constants of ρ, such that C c0,c1 ∞ (γ) ⊂ (ξ ϑ ) -1 B θ,α (γ ρ ) . There exists then N ∈ N, only depending on c 0 , c 1 and the domination constants of ρ such that, for all t ∈ N the family

U t = γ ρ B ϑ,α γ ρ : t ≤ |γ| ≤ t + 1
is an open covering of ξ ϑ (∂Γ ) and such that every element ξ ϑ (x) belongs to at most N elements of the covering U t . 5.7. Sullivan's shadow lemma. We establish now a version of Sullivan's shadow Lemma.

Lemma 5.7.1. Consider ϕ ∈ (E ϑ ) * and let µ be a β ϕ -Patterson-Sullivan measure of exponent δ. Let ν = ξ ϑ * µ, then given α > 0 there exist constants C, C and L ∈ N such that for every γ ∈ Γ with |γ| ≥ L one has

q -δ•ϕ a(γρ) C ≤ ν γ ρ B ϑ,α (γ ρ ) ≤ Cq -δ•ϕ a(γρ) .
Proof. It suffices to stablish that there exist α and κ > 0 such that for all large enough γ ∈ Γ one has ν B ϑ,α (γ ρ ) ≥ κ. Indeed, using this fact the Lemma follows from the defining Equation [START_REF] Constantine | Strong symbolic dynamics for geodesic flows on CAT(-1) spaces and other metric Anosov flows[END_REF] and Equation [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF].

In order to stablish the desired lower bound we suppose by contradiction that there exists α n → ∞, γ n → ∞ such that ν B ϑ,αn ((γ n ) ρ ) → 0 as n → ∞. We can extract then a subsequence (γ n k ) such that

U i ϑ (γ -1 n k ) ρ → Y ∈ F i ϑ , k → ∞.
Moreover, since ρ is ϑ-Anosov, Lemma 5.2.5 guarantees that Y = ξ i ϑ (y) for some y ∈ ∂Γ . Also, since ν B ϑ,αn k ((γ n k ) ρ ) → 0 and α n k → ∞ we get that the complement

B ϑ,αn k ((γ n k ) ρ ) c = {X ∈ F ϑ : ∃σ ∈ ϑ s.t. σ G ϑ (U i ϑ ((γ -1 n k ) ρ ), X) ≤ -α n converges to the subset of F ϑ X ∈ F ϑ : (X, ξ i ϑ (y)) / ∈ F (2) ϑ 
, and that this subset has total ν-mass. Since the support of ν is contained in ξ ϑ (∂Γ ) and the equivariant maps are transverse (Proposition 5.2.3), one has that

{ξ ϑ (y)} = ξ ϑ (x) : (ξ ϑ (x), ξ i ϑ (y)) / ∈ F (2) ϑ
has total ν-mass. However, considering γ ∈ Γ with γy = y we get, since

d(γ ρ ) * ν dν (•) = q -δ•ϕ β θ (γ -1 ρ ,•) , (27) 
that ν{ξ 1 (γy)} > 0, contradicting that {ξ ϑ (y)} has total ν-mass.

Corollary 5.7.2. For every ϕ ∈ int L ϑ,ρ * one has γ∈Γ q -δ ϕ ϕ a(γρ) = ∞.

Proof. We apply Sullivan's shadow Lemma 5.7.1 to the measure ν ϕ of Lemma 5.5.2. Indeed, considering the coverings of ξ ϑ (∂Γ ) given by Proposition 5.6.1 one has

1 = ν ϕ ξ ϑ (∂Γ ) ≤ t≤|γ|≤t+1 ν ϕ γ ρ B ϑ,α (γ ρ ) ≤ C t≤|γ|≤t+1 q -δ ϕ ϕ a(γρ)
for all large enough t, giving divergence of the desired series.

5.8. Patterson-Sullivan Theory along the Anosov roots: surjectivity. We prove here surjectivity of the map ϕ → µ ϕ defined in § 5.5.

The following proposition should be compared with Pozzetti-S.-Wienhard [58, Theorem 5.14], where a similar result is obtained for measures on the flag space F θ , for θ not necessarily equal to ϑ but assuming that ϑ ∩ θ = ∅. Proof. We let ν = ξ ϑ * µ. Using Proposition 5.6.1 we get a family of coverings U t with bounded overlap. In combination with Lemma 5.7.1 one has for t large enough that 1 = ν(ξ ϑ (∂Γ )) ≥ K γ:t≤|γ|≤t+1 e -δϕ a(γρ) , for some constant K > 0. This is to say, there exists κ > 0 such that for all t ∈ R + large one has γ:t≤|γ|≤t+1 e -δϕ a(γρ) ≤ κ, which gives in turn that γ:|γ|≤t e -δϕ a(γρ) ≤ κt.

A standard argument (using for example § 4.8) permits to replace Cartan projections with Jordan projections giving 

Q ϑ,ρ := Q β = ϕ ∈ int L ϑ,ρ * : h ϕ = 1 , D ϑ,ρ := D β = ϕ ∈ int L ϑ,ρ * : h ϕ ∈ (0, 1) .
Moreover, by Corollary 5.5.3 one has δ ϕ = h ϕ so one has the equalities

Q ϑ,ρ = ϕ ∈ int L ϑ,ρ * : δ ϕ = 1 , D ϑ,ρ = ϕ ∈ int L ϑ,ρ * : δ ϕ ∈ (0, 1) = ϕ ∈ (E ϑ ) * : γ∈Γ e -ϕ a(γρ) < ∞ ,
where the last equality comes from Corollary 5.7.2. For ϕ ∈ Q ϑ,ρ we consider the dynamical intersection map I ϕ = I β ϕ : (E ϑ ) * → R, associated to the cocycle β as in § 3.4 and defined by

I ϕ (ψ) = I β ϕ (ψ) = lim t→∞ 1 #R t (ϕ) γ∈Rt(ϕ) ψ(λ(γ ρ )) ϕ(λ(γ ρ ))
,

where R t (ϕ) = γ ∈ Γ hyperbolic : ϕ(λ(γ ρ )) ≤ t}. Let Ann(L ϑ,ρ ) be the annihilator of the ϑ-limit cone and denote by

π ϑ ρ : (E ϑ ) * → (E ϑ ) * /Ann(L ϑ,ρ
) the quotient projection. As before, the map I β is also well defined on

π ϑ ρ (Q ϑ,ρ ) × (E ϑ ) * /Ann(L ϑ,ρ ).
Some statements in the following corollary were previously stablished in S. [START_REF] Sambarino | Hyperconvex representations and exponential growth[END_REF] for K = R and Zariski-dense ϑ-Anosov representations of closed negatively curved manifolds.

Corollary 5.9.1. The sets Q ϑ,ρ and π ϑ ρ Q ϑ,ρ ) are closed co-dimension-one analytic sub-manifolds, the latter bounds the strictly convex set π ϑ ρ D ϑ,ρ . The map ϕ → T ϕ π ϑ ρ Q ϑ,ρ = ker I ϕ is an analytic diffeomorphism between π ϑ ρ Q ϑ,ρ and directions in the relative interior of L ϑ,ρ .

We now prove the following: Proposition 5.9.2. The map ϕ → µ ϕ is an analytic homeomorphism from the manifold π ϑ ρ Q ϑ,ρ to the space of Patterson-Sullivan measures supported on ξ ϑ (∂Γ ). Proof. By uniqueness in Corollary 5.5.3 the map ϕ → µ ϕ is well defined and injective. Regularity follows from Remark 3. 

(γ ρ ) * ν dν (•) = q -δ•ϕ β θ (γ -1 ρ ,•) , (28) 
without imposing conditions on their support. Such measures exist, for example the K-invariant measure on F ϑ , but their exponent is too large. The question would be totally settled if the following had affirmative answer: Is the support of a measure verifying [START_REF] Croke | An inequality between energy and intersection[END_REF] with δ = δ ϕ necessarily contained on ξ ϑ (∂Γ )? 5.11. Variation of the critical hypersurface. We record the following consequence of Bridgeman-Canary-Labourie-S. [17, § 6.3] Corollary 5.11.1 (Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]). Let {ρ u : Γ → G} u∈D be an analytic family of ϑ-Anosov representations. Then Livšic-cohomology class of the Ledrappier potential J β ρu : UΓ → E ϑ associated varies analytically with u.

Consequently we can apply Corollary 2.6.5 to obtain:

Corollary 5.11.2. Let {ρ u : Γ → G} u∈D be an analytic family of ϑ-Anosov representations, then the critical hypersurface Q ϑ,ρu varies analytically (on compact sets of E ϑ ) with the representation u.

5.12. Consequences of the skew-product structure. Consider ϕ ∈ int L ϑ,ρ * .

By Remark 5.5.4 we can freely apply results from § 3.4 and § 3.5 to the cocycle β ϕ .

Let u ϕ = T hϕϕ Q ϑ,ρ ∈ P(L ϑ,ρ ) be the growth direction of ϕ. By § 3.4 the half line u ϕ ∩ L ϑ,ρ lies in the relative interior of L ϑ,ρ (and every direction in this relative interior is obtained in this fashion).

Consider the ϕ-Bowen-Margulis measure Ω ϕ on Γ \ ∂ 2 Γ × E ϑ , defined as the induced on the quotient by

e -δ ϕ [•,•]ϕ μϕ ⊗ µ ϕ ⊗ d Leb . (29) 
Consider u ϕ ∈ u ϕ with ϕ(u ϕ ) = 1 and denote by

ω ϕ = ω ϕ t : Γ \ ∂ 2 Γ × E ϑ → Γ \ ∂ 2 Γ × E ϑ t∈R the directional flow, induced on the quotient of t • (x, y, v) = (x, y, v -tu ϕ ).
The ergodic dichotomy from § 3.6 gives then: Theorem 5.12.1. Assume K = R and ρ is Zariski-dense, and let ϕ ∈ int L ϑ,ρ * .

If |ϑ| ≤ 2 then the directional flow ω ϕ is ergodic w.r.t Ω ϕ , in particular K(ω ϕ ) has total mass. If |ϑ| ≥ 4 then K(ω ϕ ) has measure 0.

Proof. The non-arithmeticity assumption for β holds by Benoist's Theorem 4.10.2 and thus Corollary 3.6.1 applies.

5.13. Directional conical points. The present task is to study the set of points on ∂Γ that are conical in the direction u ϕ . Consider y ∈ ∂Γ and a sequence {γ n } ⊂ Γ with γ n → y. Then we say that γ n converges conically to y if for every z ∈ ∂Γ -{y} the sequence γ -1 n (z, y) remains on a compact subset of ∂ 2 Γ . Remark 5.13.1. Equivalently, since any compact subset of ∂ 2 Γ is contained in a compact subset of the form (a, b) : d ∂Γ (a, b) ≥ κ for a fixed κ, one has that γ n → y conically if and only if there exists a geodesic ray {α i } ∞ 0 on Γ , converging to y, such that {γ n } is at bounded Hausdorff distance from {α i } ∞ 0 . It follows then the existence of constants, c 0 , c 1 such that for all n one has

γ -1 n y ∈ C c0,c1 ∞ (γ n ). ( 30 
)
Let us fix an (auxiliary) Euclidean norm on E ϑ and denote by B(v, r) the associated ball of radius r about v. The tube of size r about u ϕ is the tubular neighborhood:

T

r (u ϕ ) = {v ∈ E ϑ : B(v, r) ∩ u ϕ = ∅}.
Proof. Define E : Σ r × W → Σ × U/ k by E (x, t), w = x, t, w + t 0 K(x, s)ds . It is well defined since the above formula is equivariant, indeed one has

t-r(x) 0 K(σ(x), s)ds = t r(x) K(σ(x), s -r(x))ds = t r(x) K(x, s)ds (K is r-invariant) = t 0 K(x, s)ds - r(x) 0 K(x, s)ds which implies E r(x, t), w = σ(x), t -r(x), w + t-r(x) 0 K(σ(x), s)ds = σ(x), t -r(x), w + t 0 K(x, s)ds - r(x) 0 K(x, s)ds = k E((x, t), w) .
as desired. The remaining assertions follow similarly.

We will work from now on with this latter flow, still denoted by ψ in order not to overcharge with notation. Up to Livšic-cohomology we may assume that k is defined on Σ + .

By measure-theoretic arguments we consider F, G : Σ + × U → R that we can assume have separated variables, i.e. can be written as F (x, u) = p F (x)v F (u), with p F and p G Hölder-continuous and v F and v G smooth with compact support. We have to show that, as t → ∞,

t dim W/2 Ω F • G • ψ t ) → Ω(F ) Ω(G).
Tracing back the definitions one is brought up to understanding the limit as t → ∞ of

t dim W/2 Σ + ×U n∈N F (x, u)G σ n x, u -S n k(x) -tτ dνd Leb U , (34) 
where

S n k(x) = n i=0 k(σ i (x)
) is the Birkhoff sum. We focuss on the integral between brackets, only to multiply at the very end of our computation by

√ t d-1 ,
where d = dim U. The above integral becomes

Σ + ×U n∈N p F (x)p G σ n x v F (u)v G u -S n k(x) -tτ dν(x)d Leb U (u).
Recall that by assumption there is ϕ ∈ U * so that ϕ(k) = hr > 0 and that P (-hr) = 0, so up to Livšic-cohomology we can assume that -ϕ(k) = -hr is normalized, i.e. so that the Ruelle operator, defined by L ϕ Φ(x) = y:σ(y)=x e -ϕ k(y) Φ(y), verifies L * ϕ ν = ν, in particular, for every pair of Hölder-continuous functions j, l on Σ + one has Σ + j(σx)l(x)dν = Σ + j(x) L ϕ l (x)dν.

Denote by Leb U * the Lebesgue measure on U * defined by the Fourier inversion formula

v G (w) = U * e iψ(w) Fv G (ψ)d Leb U * (ψ)
for the Fourier transform Fv G if v G . As in Babillot-Ledrappier [5, § 2.3] we can, and will, assume that Fv G is of class C N for some N > (d -1)/2 and has compact support.

We will suppress the notation ν, Leb U and Leb U * from the integrals from now on. The desired integral, equation [START_REF] Guéritaud | Anosov representations and proper actions[END_REF], then becomes 

Σ + ×U n∈N L n ϕ p F (x)p G x v F (u)v G u -S n k(x
We seek thus to understand the nature of ψ → n∈N L n ϕ+iψ , for which one is brought to understand the spectral radius r ψ of L ϕ+iψ . Applying Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Chapter 4] we obtain that for every ψ ∈ U * one has r ψ ∈ (0, 1]. We then distinguish two situations.

The spectral radius r ψ is smaller than 1; in which case

η → n∈N L n ϕ+iη = (1 -L ϕ+iη ) -1 ,
is analytic on a neighborhood of ψ.

The spectral radius r ψ equals 1. One has then the following:

Theorem B.1 (Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Chapter 4]). One has r ψ = 1 if and only if there exists a Hölder continuous w ψ : Σ + → S 1 such that for all x ∈ Σ + one has e iψ(k(x)) = λ ψ w ψ (σ(x)) w ψ (x) .

In this situation the function w ψ is unique up to scalars.

Applying moreover Parry-Pollicott [53, Theorem 4.5] and the perturbation theorem [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Prop. 4.6], there exists a neighborhood O ψ of ψ such that for all η ∈ O ψ one has

L ϕ+iη = λ η Q η + N η ( 36 
)
where Q η is a rank-one projector, N η is an operator with spectral radius strictly smaller than r η = |λ η | and such that Q η N η = N η Q η = 0. The above objects are analytic on O ψ . The operator M ψ = n∈N N n ψ is hence well defined and analytic on O ψ . Observe that, as we have assumed -ϕ(k) to be normalized, one has

Q 0 (f )(x) = Σ + f dν • 1. ( 37 
)
Remark B.2. On the other hand, since k has dense group of periods on U, ψ(k) : Σ + → R has dense group of periods as soon as ψ = 0, and Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Theorem 4.5] implies that {λ n ψ : n ∈ Z} is dense in S 1 = ∂D. In particular λ ψ = 1, unless ψ = 0. Consequently, if ψ = 0 then for all η ∈ O ψ the operator

Q η 1 -λ η -M η
is well defined and analytic on O ψ .

Lemma B.3. If r ψ = 1 then for all η ∈ O ψ -{ψ} it holds r η < 1. Consequently

η → n∈N L n ϕ+iη = (1 -L ϕ+iη ) -1 = Q η 1 -λ η + M η
is analytic on O ψ -{ψ} and, if ψ = 0, it extends analytically to O ψ , as the righthand-side of the equation is well defined on ψ.

Proof. As η → λ η is analytic on O ψ , together with the above density result, it follows that there isa neighborhood (possibly smaller but) still denoted by O ψ such that if |λ η | = 1 then λ η = λ ψ . One has then applying Theorem B.1 that e i(ψ-η)(k(x)) = λ ψ w ψ (σ(x)) w ψ (x) λ -1 η w η (x) w η (σ(x)) = (w ψ /w η )(σ(x)) (w ψ /w η )(x) .

The remark and Theorem B.1 give ψ -η = 0 and so the lemma is stablished.

One obtains then that the operator n∈N L n ϕ+iψ is well defined and varies analytically on ψ except at ψ = 0. One is thus taken to localize the integral (35) about 0. To that end one considers an auxiliary C ∞ function κ : U * → R, supported on the neighborhood O 0 where equation (36) holds, with κ(0) = 1, and we seek to understand the modified integral over U * on equation (35) given, for (x, u) ∈ Σ + × U, by We can thus focus on the integral from equation (35) localized about 0, so it becomes, using again Lemma B.3,

Σ + ×U U * κ(ψ) (Q ψ p F )x 1 -λ ψ + (M ψ p F )(x) p G (x)v F (u)e iψ u-tτ Fv G (ψ)dψdxdu + O(t -N ). ( 41 
)
We first treat the term containing M ψ , which is dealt with as we did with equation [START_REF] Hörmander | The analysis of partial differential operators I, volume 256 of A series of comprehensive studies in mathematics[END_REF]. Indeed, for the same reasons one has for all (x, u) ∈ Σ + × U, the integral (

) 42 
We effort then on understanding the integral

U * κ(ψ) (Q ψ p F )x 1 -λ ψ e iψ u-tτ Fv G (ψ)dψ, (43) 
the issue being the singularity at ψ = 0 of 1/(1 -λ ψ ). To that end, consider the function Q : T ϕ Q k → R defined implicitly by the equation

Q(ψ 0 )ϕ + ψ 0 ∈ Q k .
It is analytic, critical at 0 with Q(0) = 1, and has positive-definite Hessian at 0, Hess 0 Q, using Taylor expansion one writes Q(ψ 0 ) = 1 + (1/2) Hess 0 Q(ψ 0 ) + O ψ 0 2 . 

One applies the

Using Taylor series on the ψ-variable we may, and will, assume that C(ψ, x) is of the form c x (s ψ )b(ψ 0 ). Equation ( 44 (

) 46 
We finally multiply by √ t d-1 , take limit as t → ∞ and trace back our definitions to get, as we assumed N > (d -1)/2, the convergence of equation ( 46) (and thus that of equation ( 43 TϕQ k e -1 2 Hess0 Q(ψ0) dψ 0

= Σ + p F dν U v G (u)du h Σ + rdν TϕQ k e -1 2 Hess0 Q(ψ0) dψ 0 , (47) 
where we have used equation [START_REF] Helgason | Differential geometry, Lie groups and symmetric spaces[END_REF] and the formula Fv G (0) = U v G (u)du. Observe that, as Hess 0 Q is positive-definite, the integral TϕQ k e -1 2 Hess0 Q(ψ0) dψ 0 is finite (and non-zero). Observe that, as H(ψ 0 ) = H(-ψ 0 ), the value of the Fourier transform FH(w 0 ) ∈ R.

We finally group back the equations to get the desired result. Indeed, equation ( 34) is √ t d-1 where we have used, in the first equality, equations [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF] and [START_REF] Knieper | Volume gowth, entropy and the geodesic stretch[END_REF] and the fact that N > (1/2)(d -1) and, in the second equality, the convergence from equation [START_REF] Livšic | Cohomology of dynamical systems[END_REF]. This completes the sketch of proof.

Σ + ×U n∈N F (x, u)G σ n x, u -S n k(x) -tτ dνd Leb U = √ t d-1 p G (x)v F (u) κ(ψ) (Q ψ p F )x 1 -λ ψ e iψ u-tτ Fv G (ψ)dψdudx + O(1/t) = Σ + p F dν U v G (u)du h Σ + rdν p G (x)v F (u)dxdu
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Remark 2 . 2 . 4 .

 224 The space of functions Livšic-cohomologous to a strictly positive function is an (open cone on an) infinite dimensional space.

2 .

 2 For dim V ≥ 3 one considers an open A ⊂ Σ with ν(∂A) = 0, an open interval I ⊂ R with length < min r and B ⊂ V an open ball. Applying Theorem 2.5.2 to B = B1 = B2 = A × I × B

Proposition 2 .

 2 7.1 ([17, § 3.4]). One has

  Two cohomolgous cocycles have the same marked spectrum γ → c (γ). The following should be compared with Ledrappier [44, Théorème 3]. Proposition 3.1.1. For every Hölder cocycle c there exists a Hölder-continuous function J c : UΓ → V such that for every hyperbolic γ ∈ Γ one has [γ] J c = c (γ). Cohomologous cocycles induce Livšic-cohomolgous functions. Proof. The general case follows from the case V = R by Riesz representation Theorem. Assume thus V = R and consider the trivial line bundle UΓ × R equipped with the bundle automorphisms γ • (p, s) := γp, e -c γ,(x,y) s , where p = (x, y, t). Denote by F → UΓ the quotient line bundle. It is equipped with a flow ĝt : F → F t∈R by bundle automorphisms, induced on the quotient by t • (p, s) = (g t p, s). Let | | be a Euclidean metric on F and define, for v ∈ F p , T(p, t) = log |ĝ t v| |v| .

Remark 3 . 2 . 1 .

 321 It follows from Proposition 3.1.1 and Remark 2.2.6 that h c > 0.

Definition 3 . 2 . 3 .

 323 The flow φ c will be called the refraction flow of c.3.3.Patterson-Sullivan measures. Let us consider now Hölder cocycles with V = R and only depending on one variable, i.e. c : Γ × ∂Γ → R. Assume moreover that c has non-negative periods and finite entropy. A cocycle c :Γ × ∂Γ → R is dual to c if for every hyperbolic γ ∈ Γ one has c(γ) = c γ -1 . Definition 3.3.1.-A Patterson-Sullivan measure for c of exponent δ ∈ R + is a probability measure µ on ∂Γ such that for every γ ∈ Γ one hasdγ * µ dµ (•) = e -δc γ -1 ,• .(14)-A Gromov product for the ordered pair (c, c) is a function [•, •] : ∂ 2 Γ → R such that for all γ ∈ Γ and (x, y) ∈ ∂ 2 Γ one has [γx, γy] -[x, y] = -c(γ, x) + c(γ, y) . Consider a pair of dual cocycles (c, c) and assume a Patterson-Sullivan measure of exponent δ exists for each c and c, denoted by µ and μ respectively. Assume moreover that a Gromov product for the pair (c, c) exists. The measure m = e -δ[•,•] μ ⊗ µ ⊗ dt (15) on ∂ 2 Γ ×R is hence Γ -invariant 1 and R-invariant. Passing to the quotient one obtains a measure m on χ c invariant under the flow φ c . Observe that we can write m as d m(x, y, t) = ∂Γ ×R e -δt dµ(y)dt ∂Γ e δt e -δ[x,y] dμ(x) .

Proposition 3 . 3 . 2 .

 332 The measure m on χ c maximizes entropy for the flow φ c . The exponent δ necessarily equals the topological entropy of φ c , h c , if ν is another Patterson-Sullivan measure for c then ν = µ.

Remark 3 . 3 . 3 .

 333 The probability measure a/|a| on UΓ = Γ \ UΓ induced by m is the equilibrium state of -h c J c .Since the zero sets of an equilibrium state are uniquely determined by the Livšiccohomology class of the associated potential up to an additive constant (Theorem 2.3.3), one concludes the following: Corollary 3.3.4. Let κ, κ be a pair of dual cocycles with non-negative periods and finite entropy. Assume Patterson-Sullivan measures, ν and ν, exist for κ and κ1 Indeed, if f : ∂Γ × R → R is continuous then f γ(y, t) e -δt dµdt, = f γy, t -c(γ, y) e -δt dµdt = f (γy, t)e -δ t-c(γ,y) dµdt (by translation invariance) = f (y, t)e -δ t-c(γ,γ -1 y) e -δc(γ -1 ,y) dµdt (by definition of µ) = f (y, t)e -δt dµdt.

Corollary 3 . 4 . 3 . 3 . 5 .

 34335 Under Assumption C one has that π c (D c ) is a strictly convex set whose boundary is π c (Q c ). The latter is an analytic co-dimension-one sub-manifold. The map u : π c (Q c ) → P span{L c } defined by ϕ → u ϕ := T ϕ π c (Q c ) = ker I ϕ is an analytic diffeomorphism between π c (Q c ) and directions in the relative interior of L c . Proof. By Remark 3.4.1 we can apply § 2.6 to J c , the equality T ϕ Q c = ker I ϕ follows from Corollary 2.7.2. Vector-valued cocycles II: skew-product structure. We remain in the situation of § 3.4, i.e. we keep Assumption C. It follows at once from Theorem 3.2 that the Γ -action ∂ 2 Γ × V γ(x, y, v) = γx, γy, v -c(γ, y) is properly discontinuous. We aim to give a description of the V -action on the quotient space Γ \ ∂ 2 Γ × V space. By Lemma 3.4.2 and Theorem 3.2.2 we can, for every ϕ ∈ int L c * , consider the refraction flow φ cϕ = φ cϕ t : χ cϕ → χ cϕ t∈R . Such a ϕ is fixed from now on. Remark 3.5.1. Let us still denote by J c the Ledrappier potential for c over the flow φ cϕ , i.e. for every hyperbolic γ ∈ Γ one has [γ]

( 2 )

 2 ϑ and say that (x, y) ∈ F i ϑ × F ϑ are transverse if in fact (x, y) ∈ F (2) ϑ . Denote by (•, •) a W-invariant inner product on E, (•, •) the induced inner product on E * , define , on E * by χ, ψ = 2(χ, ψ) (ψ, ψ) and let { α } α∈Π be the fundamental weights of Φ, defined by the equations α , σ = d α δ ασ , where d α = 1 if 2α / ∈ Φ and d α = 2 otherwise.

Lemma 4 . 6 . 1 (

 461 Quint [62, Lemmas 6.1 and 6.2]). The function β ϑ = p ϑ • β factors as a cocycle β ϑ : G × F ϑ → E ϑ .

Lemma 4 .

 4 10.1 gives then the desired result. 5.5. Patterson-Sullivan Theory along the Anosov roots: existence. In this section we will construct, for each ϕ ∈ int L ϑ,ρ * a β ϕ -Patterson-Sullivan measure 1 . The procedure is standard and follows the original idea by Patterson.

Remark 5 . 5 . 4 .

 554 We conclude by remarking that, for ϕ ∈ int L ϑ,ρ * , the existence assumptions of § 3.3 are guaranteed for β ϕ . Indeed Proposition 5.5.3 states the existence of a Patterson-Sullivan measure µ ϕ for β ϕ . On the other hand the cocycle

5. 6 .

 6 Cartan's basins have controlled overlaps. The job of understanding the overlaps of Cartan's bassins for Anosov representations has been carried out in Pozzetti-S.-Wienhard [58]. The idea is to compare the Cartan's basins of elements γ ρ , for hyperbolic γ ∈ Γ , with the coarse cone type of γ.

Figure 1 .

 1 Figure 1. The coarse cone type at infinity, the black broken lines are (c0, c1)-quasi-geodesics.

Proposition 5 . 8 . 1 .

 581 Consider ϕ ∈ (E ϑ ) * . If there exists a β ϕ -Patterson-Sullivan measure µ of exponent δ then ϕ ∈ int(L ϑ,ρ ) * , δ = δ ϕ and µ = µ ϕ .

2 . 5 . 9 .

 259 [γ]:p([γ])≤t e -δϕ λ(γρ) =[γ]:p([γ])≤t e for a suitable κ , where p([γ]) is the g-period of the periodic orbit associated to [γ], and J ϕ ϑ,ρ is the Ledrappier potential of β ϕ . Formula (5) for the pressure function gives thenP (-δJ ϕ ϑ,ρ ) ≤ 0.Consequently, Lemma 2.2.7 gives that J ϕ ϑ,ρ is Livšic-cohomologous to a positive function, this is to say, ϕ ∈ int L ϑ,ρ * . Finally, since Remark 5.5.4 guarantees the existence assumptions of § 3.3 for β ϕ , the remaining two equalities in the statement follow from Corollary 3.3.The critical hypersurface parametrizes Patterson-Sullivan measures. By Lemma 5.3 Assumption C holds for β and thus § 3.4 applies. Define the ϑ-critical hypersurface, resp. ϑ-convergence domain, of ρ by

  3.3 and analytic variation of equilibrium states (Theorem 2.3.3). Surjectivity follows from Proposition 5.8.1. Proposition 5.9.2 was previously stablished by Lee-Oh [46, Theorem 1.3] for K = R and ∆-Anosov Zariski-dense representations. The convergence domain D ∆,ρ is dual to Quint's growth indicator function [61]. Remark 5.10. Observe that, by definition, a β ϕ -Patterson-Sullivan measure has its support on ∂Γ , and thus on ξ ϑ (∂Γ ) when pushed to F ϑ . One could more generally study measures on F ϑ verifying d

  ) -tτ dxdu= Σ + ×U n∈N L n ϕ p F (x)p G x v F (u) U * e iψ u-Snk(x)-tτ Fv G (ψ)dψdxdu, = Σ + ×U U * n∈N L n ϕ+iψ p F (x)p G (x)v F (u)e iψ u-tτ Fv G (ψ)dψdxdu = Σ + ×U p G (x)v F (u) U * n∈NL n ϕ+iψ p F (x)e iψ u-tτ Fv G (ψ)dψdxdu.

U * 1 -

 1 κ(ψ) n∈N L n ϕ+iψ p F (x)e iψ u-tτ Fv G (ψ)dψ.[START_REF] Hörmander | The analysis of partial differential operators I, volume 256 of A series of comprehensive studies in mathematics[END_REF] Consider from § 2.6 the critical hypersurface Q k ⊂ U * . It follows from Babillot-Ledrappier[START_REF] Babillot | Lalley's theorem on periodic orbits of hyperbolic flows[END_REF] that one has Q k = P -1 (0) and the tangent spaceT ϕ Q k = {ψ ∈ U * : ψ(τ ) = 0}. For ψ ∈ U * let ψ = s ψ ϕ + ψ 0 (39)be its decomposition alongU * = Rϕ⊕T ϕ Q k . Decomposing dψ as dsdψ 0 , the integral (38) becomes R e -its TϕQ k e iψ(u) 1 -κ(ψ) n∈N L n ϕ+iψ p F (x)Fv G (ψ)dψ 0 ds = O(t -N ) (40)as it is the Fourier transform of the integral over T ϕ Q k , which is, by Lemma B.3 as regular as Fv G (ψ), and this function was chosen to be of class C N for some N > (d -1)/2.

  )(M ψ p F )(x)e iψ u-tτ Fv G (ψ)dψ = R e -its TϕQ k e iψ(u) κ(ψ)(M ψ p F )(x)Fv G (ψ)dψ 0 ds = O(t -N ).

2 , 0 eT is ψ -( 1 / 2 )

 2012 Weierstrass preparation Theorem[START_REF] Hörmander | The analysis of partial differential operators I, volume 256 of A series of comprehensive studies in mathematics[END_REF] Theorem 7.5.1] to express 1 -λ ψ about 0 as1 -λ ψ = a(ψ) is ψ -(1/2) Hess 0 Q(ψ 0 ) -O ψ 0(recall the decomposition of ψ from equation (39)) where a is real-analytic and a(0) = h rdν (see Babillot-Ledrappier[5, page 37] or Ledrappier-Sarig[45, page 17] for details). Whence, as in [5, Lemma 2.3], using the formula 1/z = -ψ -(1/2) Hess0 Q(ψ0)-O ψ0 2 dT,and equation[START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] becomes, denoting by C(ψ, x) = κ(ψ)(Q ψ p F )(x) a(ψ)Fv G (ψ) to lighten the notation,U * e iψ(u-tτ ) κ(ψ) (Q ψ p F )(x) a(ψ) Fv G (ψ) ∞ Hess0 Q(ψ0)-O ψ0 2 dT dψ 0 ds = ∞ 0 R e -i(t-T )sTϕQ k C(ψ, x)e iψ(u)-T Hess0 Q(ψ0)/2+O ψ0 2 dψ 0 dsdT.

e0

  -i t-T -ϕ(u) s c x (s)dsTϕQ k b(ψ 0 )e iψ0(u)-T Hess0 Q(ψ0)/2+O ψ0 2 dψ 0 dT = ∞ Fc x t -T -ϕ(u) TϕQ k b(ψ 0 )e iψ0(u)-T Hess0 Q(ψ0)/2+O ψ0 2 )-T -ϕ(u) Hess0 Q(ψ0)/2+O ψ0 2 dψ 0 dT, = ∞ max(t/2,ϕ(u)) Fc x (t -T ) TϕQ k b(ψ 0 )e iψ0(u)-T -ϕ(u) Hess0 Q(ψ0)/2+O ψ0 2 dψ 0 dT + O(t -N ),(45)where the last equality is, as in[5, page 27], essentially due to the fact that c x has compact support and is of class C N . Applying the change of variables ψ 0 → ψ 0 / √ T the last integral becomes ∞ max(t/2,ϕ(u)) Fc x (t -T ) dψ 0 dS + O(t -N ).

1 2

 1 (Q ψ p F )x 1 -λ ψ e iψ u-tτ Fv G (ψ)dψ = b(0) Hess0 Q(ψ0) dψ 0 = Q 0 (p F )(x)Fv G (0) a(0)

Remark B. 4 .

 4 If one modifies the action (x, u) → (x, u-tτ ) to consider the induced on the quotient by (x, u) → (x, u -tτ -√ tw 0 ) for a fixed w 0 ∈ ker ϕ then tracing the compuations one readily sees that limt→∞ p F )x 1 -λ ψ e iψ u-tτ - √ tw0 Fv G (ψ)dψ = Σ + p F dν U v G (u)du h Σ + rdν TϕQ k e -iψ0(w0) e -1 2 Hess0 Q(ψ0) dψ 0 = Σ + p F dν U v G (u)du h Σ + rdν FH(w 0 ),where we have defined H(ψ 0 ) = e -(1/2) Hess0(ψ0) .

TϕQ k e - 1 2

 1 Hess0 Q(ψ0) dψ 0 + O(1/t) = FH(0) h Σ + rdν F dνd Leb Gdνd Leb +O(1/t),

  2.1.2. If f and g are real-valued and Livšic-cohomologous then P (φ, f ) = P (φ, g).

	2.2. Metric-Anosov flows I: Livšic-cohomology. Metric-Anosov flows are a
	metric version of what is commonly known as hyperbolic flows. The former are
	called Smale flows by Pollicott

here we let i : a → a be the opposition involution and i ϑ := ϑ • i,

also usually called the entropy-one set or the Manhattan curve,

i.e. an infinite order element

Definition 5.13.2. We say that y ∈ ∂Γ is (r, ϕ)-conical if there exists a conical sequence {γ n } ⊂ Γ converging to y such that for all n a ϑ (γ n ) ρ ∈ T r (u ϕ ).

We say that y is ϕ-conical if it is (r, ϕ)-conical for some r.

Let us denote by ∂ r,ϕ Γ ⊂ ∂Γ the set of (r, ϕ)-conical points and by ∂ ϕ Γ the set of ϕ-conical points. We now establish the following dichotomy.

Theorem 5.13.3. Assume K = R and that ρ is Zariski-dense. If |ϑ| ≤ 2 then

The Theorem follows directly from Theorem 5.12.1 and the following proposition. Let us denote by p :

. By equation [START_REF]Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF], there exists ε given by Proposition 5.6.1 (only depending on c 0 and c 1 ) such that for all n

Consequently equation [START_REF] Carvajales | Growth of quadratic forms under Anosov subgroups[END_REF] gives

By assumption a ϑ ρ(γ n ) ∈ T r (u ϕ ) and one finds thus a divergent sequence

for some K only depending on r and ε. The sequence

), for some κ only depending on d ∂Γ (x, y), in particular p(x, y, v) ∈ K(ω ϕ ) as desired. Reciprocally, if p(x 0 , y 0 , v 0 ) ∈ Γ \ ∂ 2 Γ ×E ϑ belongs to K(ω ϕ ), let B be a bounded open set to which the ω ϕ -orbit of p(x 0 , y 0 , v 0 ) returns to unboundedly. Considering an accumulation point of the orbit points in B we can assume that B = p( B) for some B of the form

We obtain thus divergent sequences {γ n } ⊂ Γ and

Considering subsequences we can assume that γ -1 n x 0 → x ∞ and γ -1 n y 0 → y ∞ . Necessarily x ∞ = y ∞ since they are at least κ apart. The sequence {γ n } is thus conical, but it is still to be determined whether it converges to x 0 or to y 0 .

Using the last inequality in [START_REF] Gromov | Hyperbolic groups[END_REF] we deduce, since t n → +∞, that for all σ ∈ ϑ

By definition of β and the interpretation of the Buseman-Iwasawa cocycle via representations (equation ( 21)) one has log

We now use a standard linear algebra computation 1 to conclude that

By Lemma 5.2.4 one concludes that

as n → ∞ for all σ ∈ ϑ. Again by Lemma 5.2.4 one has γ n → y 0 as n → ∞ (in Γ ∪ ∂Γ ) and thus, by conicality of {γ n }, that for all z ∈ ∂Γ -{y 0 } it holds

Since the latter lower bound holds for all σ ∈ ϑ one concludes that ξ ϑ (γ -1 n y 0 ) belongs to the Cartan basin B ϑ,κ ρ(γ n ) . Thus, as in equation ( 31), one has

n , y 0 ) + a ϑ ρ(γ n ) ≤ K, for some K only depending on κ . The latter, together with the second inequality from equation [START_REF] Gromov | Hyperbolic groups[END_REF] implies that y 0 is ϕ-conical, as desired.

Proof of Theorem 5.13.3. Consider a positive ε. Fix y ∈ ∂ ϕ Γ , x ∈ ∂Γ -{y} and two neighborhoods A -and A + of x and y respectively so that for all (z, w) ∈ A -, A + one has [z, w] ϕ -[x, y] ϕ < ε. Pick also an arbitrary T > 0 so that the quotient projection p is injective on B = A -× A + × B(0, T ). We can thus compute the measure of B = p( B) by the formula [START_REF] Dey | Patterson-Sullivan theory for Anosov groups[END_REF].

If we let K(ω ϕ ) = p -1 K(ω ϕ ) , then the Lemma above asserts that

If |ϑ| ≤ 2 Theorem 5.12.

Since ε is arbitrary one concludes µ ϕ (∂ ϕ Γ ) = 1. On the other hand, if |ϑ| ≥ 4 then we have Ω ϕ K(ω ϕ ) = 0 so µ ϕ (A + ∩ ∂ ϕ Γ ) = 0 and the theorem is proved.

Appendix A. Ergodicity of skew-products with values on R

We freely use notation from Proposition 2.4.2 which we intend to prove. The proof presented here is mainly a collection of results.

We say that K is recurrent if for every measurable set A ⊂ Σ with ν(A) > 0 and every neighborhood N (0) of 0 in V there exists n ∈ Z -{0} such that one has

It is moreover a general fact that mean-zero cocycles over the reals are conservative, see [START_REF] Aaronson | An introduction to Ergodic Theory in infinite measure[END_REF]Cor. 8.1.5] from which we state here a particular case.

Corollary A.1. Since by assumption Kdν = 0, the cocycle f K is conservative and so K is recurrent.

The proof of Proposition 2.4.2 ends with the following theorem of Coelho (obtained by the combination of Example 2.4 and Corollary 3.4 of Coelho [START_REF] Coelho | On the asymptotic range of cocyles for shifts of finite type[END_REF] ), specific to sub-shifts and equilibrium states.

Theorem A.0.1 (Coelho [26]). Assume K is non-arithmetic and let ν be an equilibrium state of σ for a Hölder potential. Then f is ergodic w.r.t Ω ν if and only if K is recurrent.

Appendix B. Mixing

In this appendix we give a quick outline of the proof of Theorem 2.5.2. We use small modifications of classical computations dating back at least to Babillot [START_REF] Babillot | Théorie du renouvellement pour des chaînes semi-Markoviennes transientes[END_REF] and appearing also in Babillot-Ledrappier [START_REF] Babillot | Lalley's theorem on periodic orbits of hyperbolic flows[END_REF], Ledrappier-Sarig [START_REF] Ledrappier | Unique ergodicity for non-uniquely ergodic horocycle flows[END_REF] and more recently in Oh-Pan [START_REF] Oh | Local mixing and invariant measures for horospherical subgroups on Abelian covers[END_REF] and Chow-Sarkar [START_REF] Chow | Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces[END_REF], where an extra parameter (an holonomy with values on a compact group) has been added to the Ruelle operator. We thank M. Chow and P. Sarkar for pointing out an issue in the argument presented in S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF], F. Ledrappier for suggesting the reference [START_REF] Ledrappier | Unique ergodicity for non-uniquely ergodic horocycle flows[END_REF] and H. Oh for pinpointing the reference [START_REF] Oh | Local mixing and invariant measures for horospherical subgroups on Abelian covers[END_REF].

It is first convenient to straighten the flow action by means of twisting the raction.

Lemma B.1. Let U = R × W, and let k : Σ → U be k(x) = r(x), r(x) 0 K(x, s)ds , then:

-there exists ϕ ∈ U * such that ϕ(k) = r > 0, -kdν = ( rdν, 0) = 0, -there exists a bi-Hölder homeomorphism E : Σ r × W → Σ × U/ k, where k(x, u) = σ(x), u -k(x) , which is a measurable isomorphism between Ω and ν ⊗ Leb U / k, that conjugates ψ with the flow induced on the quotient by (x, u) → (x, u -tτ ), where τ ∈ kdν is such that ϕ(τ ) = 1.
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